
HAL Id: hal-01167493
https://hal.inria.fr/hal-01167493

Submitted on 24 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Methods for Targeted Advertising and User
Tracking on the Internet

Léo Le Taro

To cite this version:
Léo Le Taro. New Methods for Targeted Advertising and User Tracking on the Internet. Cryptography
and Security [cs.CR]. 2015. �hal-01167493�

https://hal.inria.fr/hal-01167493
https://hal.archives-ouvertes.fr

Master Thesis Report

New Methods for Targeted
Advertising and User Tracking
on the Internet

Author
Léo Le Taro
Université Claude Bernard, Lyon 1
CITIlab - INSA de Lyon
INRIA, Privatics Team
E-mail: leo.le-taro@inria.fr

Supervisor
Mathieu Cunche
Maître de Conférences at INSA de Lyon
CITIlab - INSA de Lyon
INRIA, Privatics Team
E-mail: mathieu.cunche@inria.fr

mailto:leo.le-taro@inria.fr
mailto:mathieu.cunche@inria.fr

Abstract

Abstract Internet usage is increasing every day. Nowadays, since the
advent of smartphones, smart tablets and smart watches, people tend
to be permanently online, even in mobility conditions. Free Wi-Fi con-
nectivity is provided in public areas such as parks, coffee shops and
airports, and is becoming the norm: people are expecting it.

This trend led free Wi-Fi providers and other network agents to
look for ways of monetizing their networks through targeted advertising
and user tracking. However, this may be problematic because of the
resulting privacy concerns.

In this thesis, we identify the possible ways of carrying out such
actions, as well as methods that have been designed by the research
community to study their impact.

We then present WALTER, a tool which focuses on detecting con-
tent injection in downstream HTTP traffic.

Résumé L’utilisation d’Internet grandit de jour en jour. Aujourd’hui,
depuis l’apparition des smartphones, tablettes et montres connectées,
les internautes ont tendance à rester en ligne de façon permanente,
même en mobilité. Les points d’accès Wi-Fi publics sont de plus en
plus présents dans les parcs, les cafés et les aéroports : avoir un accès
à Internet gratuitement dans les lieux publics devient la norme.

Cette tendance incite les fournisseurs d’accès et intermédiaires
réseau à élaborer des moyens de rentabiliser leurs infrastructures réseaux
grâce à la publicité ciblée et le traçage des utilisateurs. Cependant, cela
pose des problèmes de confidentialité et de vie privée.

Dans ce rapport, nous identifions les moyens techniques permet-
tant aux intermédiaires réseau de mettre en oeuvre de telles pratiques.
Nous analysons également les méthodes qui ont été développées par la
communauté scientifique pour étudier leur impact.

Nous présentons ensuite WALTER, un outil dont le but est de
détecter l’injection de contenu dans le trafic HTTP descendant.

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor
Mathieu Cunche for the continuous support of my research internship,
for his patience, motivation, enthusiasm and insightful suggestions. His
guidance helped me in all the time of research and writing of this thesis.

Besides my advisor, I would like to thank the CITIlab for having
welcomed me warmly during this internship.

My sincere thanks also go to INRIA for believing in my research
topic and funding this work.

Finally, I would like to thank the Université Claude Bernard Lyon 1
and the INSA de Lyon for teaching me the material that helped me
carry out this research.

Contents

1 Introduction . 6
1.1 Motivation . 6
1.2 Problem Statement & Research Questions 7
1.3 Thesis Structure . 7

2 State of the Art . 9
2.1 Upstream HTTP Injection . 9

2.1.1 Principle . 9
2.1.2 Possible Ways to Exploit & Examples 9
2.1.3 Concerns . 11

2.2 Downstream HTTP Injection . 12
2.2.1 Principle . 12
2.2.2 Possible Ways to Exploit & Examples 12
2.2.3 Concerns . 14

2.3 Content Injection by Malicious Extensions 14
2.4 Non-HTTP Injection and Tracking Techniques 15

2.4.1 DNS . 15
2.4.2 SMTP . 15
2.4.3 SSL/TLS . 16

2.5 Focusing Our Work . 17

3 Solution Design . 19
3.1 Project Architecture . 19
3.2 Discrimination Decision Function . 20
3.3 Results Logging . 21

4 Implementation Details . 22
4.1 Technologies Used . 22
4.2 Activity Diagram . 22
4.3 Logging & Performance . 22
4.4 Security . 24

4.4.1 Reporting traffic protection . 24

Contents 5

4.4.2 DoS mitigation . 25

5 Conclusion . 26
5.1 Results . 26
5.2 Future Work . 27

References . 28

1

Introduction

Targeted advertising and user tracing on the Internet is nothing new.
Since dynamic websites are the norm on the World Wide Web, adver-
tising agencies have been working alongside Web content publishers in
order to serve relevant, targeted advertising to visitors.

