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Abstract
Recent work has examined using application-specific
knowledge of streaming communication to optimize
network routing (for throughput/performance) and/or
design (for simpler hardware). However, previous tech-
niques have assumed that the communication streams
are directly mapped to networks-on-chip. In contrast,
this paper explores the use of communication trans-
formations (TxComm) to achieve (1) higher through-
put via better network load balance, (2) more effi-
cient network utilization, and (3) better fault-tolerance,
while retaining the communication semantics of the
original streaming application. Specifically, we pro-
pose two transformations: stream fission and stream
fusion. (While fission and fusion transformations have
been applied to computation in streaming programs, we
are the first to propose fission and fusion transforma-
tions for stream communication.) Stream fission splits
streams of communication to multiple streams that may
be routed over independent network paths to achieve
better network load balance. Stream fusion targets mul-
ticast communication and fuses multiple streams to ef-
fectively capture the well-known benefits of tree-based
multicast, which include more efficient link utilization.
Both techniques can be integrated in an integer lin-
ear program formulation that executes at compile time.
Another key component of TxComm is the use of free
routing which serves two key purposes. First, it boosts
the performance of fission and fusion. Second, it en-
ables application-specific fault-tolerance. Evaluations
with a suite of StreamIT benchmarks show that Tx-
Comm achieves significant performance improvement
over prior application-specific (non-transformed) rout-
ing techniques. On the fault-tolerance front, TxComm
achieves similar performance as a fault-free base case
even when as many as 10% of links are faulty.

1. Introduction
Recent work has examined using application-specific
knowledge of communication patterns to optimize net-
work routing [8, 15] (for throughput/performance)
and/or design (for simpler hardware) [6]. Common to
all the above techniques is the observation that fail-
ing to exploit the known, application-specific traffic
patterns in routing effectively imposes an opportunity
cost. This paper expands the communication optimiza-
tions that are possible for such application-specific pat-
terns by observing that there are ways to transform
the patterns such that the transformed patterns are (a)
equivalent in terms of communication; thus preserv-
ing original application semantics, and (b) more ef-
ficient (i.e., they reduce network channel usage) and
better load-balanced (i.e., they distribute channel load
in a better way) than untransformed communication.
Further, we demonstrate that the transformations sup-
port simple extensions that enable application-specific
fault-tolerance in the NoC.

Specifically, we examine two transformations. The
first transformation is fission wherein a flow is split
into multiple flows. Intuitively, fission can lead to bet-
ter load balance when used on bottleneck flows. Our
second transformation is fusion wherein multiple flows
that are being used for multicast communication are
fused to form a multicast distribution tree. There have
been hardware techniques to create limited forms of
communication fusion [7] wherein multicast circuits
are opportunistically set-up/torn-down at runtime. Sim-
ilarly, all forms of routing that use multiple packet
paths (e.g., adaptive routing, and some randomized
oblivious routing algorithms) mimic the effect of fis-
sion. However, in the context of application-specific
routing, such run-time attempts at fission and fusion
are either too limited (e.g., VCTM [7] can only set up



multicast trees that are limited to dimension-ordered
routes) or are inferior to compile-time routing which
can exploit the known communication pattern [8]. We
are the first to automatically apply the fission and fu-
sion transformations at compile time to optimize com-
munication, resulting in significant performance im-
provement beyond prior application specific routing
techniques.

One key challenge in effectively using our trans-
formations is the interaction of our transformations
with deadlock-handling mechanisms in networks. Prior
work has addressed the possibility of deadlock by ei-
ther enforcing routing restrictions (e.g., BSOR [8]) to
ensure acyclic channel dependence graphs (CDG) or
used minimal routing in combination with virtual chan-
nels (VCs). Such routing restrictions used for deadlock-
freedom can seriously limit the performance improve-
ment offered by our transformations.

For example, consider a BSOR implementation
which uses the “West-first” Turn-model based deadlock
avoidance [4]. In such an implementation, all westward
traversals must be performed first (as the name indi-
cates) because it disallows turns to the west. While it is
an elegant way to prevent deadlocks, consider its im-
pact on fission. If the bottleneck flow has to traverse
the westward path first, fission will not help reduce the
load on the westward links because all the fissed flows
must continue to be routed on the same westward links.
Effectively, the purpose of fission is defeated.

We address the above problem by using free rout-
ing – routing without any restrictions that are typically
enforced to avoid deadlocks. Free-routing unlocks the
full potential of our transformations. However, naively
using free-routing may cause deadlocks because unre-
stricted compile-time routing has the same potential for
deadlocks as unrestricted (fully-adaptive) hardware-
based routing. To resolve this dilemma, we observe
that free routing will result in one of two outcomes.
In the best case, there may be no cycles in the CDG,
in which case deadlock freedom is guaranteed. How-
ever, there may be cycles, in which case we attempt to
break the cycles by using virtual channels. Unlike in the
case of minimal routing, where it has been proved that
two VCs are adequate to break deadlock cycles [16],
there is no such property in unrestricted (potentially
non-minimal) routing. Consequently, we formulate the
deadlock-free VC assignment problem as an ILP for-
mulation which takes the number of VCs as one of

its inputs and answers the question “Can we avoid
deadlocks using the given number of VCs?”.1 If the
VCs we have are adequate, again, deadlock-freedom
is guaranteed. If both the above techniques fail (i.e.,
if there are cycles that cannot be eliminated using the
available VCs), then we can always fall back on one
of the two provably deadlock-free techniques (BSOR
routed over an acyclic CDG, or BSOR-minimal with
a deadlock-free, 2-VC design). When evaluated over
13 benchmarks and 3 network sizes (4 × 4, 6 × 6,
and 8 × 8), we found that in a majority of the cases,
there were no cyclic dependences even with free rout-
ing. Further, even the few cases that did have cyclic
dependences became cycle-free with no more than four
VCs. Unlike fission and fusion, free routing is not a
program transformation. However, free routing boosts
the performance improvements of fission and fusion by
eliminating routing restrictions.

Another key advantage of free-routing is that it en-
ables fault-tolerant application-specific routing. Rout-
ing algorithms that rely on a given topology-dependent
deadlock-free routing algorithm (e.g., BSOR relies
on the Turn model for mesh networks) cannot oper-
ate when there are permanent link or node failures
because the remaining nodes/links may form an ir-
regular topology for which the Turn Model does not
guarantee deadlock-freedom and/or connectivity. In
contrast, because free routing may achieve deadlock-
free routing even when certain links are faulty, Tx-
Comm can tolerate failures. While there exist other
general-purpose fault-tolerant routing algorithms such
as up ∗ /down∗ routing [13], they fail to exploit
the application-specific communication patterns. The
tradeoffs between application-specific fault-tolerance
and general-purpose fault-tolerance are the same as in
the fault-free case: on the one hand, the application-
specific approach achieves higher performance; on
the other hand, application-specific approach is con-
strained to be a compile time approach which requires
stopping, recompiling and restarting the application.

