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(a) tiled single 1D scan

+ ++

+ ++

in
tr

a-
til

e
sc

an
in

tr
a-

til
e

sc
an

in
tr

a-
til

e
sc

an
in

tr
a-

til
e

sc
an

in
tr

a-
til

e
sc

an
in

tr
a-

til
e

sc
an

                        *bdata = prev.y;

if  (y < c_height)
                        *out = prev.y;
                    swap(prev.x, prev.y);
                }
            }
        }

else
        {
#pragma unroll

for  ( int  j=WS- 1; j>= 0; --j, --bdata)
            {
                prev.y = *bdata*b0_2 - prev.x*c_a1 - prev.y*c_a2;

if  (p_fusion)
                    *bdata = prev.y;

                swap(prev.x, prev.y);
            }
        }

if  (p_fusion)
        {
            g_pubar += n*c_carry_width + m*WS + tx;
            g_evhat += n*c_carry_width + m*WS + tx;

float  (*bdata)[WS+ 1] = ( float  (*)[WS+ 1]) &s_block[ty*WS][tx];

// calculate pubar, scan left -> right
            float2 prev = make_float2( 0,**bdata++);

#pragma unroll
for  ( int  i= 1; i<WS; ++i, ++bdata)

            {
                **bdata = prev.x = **bdata - prev.y*c_a1 - prev.x*c_a2;

                swap(prev.x, prev.y);
            }

if  (n < c_n_size- 1)
                *g_pubar = prev*c_b0;

if  (n > 0)
            {

// calculate evhat, scan right -> left
                prev = make_float2(**--bdata, 0);

                --bdata;

#pragma unroll
for  ( int  i=WS- 2; i>= 0; --i, --bdata)

                {
                    prev.y = **bdata - prev.x*c_a1 - prev.y*c_a2;
                    swap(prev.x, prev.y);
                }

                *g_evhat = prev*b0_2;
            }
        }
    }
}

//-- Algorithm 4_2 Stage 2 and 3 ----------------------------------------------

__global__  __launch_bounds__(WS*DW, DNB)
void  alg4_stage2_3( float2 *g_transp_pybar,
                    float2 *g_transp_ezhat ) {

__host__
void  prepare_alg4( alg_setup& algs,
                   alg_setup& algs_transp,
                   dvector< float >& d_out,
                   dvector< float >& d_transp_out,
                   dvector<float2>& d_transp_pybar,
                   dvector<float2>& d_transp_ezhat,
                   dvector<float2>& d_pubar,
                   dvector<float2>& d_evhat,
                   cudaArray *& a_in,

const float  *h_in,
const int & w,
const int & h,
const float & b0,
const float & a1,
const float & a2,

(e) Tiled implementation of Gaussian
blur using our approach: 12 lines

(b) Tiled multiple scans  (extra dependencies shows in red) (d) Tiled implementation of Gaussian blur in
CUDA [Nehab et al. 2011]: 1100 lines

                *g_evhat = prev*b0_2;
            }
        }
    }
}

//-- Algorithm 4_2 Stage 2 and 3 ------------------

__global__  __launch_bounds__(WS*DW, DNB)
void alg4_stage2_3( float2 *g_transp_pybar,
                    float2 *g_transp_ezhat ) {

RecFilterDim x("x",image_width), y("y",image_height);
RecFilter F("Gaussian");
F.set_clamped_image_border();

// initialize the IIR pipeline
F(x,y) = image(x,y);

// add the filters: causal and anticausal
F.add_filter(+x, gaussian_weights(sigma, order));
F.add_filter(-x, gaussian_weights(sigma, order));
F.add_filter(+y, gaussian_weights(sigma, order));
F.add_filter(-y, gaussian_weights(sigma, order));

// reorganize the filter
vector<RecFilter> fc = F.cascade_by_dimension();

// tile the filter
fc[0].split(x, tile_width);
fc[1].split(y, tile_height);

// schedule the filter
fc[0].gpu_auto_schedule(max_threads_per_cuda_tile);
fc[1].gpu_auto_schedule(max_threads_per_cuda_tile);

// JIT compile and run
Image<float> out(fc[1].realize());

(c) Gaussian blur performance
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Figure 1: Tiling recursive filters exposes parallelism and locality in what are otherwise strictly-ordered computations. This improves their
performance on highly parallel architectures like GPUs by an order of magnitude over traditional scanline-parallel implementations as shown
in (c). This process converts them into multi-stage pipelines where some stages operate within tiles and some across tiles as shown in (a)
and (b). Multi-filter pipelines get progressively more complex upon tiling because they induce extra dependencies shown by red arrows in (b)
which makes these filters difficult to implement. (d) CUDA implementation of tiled 3rd-order recursive Gaussian blur requires 1100 lines of
highly hand-optimized code [Nehab et al. 2011]. (d) Our compiler solves this problem by mechanizing the generation of tiled implementations
and allows full user control over tiling and scheduling, making it easy for programmers to implement and experiment with different tiling
strategies using only a few lines of code. The results show an order of magnitude better performance over commonly used scanline-parallel
implementations and up to 1.4 times over hand tuned tiled implementations in 100 times less code.

Abstract
Infinite impulse response (IIR) or recursive filters, are essential
for image processing because they turn expensive large-footprint
convolutions into operations that have a constant cost per pixel
regardless of kernel size. However, their recursive nature constrains
the order in which pixels can be computed, severely limiting both
parallelism within a filter and memory locality across multiple filters.
Prior research has developed algorithms that can compute IIR filters
with image tiles. Using a divide-and-recombine strategy inspired
by parallel prefix sum, they expose greater parallelism and exploit
producer-consumer locality in pipelines of IIR filters over multi-
dimensional images. While the principles are simple, it is hard, given
a recursive filter, to derive a corresponding tile-parallel algorithm,
and even harder to implement and debug it.