User tracking has also been invented in an effort to determine and
study the behavior, preferences and habits of Internet users. Track-
ing is also used to monitor statistics such as unique vs. recurring ad
impressions, namely for billing purposes.

Although such practices are relatively old on the Internet timeline,
we observe today new methods for them to be carried out. Multiple
users have been reporting strange advertisements appearing on websites
known for their cleanliness. Other sites appeared to show ads for their
direct competitors, a behavior that content publishers usually avoid.
This led us to believe that a new targeted advertising architecture is
being employed, driven by Internet Service Providers themselves.

In this paper, we confirm our intuition, we identify the scientific
contributions related to this topic, and we present a tool that enables
the detection and the quantification of such practices.

1.1 Motivation

Targeted advertising and user tracking has always been a controver-
sial topic regarding privacy. We believe that Net neutrality should be
enforced, and that users should have the right to receive untouched
information when browsing the Web.

This project provides a way for Internet users to gain insight about
the possible alterations that their traffic may be subject to. We further
strive to determine the main actors of such alterations.

1.3 Thesis Structure 7

1.2 Problem Statement & Research Questions

The World Wide Web relies on two main underlying applicative proto-
cols: HTTP and HTTPS.

HTTP is a simple, stateless client-server protocol based on request-
response exchanges. In plain HTTP, those exchanges cross the network
encrypted. ISPs and intermediary network nodes have access to re-
quests from end-users (clients) to content publishers (servers), as well
as responses passing through the opposite direction. Hence, from the
point of view of a user browsing the Web via HTTP, there is no guar-
antee of confidentiality nor integrity regarding sent and received infor-
mation. Censorship, alteration and injection may occur.

HTTPS is a secured protocol consisting of HTTP encapsulated
into SSL/TLS. This protocol relies on the Public Key Infrastructure to
provide confidentiality, integrity and authentication guarantees. How-
ever, HTTP vs. HTTPS usage is still at the content publisher’s dis-
cretion when one decides to visit a webpage. Although more and more
deployed by website owners, one cannot access the whole Web limiting
him/herself to using HTTPS only.

Moreover, secondary protocols meant to make Web browsing a
better experience, such as DNS, may also be subject to censorship,
alteration and injection.

In this thesis, we aim at answering the following questions:

• What risks do I face if I browse the Web using unencrypted com-
munication channels?

• Who actually exploits the current WWW infrastructure to inject
ads and tracking material for their own benefit?

• Is my Web traffic currently being altered? In which way?

1.3 Thesis Structure

The rest of this thesis is structured in four main parts:

• The State of the Art, which names the different entry points for
traffic alteration and injection, and includes a comprehensive study
of related scientific contributions,

8 1 Introduction

• The Solution Design, which explains the architecture of WAL-
TER, our proposed injection detection solution,

• The Implementation Details, which details the technical choices
made during WALTER’s development,

• TheConclusion, which takes a step back fromWALTER, discusses
its relevance and suggests perspectives for future work.

2

State of the Art

In this paper, we focus on possible content injection by ISPs, notably
free Wi-Fi hotspots providers that have high incentives to indirectly
monetize their network through advertising [1, 2]. Such techniques are
relatively new, and have received little attention by the research com-
munity.

This section explores the different entry points for targeted adver-
tising and tracking material on the network and client side, as opposed
to server-side techniques that have been extensively studied such as
cookie tracking.

2.1 Upstream HTTP Injection

2.1.1 Principle

The basic principle behind upstream HTTP injection is for an ISP
or network intermediate to tamper with an HTTP request in order
to add identification data before forwarding the request towards its
destination.

2.1.2 Possible Ways to Exploit & Examples

Unique identifier

Verizon Wireless has been found to use upstream HTTP injection in
order to add a header line, named X-UIDH, to all web traffic [3, 4].
Such a header line can be viewed as a supercookie, sent as is to every
visited site, regardless of the Same Origin Policy normally enforced by
Web browsers when disclosing regular cookie content.

10 2 State of the Art

Origin Information

Another way to exploit upstream HTTP injection is to add an X-Origin
line to the header section of outbound HTTP requests. This line can
contain values such as the ISP’s identification in order to accurately
inform the target website about the ISP from which the request came
from.

On their own, website owners, that we will call publishers, can
try to infer location and ISP from the originating IP address, but such
assumptions are known to be unreliable, and can at most provide a
city-level accuracy [5].