The combination of all three methods yielded sig-
nificant reductions in channel load (as found by the
solver) for all of the 39 configurations. We observe that

1 Note, we are not interested in the question “How many VCs
do we need to avoid deadlocks?,” because our model assumes
that applications are being compiled for fixed network hardware.
Consequently we do not have the luxury of having as many VCs as
we need.



for the most part, the problems can be solved in sec-
onds/minutes (with a small number of cases requiring
hours). Significant performance improvements (55%,
on average) were also measured experimentally by sim-
ulation.

In summary, the main contributions of this paper are
threefold.

• We optimize the network performance of application-
specific communication beyond what has been done
previously by transforming the communication pat-
terns. Specifically, we automate the application of
two communication optimizations – fission and fu-
sion – for the StreamIT programming model.
• We propose best-effort free-routing in conjunction

with a static VC assignment to achieve deadlock-
freedom. Although the technique may have to fall
back on routing restrictions in the worst-case, free-
routing is effective in practice. It eliminates routing
restrictions for all 39 application-specific communi-
cation patterns we examine.
• We demonstrate that free-routing enables compiler-

assisted, fault-tolerance wherein faulty network links
can be tolerated by avoiding those links while op-
timizing for performance over the remaining links.
This ability is absent in prior application-specific
routing techniques such as BSOR because they rely
on an underlying deadlock-free channel dependency
graph over which all routing is performed. With
free-routing TxComm can tolerate up to 10% link
failures while achieving performance comparable to
fault-free BSOR.

We cast all the above techniques as integer linear pro-
gramming (ILP) optimization problems, which enables
the use of commercial solvers to automatically apply
our techniques.

The rest of the paper is organized as follows. Sec-
tion 2 provides a brief background on StreamIT, which
is the stream programming model we use because
StreamIT programs have fixed, application-specific
communication patterns. Section 3 describes TxComm
with details on how the transformations and the VC
assignment for free-routing are formulated as ILP opti-
mization problems. Section 4 describes our evaluation
methodology. Section 5 discusses experimental results.
Related work is described in Section 6. Finally, Sec-
tion 7 concludes this paper.

2. Background
Streaming StreamIT applications are based on the
framework of decomposing applications into a graphs
of communicating “actors” or “filters” [18]. The nodes
of the graph represent the computation while the edges
represent the communication. The programming model
relies on defining the computation as a filter. The
StreamIT compiler [5] then fuses/fisses the filters based
on the specified number of processors with the goal of
maintaining the load balance among the nodes of the
graph. The compiler also performs the placement step
to associate an actor with a processor by using sim-
ulated annealing to optimize the communication cost
imposed by the routing function [9].

Application-specific network routing Routing is the
act of determining the output port a packet must be
forwarded on at each router as packets traverse net-
works. In general-purpose routing in networks-on-chip
(NoCs), a fixed routing algorithm based on the desti-
nation of each packet is hardwired in logic. In contrast,
application-specific routing can exploit the fixed na-
ture of communication patterns and use programmable
routing to achieve better performance, as shown in
BSOR by Kinsy et al. [8]. Because StreamIT applica-
tions also have a fixed communication pattern, similar
application-specific routing may be used. Application-
specific routing occurs in three distinct phases. At com-
pile time, the compiler determines the routes for the
application-specific flows. At application load time,
the network “preloads” the network routes for vari-
ous flows (as computed by the compiler) in to its pro-
grammable routing tables. At runtime, the packets cor-
responding to various flows simply use the preloaded
per-flow routing table information for normal opera-
tion. Note the programmability of the routing table
refers to one-time programming before the beginning
of the application. The routing tables do not change
during the execution of the application. TxComm mod-
ifies the compile-time route computation by using our
fission and fusion transformations.

Our goals and our domain of interest Our focus is to
improve the communication performance of StreamIT
based applications. Because of this focus, we run into
three direct implications. First, our improved network
performance can lead to improved performance for
network-bound applications. As a dual of such per-
formance improvement, we can also imagine that our



technique offers more opportunity for power savings
in computation-bound applications. That is because
computation-bound application can scale-down the
voltage/frequency of networks, thus saving power with-
out affecting performance. A better performing net-
work can be frequency/voltage scaled more aggres-
sively. We focus on the performance aspect of the
power-performance duality and show that TxComm
offers superior performance for network-bound appli-
cations. (Because of the duality principle, our results
imply that TxComm can save power for computation-
bound applications.)

Second, we assume the hardware-pipelined version
of streaming (where spatially spread out actors are used
to expose pipeline parallelism) as originally suggested
for the RAW machine [17]. For traditional multicores,
software-pipelining based orchestration has been sug-
gested for traditional memory-hierarchy based, as well
as scratch pad memory based multicores [10, 14]. How-
ever, we remain focused on the hardware-pipelined
version because software pipelining can be memory-
inefficient.

Third, the key metric to optimize in network-bound
applications is the maximum channel load – which
refers to the network load on the bottleneck link in the
system. This bottleneck link directly controls network
throughput and hence overall application throughput.

While the above three goals focus on improved per-
formance for fault-free operation, we also examine the
throughput that TxComm achieves in the presence of
faulty links2.

3. TxComm
This section describes the two transformations – fission
and fusion – in TxComm. For each transformation, we
present a high-level description as well as the specific
ILP formulation to realize the transformation.

3.1 Flow Fission
Intuitively, flow fission improves throughput by fiss-
ing/splitting a unicast flow such that the channel load of
the bottleneck link is reduced. Unlike randomized load
balancing techniques for packet-based systems where
the packets of a flow are routed in randomized fashion,
our approach simply transforms the program to have

2 In general, faulty nodes can be handled by changing the placement
of actors. We focus on the challenge of application-specific routing
in the presence of faulty links.
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Figure 1. Program view and network view of fission

multiple flow-splits per flow. As shown in Figure 1, the
process of fission can be viewed from a stream program
point of view or from a network point of view. From a
program point of view (upper half of Figure 1), fission
interposes (a) a splitter, (b) dummy actors whose sole
function is to act as a pass-through entity by popping
data from upstream flows and pushing them on down-
stream flows and (c) a joiner. The interposed compo-
nents are shown in a shaded rectangle. Note that split-
ting and joining need not be in an even ratio. As far as
the network is concerned, the net effect is that the chan-
nel load that was previously in one flow (and one net-
work path) is load-balanced across two network paths.

The above description is the logical view of fission.
In practice, we formulate the fission transformation
problem as an ILP optimization problem as described
below.

3.1.1 ILP formulation
The challenge we face is to determine the following
three concrete details: (1) the degree of fission for each
flow, (2) the fraction of traffic carried on each fissed
split of the flow, and (3) the paths each split of the flow
traverses to minimize channel load.

We simplify the first choice by picking an “ade-
quately large” degree of fission based on two obser-
vations (a precise definition follows). First, the max-
imum channel load monotonically decreases with in-
creasing degree of fission. If the optimal channel load is
achieved at a degree of fission k, increasing the degree
of fission cannot result in a higher maximum channel
load because the load on the excess flow-splits may be
set to zero, effectively mimicking k-way fission. Sec-



ond, increasing the degree of fission has a diminishing
marginal impact on channel load. This is not surpris-
ing because the difference between a k-way split and
a k + 1-way split decreases with increasing k. Later,
we show that the degree of fission indeed exhibits this
property and shows no improvement beyond 4-way fis-
sion. Conservatively, we use 10-way fission (i.e., 10 is
adequately large).