We show that parallel and locality-aware implementations of IIR
filter pipelines can be obtained through program transformations,
which we mechanize through a domain-specific compiler. We show
that the composition of a small set of transformations suffices to
cover the space of possible strategies. We also demonstrate that the
tiled implementations can be automatically scheduled in hardware-
specific manners using a small set of generic heuristics. The pro-
grammer specifies the basic recursive filters, and the choice of trans-
formation requires only a few lines of code. Our compiler then
generates high-performance implementations that are an order of
magnitude faster than standard GPU implementations, and outper-
form hand tuned tiled implementations of specialized algorithms
which require orders of magnitude more programming effort—a few
lines of code instead of a few thousand lines per pipeline.
CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Parallel processing I.3.6 [Computer Graphics]:

Methodology and Techniques—Languages I.4.6 [Image process-
ing and computer vision]: General—Image processing software

Keywords: Image processing, IIR filter, GPU computation, paral-
lelism, memory locality, compiler, domain-specific language, high
performance.

1 Introduction

Many image processing operations use stencils with large kernels,
such as Gaussian or box blur, or local histograms [Chen et al. 2007;
He et al. 2013]. With current image resolutions, kernels covering
thousands of pixels or more are common and the quadratic growth
of computation with respect to kernel width becomes unacceptable.
Recursive or IIR filters are invaluable in reusing the computation
from previous pixels and giving constant per pixel asymptotic com-
plexity [Huang et al. 1979; Deriche 1993; Weiss 2006; Perreault
and Hébert 2007]. Unfortunately, this introduces sequential depen-
dencies between pixels and severely limits parallelism. To address
this, recent work shows how to manually decompose the compu-
tation of a linear recursive filter across image tiles [Nehab et al.
2011]. Similar to prefix sum, filters are turned into multiple passes
of intra-tile and inter-tile computation. This must be done across



multiple dimensions and computation across dimensions must be
interleaved intelligently for locality. These algorithms achieve an
order of magnitude speedup on highly-parallel architectures such
as GPUs but also dramatically increase implementation complexity.
So far, algorithms have been demonstrated for specific cases, such
as summed area tables and Gaussian blur [Nehab et al. 2011], but
each new filter or sequence of filters, depending on their order and
causality, requires a new implementation of hundreds to thousands
of lines to achieve state-of-the-art performance.

In this work, we dramatically simplify the implementation of high-
performance tiled recursive filter pipelines using a domain-specific
language (DSL). The user only needs to write the basic non-tiled
linear recursive filters and a few lines describing the optimization
strategy (Fig. 1e). The compiler generates code competitive with the
best hand-tuned implementations, and surpasses pipelines built from
individually optimized components.

Alternatively, one could imagine a library of a few hand-optimized
building blocks. However, the composition of optimized kernels is
suboptimal because it misses on opportunities to perform global op-
timization. For any image processing pipeline, global optimization
can significantly improve locality between pipeline stages [Ragan-
Kelley et al. 2012]. Additionaly, recursive filters can be reorganized
for improved efficiency. For example, Nehab et al. [2011] explored
different strategies for a 2D 3rd order filter and found that rewriting
it as 2nd order followed by 1st order filter was most efficient. In tra-
ditional languages, each of these strategies requires a new intricate
implementation.

Rather than requiring the programmer to implement a new algorithm
for each strategy in each pipeline, we show that all such implementa-
tions can be obtained by the mechanical application of a few simple
program transformations. We distinguish two types of transforma-
tions. First, we introduce a domain-specific language for recursive
filter pipelines and a set of transformations that split the compu-
tation into tiles and reorder the resulting passes. Second, given a
set of passes, we build upon the Halide language to organize the
actual computation i.e. mapping each operation to GPU kernels
[Ragan-Kelley et al. 2012]. However, the large number of passes
result in complex Halide pipelines, requiring the user to understand
and decide hardware-specific parameters for each pass manually,
which we refer to as scheduling. This would bring back the com-
plexity we seek to alleviate. To address this, we present high level
abstractions of tiled computation and use this with a generic set
of heuristics to automatically schedule the complete pipeline for
different hardware. Our heuristics automatically handle low-level
details; we require programmer intervention only for high-level ex-
perimentation with different tiling strategies. We demonstrate that
our automatic schedules outperform previous work on tiled recursive
filters [Nehab et al. 2011] and non-tiled CUDA implementations by
an order of magnitude.

Contributions

• We describe a set of program transformations to optimize multi-
dimensional linear recursive filters of arbitrary order on parallel
architectures.

• We present a complete set of heuristics to automatically schedule
arbitrarily complex tiled implementations for CPUs and GPUs.

• Using the above, we present a compiler that dramatically simplifies
the implementation of high-performance IIR filter pipelines.

Our results are an order of magnitude faster than commercial im-
plementations that use traditional IIR filter algorithms, such as
NVIDIA’s Thrust [Thrust 2015], and match or outperform hand-
optimized implementations of tiled algorithms [Nehab et al. 2011],
in orders of magnitude less code (Fig. 1(e)).

2 Previous work
In its most generic form, a recursive filter computes the output
at any pixel from the output at the previous pixel by applying a
constant number of mathematical operations. Many common image
processing operations can be cast as recursive filters. Box filters
can be computed in constant time using summed-area tables [Crow
1984]. Deriche [1993] describes a recursive filter approximation to
Gaussian blur. Gaussian blur can also be approximated by repeated
box filters [Rau and McClellan 1997]. A recursive formulation
for histogram computation has been used for fast median filtering
[Huang et al. 1979; Weiss 2006; Perreault and Hébert 2007]. These
filters serve as building blocks for more complex filters [Kass and
Solomon 2010]. Traditionally, vendor optimized prefix sum [Thrust
2015] or summed area tables are cascaded to build more complex
pipelines. Instead, we formulate an image processing pipeline as a
series of filters and then optimize across the whole pipeline.

Parallel recursive filters IIR filters are not well suited for paral-
lel hardware because they filter the input domain serially from one
end to the other. Ruijters and Thévenaz [2010] exploit parallelism
between scanlines; this does not allow for sufficient parallelism for
GPUs and results in poor memory locality because each thread has
to read/write an entire scanline. Karp et al. [1967] and Kogge
and Stone [1973] were the first to investigate parallelism in generic
recurrence equations. Sung and Mitra [1986] and Blelloch [1989]
describe the basic principles for exposing parallelism within a single
1D filter. Recent work has exploited this parallelism for GPUs focus-
ing on memory locality and shared memory conservation [Hensley
et al. 2005; Sengupta et al. 2007]. All these techniques compute a 1D
filter along all scanlines and write the full image before computing
the next filter. A pipeline involving n filters will read/write the full
image n times, resulting in high memory bandwidth. Nehab et al.
[2011] alleviate this issue in the specific cases of 2 and 4 filters using
a tiling strategy. They split the image into 2D tiles, process each tile
in parallel by all filters in shared memory and only write a subset of
the result. They then apply inter-tile filtering passes to resolve all
dependencies and add them to the intra tile result. This approach
is restricted to 2D images for 1 or 2 filters per dimension. Kasagi
et al. [2014] improve this strategy for up to 8% performance boost
on summed area tables. Instead of describing different algorithms
for different IIR filters pipelines, we present a small set of program
transformations which can be used to programmatically transform
any arbitrary pipeline into highly efficient tiled computation.