Now, consider a campus residence implementing free Wi-Fi for its
student residents via a private ISP such as Wifirst. The ISP could,
for example, partner with a publisher, like Amazon, and agree to send
them the X-Origin header line whenever a student connects to their
website, in return for compensation. This way, the publisher could serve
targeted advertising with the knowledge that their visitor must be a
student connecting from this specific campus. In return, the ISP, which
has knowledge of the visitor’s traffic, would then charge the publisher
based the number of requests forwarded with the X-Origin line.

The publisher is more likely to achieve higher conversion rates
because his ads are better targeted, and the ISP effectively indirectly
monetizes its free-of-charge Wi-Fi network.

Extended Referral Information

The HTTP 1.1 Referer header line, defined in RFC 2616 [6], allows
visitors to inform the publisher about the page which led them to the
page being requested. Implemented in all major browsers, this field
poses privacy concerns since it allows publishers to associate browsing
patterns with IP addresses or other identification information [6, 7].

However, the Referer line itself is limited in the way that it only
contains the one previously visited web page. In addition, it will only be
sent by browsers when the referred page actually directly leads to the
request of the new page. That is to say, no Referer line will be sent when
a user visiting Google decides to visit Amazon by manually entering
Amazon’s URL in the address bar, or by clicking on a bookmark.

2.1 Upstream HTTP Injection 11

Yet, the ISP has knowledge of virtually all previous traffic made
by the user during his/her session. It is then easy for the ISP to inject a
number k of X-Referer lines informing the publisher of the user’s latest
visits (see Fig. 2.1).

Fig. 2.1: Exploiting HTTP Upstream Injection by sending extended
referral information.

To go even further, an ISP that implements identification services
through the use of captive portals or WPA/WPA2 802.1X authenti-
cation can log a user’s traffic coming from various sources, such as
computers, smartphones, smart TVs and other connected objects. The
ISP is then able to aggregate this info into an exhaustive chronological
timeline of previously visited sites, ready to be sent to publishers as in
Fig. 2.1.

2.1.3 Concerns

While methods described above enable publishers to serve more rele-
vant advertisements as well as having more accurate insight about their
audiences, they also lead to obvious concerns when it comes to user
privacy. Although it is true that these techniques can only be directly
applied to unencrypted HTTP flows, it is still a problem since most

12 2 State of the Art

web pages are accessed via regular HTTP and sensitive information
can be leaked to publishers without the user’s consent.

2.2 Downstream HTTP Injection

2.2.1 Principle

Downstream HTTP Injection shares the same principle as Upstream
HTTP injection seen in 2.1.1, except that it takes place in the opposite
direction. Unencrypted HTTP responses, such as HTML pages, im-
ages and JavaScript’s can be tampered with in order to add or remove
specific elements.

Such practices have been studied by Charles Reis et al. who demon-
strated increased usage and offered a detection and prevention solution
called Web Tripwires [8].

2.2.2 Possible Ways to Exploit & Examples

Advertising

The most obvious way an ISP or network agent would want to set
up downstream HTTP injection is advertising. This time, the ISP is
in charge of carrying out content- and behavior-based targeting, since
it holds both the whole response from the publisher and the user’s
behavioral profile (see Fig. 2.2).

From the ISP’s point of view, this is a simpler way to monetize a
network infrastructure, because compared to the method described in
2.1.2 and 2.1.2, the ISP only has to hire a single advertising company,
instead of having to make agreements with every appealing publisher
and website owner. It can even draw advertisers and develop the tar-
geting and serving aspects itself.

Imagine a Wi-Fi-enabled airline company which offers in-flight
connectivity to its customers, based on a captive portal or WPA/WPA2
802.1X authentication. With knowledge of each customer’s entire flight
plan, the company can inject targeted advertising for hotels or car
rental companies located at the customer’s final destination, even in
the case of stopovers.

2.2 Downstream HTTP Injection 13

In addition, several users stated that ISPs not only added adver-
tisements, but also blacklisted their competitors’ ads already present
on publishers’ pages.

Although few rigorous usage studies of this technique can be found
in the literature [8], one can find numerous user blogs reporting that
downstream HTTP injection is increasingly taking place today [9, 10,
11]. Furthermore, brochures designed to draw advertisers clearly imply
that such practices are indeed being used and sold around the world
[1, 2].

Fig. 2.2: Exploiting HTTP Downstream Injection by adding extra
HTML content.