The above simplification which fixes the degree of
fission enables us to cast the determination of the re-
maining two choices as an ILP formulation. Our defi-
nition of a flow is similar to that used in BSOR, which
is the entire stream of unicast communication. How-
ever, because TxComm uses splittable flows to enable
fission, we associate a variable for the load on each split
of the flow (henceforth referred to as flow-split) rather
than with the entire flow, as formally defined below.

DEFINITION 1. Given a flow graph G(V,E), where
V is the set of vertices (routers) and E is the set of
edges (channels), and given a set of m flows to route
W = {W1, . . . ,Wm} where each flow Wi = (si, di, li)
consists of source si, destination di and channel load
li, assuming si 6= di, the flow-split variables fi,j(u, v),
i = 1, . . . ,m and j = 1, . . . , k, represents the load
carried by jth split of the ith flow on the edge (u, v) ∈
E. The flow-split occupancy variables bi,j(u, v) are
binary variables indicating whether the corresponding
fi,j(u, v) has any flow or not.

The objective consists of two sub-objectives3. Pri-
marily we wish to minimize the maximum channel
load. Secondarily, we wish to minimize the number of
occupied links. The secondary objective ensures that,
among multiple routing choices that yield the same
maximum channel load, the choices that occupy the
fewest links are chosen.

The constraints ensure that the following three prop-
erties hold. First, we ensure end-to-end channel load
conservation for each flow; i.e., the sum of the loads
on the flow-splits leaving the source (and a similar sum
reaching the destination) is equal to the original (un-
fissed) flow. Second, we ensure that hop-by-hop flow
conservation is enforced at intermediate routers. Fi-
nally, we ensure that, though non-minimal paths are
allowed, only simple paths are traversed (i.e., no flow-

3 Though we present them as two subobjectives, because of their
priorities, they may be linearly merged into one composite objec-
tive function.

split ever revisits the same node) by ensuring that there
are no cycles in any flow-split’s path. Note that the sim-
ple path constraint is unnecessary for BSOR because it
uses routes that result in an acyclic CDG, thus avoiding
cyclic-paths.

The formal ILP problem includes additional con-
straints that are important for correctness in corner
cases (e.g., avoiding negative flow values, avoiding
branching flows, ensuring source-to-destination con-
nectivity). While these constraints are described briefly,
we omit a detailed discussion of the such constraints
due to lack of space. To remain focused on the intu-
ition, we retain some seemingly non-linear operations
(e.g., maximum, logical ORing, etc) in our formulation.
Mapping from such operators to the exact ILP formula-
tion may be trivially achieved by using widely-known
ILP tricks [2].

Objective Function :
• (First priority) Minimizing the Maximum Channel

Load (MCL) (Z).
• (Second priority) Minimizing Channel Occupancy

(CO)(O) as defined.

Z = max
(u,v)∈E

m∑
i=1

k∑
j=1

fi,j(u, v)

O =
∑

(u,v)∈E

m∑
i=1

k∑
j=1

bi,j(u, v)

Constraints :
• For each flow, the sum of all outgoing flow-split

variables from the source over all splits of each flow
is equal to the load of this flow li. Also, the sum of
all incoming flow-split variables to the destination
over all splits of each flow is equal to the load of
this flow li. (End-to-end flow conservation.)

∀i
∑

(si,v)∈E

k∑
j=1

fi,j(si, v) = li

∀i
∑

(u,di)∈E

k∑
j=1

fi,j(u, di) = li

• For each flow-split, the sum of incoming flow vari-
ables to each router is equal to the sum of outgo-
ing flow-split variables for the same router. (Hop-
by-hop flow conservation.)
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∀i, ∀j, ∀v 6= si, di∑
(u,v)∈E fi,j(u, v) =

∑
(v,u)∈E fi,j(v, u)

• For each flow-split, any flow-split variable fi,j(u, v)
is upper bounded by the flow load li and is en-
abled/disabled by its corresponding binary flow-
split occupancy variable bi,j(u, v). Further, for each
flow-split, there can be only one outgoing binary
flow-split occupancy variable bi,j(u, v) from any
router. (No branching flows to prevent recursive fis-
sion.)

∀i, ∀j, ∀(u, v) ∈ E fi,j(u, v) ≤ li · bi,j(u, v)
∀i, ∀j, ∀u

∑
(u,v)∈E

bi,j(u, v) ≤ 1

• For each flow-split, there should be no incoming link
to any source, and no outgoing link from any desti-
nation. This constraint prevents a meaningless so-
lution in which flow paths create self-loops at the
source and destination which satisfies the other con-
straints but does not effectively route from source to
destination.

∀i, ∀j, ∀(u, si) ∈ E fi,j(u, si) = 0

∀i, ∀j, ∀(di, v) ∈ E fi,j(di, v) = 0

3.2 Flow fusion
Figure 2 illustrates how flow-fusion may be viewed as a
program transformation. A single multicasting splitter
replicates flows to all the multicast recipients (as shown
on the left). Fusion effectively interposes additional
duplicating splitters creating a tree of splitters. The tree
of splitters can then be mapped to network nodes to

form a distribution tree (as shown in the bottom half of
Figure 2).

We further augment the fusion transformation by
integrating fission and fusion in TxComm. For mul-
ticast flows, TxComm’s integrated fission+fusion al-
lows multi-tree distribution wherein fusion creates in-
dividual trees and fission fisses trees into multiple trees.
Consequently, even though we speak of fission and fu-
sion as the two primitive transformations, in practical
terms, the transformations are actually fission (for uni-
cast traffic) and fission+fusion (for multicast traffic).

3.2.1 ILP formulation
The ILP formulation for fission+fusion has the follow-
ing key changes (relative to the fission-only transfor-
mation).

First, in terms of basic definitions, we define mul-
ticast communication as a single flow with a single
source (si) and a set of destination nodes (Di) as
opposed to a collection of flows, each with a single
destination, as originally defined in Definition 1. This
change reduces the number of flows in comparison to a
unicast-only approach.

Second, distribution trees fundamentally require that
flows be able to branch at routers. Further, because
multicast data is replicated at such branching routers,
flow-conservation does not hold. Instead, the flow in-
creases at such branching routers by the branching fac-
tor. Our formulation supports branching by allowing up
to three-way branching, which is specific to our two-
dimensional topology4.

Third, in the fission-only formulation, the same con-
straint that prevents branching of flow-splits also pre-
vents non-simple paths. Because branching cannot be
avoided in distribution trees, we develop an alternate
mechanism to ensure simple paths. We use additional
variables (pi,j(u, v)) and constraints to ensure that a
flow’s distance-from-source monotonically increases
with each hop. Cycle formation is prevented because
cycles violate monotonicity.

Objective Function :
We use the same objective function as the fission ILP

formulation.
Constraints :

4 We limit branching to three ports because a packet may not branch
backwards on the same port it arrived from without violating the
simple path rule.)