Domain-specific compilers Graphics has a long history of ex-
ploiting domain-specific languages and compilers for easier access
to high performance code. Most visible are shading languages [Han-
rahan and Lawson 1990; Mark et al. 2003; Blythe 2006]. PARO
[Hannig et al. 2008] presents partitioning techniques for automated
hardware synthesis for massively parallel embedded architectures.
Tangram [Chang et al. 2015] is a generic DSL that allows code
portability across different architectures. Spiral in Scala [Ofenbeck
et al. 2013] is a DSL for generating FFT implementations. Image
processing languages also have a long history [Holzmann 1988;
Elliott 2001; CoreImage 2006; PixelBender 2010]. Lepley et al.
[2013] present a compilation approach for image processing for
explicitly managed memory many-cores. Halide [Ragan-Kelley et al.
2013], HIPAcc [Membarth et al. 2015], Forma [Ravishankar et al.
2015], PolyMage [Mullapudi et al. 2015] are modern DSLs for im-
age processing that enable code generation for multi-core CPUs and
GPUs. They greatly simplify implementation of image processing
operations, allowing the programmer to optimize across the whole
pipeline. However these are limited to stencil operations, sampling
and reductions, and they cannot parallelize recursive operations on
the input domain. Most closely related to our focus on recursive
filters, StreamIt [Thies et al. 2002; Gordon et al. 2002] optimizes



streaming and cyclostatic dataflow programs, specifically including
transformation and optimization of chains of 1D recursive filters,
but none have addressed the problem of extracting parallelism and
locality from multi-dimensional recursive filters.

3 Overview
Our DSL sits on top of Halide [Ragan-Kelley et al. 2013]. Users
first specify a series of IIR filters through a simple syntax (even
simpler than pure Halide, see Sec. 4). Users can then reorganize the
computation by optionally shuffling the order of filters (Sec. 5), and
then specifying the tiling options (Sec. 6). These transformations
generalize, abstract, and mechanize the strategies previously only
demonstrated for a few specific examples in painstakingly handwrit-
ten code [Nehab et al. 2011]. Finally, our compiler automatically
maps the resulting tiled pipelines (Sec. 7) on to hardware, delivering
state-of-the-art performance on a range of IIR filter pipelines from
orders of magnitude simpler code (Sec. 8).

Our first transformation reorganizes filter computation. We exploit
dimension separability and order invariance of IIR filters to shuffle
different filters in a pipeline. Here, we allow the user to choose
which filters to tile jointly (Sec. 5). For example, a sequence of 4
filters can be organized into groups of 2 filters each where filters
in each group are tiled jointly. As shown in Sec. 5, these options
lead to completely different implementations and have a significant
impact on performance.

We then provide the split operator (Sec. 6). This applies our tiling
transformations to filters defined on the full image, converting them
into a series of filters that operate within image tiles, followed by
filters across tiles, and then a final filter that assembles these two
intermediate results and computes the final output. This tiling trans-
formation exploits linearity and associativity of IIR filters. Internally,
our compiler also makes critical performance optimization by mini-
mizing back-and-forth communication between intra- and inter-tile
computation and instead fuses computation by granularity level; e.g.,
we fuse all intra-tile stages because they have the same dependence
pattern as the original non-tiled pipeline. This results in a compact
internal graph of operations. We implement these transformations
by mutating the internal Halide representation of the pipeline.

Internally, our split operator mutates the original filters into a
series of Halide functions corresponding to the intermediate opera-
tions. We introduce automatic scheduling (Sec. 7), i.e. automatically
mapping all the generated operations efficiently onto the hardware.
We identify common patterns across the different operations and
use heuristics to ensure memory coalescing, minimal bank conflicts
for GPU targets, ideal thread pools, and unrolling/vectorization op-
tions. We are able to do this without the hand-tuning or expensive
autotuning required by general Halide pipelines because we can
aggressively restrict our consideration to a much smaller space of
“sensible” schedules for tiled recursive filters. Our heuristics sched-
ule the entire pipeline automatically, which we show performs on
par with manual scheduling. We also expose high-level schedul-
ing operators to allow the user to easily write manual schedules, if
needed, by exploiting the same restricted structure in the generated
pipelines.

Filters defined in our language can be run directly, or combined
with other Halide filters, preserving the ability to optimize across
stages of a complex image processing pipeline, or interleaved with
traditional C++/CUDA.

4 Recursive filter specification
We first describe the specification of recursive filter pipelines. Pro-
grammers specify a filter pipeline F by its dimensions, input image,

and a set of recursive filters. In the example below, we first specify
2D index variables x and y, and initialize the filter by the input image
In.
// Programmer definition
RecFilter F;
RecFilterDim x("x", width), y("y", height);
F(x,y) = In(x,y);

We maintain the internal representation as Halide functions (Func).
A Func represents an image processing operation; the variables
x, y represent a generic pixel x, y of the output image and the
definition of the Func determines how the pixel must be computed.
The original definition creates a Func object that is initialized by the
input expression.
// Internal representation
Func R(F.name());
R(x,y) = In(x,y);

Unless the pipeline is tiled, it is represented by a single Func ob-
ject. The pipeline can consist of multiple multi-dimensional filters.
We provide an operator add filter that adds one filter at a time
in a particular dimension. It specifies the filter dimension x, the
causal/anticausal direction (+x or -x), and a list of linear feedfor-
ward (first element of list) and feedback coefficients (remaining list
elements).
F.add_filter(+x, {a0, a1, a2 ..});