Tracking

It is also possible for an ISP to inject, instead of advertisement material,
arbitrary JavaScript code that will be executed in the user’s browser’s
context. Since the user’s browser will think the script originates from
the actual, “true” website, such code may be used to track changes to
the Document Object Model (DOM) without having to run JavaScript
engines on the ISP’s infrastructure.

14 2 State of the Art

Malicious Goals

GitHub, the online community-based source forge, was recently tar-
geted by a massive distributed denial of service attack which crippled
it for several days. After investigation, it appears that malicious scripts
were injected into unsuspecting users’ traffic. Each time a user vis-
ited pages that contained Baidu’s analytics code, a network intermedi-
ary, most likely located in China between the user and Baidu, injected
a JavaScript that made the user’s browser fetch pages from GitHub.
Baidu being China’s number one search engine, the number of affected
users were huge, thus the attack on GitHub succeeded.

2.2.3 Concerns

Injecting advertisements in pages directly as plain HTML and CSS by-
passes browser extensions such as AdBlock Plus, since such extensions
rely on URL blacklists, and will typically only block content, like im-
ages and external JavaScript, that is to be fetched from a third-party
advertiser’s website.

Script injection could also monitor user interactions like mouse
movements and even keystrokes, and send them over to an arbitrary
server using JSONP or other communication means that bypass the
Same Origin Policy. Consider a common setup on many websites: a
login form pointing at an HTTPS login page, but served within an
unencrypted page. With such script injection, the ISP can effectively
steal user passwords.

Finally, we have seen thanks to the GitHub example that injection
can be used by hackers to obtain a botnet of legitimate machines.

2.3 Content Injection by Malicious Extensions

Browser extensions and binaries do not share the same security con-
straints as in-page JavaScripts: they can access and modify content
from any open tab, and send HTTP requests to any server with no
Same Origin Policy being enforced [12].

Kurt Thomas et al. [13] recently published a survey of malicious
extensions. They automatically ran multiple extensions and binaries

2.4 Non-HTTP Injection and Tracking Techniques 15

found on the most popular web stores inside a sandbox, looking for
injection patterns and suspicious permissions. In their work, published
in 2015, they report than “more than 5% of unique daily IP addresses
accessing Google” were running local code that injected ads into their
pages.

Alexandros Kapravelos et al. [14] identify malicious extensions by
analyzing event handlers as well as luring malware into honey pots.

2.4 Non-HTTP Injection and Tracking Techniques

2.4.1 DNS

DNS plays a crucial role on the Internet since every request to a host-
name has to be resolved into the corresponding IP address. Distributed
in nature, caching mechanisms have been implemented on ISP DNS
servers to limit traffic and improve overall performance for their end
users. However, we are witnessing new abusive practices carried out by
ISPs (and even public, non-ISP DNS’s such as OpenDNS) which con-
sist of replacing NXDOMAIN and other error answers by a “fake” A
or AAAA record to redirect users towards an ad-filled page whenever
they mistype an URL [15, 16].

Such behavior violates the DNS specification itself, which stipu-
lates [17]:

A negative answer that resulted from a name error (NXDO-
MAIN) should be cached such that it can be retrieved and re-
turned in response to another query for the same <QNAME,
QCLASS> that resulted in the cached negative response.

2.4.2 SMTP

SMTP is one of the most popular application-layer protocols on the
Internet, since its purpose is to route e-mails to their destination. Many
ISPs are blocking outbound traffic to TCP port 25, SMTP’s default
port, to force customers into relaying e-mail through the ISP’s own
mail servers, when the normal delivery procedure is (i.) the customer’s
Message Transfer Agent (MTA) queries the recipient’s domain’s MX

16 2 State of the Art

record via DNS, (ii.) the customer’s MTA opens an SMTP session with
the recipient’s SMTP server for message delivery.

While this is supposed to fight spam better by preventing compro-
mised user machines from relaying unsolicited messages, such practices
can be considered abusive since customers only have, de facto, limited
Internet access.

ISPs can then engage in e-mail eavesdropping, user tracking and/or
ad injection. Because the ISP’s mail server is the endpoint of the TCP
transmission established by the user, using SMTP over TLS cannot
prevent the ISP from reading and/or altering e-mail content without
the user’s consent.

2.4.3 SSL/TLS

Users have been recently reporting that some ISPs started engaging in
issuing forged SSL/TLS certificates to their users [18] (see Fig. 2.3).

Fig. 2.3: Gogo Inflight Wireless issuing SSL/TLS certificates on
behalf of Google. From [18]. Note the issuer’s “Common Name”

consisting of a private IPv4 address.