• For each flow-split, the sum of incoming flow-split
loads to any router (except the source and desti-
nation routers) is less than or equal to the sum
of outgoing flow-split loads from this router. This
constraint enforces a one-way bound on the load
coming-in/going-out at a router to indicate that it
can increase due to branching, but it cannot de-
crease.

∀i, ∀j, ∀v 6= si, v /∈ Di∑
(u,v)∈E

fi,j(u, v) ≤
∑

(v,u)∈E

fi,j(v, u)

• For each flow-split, there can not be any outgo-
ing binary flow-split variable

∑
(v,u)∈E bi,j(v, u)

from any router (except the source and destination
routers) unless there is an incoming binary flow-split
variable bi,j(u, v) to this router , and if so, the num-
ber of the outgoing binary flow-split variable can
not increase than 3. This constraint limits outgoing
branching to 3-way branching (which is possible
only when there is an incoming flow).

∀i, ∀j, ∀v 6= si, v /∈ Di∑
(v,u)∈E

bi,j(v, u) ≤ 3
∑

(u,v)∈E

bi,j(u, v)

• For each flow, the sum of all outgoing flow-split
loads from the source over all splits of each flow
is equal to the load of this flow li. Also, the sum of
all incoming flow-split loads to the destination over
all splits of each flow is equal to the load of this
flow li. (End-to-end flow conservation, generalized
for multicast.)

∀i
∑

(si,v)∈E

k∑
j=1

fi,j(si, v) = li

∀i, ∀t
∑

(u,Di,t)∈E

k∑
j=1

fi,j(u,Di,t) = li

• For each flow-split, when the outgoing binary flow-
split occupancy variable bi,j(u, v) is enabled, the
outgoing flow-split variable fi,j(u, v) from any
router (except the source router) is equal to the only
one incoming flow-split variables from this router
that is carrying a flow max(w,u)∈E fi,j(w, u). Oth-
erwise, if the the outgoing binary flow-split occu-
pancy variable bi,j(u, v) is disabled, the outgoing

flow-split fi,j(u, v) variable is equal to zero. (This
constraint effectively ties the enable disable behav-
ior with ho-by-hop flow control. At most one of the
incoming flows is non-zero. So the max provides a
way to say that the outgoing flow must match the
solitary non-zero incoming flow.)

∀i, ∀j, ∀(u, v) ∈ E, u 6= si

fi,j(u, v) =

{
max(w,u)∈E fi,j(w, u), bi,j(u, v) = 1

0, bi,j(u, v) = 0

• For each flow-split, any flow-split variable fi,j(u, v)
is upper bounded by the flow load li and enabled/disabled
by its corresponding binary flow-split occupancy
variable bi,j(u, v). For each flow-split, there can
be only one incoming binary flow-split occupancy
variable bi,j(u, v) to any router (except the source
router).

∀i, ∀j, ∀(u, v) ∈ E fi,j(u, v) ≤ li · bi,j(u, v)
∀i, ∀j, ∀v 6= si

∑
(u,v)∈E

bi,j(u, v) ≤ 1

• For each pair of destination routers in each flow-
split, the sum of incoming flow-split variables of
each destination should be equal.

∀i, ∀j, ∀t1, t2, t1 6= t2∑
(u,Di,t1

)∈E

fi,j(u,Di,t1) =
∑

(u,Di,t2
)∈E

fi,j(u,Di,t2)

• For each flow-split, there should be no incoming link
to any source.

∀i, ∀j, ∀(u, si) ∈ E fi,j(u, si) = 0

• For each source router in each flow-split, each out-
going distance-from-source variable pi,j(si, v) from
this router is equal to the binary flow-split occu-
pancy variable bi,j(si, v) corresponding to it. For the
other routers, each outgoing distance-from-source
variable pi,j(si, v) from this router is one more than
the maximum incoming distance-from-source vari-
able to this router max(w,u)∈E pi,j(w, u) when the
corresponding binary flow-split occupancy variable
bi,j(u, v) is enabled, otherwise, it is equal to zero.

∀i, ∀j, ∀(si, v) ∈ E pi,j(si, v) = bi,j(si, v)
∀i, ∀j, ∀(u, v) ∈ E, u 6= si

pi,j(u, v) =

{
max(w,u)∈E pi,j(w, u) + 1, bi,j(u, v) = 1

0, bi,j(u, v) = 0



• For each designation router in each flow-split, any
incoming distance-from-source variable pi,j(u,Di,t)
to this router that is greater than zero is lower
bounded by the minimum number of hops (the per
source-destination pair constant MIN_HOPS) from
the source to this destination.

∀i, ∀j, ∀t
∑

(u,Di,t)∈E

pi,j(u,Di,t) ≥ MIN_HOPS(si, Di,t)

3.3 Support for Free routing
Recall that the routing of flows was unrestricted in the
above two formulations. Consequently, the routes ob-
tained as solutions to the above formulations may be
prone to deadlocks. Rather than limiting the physical
channels that flows may route over, we attempt to break
deadlock-cycles (if any) by using virtual channels
(VCs). While the above approach is indeed analogous
to the way VC-based deadlock-avoidance differs from
turn-prevention based deadlock prevention, there is one
key difference. Classical deadlock-avoidance uses dif-
ferent routing functions for adaptive and deadlock-free
VCs. For example, while the adaptive channels may
support unrestricted routing, the deadlock-free VCs
may support dimension-ordered routing (or some other
deadlock-free routing). In contrast, for our problem, we
wish to use only the optimal routing as determined by
our optimization problem. Deviating from the selected
routes for any flow removes any expectation of im-
proved performance because the reduction in channel
load critically depends on using the optimal routes. Be-
cause of the above dilemma, we resort to a best-effort
technique to eliminate deadlocks using the given num-
ber of VCs in the router hardware. Our technique uses
static, compile-time, VC assignment to achieve two
goals: the first goal is to achieve correctness (deadlock
freedom) and the second goal is to maximize perfor-
mance (minimize head-of-line blocking).

First, we attempt to assign VCs to each flow-split
at each hop while eliminating any cyclic dependence
among VCs with the goal of eliminating deadlock.
While there are no guarantees that such a cycle-free
VC assignment is possible, all our benchmarks were
routable in a deadlock-free manner using 4VCs/PC.
In the general case, if such cycle-free VC assignment
is not possible with the given number of VCs, there
may be no alternative to routing restrictions (i.e., using
BSOR as a backup). The cycle prevention mechanism
used in the ILP formulation is very similar to the cycle-

prevention used previously for simple paths and, as
such, details are omitted.

Second, we assign VCs to mitigate head-of-line
blocking by preferring to bundle together flow-splits
that take the same turns (or rather minimizing the num-
ber of turns assigned to a given VC). The definition of
head-of-line blocking is when a packet has a free phys-
ical channel it wants to traverse but is hindered by an-
other packet at the head-of-the-line that is waiting for
another unrelated physical channel. By attempting to
ensure that packets only wait behind other packets that
are taking the same turn, we directly target head-of-line
blocking. Effectively, such VC assignment mimics vir-
tual output queuing (VOQ) [3] in the best case, but is
again done on a best-effort basis.