Internally, this adds an update definition to the Func as follows:
RDom rx(0, image_width);
R(rx,y) = a0*R(rx,y) + a1*R(rx-1,y) + a2*R(rx-2,y)..;

The RDom represents bounded traversal in increasing order. It is
different from variables like y because its bounds are known at
compile time whereas the bounds of variables are inferred at runtime.
Please refer to Halide documentation [Ragan-Kelley et al. 2012] for
details. The update definition in the above code snippet updates
the value at each pixel using the values of previous pixels, thereby
creating a recursive filter or a scan. We create the recursive terms
rx-1, rx-2 in the dimension corresponding to x as indicated by
add filter. The extent of the scan variable rx is the same as the
extent of the corresponding dimension. The above initialization and
update definition are equivalent to the following pseudo-code:

for all y do // initialize
for all x do

f(x, y)← In(x, y)
end for

end for
for all y do // 1st filter or recursion or update definition

for rx = 0 to image width− 1 do
f(rx, y)← a0f(rx, y) + a1f(rx− 1, y) · · ·

end for
end for

Please see supplemental material for a more detailed example of
converting between our syntax, Halide code and pseudo-code.

The tiling transformations (Sec. 6) mutate the original Func to com-
pute its result from a directed acyclic graph of automatically gener-
ated Func which form the intermediate stages of tiled computation.

Programmers can add as many filters as needed to the recursive filter
pipeline by calling add filter repeatedly. They can also explore
different specifications of the same filter. For example, they can
replace a 2nd-order filter with two 1st-order ones. They can perform
these transformations manually (i.e., directly write two 1st-order
filters), or use transformations to convert between higher- and lower-
order filters which are already defined (shown next).



5 Overlapping and cascading IIR filters

An IIR filter pipeline is defined as a series of n IIR filters applied
successively. These filters are separable along multiple dimensions,
and the order in which multiple filters are applied in the same di-
rection is immaterial. This means that a series of IIR filters can be
reordered and recombined in different ways without affecting the
result. They can be tiled jointly, or overlapped, such that all filters
operate on image tiles simultaneously with different tiles being com-
puted in parallel. Alternatively, a pipeline can be converted into
two cascaded pipelines, with n′ and n− n′ overlapped filters such
that the latter operates on the result of the former. Each pipeline
reads/writes the full image once. Overlapping more filters saves full
image reads/writes at the cost of more expensive intermediate opera-
tions when tiling. Moreover, it is often useful to convert higher-order
filters into multiple lower-order overlapped or cascaded filters. The
optimal combination of filters to be overlapped must be determined
empirically and is sensitive to input size and hardware. Rewrit-
ing code for all these combinations is impractical for hand-written
implementations.

We provide overlapping and cascading transformations that automat-
ically convert between different alternatives. These transformations
are applied on the non-tiled pipeline; they specify which filters to tile
jointly. The generic cascade transformation takes a fully overlapped
pipeline with n filters and creates a series of cascaded pipelines with
subset of filters. For example, the following command converts the
filter pipelines F into multiple cascaded filter pipelines, the first of
which computes filters 0 to 3 of F, the second computes filters 4 and
6, the third computes 5 and 7 and so on.
F.cascade({0,1,2,3}, {4,6}, {5,7} ...);

Here, F is a non-tiled fully overlapped IIR filter pipeline. Internally,
we represent it as a single Func containing each filter as an update
definition (see Sec. 4). In the above example, we cascade this
pipeline by extracting the first 4 update definitions (numbered 0 to 3)
and adding them to a new Func that takes the original image as input.
We then create another Func with update definitions numbered 4
and 6 from the original filter pipeline, that reads the output of the
previous Func and so on. Each of the newly created Func is returned
to the user as a RecFilter object that supports all the functionality
as the original IIR filter pipeline. We use the reverse of this procedure
to overlap multiple filters: we combine a series of cascaded pipelines
F1, F2 etc. to create a new pipeline F that computes all the filters of
constituent pipelines.

Converting between higher and lower order filters is more in-
volved. Consider two cascaded filter pipelines A and B. We provide
overlap filter order transformation that creates a new higher or-
der filter pipeline equivalent to the original filters. We first compute
a one-to-one mapping between the constituent filters of A and those
of B by matching filter dimension and causality. The operation is
only feasible if such a mapping can be found. We then use the z
transform [Oppenheim and Schafer 2009] to compute the feedback
and feedforward coefficients of each of new filter from those of the
two original filters. For example, consider a 2D Gaussian filter that
can be approximated by a 3rd order IIR filter decomposed into a
causal and anticausal subsystem along both dimensions [van Vliet
et al. 1998]. We compare the performance of different overlapping
combinations in Fig. 2. The best performance comes from overlap-
ping 3rd order filters in each dimension separately (code shown in
Fig. 1(e)). This shows that the cascading vs. overlapping tradeoff
cannot be resolved theoretically. In contrast, Nehab et al. [2011]
found that cascading 2nd and 1st order was always better than 3rd
order filters. This shows that overlapping options can be different
depending upon hardware, which necessitates experimentation with
the full range of alternatives.
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Figure 2: Tradeoff between different overlapping options for 3rd
order Gaussian filter. 3xy shows 3rd order filters overlapped in x
and y, 3x 3y shows 3rd order filters overlapped in x and y sep-
arately, 1xy 2xy shows cascaded 1st order and 2nd order filters
overlapped in x and y, 1xy 2x 2y shows cascaded 1st order xy
overlapped, cascaded with 2nd order overlapped in x and y sep-
arately, 1xy 1xy 1xy shows 3 cascaded 1st order filters. 3x 3y
gives the ideal tradeoff between cascading and overlapping. These
hardware dependent results can only be determined empirically.