2.5 Focusing Our Work 17

Such behavior is nothing but a Man-in-the-Middle attack toward
their users, as well as an identity theft since they issue certificates for
the original site, thus claiming to represent them.

Their motives could be varied: spying on and tracking customers,
or injecting unwanted advertisements: all techniques described in this
paper become feasible even on SSL/TLS communications.

This type of behavior works because most users are not aware of In-
ternet security problematics. With the increase of open Wi-Fi hotspots
throughout the world, often serving captive portals with self-signed
or otherwise untrusted SSL/TLS certificates1, unsuspecting users are
accustomed to just “adding an exception” in their browser without
inspecting the condition any further.

2.5 Focusing Our Work

In this internship, we decided to focus on downstream HTTP injection.
Our tool, WALTER, extends the features of Web Tripwires [8]2 by
giving the users extensive and visual feedback over the altered areas of
the page. We are collecting, at the time of writing, updated data which
will allow us to identify and rank the ISPs that alter their customers’
traffic. We use a dummy webpage featuring fake, lure ads ready to
be replaced. We assume ad injection does not rely on specific URL
patterns, but occurs on every browsed page.

Content injection by extensions has already been studied in-depth
by researchers [13, 19, 14]. Such a technique requires manual installa-
tion by users. Hence, we did not mean to focus on extensions. However,
WALTER is still able to discriminate network-layer alteration from lo-
cal alteration, which allows us to better classify our results.

In this paper, we assume than network intermediaries are not is-
suing fake SSL certificates, and we consequently make the assumption
that HTTPS exchanges between the client and WALTER were not sub-
ject to a man-in-the-middle attack.

1 as one can witness even at Lyon 1 and the INSA.
2 whose website is currently down

18 2 State of the Art

In a nutshell, we aim at spreading awareness: we recommend that
publishers make their sites available over HTTPS, and we urge users
to pay more attention to certificate-warning messages.

3

Solution Design

The main goal of this project, which we named WALTER1, was to
design a user-friendly, simple to use tool that did not require prior
installation by the client to function. Besides, we wanted to make sure
that results would be logged so that we could have feedback over 100%
of the client-initiated checks for alteration.

This is why we chose to develop a self-testing webpage, which can
be accessed by any desktop or mobile browser that can run JavaScript.
We thus chose to deal with browsers’ security policies rather than de-
veloping fat client apps that require setup.

3.1 Project Architecture

The architecture of WALTER is detailed in the following sitemap:

/index.html Welcome page explaining WALTER’s concept.
/about-us.html Description of the INRIA Privatics team and contact

info.
/check.html Generates a dummy page along with client-side checking

code. Logs the whole response before returning it to the client.
/check/doCheck.html Collects /check.html’s DOM as viewed by

the client’s browser. Compares this DOM with that of the logged
response.

/check/verdict.html Displays the check result, whether alter-
ation are network-based or local, and a side-by-side view of both
DOMs where applicable.
/check/verdict/render.html Shows a visual rendering of dif-

ferences, if applicable.
1 Is my Web Traffic Altered?

20 3 Solution Design

3.2 Discrimination Decision Function

In order to determine the cause of alterations, i.e. network or local,
WALTER uses the decision pattern illustrated in Fig. 3.1.

Fig. 3.1: WALTER’s Alteration Cause Decision Algorithm.

When we detect that the HTTPS traffic was altered, we are posi-
tive that a browser extension or local code is tampering with the client’s
traffic. However, as we can observe in Fig. 3.1, when alteration occurs
on both HTTP and HTTPS checks in different ways, we cannot deter-
mine whether network-level alteration occured.

For example, imagine a situation where an extension carries out
an alteration E of both HTTP and HTTPS traffic, and a network
agent conducts an alteration I of HTTP traffic only. Upon running
WALTER, the client would report that both HTTP and HTTPS were
altered in a different way (resp. HTTPreceived = E(I(HTTPSsent))
and HTTPSreceived = E(HTTPSsent)).

However, the AdBlock Plus extension will add a random class
HTML attribute to all ad-resembling elements found on a given page
[20]. Because of the randomness of this class name, our dummy page
sent over HTTP would be altered by AdBlock Plus in a technically dif-
ferent way than that sent over HTTPS. In such a case, no network agent
is guilty of alteration, but the client would still report both HTTP and
HTTPS altered in a different way.

3.3 Results Logging 21

When such cases are detected by WALTER, the client is shown an
explanative message inviting him/her to disable extensions. Two side-
by-side difference views are shown: expected vs. HTTP, and expected
vs. HTTPS.