Previous static VC assignment (in the context of
BSOR) has focused solely on performance because
deadlocks are not an issue for BSOR [16]. Further,
they have attempted to improve performance by balanc-
ing two criteria: the need for isolating flows from each
other and the need to balance VC-load. In contrast,
our approach tries to minimize HOL-blocking by us-
ing VOQ-like VC assignment. Even though, packets of
multiple flows are not isolated (i.e., they may wait be-
hind one another) in our technique, there is no penalty
as long as all the packets are headed to the same output
port because they will be serialized over the physical
links, anyway.

Finally, we note that VC assignment is distinct from
VC allocation. VC assignment statically chooses which
VCs a flow may use at a given hop. A packet belong-
ing to a flow may only request the VCs assigned to it.
VC allocation, on the other hand, is the actual process
of allocating such requested VCs and is done in hard-
ware at run-time. This distinction is necessary because
multiple packets of multiple flows may be assigned to
the same VC, but at any given time, a VC may be al-
located to only one packet. Effectively, VC allocation
manages the time-multiplexing of multiple packets that
are assigned to the same VC.

At a high level, our ILP formulation assigns VCs at
each hop to avoid cycles which is enforced via con-
straints. To maximize performance, we set the objective
function to (a) minimize the number of turns at each
VC and (b) achieve balanced utilization over all VCs.
Both the above objectives use simple counting tech-
niques to count the number of different turns at each
VC.



Our ILP formulation uses the following definitions.
We refer to the number of available VCs as N_VCS.
We refer to the set of possible turns after traversing
edge (u, v) as T (u, v). The union of injection ports at
each router (I) and the set of channels E is IE. Finally,
the set of flow-splits that traverse the edge (u, v) ∈ E
and then take a turn t ∈ T (u, v) is called the contrib-
utory flow-split set and represented as CFR(u, v, t).
CFR can be easily constructed from the known routes
obtained from the solution of the TxComm transforma-
tions. We use a one-hot encoded binary vector of flow-
VC occupancy free variables FVi,j,u,v of length equal
to N_VCS to indicate the VC assigned to the jth split of
the ith flow going through the edge (u, v). The one-hot
encoding indicates the VC occupied by the flow-split.

Objective Function :
• (First priority) Minimize a) the maximum number

of unique turns per VC at each edge (the max sum-
mation), b) and the difference between the maxi-
mum and the minimum number of turns (the dif-
ference between the max summation and the min
summations). Minimizing the difference ensures
load balance over all VCs. The Turn array holds
the details of each VC and the turns assigned to
that VC. The Turn element for a single <channel,
VC,turn> tuple constructed by logical ORing of
the VC-occupancy variables of all the contributory
flows (i.e., flows that contribute to the turns).

R1 = 2
∑

(u,v)∈IE maxvc
∑

t∈T (u,v) Turnu,v,t,vc

−
∑

(u,v)∈IE minvc
∑

t∈T (u,v) Turnu,v,t,vc

∀(u, v) ∈ IE, ∀t ∈ T (u, v) ∀vc
Turnu,v,t,vc = OR(i,j)∈CFR(u,v,t)FVi,j,u,v,vc

• (Second priority) Maximize the number of occupied
VCs with turns in order to maximize VC utilization.
It covers corner cases not handled in the first objec-
tive.

R2 = −
∑

(u,v)∈IE

∑
t∈T (u,v)

N_V CS∑
vc=1

Turnu,v,t,vc

Constraints :
• This constraint specifies that each flow can occupy

one VC at each edge, thus enforcing the one-hot
encoding.

∀i, ∀j ∀(u, v) ∈ IE

N_V CS∑
vc=1

FVi,j,u,v,vc = 1

• Cycle prevention constraints similar to those used
for fission+fusion using the p variable. Details omit-
ted.

3.4 Tolerating link failures via TxComm
In this section, we consider the application of appli-
cation specific routing to tolerate permanent faults in
links. We do not focus on the detection and identifi-
cation of faulty-links since that can be realized by us-
ing traditional scan-chain based testing. Further, recall
that application-specific routing is performed at com-
pile time. If applications can be recompiled (including
rerouting) to run on a system with faulty links, we con-
sider the system to be fault-tolerant.

At a high level, our routing strategy must still pur-
sue the same goals as in fault-free TxComm: the mini-
mization of maximum channel load (MCL) while rout-
ing the flows from the specified sources to the specified
destinations, potentially using fusion and fission to fur-
ther reduce MCL. Indeed the only additional require-
ment is to entirely avoid all communication over faulty
links. The extension of the TxComm ILP formulation
to handle the additional constraints is correspondingly
minor. To ensure that no stream flows pass through the
faulty links, we constrain bi,j(u, v) to be zero for all i
and j when the link (u, v) is faulty.

Note that the above solution cannot be trivially
grafted to BSOR because BSOR relies on the underly-
ing Turn model to provide deadlock freedom. A single
faulty link could violate deadlock freedom in BSOR.
In contrast, TxComm attempts best-effort deadlock-
freedom using free-routing. Because there is some non-
zero probability that free routing may not yield a dead-
lock free route, we suggest the use of an underlying
fault-tolerant routing algorithm such as up ∗ /down∗
routing [13]. While such an underlying fault-tolerant
routing technique is needed for the cases where free-
routing fails to discover deadlock-free routes, in our ex-
periments free-routing always succeeded. As such, our
results do not include such an underlying fault-tolerant
network.

3.5 ILP Solver results
We analyzed TxComm’s benefits for 13 StreamIT
benchmarks, each for three different network sizes.
We used a commercial ILP solver (CPLEX v12.0.1)
to solve our optimization problems. On an Intel Core
i5 (3.2GHz) processor-based workstation with 4GB



memory, the solver run-times were manageable even
for the slowest cases (see Table 1). Because the trans-
formations are compile time, incurring such one-time
overheads (which are modest, barring outliers) may be
acceptable for performance benefits that recur on each
run.

Table 2 summarizes the results from our ILP solver
and compares the maximum channel load achieved by
TxComm with that of BSOR. The maximum channel
load is specified in arbitrary relative units. Hence the
absolute numbers are not meaningful; only the relative
ratios matter. The channel loads highlighted in bold in-
dicate improvement (decrease) in channel load. Specif-
ically, the numbers in the fission column are shown in
bold only if they achieve lower MCL than BSOR-CDG.
Similarly, the numbers in the TxComm column (which
includes both fission for unicast and fission+fusion
for multicast) are shown in bold only if they achieve
lower MCL than by using fission-only. Finally, Fission-
1 MCL is the configuration that uses fission with only
one split. Effectively, it captures the benefits of remov-
ing BSOR’s routing restrictions (and instead using VC-
based deadlock avoidance) even though no actual flow
fission takes place.

The following observations may be made from the
results. First, we observe that all benchmarks can ben-
efit from TxComm. Fission-alone benefits 36 of 39
configurations. The multicast-optimization (applicable
only to the configurations with multicast communica-
tion as indicated by the (M) annotation in Table 2)
provides some benefit for the three configurations not
covered by fission. Further, it benefits a total of 10
benchmarks. Note that there exist 11 configurations
which have multicast, but which do not benefit from
fission+fusion (non-bold numbers in the TxComm col-
umn of Table 2). Second, we observe that the removal
of routing restrictions improves (reduces) the maxi-
mum channel load for four configurations, even in the
absence of fission and fusion.