6 Tiling IIR filter pipelines
Given a pipeline of recursive filters specified as above, our goal is to
mechanically transform it to enable high-performance parallel tiled
computation. We provide a split operator to programmers and let
them specify the tile size for each dimension to be split:
// programmer command
F.split(x, tile_width, y, tile_height ...);

This simple command triggers complex code transformations that
generate new passes corresponding to intra- and inter-tile computa-
tion. Recursive filters are characterized by their feedforward coeffi-
cients and feedback coefficients. The new passes generated by the
split operator are also recursive filters: either operating on pixels
within tiles or on intermediate results across tiles. The mathematical
complexity of tiling lies in computing the feedback and feedforward
coefficients of all these new passes to ensure that the end result is nu-
merically equivalent to the original filter. Since we seek to generate
these operations automatically, our main challenge is to implement
tiling as a set of code transformations so that it can be mechanized
by a compiler aside from the mathematical derivation of all filter co-
efficients. In this section, we focus on code transformations because
that is the main contribution of our work. We delegate coefficient
derivation to supplemental material; this is an extension of previous
work [Kogge and Stone 1973; Blelloch 1989; Nehab et al. 2011]
that computes filter coefficients for all stages of tiled computation
for generic IIR pipelines.

We use a procedural approach for transforming the original filter
code into tiled stages. We tile all the filters of the pipeline one
by one, adding new stages of computation if required. To gain
intuition, we first discuss the case of a single 1D filter before looking
at multiple filters in the same dimension and finally generalize to
multiple dimensions. We also begin with only causal filters and
explain anticausal filters at the end.

6.1 Tiling a single 1D filter

We start by decomposing a 1D recursive filter R of order k that
traverses the data in causal order, i.e., in the order of increasing
indices. We represented it internally as a Func:
// Internal representation of a IIR filter
RDom rx(0, image_width), rk(0, k);
R(x) = I(x);
R(rx) = sum(a(rk) * R(rx-rk));



(a) naive 1D computation
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(b) tiled 1D computation

step 3
intra-tile scan

with tails

step 2
inter-tile scan

on tails only

Figure 3: Single 1D filter. (a) Naive sequential computation. (b)
We transform it into a tiled scheme to improve performance. Step
1: we perform a scan on each tile in parallel. Step 2: we update
the tails (the last elements of each tile) in order. Because of the
order constraint, we cannot parallelize it; this is a fast operation
nonetheless because of the small number of elements touched. Step
3: we update each tile in parallel to get the final result.

where, a is the list of feedback coefficients rx loops along the full
row and rk loops from 0 to k. Assume the filter is tiled in x di-
mension. As is known from previous work [Blelloch 1989], the
above filter can be tiled to generate an identical intra-filter that only
operates within image tiles, an inter-tile filter that aggregates the
tails of each image tile across all tiles and a final term that adds the
aggregated or completed tails to the intra-tile filtering result from
the first stage (see Fig. 3). The tail refers to the last k elements of
each tile; the first element of each tile needs some contribution from
the last k elements of the previous tile which is provided by the tail.
We now describe the procedure to create the above subfunctions.

Intra-tile subfunction We create an intra-tile subfunction by di-
rectly mutating the original filter definition. We first replace the
tiled dimension x by an intra-tile index xi and an inter-tile index xo.
In the update definition, we restrict the recursion to image tiles by
replacing rx with rxi and tile index xo, where rxi loops from 0 to
tile width.
// Internal definition of first intra-tile Func
// Each tile xo is independent, thus parallelizable
RDom rxi(0, tile_width);
R_intra(xi, xo) = I(xo*tile_width+xi);
R_intra(rxi,xo) = sum(a(k) * R_intra(rxi-rk,xo));

Note that the above operation is independent in tile index xo. It can
therefore be computed in parallel across tiles (Fig. 3 step 1).

Tail subfunction The intra-tile results are incomplete because they
do not have contributions from any preceding tile. We then extract
the tail of the intra-tile result. The tail of each tile is the residual that
must be added to the subsequent tile in order to complete its result.
// Internal definition of tail of each tile
R_tail(xi, xo) = R_intra(tile_width-1-xi, xo);

Inter-tile subfunction The tails extracted from each tile do not
have any contribution from any of the previous tiles. We complete the
tails by aggregating them across tiles (Fig. 3 step 2). We implement
this as a 1st order IIR filter R ctail that is a recursion over tail
elements across tiles. We create a new scan variable rxo that loops
over all tiles. The feedback coefficients are contained in a matrix P
whose derivation can be found in supplemental material (Sec. 2.1,
3) or in previous work [Nehab et al. 2011]. This filter is serial; it is
nonetheless fast because it touches only tail elements from each tile.
We refer to the result of this subfunction as completed tails.
// Internal def. of inter-tile filter across tiles
RDom rxo(0, image_width/tile_width);
R_ctail(xi,xo) = R_tail(xi,xo);
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Figure 4: Mutliple 1D filters. (a) Naive sequential computation.
One can apply the single-filter scheme (Fig. 3b) once per filter but
this does not fully exploit the locality of operations. (b) We treat
all filters at once to minimize alternation between intra- and inter-
tile steps. Step 1a: we apply all filters within each tile in parallel.
Step 1b: we save a copy of the tails after each filter. Step 2: we
sequentially update the tails using the tails of all the preceding filters
at the previous tile. Step 3: we update each tile in parallel using all
the tails at the previous tile to get the final result (step 3).

R_ctail(xi,rxo) += P(tile_width-1-rk) * R_ctail(rk,
rxo-1);

Final intra-tile subfunction The previous inter-tile filter com-
pletes the tail of each tile which can now be added to the intra-tile
result of the subsequent tile. To this end, we create a verbatim copy
of the R intra from the first stage. We then mutate it to initialize it
with the input image, plus the contribution tail of the previous tile
(Fig. 3 step 3). We then apply the intra-tile filter as in R intra.
// Internal definition of final result computation
// Extra update def to all tail of previous tile
R_final(xi, xo) = I(xo*tile_width+xi);
R_final(rk, xo) = P(rk) * R_ctail(rk,xo-1);
R_final(rxi,xo) = sum(a(rk) * R_final(rxi-rk,xo));

We finally modify the original function to read the final result from
R final.
// Convert x to xi and xo using div and mod
R(x) = R_final(x%tile_width, x/tile_width);

6.2 Multiple 1D filters along the same dimension

We have described basic code transformations for a single IIR filter.
We will use the above transformations as building blocks to give an
intuitive description for more complex cases. We avoid giving exact
code snippets to keep the description terse.

Consider n IIR filters on the same dimension. We tile them jointly
using the same principle as above. This time we generate (a) single
intra-tile subfunction for first stage, (b) n different tail subfunctions,
(c) n different inter-tile subfunctions, and (d) single final intra-tile
subfunction to compute the full result from the input image and n
completed tails.