3.3 Results Logging

After each check, WALTER logs results into a database. The collected
data is structured as follows:

id Unique identifier,
os Client operating system,
browser Client browser,
verdict_regular Result of the HTTP check: clean or altered,
verdict_https Result of the HTTPS check: clean or altered,
ip Client IP address,
hostname Client hostname,
expected_source HTML source code sent by WALTER to the client

(both checks),
received_source_regular HTML source code interpreted by the

client’s browser (HTTP check),
received_source_https HTML source code interpreted by the client’s

browser (HTTPS check),
traceroute Results of a traceroute from WALTER to the client.

When a client’s traffic is detected altered by a network agent,
his/her direct ISP may or may not be responsible: any network in-
termediary between WALTER and the client may be guilty. For this
reason, we keep the entire traceroute from the client to WALTER, in
order to later infer and rank altering network agents by cross-analysis.

4

Implementation Details

4.1 Technologies Used

WALTER is a Web application developed in object-oriented PHP5 with
the Symfony2 framework. The client-side logic is coded in JavaScript
with jQuery v2.1.3, while the user interface uses HTML5 and CSS3
with the Bootstrap v3.3.2 framework.

WALTER can be easily deployed on any HTTP and HTTPS en-
abled web server with command-line access by following the Symfony2
deployment procedure. It is currently running on a CentOS 6.6 virtual
server running Apache v2.2.15, and MySQL v5.1.73 as the database
management system.

WALTER’s command-line interface tools help administrators to
automatically execute pending traceroutes (see 4.3), (re)generate RSA
keypairs (see 4.4.1) and clear the application cache after an update. On
our production system, such tasks are scheduled thanks to cron jobs.

4.2 Activity Diagram

The detailed activity diagram, explaining state shifts and network ex-
changes, is shown in Fig. 4.1.

4.3 Logging & Performance

We chose to save complete source codes into the database instead of
just diff results because we want to be able to use other comparison
methods in the future, and try to infer keyword-based patterns that
may lead to alteration.

http://symfony.com
https://jquery.com
http://getbootstrap.com

4.3 Logging & Performance 23

Fig. 4.1: WALTER’s Activity Diagram.

The expected_source field is kept for each single check in order to
increase flexibility: we trade storage space for the ability to change our
dummy page’s content anytime without compromising our previously
logged results.
Note that only in the event of an alteration will the appropriate received
source codes be logged. That is to say, a client which receives an altered
version of the page over HTTP but the clean version over HTTPS will
only have his/her HTTPS source code field set to NULL in the database
in order to save space.
The expected source code will always be logged, whatever the check
results, in order to make future guesses about contents that trigger
alteration.

Large database text fields like source codes and traceroutes are
stored gzipped to minimize storage space usage. For indexing and
lookup speed purposes, duplication is used on client IP addresses and
hostnames (visible in traceroutes) and check results (recoverable by
running diff s on source codes).

Traceroutes are network-intensive tasks that usually take several
seconds to complete. To increase client-side responsiveness, we do not
perform traceroutes synchronously; instead, we set the appropriate

24 4 Implementation Details

database field to NULL at the time of request, and use a separate
task which executes the missing traceroutes periodically.
Note that even though the delay between client request and traceroute
does not exceed one hour, the route may change in that time inter-
val. Keeping this in mind, we still believe our results will be accurate
enough on a large scale.

4.4 Security

4.4.1 Reporting traffic protection

WALTER works by receiving HTML source codes from clients and com-
paring them with its expected source code. To prevent network agents
from tampering with this reporting traffic, we had to use encryption
techniques.

Using HTTPS was excluded because of the Same Origin Policy
enforced by browsers: a page fetched over HTTP cannot perform AJAX
calls to HTTPS locations and vice-versa. At this point, we are using
our own cryptographic solution relying on the RC4 stream cipher, fed
with a randomly-generated symmetric key exchanged over RSA. The
cryptographic workflow is described below:

1. The server generates (and periodically updates) an RSA keypair
(rsa_pri, rsa_pub).

2. Upon receiving a checking request, WALTER sends rsa_pub to the
client along with the dummy page and client-side JavaScript logic.

3. The client generates an RC4 key rc4key.
4. The client encrypts the source code enc_sc = RC4(sc, rc4key).
5. The client encrypts enc_rc4key = RSA_encrypt(rc4key, rsa_pub).
6. The client sends an AJAX call to WALTER containing (enc_sc,-

enc_rc4key).
7. The server decrypts rc4key = RSA_decrypt(enc_rc4key, rsa_pri).
8. The server decrypts the source code sc = RC4(enc_sc, rc4key).