3.6 Hardware support for TxComm
TxComm requires similar router hardware as used in
prior application specific router proposals [8], which
includes the programmable routing tables. In addition,
TxComm also requires multicast support similar to that
in [7] (with one key difference as explained below).
Because the basic router we use is similar to prior
proposals [7, 8], and because our claim of novelty is on

the compiler technique (not the hardware), we briefly
describe the differences from prior art.

Router configuration for fission Fission can fail to
improve throughput if the injection/ejection ports –
ports through which network traffic enters/leaves the
network – serializes all traffic, thus nullifying the ad-
vantages of fission. Effectively, the network becomes
capable of supporting more throughput than the injec-
tion/ejection ports can support.

As such, we use multiple injection/ejection ports.
The increased injection/ejection ports were beneficial
to BSOR as well. Prior academic research proposals [1]
as well as prior industry products have used multiple
injection/ejection ports [11].

Support for fusion The tree-based distribution of
multicast traffic (employed by fusion) requires multi-
transmission support for the case where a flit must re-
main in the input buffers till copies of it are dispatched
to all of the branching ports. Further, true throughput
benefits accrue only when a flit on an input port is repli-
cated in a single cycle across multiple output ports of
the router’s switch. This is a key difference between the
multicast router proposed in VCTM [7] where flits are
transmitted across multiple output ports in a serial fash-
ion and our router. In a router with no pipeline bubbles
between successive flits or packets, the overall through-
put does not improve whether a single flit resides in the
buffer for three cycles or three different flit occupy the
buffer over three cycles. Note that the VCTM’s ap-
proach may be perfectly valid in their context where
injection port queueing delays affect latencies. But for
our context, where throughput matters, such serialized
transmission offers no throughput benefit.

To that end, we redesign the VC allocation to al-
low at simultaneous multi-transmission. One major
challenge in allowing such multi-transmission is that
VC allocation must be achieved in a starvation-free,
deadlock-free way. An analogy can be made with the
Dining Philosopher’s problem when multiple packets
(philosophers) attempt to get exclusive access to multi-
ple VCs (silverware). To handle deadlocks, we use one
of the simplest solutions possible – exclusive access
for multicast packets that are attempting to get multiple
VCs. Note that the exclusive access is only for multi-
cast packets; unicast packets continue to operate as be-
fore. We allow at most one multicast packet per router
(via token capture mechanism) to forward multiple re-



Fission-only TxComm
Routing VC Assign. Routing VC Assign

50th %ile 3.8s 0.3s 2m 15s 0.6s
90th %ile 1m 30s 0.8s 2m 15s 11.2s
100th %ile 5m 42s 1.5s 171m 13m 20s

Table 1. Solver runtimes (m=minute, s=second)

quests. A packet requesting multiple VCs either gets all
its grants or obtains a “lock” on all its grants. Before a
VC is freed, the router checks if a lock is held. If so, the
VC ownership is transferred to the lock holder. In the
absence of such a locking mechanism, it is possible for
a multicast packet to be starved by other unicast pack-
ets. For switch arbitration, we assume an opportunistic
model where packets may request multiple ports when
selected at the local arbitration stage. Because crossbar
switch paths naturally allow any input to be fed to any
output (assuming drivers are sized accordingly), such
a design would allow a flit to be replicated on multiple
output ports in a single cycle. However, if the grants of
the various output ports are staggered, then flit trans-
mission is also staggered across multiple cycles.

Each of the above mechanisms are fairly simple to
implement. Intra-router token capture for exclusive ac-
cess, and tracking a single lock-owner per VC, are both
trivial. More importantly, they do not violate the basic
allocator operation which operates via purely localized
arbitration (e.g., round-robin) at the input and output
ports. Because of such localized operation, simultane-
ous grants of multiple output ports are not guaranteed.
However, the locking mechanism guarantees forward
progress even under such non-simultaneous grant.

4. Experimental Methodology
Streaming Applications and Network Load Genera-
tion We use the StreamIT benchmarks and their com-
piler. We use the compiler generated actors and lay-
out on three different network sizes (4 × 4, 6 × 6, and
8 × 8). The combination of 13 benchmarks and 3 net-
work sizes gives us a total of 39 configurations. Note
that compiling a benchmark for a different network
size yields a different actor-stream graph and hence
must be treated as a separate communication pattern
(i.e., not the scaling up of a given pattern). Further,
as stated in Section 2, we assume hardware-pipelined
communication. Our hardware pipeline models inter-
locks to ensure that actors cannot fire when either their

operands are unavailable to be “popped” from upstream
streams or when they are unable to “push” data on
downstream streams because buffers of downstream
routers are full. We use the actor latencies reported
by the compiler but scale the values to examine the
peak sustainable application throughput. Such scaling
corresponds to faster processors or voltage/frequency-
scaled networks as mentioned in Section 2. Note, the
application-level throughput metric that may be unique
to each application. (e.g., block encryption/decryption
rate, video frame processing rate, audio processing rate,
radio signal processing rate) and are not comparable
across applications. As such, we use normalization to
report throughput improvement over BSOR, the prior
best application-specific routing technique.

Router Configurations We compare three router con-
figurations. All three configurations use 4VCs/PC. The
first configuration uses BSOR routing, which is our
main competitor and is used with static VC assign-
ment similar to TxComm’s. Unlike TxComm, there
is no possibility of deadlocks in BSOR since BSOR
achieves deadlock freedom by enforcing routing re-
strictions (because routes only take turns that are on an
acyclic CDG [8]). For completeness, we also compared
BSOR-4VC-static to BSOR-4VC-dynamic in which
VC allocation is done dynamically at each router.
We found that this resulted in poorer performance
than BSOR-4VC static. Hence we omit BSOR-4VC-
dynamic from the comparison. The second configura-
tion uses fission only (without fusion, but with free-
routing), even for applications with multicast commu-
nication. This configuration is included to isolate the
effects of the two transformations. Finally, we include
the full-implementation of TxComm which includes
both fission (for unicast) and fission+fusion (for mul-
ticast) with free-routing. With 4VCs, we were able to
route all 39 benchmark configurations in a deadlock-
free manner.