The first stage intra-tile subfunctions is generated the same way as in
Sec. 6.1, except that the subfunction now has one update definition
for each of the n IIR filters (Fig. 4 step 1a). The n tail subfunctions
extract the tail of each tile after each of the n IIR filters are applied
by the intra-tile subfunction of the first stage. This gives n different
tails corresponding to the n filters (Fig. 4 step 1b). Similarly, the
n inter-tile filters are all 1st order filters on the tails of each of the
original n IIR filters (Fig. 4 step 2), except that the j-th inter-tile
subfunction has to be initialized by the j-th tail subfunction as well
as the j − 1-th inter-tile subfunction. The coefficients for each j-th
filter are stored in j-th row of the matrix P whose derivation is given
in supplementary material.
// Extra dependency from completed tail of previous
// filter of the same dimension
R_ctail[j](xi,xo) = R_tail[j](xi,xo) +

P(j,tile_width-1-rk) * R_ctail[j-1](xi,xo-1);
R_ctail[j](xi,rxo) += P(j,tile_width-1-rk) *

R_ctail[j](rk,rxo-1);

This is the only new cross-filter dependency induced by multiple
filters. The final stage subfunction has to be initialized by the tails of
n different inter-tile filters (Fig. 4 step 3) instead of just 1 in Sec. 6.1.

Discussion The above clearly shows the computational expense
added by multiple filters. Much like the non-tiled counterpart, the
intra-tile subfunctions have to compute more filters. The extra
slowdown is due to computation of more inter-tile filters. As a
result, joint-tiling of n IIR filters can be more expensive than joint
tiling of cascaded groups of n′ and n− n′ (n′ < n). Our compiler
allows convenient experimentation with different tiling combinations
as explained in Sec. 5.

6.3 Multiple filters along different dimensions

We now generalize to multiple filters in multiple dimensions. We
use the same basic principles as in the previous two cases and apply
them to generate a single intra-tile first stage and a separate tail for
each filter irrespective of the dimensions (Fig. 5) steps 1a, 1b). We
create inter-tile subfunctions for each of the tail subfunctions that
loop over all the tile in their respective dimensions (Fig. 5 steps 2,
3b) accounting for cross-filter dependencies exactly as in Sec. 6.2.
The final intra-tile term is also an extension of the one in Sec. 6.2;
we add the tail from each filter in each dimension to the intra-tile
result before applying the particular intra-tile scan.

The critical difference is the introduction of cross-dimensional de-
pendencies (Fig. 5 steps 3a). All the tails in the l-th dimension
require some contribution from completed tails in all previous di-
mensions. To this end, we create one intra-tile subfunction as a
verbatim copy of the first stage for each dimension. We mutate its
definition such that it gets initialized by the completed tails of the
corresponding dimension, say x. We then remove all scans from
this subfunction on any dimension preceding x. This now becomes
an intra-tile subfunction that reads the tails of the x dimension and
applies all IIR filters of subsequent dimensions. The cross dimension
dependency of any other dimension y with respect of x is the result
of the newly created intra-tile subfunction after applying all IIR
filters of all dimensions between x and y, including y and excluding
x.

We then initialize the inter-tile subfunction of each filter of each
dimension using (1) the tail of that filter in that dimension, (2) one
cross-filter dependency term i.e. the completed tail of the previous
filter in the same dimension, and (3) cross-dimensional dependency
with respect to each preceding dimension.

Anticausal filters Anticausal filters process data in the reverse or-
der: right to left, or bottom to top. We handle them by using reverse

pixel indices tile width-1-xi and tile width-1-rxi instead of
xi and rxi respectively for intra-tile subfunctions. Similarly, we
use reverse tile indices for inter-tile subfunctions.

It is clear that the complexity of the tiled implementations grows
quickly as the number of filters increases. Our procedural approach
in Sec. 6.2, 6.3 mechanizes the complete procedure.

7 Automatically scheduling tiled pipelines
As introduced in Sec.1, scheduling refers to determining hardware
specific parameters for actual computation of each filter. Our tiling
transformations create a relatively large number of sub-functions
for a given pipeline, each representing one stage of computation,
all of which have to be scheduled for efficient execution. All are
maintained as Halide Funcs and can be scheduled with total free-
dom using Halide’s existing scheduling language. However, this is
challenging because the number of subfunctions can be large and
scheduling them individually requires intimate knowledge of the
generated structure and the operations being performed.

Because of the more restricted domain of tiled recursive filter
pipelines relative to arbitrary Halide, we can instead automatically
schedule the generated pipelines for efficient GPU execution, with no
programmer intervention. In this section we present the scheduling
strategy applied by our compiler. The end result is an automati-
cally scheduled pipeline for both CPUs and GPUs that matches or
outperforms the best hand-tuned code in all our tests.

High-level semantics The tiling transformations generate sub-
functions of two classes: intra- and inter-tile (Sec. 6). We tag all
subfunctions with either of these classes to make selective schedul-
ing decisions afterwards.

Each function is composed of multiple dimensions; we associate
metadata with each dimension. We mark the dimension undergoing
a serial scan as SCAN for each function. All within-tile pixel indices
are marked INNER and tile indices are marked OUTER . Functions
may also have non-tiled dimensions, e.g., a filter that is tiled only
along rows but not along columns. We split these logically into an
INNER and OUTER dimension using Halide’s split operator. This
reduces all dimensions to INNER and OUTER and scheduling heuristics
need to account only for these two cases. We define all heuristics
on these high-level handles and use them to retrieve functions and
dimensions for applying specific scheduling operators.

We now describe scheduling heuristics starting from high-level deci-
sions regarding compute granularity of functions to details such as
unrolling etc. We implement these internally using Halide’s schedul-
ing operators: compute root, compute at, reorder, parallel,
reorder storage, split, vectorize and unroll.

Global vs local storage The most important high-level schedul-
ing choice is to decide whether to compute and store a function in
global memory so that it is always available to consumers or recom-
pute it on demand locally within consumer loops. Local computation
amounts refers to shared memory for GPUs. Intra-tile subfunctions
involve a bounded loop over pixels within a tile and their compute
footprint is larger than output size because they compute over the
full tile or more but only store the last row/column as tail (see Fig. 4,
5 step 1). We therefore compute them in local memory to avoid
global memory bandwidth. On the other hand, inter-tile subfunc-
tions have multiple consumers and they require a variable sized scan
over all image tiles leads to variable local memory requirements; we
compute these in global memory.