Such a method guarantees integrity and confidentiality, but lacks
client authentication. An eavesdropper, having access to rsa_pub, can-
not pre-determine the rc4key that the legitimate client will gener-
ate. However, it can block traffic from the client to WALTER, gen-

4.4 Security 25

erate its own rc4key, encrypt it with rsa_pub and return a forged
(enc_sc, enc_rc4key) to WALTER on behalf of the legitimate client.

4.4.2 DoS mitigation

Each checks leads to heavy network tasks (traceroutes, reverse DNS
lookups), computationally-intensive tasks (asymmetric and symmetric
cryptography) and database insertions. In order to mitigate potential
denial-of-service attacks, we decided to set a limit of one check every
20 seconds (configurable) per user.

Since WALTER heavily relies on the HTTP session to perform
checks, we chose to enforce this limitation by storing a timestamp along
with the client IP address into the session at the beginning of the
checking process. Any subsequent request made during the next 20
seconds will be denied.

Fig. 4.2: WALTER DoS Protection:
Accepted (Black) vs. Filtered (Red) Request Times.

5

Conclusion

5.1 Results

In this thesis, inspired by Web Tripwires [8], we designed and imple-
mented an integrated application to tell users about the integrity of
their web traffic, as well as collect experimental data that shall allow
us to identify network agents which tamper with customers’ traffic.

We are successfully discriminating network-level alteration from
local alteration (e.g. browser extensions) (See Fig. 5.1).

Fig. 5.1: AdBlock’s Alteration Detected by WALTER.

WALTER’s architecture makes it really user-friendly (a simple,
cross-browser website); however, it has a fixed URL and will not detect
network agents carrying out injection on a per-URL basis.

We are, at the time of writing, collecting updated data that
will help us better understand some of the new downstream injection
threats presented in 2.2. Unfortunately, we do not have enough reports
to build a representative sample, and are hoping for that purpose that
WALTER will go viral.

You can visit our deployed WALTER installation at http://
walter-experiment.inria.fr and help us spread awareness. May
your check results come out clean!

http://walter-experiment.inria.fr
http://walter-experiment.inria.fr

5.2 Future Work 27

5.2 Future Work

Downstream HTTP injection provides wide perspectives for future
work, here are the most obvious and relevant ones that we have iden-
tified during this project:

• Upon gathering a representative sample of check results, develop
a data analysis tool that will efficiently parse the traceroutes and
infer the most altering network agents.

• Dynamically change the dummy page to sometimes add content
that may trigger injection (keywords, presence of ads, links, videos...).
Develop an data analysis tool to identify which content triggers in-
jection.

• Develop a browser extension or binary to gather more relevant data
about per-URL, upstream+downstream injection.

References

1. Ragapa LLC. Hotspot Monetization Datasheet, 2014. [Online; accessed June
5, 2015]
http://s3.amazonaws.com/ragapa-static-content/website/literature/
ragapa_monetization_datasheet.pdf. 2, 2.2.2

2. Gogo Inflight Internet. Partner with gogo, 2014. [Online; accessed June 5, 2015]
https://www.gogoair.com/gogo/partner.do. 2, 2.2.2

3. Verizon. Recent changes to the policy, 2014. [Online; accessed June 5, 2015]
https://www.verizon.com/about/privacy/recent/. 2.1.2

4. Slashdot. Verizon injects unique ids into http traffic, 2014. [Online; accessed
June 6, 2015]
http://yro.slashdot.org/story/14/10/24/2052218/verizon-injects-
unique-ids-into-http-traffic. 2.1.2

5. Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and Bamba
Gueye. IP geolocation databases: Unreliable? ACM SIGCOMM Computer Com-
munication Review, 41(2):53–56, 2011. 2.1.2

6. Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Hypertext transfer protocol–HTTP/1.1, 1999.
2.1.2

7. Balachander Krishnamurthy, Konstantin Naryshkin, and Craig Wills. Privacy
leakage vs. protection measures: the growing disconnect. In Proceedings of the
Web, volume 2, pages 1–10, 2011. 2.1.2

8. Charles Reis, Steven D Gribble, Tadayoshi Kohno, and Nicholas C Weaver.
Detecting in-flight page changes with web tripwires. In NSDI, volume 8, pages
31–44, 2008. 2.2.1, 2.2.2, 2.5, 5.1

9. Zachary Henkel. ISP advertisement injection - CMA communications, 2013.
[Online; accessed June 3, 2015]
http://zmhenkel.blogspot.fr/2013/03/isp-advertisement-injection-
cma.html. 2.2.2