Table 2. Benchmarks and their characteristics
(MCL: Maximum channel load, bold indicates improvement)

Code Benchmark Config. BSOR-CDG
MCL

Fission
MCL

TxComm
MCL

Fission-1
MCL

AC
Auto
Correlation

4× 4 (M) 64 64 10.67 64
6× 6 (M) 129 64 16 64
8× 8 (M) 64 64 10.67 64

BF
Beam
Former

4× 4 (U) 24 12.8 — 24
6× 6 (U) 24 6.22 — 24
8× 8 (M) 24 24 8 24

CC
Comparison
Counter

4× 4 (M) 64 52 16 64
6× 6 (M) 130 68 9.6 80
8× 8 (M) 80 68 8.38 80

CV
Channel
Vocoder

4× 4 (M) 801 267 267 801
6× 6 (M) 250 200 59.33 200
8× 8 (M) 801 267 267 801

DCT
Discrete
Cosine
Transform

4× 4 (U) 256 128 — 256
6× 6 (U) 256 85.33 — 256
8× 8 (U) 256 85.33 — 256

DES
DES
Encryption

4× 4 (M) 128 64 44.8 64
6× 6 (M) 128 64 64 128
8× 8 (M) 128 64 64 128

FB Filterbank
4× 4 (U) 128 64 — 128
6× 6 (M) 128 42.66 42.67 128
8× 8 (M) 128 42.66 42.67 128

FFT FFT
4× 4 (U) 512 354.46 — 512
6× 6 (U) 512 279.27 — 512
8× 8 (U) 512 256 — 512

FMR FM Radio
4× 4 (M) 12 4 4 12
6× 6 (M) 12 3 3 12
8× 8 (M) 12 3.43 3.43 12

MPG MPEG 2
4× 4 (M) 834 397 311.77 834
6× 6 (M) 834 300 300 834
8× 8 (M) 834 238.29 238.29 834

SRP
Serpent
Encryption

4× 4 (U) 256 170.66 — 256
6× 6 (U) 256 170.66 — 256
8× 8 (U) 256 153.6 — 256

TDE
Time Delay
Equalization

4× 4 (U) 1920 1280 — 1920
6× 6 (U) 1920 1080 — 1920
8× 8 (U) 1920 840 — 1920

VOC Vocoder
4× 4 (U) 40 18.33 — 40
6× 6 (U) 40 17.14 — 40
8× 8 (U) 40 12.5 — 40



Simulator Our simulator models a three-stage packet-
switched router. The first stage performs two functions:
look-ahead routing for the next hop and VC/switch
allocation. Recall, VC assignment is predetermined
statically under free-routing. However, because there
may be multiple flows with the same static VC assign-
ment, the allocation occurs in hardware at run-time.
VC/switch allocation is speculatively overlapped [12]
(i.e., a switch grant without a VC grant cannot be
used). The next two stages are for switch traversal
and link traversal respectively. The router architecture
models the two hardware changes necessary (multi-
transmission support for fusion, and increased injec-
tion/ejection ports for fission). Recall that BSOR ben-
efits from the increase in injection/ejection ports as
well. All simulations ran till they achieved steady state
throughput. This resulted in simulation times ranging
from 100,000 cycles to 10,000,000 cycles.

5. Results
5.1 Overall performance improvement
Figure 3 illustrates the performance benefits of Tx-
Comm for the three network sizes (4×4 in Figure 3(a),
6 × 6 in Figure 3(b), 8 × 8 in Figure 3(c)). The three
subgraphs of Figure 3 plot the normalized (peak sus-
tainable) performance (Y-axis) for the fission-only and
full TxComm routing methods (bars within a group)
for all our benchmarks (groups of bars). In addition,
we include a three sets of bars to show the geomet-
ric mean improvement in performance over (A) bench-
marks which have only unicast communication (i.e., fu-
sion does not help), (B) benchmarks which have multi-
cast communication, and (C) all benchmarks. Because
fusion does not benefit configurations without multi-
cast traffic, we do not include the TxComm bar for
such applications; TxComm performance is equivalent
to fission-only performance for such benchmarks. We
reuse the unicast ("U") and multicast ("M") annotations
from Table 2 to mark the unicast and multicast bench-
mark configurations.

The overall mean speedup for the 4 × 4, 6 × 6, and
8 × 8configurations were 1.4X, 1.83X, and 1.44X, re-
spectively. The geometric mean performance improve-
ment across all configurations and all benchmarks is
1.55. Further the results also show that without fusion,
the mean performance degrades to 1.33X (across all
benchmarks and all network sizes).

There are some interesting cases where TxComm
underperforms BSOR. For example, DES in the 8 × 8
configuration sees a performance degradation from
the full TxComm even though its performance im-
proves with the fission-only transformation. Interest-
ingly, DES also improves with the fusion-only trans-
formation (not shown). However, the deadlock-free
VC assignment for the combined TxComm configu-
ration results in degraded performance. For such cases,
a simple trial-and-error approach can be used to apply
subsets of transformations to improve overall perfor-
mance. However, we do not consider such subsetting
in our results.

5.2 Isolating the Contributions of the Techniques
TxComm includes the effects of both fission and fu-
sion, as well as the performance boost from free rout-
ing. To isolate the effects of each of these and to un-
derstand how they combine/compose, Figure 4 shows
the speedup of six of the eight possible combinations of
the three techniques over BSOR. Each of fission, fusion
and free routing is shown as a circular region. Two-way
and three-way intersecting regions correspond to the
combination of the corresponding techniques. The cen-
tral three-way intersection corresponds to TxComm.

We make three observations from Figure 4. First, we
observe that the three techniques improve performance
as they are combined. Second, we observe that with-
out free routing, fission’s improvement degrades from
1.33X to 1.04X. This observation supports our the ar-
guments from Section 1 on why routing restrictions
can severely limit the performance benefits of fission.
Third, we also observe that free-routing was not neces-
sarily a good idea for BSOR (i.e., without fission and
fusion) because it provides a meager 6% performance
boost.

We omitted the two variants of fusion-only and Tx-
Comm with deadlock-free routing restrictions because
(1) there is strong evidence on the importance of free-
routing from the fission experiment, and (2) we had to
prioritize gathering more relevant results.

5.3 Impact of Degree of Fission
Recall that our transformation optimizes the MCL as-
suming a fixed degree of fission. In this section, we
vary the degree of freedom and consider its impact on
performance. Figure 5 illustrates the variation in MCL
(Y-axis, normalized to BSOR) with degree of fission
(X-axis) for the fission-only configuration with free
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Figure 3. Performance Improvement

−−−

BSOR 

1.0 Routing
Free

1.55

1.33

Fusion

TxComm

1.06

1.42

Fission

1.04
−−−

Figure 4. Isolating the impact of individual tech-
niques (Perfomance improvement over BSOR, geomet-
ric mean across all network sizes and all benchmarks)

routing for each benchmark (individual curves) for the
4× 4 network size. We omit identifying labels omitted
because they add clutter without adding value to the
point we wish to make. Note, because fission is inef-
fective without free-routing, we assume free routing in
Figure 5. Figure 5 confirms the intuition that most of
the benefits of fusion occur at modest fission degrees
(≤ 4), across all benchmarks. Fissing flows to a higher
degree did not result in any further gains. The lack of
benefits beyond 4-way fission is true for 6×6 and 8×8
network sizes as well (not shown).

Note, one curve is better than BSOR even at a fission
degree of one. That improvement is because of free-
routing in the case of the DES application as shown in
Table 2.