Loop nest order Each Func results in a loop nest, one loop for
each dimension. The loops can be reordered without changing the
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Figure 5: Multiple 2D filters. Step 1a: we compute all filters within each tile in parallel. Step 1b: we copy the tails after each filter. Step 2: we
complete the tails of all the filters along the x dimension using the 1D case as in Fig. 4. Step 3a: to account for cross-dimensional residuals,
we apply the y filters on all x tails (vertical arrows) and incorporate these into all the y tails (corner arrows). Step 3b: we use these residuals
to complete the y tails. Step 4: we compute the final result using the completed tails of previous tiles from all filters.

computation, but have a significant effect on performance. We spec-
ify SCAN variables as innermost loops, followed by INNER variable
loops which iterate over pixels within tiles, followed by OUTER vari-
able loops. This keeps all serial computation innermost and all outer
loops can be parallelized.

Parallel threads For GPU targets, me map all OUTER variables
to CUDA tiles and the first two INNER variables to CUDA threads.
Choosing two innermost INNER variables ensures a reasonable num-
ber of threads; this leads to O(t2) threads for intra-tile subfunctions
and O(t) threads for inter-tile subfunctions, where t is the tile width.
The user indicates the maximum number of threads in each tile. If
the number of threads launched above is more than the threshold,
we logically split the second INNER variable by a factor that retains
the correct number of threads and unroll the rest. If the number
of threads is less than the threshold, we launch extra threads per
tile by running multiple image tiles in each CUDA warp. To this
end, we split an OUTER variable and map one of the new variables
to CUDA warps and other to CUDA threads. For CPU targets, we
place the outermost OUTER variable in the job queue for potential
parallel execution. This offers sufficient parallelism; there is no need
for parallelization of other dimensions.

Memory coalescing Memory coalescing ensures that parallel
threads read and write from adjacent memory locations for GPUs.
We use two heuristics: (a) we choose packed storage for dimensions
mapped to parallel threads, and (b) we choose OUTER dimenisons
to be stored outermost, i.e. wigh maximum stride. While (a) is
obvious, (b) ensures that the storage of OUTER dimensions does not
add more strides in the storage of any INNER dimension, which may
be parallelized. In practice, we list all dimensions and sort them
according to the above heuristics. We then transpose the multi-
dimensional output buffer as per the desired ordering.

Vectorization For CPUs, we vectorize the innermost INNER dimen-

sion if it is packed contiguously in memory. We split this dimension
by a factor of 8 or 16 and vectorize the newly created dimension.

Loop unrolling We place the loop over any SCAN variables just
outside any vectorized dimensions and unroll them for both CPU
and GPUs. These loops compute the recurrence equation of the
filter; their body is small enough to be unrolled without incurring
instruction cache misses or bloating code size.

Bank conflicts Intra-tile operations to be computed in GPU shared
memory can suffer from bank conflicts. We solve this by allocating
(w + 1)× h to compute w × h pixels in shared memory; the extra
column swizzles the mapping of pixels to banks. Consider an intra-
tile operation represented by A(xi, xo, yi, yo ..). We add an
extra update definition that adds one extra 1 pixel to the innermost
INNER dimension.
A(xi, xo, yi, yo ..) = original_definition
A(tile_width, xo, yi, yo ..) = 0; // padding

With the OUTER dimensions mapped to CUDA tiles, the required
shared memory is equal to the product of extents of all INNER vari-
ables. Padding the innermost of these variables increases the shared
memory allocation by one column. Thus, a simple code trans-
formation resolves an issue which most applications handle using
convoluted CUDA code.

Manual control Precise knowledge of computation pattern allows
the compiler to apply the same heuristics as a programmer would
apply, which allows our heuristics to match hand tuned schedules.
However, heuristics may become outdated as the hardware changes.
Our abstraction still provides a terse and intuitive approach for
scheduling. In fact, we have implemented our heuristics using the
same high-level handles within 100 lines of code for both CPU and
GPU targets within the compiler. This portable scheduling code can
be easily changed in the future without touching tiling and other



transformations.

8 Results
We present results on a variety of image filtering operations ex-
pressed as recursive filter pipelines. We compare our performance
with commercial non-tiled implementations taken from CUDA
toolkit [NVIDIA 2015] and the tiled implementations of Nehab
et al. [2011]. Our fully automatic results match hand tuned tiled
versions and outperform commercial libraries like NVIDIA Thrust
by an order of magnitude. We demonstrate that reorganizing com-
putation in larger pipelines allows significant performance gains
compared to hand tuned implementations used as black boxes. We
also demonstrate CPU results for very large 1D arrays with high
order filters. All our examples require 10-15 lines of code while
previous work requires 100-200 and 500-1100 lines of CUDA for
non-tiled and tiled implementations respectively.

We profiled GPU code using NVIDIA’s profiler on a GeForce GTX
Titan. We use 32-bit floating point arithmetic for all experiments.
Runtimes are averaged over 1000 iterations.
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Figure 6: Summed area table.
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Figure 7: Box filter.

Our summed area table is slightly faster than Nehab et al. [2011]
and 10 times faster than NVIDIA Thrust (Fig. 6). Thrust also has no
support for higher order or multi-dimensional filtering. We inherit
the same speedup margin over Nehab et al. [2011] for box filter
implemented using summed area table (Fig. 7). A scanline-parallel
recursive box filter using CUDA is 2-2.5 times slower. The state-of-
the-art summed area table by Kasagi et al. [2014] is 8% faster than
Nehab et al. [2011], which is on par with our results.

Our tiled implementations are slightly faster than Nehab et al.
[2011] because we use better loop unrolling within CUDA tiles
and launch an appropriate number of threads. Our scheduler can
adapt these numbers for any GPU with a single parameter - CUDA
thread block size. An identical schedule should allow Nehab et al.
[2011] to match our results but modifying the CUDA warps and
loop unrolling can be cumbersome and error-prone.