10. StackExchange. My ISP is injecting strange codes to every website i visit, 2014.
[Online; accessed June 4, 2015]
http://security.stackexchange.com/questions/70970/my-isp-is-
injecting-strange-codes-to-every-website-i-visit. 2.2.2

11. Techdirt. Mediacom puts its own ads on other websites, including Google &
Apple, 2011. [Online; accessed June 4, 2015]
https://www.techdirt.com/articles/20110228/11332813302/mediacom-
puts-its-own-ads-other-websites-including-google-apple.shtml. 2.2.2

12. Stefan Heule, Devon Rifkin, Alejandro Russo, and Deian Stefan. The most
dangerous code in the browser. In 15th Workshop on Hot Topics in Operating
Systems (HotOS XV). USENIX Association, 2015. 2.3

http://s3.amazonaws.com/ragapa-static-content/website/literature/ragapa_monetization_datasheet.pdf
http://s3.amazonaws.com/ragapa-static-content/website/literature/ragapa_monetization_datasheet.pdf
https://www.gogoair.com/gogo/partner.do
https://www.verizon.com/about/privacy/recent/
http://yro.slashdot.org/story/14/10/24/2052218/verizon-injects-unique-ids-into-http-traffic
http://yro.slashdot.org/story/14/10/24/2052218/verizon-injects-unique-ids-into-http-traffic
http://zmhenkel.blogspot.fr/2013/03/isp-advertisement-injection-cma.html
http://zmhenkel.blogspot.fr/2013/03/isp-advertisement-injection-cma.html
http://security.stackexchange.com/questions/70970/my-isp-is-injecting-strange-codes-to-every-website-i-visit
http://security.stackexchange.com/questions/70970/my-isp-is-injecting-strange-codes-to-every-website-i-visit
https://www.techdirt.com/articles/20110228/11332813302/mediacom-puts-its-own-ads-other-websites-including-google-apple.shtml
https://www.techdirt.com/articles/20110228/11332813302/mediacom-puts-its-own-ads-other-websites-including-google-apple.shtml

References 29

13. Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros
Kapravelos, Damon McCoy, Antonio Nappa, Vern Paxson, Paul Pearce, et al.
Ad injection at scale: Assessing deceptive advertisement modifications. 2015.
2.3, 2.5

14. Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. Hulk: Eliciting malicious behavior in browser
extensions. In Proceedings of the 23rd Usenix Security Symposium, 2014. 2.3,
2.5

15. Nicholas Weaver, Christian Kreibich, and Vern Paxson. Redirecting DNS for
ads and profit. In USENIX Workshop on Free and Open Communications on
the Internet (FOCI), San Francisco, CA, USA (August 2011), 2011. 2.4.1

16. David Dagon, Niels Provos, Christopher P Lee, and Wenke Lee. Corrupted DNS
resolution paths: The rise of a malicious resolution authority. In NDSS, 2008.
2.4.1

17. IETF. RFC2308, 1998. [Online; accessed June 3, 2015]
https://tools.ietf.org/html/rfc2308. 2.4.1

18. Steven Johns. Gogo inflight internet is intentionally issuing fake SSL certifi-
cates, 2015. [Online; accessed June 4, 2015]
http://www.neowin.net/news/gogo-inflight-internet-is-intentionally-
issuing-fake-ssl-certificates. 2.4.3, 2.3

19. Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In Proceedings of the 16th interna-
tional conference on World Wide Web, pages 601–610. ACM, 2007. 2.5

20. AdBlock Plus. Adblock Plus internals, 2015. [Online; accessed June 9, 2015]
https://adblockplus.org/faq_internal. 3.2

https://tools.ietf.org/html/rfc2308
http://www.neowin.net/news/gogo-inflight-internet-is-intentionally-issuing-fake-ssl-certificates
http://www.neowin.net/news/gogo-inflight-internet-is-intentionally-issuing-fake-ssl-certificates
https://adblockplus.org/faq_internal

	Introduction
	Motivation
	Problem Statement & Research Questions
	Thesis Structure

	State of the Art
	Upstream HTTP Injection
	Principle
	Possible Ways to Exploit & Examples
	Concerns

	Downstream HTTP Injection
	Principle
	Possible Ways to Exploit & Examples
	Concerns

	Content Injection by Malicious Extensions
	Non-HTTP Injection and Tracking Techniques
	DNS
	SMTP
	SSL/TLS

	Focusing Our Work

	Solution Design
	Project Architecture
	Discrimination Decision Function
	Results Logging

	Implementation Details
	Technologies Used
	Activity Diagram
	Logging & Performance
	Security
	Reporting traffic protection
	DoS mitigation

	Conclusion
	Results
	Future Work

	References