5.4 Computation communication interactions
The previous section focused on the peak sustainable
throughput for the network. In this section, we examine
the interaction between computation throughput and
communication throughput. In a streaming workload,
either communication or computation may be the rate-
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(4x4 network, with free routing)

limiting entity. If the computation is slow and is the
rate limiting factor, TxComm cannot provide any ben-
efits by improving network communication. To illus-
trate this issue, Figure 6 plots the achieved throughput
(Y-axis) for various values of the computation scaling
factor (X-axis) for benchmarks SRP 8×8 (Figure 6(a))
and CC 6 × 6 (Figure 6(b)). Because SRP does not
have multicast, Figure 6(a) includes two curves – one
for BSOR and another for fission-only. In contrast, CC,
which has multicast communication, has three curves,
including the full TxComm with fission+fusion.

There is one common trend in both benchmarks. At
low values of computation scaling factor, the compu-
tation is the bottleneck and the use of TxComm does
not result in any increase in sustainable throughput. On
the other hand, as the computation scaling factor in-
creases, the network becomes the bottleneck and Tx-
Comm’s performance advantage begins to manifest it-
self. Note, the benchmarks SRP and CC were selected
to illustrate the benefits of fission and fission+fusion
respectively. As expected, the fission curve correspond-
ing to SRP achieves higher sustainable throughput than
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Figure 6. Interaction between computation and com-
munication

BSOR. Similarly, in the case of benchmark CC, we ob-
serve two distinct jumps in performance. When apply-
ing fission, alone there is one significant jump. But the
combination of both fission and fusion delivers the full
benefits of TxComm.

5.5 Fault-tolerance
Figure 7 plots the normalized bottleneck bandwidth
(reciprocal of channel load normalized to fault-free Tx-
Comm; higher is better) averaged across all thirteen
benchmarks while varying the number of injected faults
(X-axis) for each of the three network sizes. The num-
ber of injected faults varies from 0% to 10% (with up-
ward rounding) of links in the network. Because the
number of links in 4 × 4, 6 × 6, and 8 × 8 networks
are 48, 120, and 224 respectively, we inject up to 5,
12, and 23 faults respectively (as shown in the range
of the X-axis). Further, we evaluate five independent
runs for any given number of faults. Because fault in-
jection is random, the final resulting channel load (and
bandwidth) may vary from run to run. To indicate such
variation, we plot three curves showing the maximum
(best case), minimum (worst case) and mean (average
case). Note, the fault-injection is for TxComm only.

BSOR is kept fault-free because BSOR may not guar-
antee deadlock-freedom when certain links are faulty.

We make the following key observations.

1. Even with 10% of faulty links, the average per-
formance of TxComm is significantly better than
that of fault-free BSOR. This highlights the fault-
tolerance capability provided by free routing.

2. In the worst case, TxComm is comparable to fault-
free BSOR at high fault-rates (approaching 10%)
but better at lower fault-rates (less than 5%).

3. Finally, the best case outcomes show that it is possi-
ble to get some faults that do not affect bottleneck
bandwidth at all. This results in best case perfor-
mance matching fault-free performance

6. Related Work
The closest related work to our work is BSOR/BSORM [8]
as already discussed in several previous sections. Seo
et al. study a run-time route discovery technique to
minimize channel loads for application-specific com-
munication [15]. Their routing attempts to discover
disjoint paths and does not exploit either fission or fu-
sion. Application-specific communication can be ex-
ploited at synthesis time, to produce low-complexity,
low-energy NoCs in embedded systems and SoCs [6].
Our focus is on hardware that can serve as a plat-
form for various applications, each of which have very
specific communication patterns. Virtual circuit tree
multicasting (VCTM) explores tree-based distribution,
(which our fusion transformation also exploits), but in
the context of multicast coherence traffic [7]. Because
of the very significant differences between the nature
of coherence traffic and application-specific streaming
traffic, the tradeoff between the time needed to setup
multicast communication and the sophistication of the
routing is reversed. For coherence traffic, setting up the
multicast trees quickly is much more important than
discovering the optimal distribution trees that reduce
the maximum channel load in a globally co-ordinated
manner. In contrast, for our domain, we can afford
to spend time in the route planning stage to ensure
that the routing of all communication is globally co-
ordinated to minimize maximum channel load. Note,
VCTM does not employ any fission.

StreamIT’s compiler does actor fusion and fission
for computational efficiency and load balance [18] un-
like TxComm which targets communication efficiency



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5

N
o
rm

a
li
z
e

d
 b

a
n

d
w

id
th

Number of faults

TxComm max

TxComm mean

TxComm min

Fault free BSOR

(a) Network size 4× 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12

N
o
rm

a
li
z
e
d

 b
a
n

d
w

id
th

Number of faults

TxComm max

TxComm mean

TxComm min

Fault free BSOR

(b) Network size 6× 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  5  10  15  20

N
o
rm

a
li
z
e

d
 b

a
n
d
w

id
th

Number of faults

TxComm max

TxComm mean

TxComm min

Fault free BSOR

(c) Network size 8× 8

Figure 7. Fault-tolerance: Impact of injected faults

and load balance. At a high level, there is an analogy
between what StreamIT compiler does for computa-
tion and what TxComm does for communication in that
both attempt to improve efficiency and load balance. In
fact, our use of similar terms is based precisely on that
similarity. However, the insights involved in computa-
tion fission/fusion are completely different from com-
munication fission/fusion.

7. Conclusions
Recent work has recognized that sophisticated compile-
time analysis may be used to optimize communication
for application-specific communication [8]. This pa-
per aims to expand the capability of such compile-

time communication optimization. Our TxComm ap-
proach has three components. First, we use fission to
split streams where such streams are the bandwidth
bottlenecks, achieving better load balance on the net-
work links. Second, we use fusion to fuse streams to
effectively get the benefits (reduced link-occupancy
and contention) of tree-based multicast, which may be
further fissed. We are the first to transform the commu-
nication of an application to optimize communication
performance. Finally, we employ free routing – avoid-
ing the use of routing restrictions in conjunction with
static VC assignment to avoid deadlocks. Free routing
boosts the performance benefits of the two transforma-
tions. While such a cycle-free VC assignment is not
guaranteed to exist, we found that they do exist for all
our benchmarks. Because benchmarks are not adver-
sarially written, this optimization is worth attempting
if the expectation is that it will succeed (as seen in
our benchmarks). However, to handle the general case,
one may fall back on techniques that route over acyclic
CDGs if cycles are not avoidable in the VC assign-
ment stage. Another key advantage of free-routing is
that it provides fault-tolerant application-specific com-
munication. Without free-routing, a single link fault
may eliminate guarantees of deadlock freedom, as in
BSOR. With free-routing, deadlock-free routing may
still be achieved in the presence of faulty links at the
cost of some performance, as in TxComm.

All the above transformations and optimizations
can be expressed as integer linear program (ILP) op-
timization problems. In practice, solvers can converge
on solutions in seconds/minutes (common case) and
hours (uncommon case). The analytical results gener-
ated by the solvers show significant opportunity in all
the benchmark/size combinations we evaluated. Simi-
lar analytical results with random fault injection shows
that TxComm achieves comparable (or better) perfor-
mance as fault-free BSOR, even when as many as 10%
of links are faulty. Evaluation by simulation with 13
StreamIT benchmarks over three different system sizes
reveals that, in the fault-free case, TxComm achieves a
mean throughput improvement of 55% over BSOR.
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