We implemented bicubic B-spline interpolation as a pair of causal
and anticausal 1st order filters along rows and columns. Our results
in Fig. 8 show that we are an order of magnitude faster than non-tiled
implementation. We trail the tiled CUDA implementation because
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Figure 8: Bicubic interpolation using 1st order causal-anticausal
filter pairs. We are an order magnitude faster than a non-tiled
implementation but trail Nehab et al. [2011] slightly because we
require more shared memory.

we require t(t+ nk + 1) numbers in shared memory whereas hand
tuned CUDA requires t(t+ 1) where t is tile width, n is number of
IIR filters and k is filter order (counting bank conflict resolution in
both cases). The extra memory is required to copy out the tails after
each intra-tile filter (Sec. 6.2, Fig. 4). This is a Halide design issue
which may be alleviated in the future.

However, this does not restrict our performance for more complex
filters. As the filter order or number of filters grows, fully overlapped
solutions may become suboptimal and it is often faster to use a
cascaded pipeline even though it entails more I/O (Fig. 2).
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Figure 9: Gaussian blur [van Vliet et al. 1998].

We use a 3rd order IIR filter decomposed as a causal-anticausal
pair to approximate Gaussian blur [van Vliet et al. 1998]. We im-
plemented 5 different reorganizations of the 3rd order IIR filters
including cascading along dimensions, splitting into lower filter or-
ders etc. (Fig. 2). Here we compare our best variant, a cascade of
3rd order filters along rows and then along columns, to previous
work (Fig. 9). Nehab et al. [2011] found that 3rd orders filters are
better implemented as 1st and 2nd order filters. This was not true
in our tests which we believe is because of difference in hardware.
Our approach allows programmers to easily experiment with all
the variants and select the best. We outperform scanline-parallel
non-tiles CUDA implementations by an order of magnitude. Almost
all real world applications use the non-tiled version, partly because
it is easy to implement. Our approach is just as easy to use as shown
in Fig 1(e) and much faster.

We notice greater performance gains for larger pipelines such as
3 iterated box filters (see Fig. 10). Repeated applications of a sin-
gle box filter decreases the throughput of non-tiled and Nehab’s
implementation linearly. Instead, we reorganize the computation:
we compute a single box filter followed by a double box filter. The
double box filter itself is computed using a cascade of 2nd order
filter along rows and along columns. Our speedup comes from the
fact that we require 5 read/writes of the image while thrice repeated
application of a box filter entails to 6 image read/writes. Note that
we could also fuse the last step of one filter pipeline with the first
stage of the next filter pipeline to somewhat reduce I/O. We chose
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Figure 10: Box filter (3 iterations). Our performance gain results
from intelligent reorganization of computation instead of repeated
application as in previous work.

not to implement this because this resulted in one merged stage
which needed twice the shared memory and interfered with our bank
conflict management. We would like to resolve this in future work.

We could also compute 3 box filters directly using a 3rd order xy
overlapped integral image but this becomes numerically unstable.
We use 2nd order IIR filters along a single dimension only, as this is
numerically stable with 32-bit floats.
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Figure 11: Difference of Gaussians using 3 box filters

Lastly, we demonstrate difference of Gaussians. We approximate
each Gaussian using 3 box filters in Fig. 11. This involves computing
two Gaussians with different variances and subtracting them. We
use the methodology described above to optimize the box filters used
for computation. Additionally, we notice that the entire pipeline
is identical for both the Gaussians. We therefore compute them
in the same GPU kernels for an extra performance boost. Our
implementation requires 10 image read/writes and 13 GPU kernels
as opposed to 13 read/writes and 25 kernels for Nehab et al. [2011].
Such optimization is not feasible with precompiled libraries.

Tiling 1D filters on CPUs Most CPU architectures can extract
sufficient parallelism from independent scanlines in 2D image filters,
but 1D recursive filters are still severely constrained by the lack of
parallelism. We demonstrate the first tiled and parallelized imple-
mentations of higher order recursive filters on 1D input. Such filters
are useful in the broader signal processing community [Stearns and
Hush 2002]. Using an 8 core Intel 3.5 GHz machine with 8GB RAM
on 32-bit float data, our results in Fig. 12 show that tiled implemen-
tations are 3.5-5 times faster than a non-tiled implementations. High
order filters can be hard to design and can be numerically unstable
[Stearns and Hush 2002]; these are frequently implemented as a
series of 2nd order filters. Joint tiling of multiple overlapped 2nd
order filters is up to 5.5 times faster (Fig. 13).

We also observe that the runtime of 12 overlapped filters is 125.6 ms
while the runtime of 6 overlapped filters is 58.7 ms. This suggests
that cascading two 6-overlapped pipelines will perform better than a
single 12-overlapped pipeline. We allow the programmer to easily
explore these reorganization alternatives (Sec. 5).
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Figure 12: High order 1D filter on 100 million numbers.
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Figure 13: Overlapped 2nd order 1D filters on 100 million numbers.

9 Conclusions

We have presented a DSL and compiler for automatically optimizing
recursive filter pipelines. The main contribution is automatic tiling of
generic pipelines achieved by a set of simple code transformations.
This relieves the programmer from the tedium of mathematical
derivation and implementation of different tiling variations of the
same filter. We present high level abstractions and heuristics which
we use to schedule the internally generated graph of tiled operations.
The end result is a completely automatic solution for recursive filters,
making it as easy to use as libraries like NVIDIA Thrust, but an
order of magnitude faster. Programmers can merge and schedule
tiled recursive filters with other stages of a larger image processing
pipelines to explore optimization strategies not feasible with vedor-
provided libraries.

Our results show that tiling is beneficial on both CPUs and GPUs.
We outperform vendor provided non-tiled implementations by 5-10
times and match complicated hand-tuned tiled implementations of
Nehab et al. [2011] with only 10 lines of simple code compared
to 500-1100 lines of CUDA. For larger filter pipelines such as dif-
ference of Gaussians, we outperform Nehab et al. [2011] by up
to 1.8 times because of our ability to explore different filter tiling
alternatives and optimize across the entire image processing pipeline.
We demonstrate 5 times performance boost on CPUs for pipelines
consisting of multiple high order filters for large 1D data.

Altogether, our system enables programmers to quickly write ef-
ficient implementations of filter pipelines and optimize across the
whole pipeline. We hope this will help rethink how image processing
pipelines are programmed.
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