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Abstract. A set of autonomous robots have to collaborate in order to accomplish a common task
in a ring-topology where neither nodes nor edges are labeled (that is, the ring is anonymous). We
present a unified approach to solve three important problems: the exclusive perpetual exploration,
the exclusive perpetual clearing, and the gathering problems. In the first problem, each robot aims
at visiting each node infinitely often while avoiding that two robots occupy a same node (exclusivity
property); in exclusive perpetual clearing (also known as searching), the team of robots aims at clearing
the whole ring infinitely often (an edge is cleared if it is traversed by a robot or if both its endpoints
are occupied); and in the gathering problem, all robots must eventually occupy the same node. We
investigate these tasks in the Look-Compute-Move model where the robots cannot communicate but
can perceive the positions of other robots. Each robot is equipped with visibility sensors and motion
actuators, and it operates in asynchronous cycles. In each cycle, a robot takes a snapshot of the current
global configuration (Look), then, based on the perceived configuration, takes a decision to stay idle
or to move to one of its adjacent nodes (Compute), and in the latter case it eventually moves to
this neighbor (Move). Moreover, robots are endowed with very weak capabilities. Namely, they are
anonymous, asynchronous, oblivious, uniform (execute the same algorithm) and have no common sense
of orientation. In this setting, we devise algorithms that, starting from an exclusive and rigid (i.e.
aperiodic and asymmetric) configuration, solve the three above problems in anonymous ring-topologies.

1 Introduction

In the field of robot-based computing systems, we consider k ≥ 1 robots placed on the nodes of
an input graph. Robots are equipped with visibility sensors and motion actuators, and operate in
Look-Compute-Move cycles in order to achieve a common task (see [19]).

The Look-Compute-Move model considers that in each cycle a robot takes a snapshot of the
current global configuration (Look), then, based on the perceived configuration, takes a decision to
stay idle or to move to one of its adjacent nodes (Compute), and in the latter case it moves to this
neighbor (Move). Cycles are performed asynchronously, i.e., the time between Look, Compute, and
Move operations is finite but unbounded, and it is decided by the adversary for each robot. Hence,
robots that cannot communicate may move based on outdated perceptions. From the practical
viewpoint, the Look-Compute-Move model faithfully describes the behavior of some real robots.

⋆ This work has been partially supported by the Research Grant 2010N5K7EB ’PRIN 2010’ ARS TechnoMedia
(Algoritmica per le Reti Sociali Tecno-mediate)’ from the Italian Ministry of University and Research, and by
Project ECOS-SUD Chile (Action ECOS C12E03) and the Inria Associated Team AlDyNet.

⋆⋆ Preliminary results concerning this work have been presented in the 15th IEEE IPDPS Workshop on Advances in
Parallel and Distributed Computing Models (APDCM) [15].



In the continuous plane, this model is referred in the literature also as the CORDA model [28].
The inaccuracy of the sensors used by robots to scan the surrounding environment motivates its
discretization. Moreover, robots can model software agents moving on a computer network.

Various problems have been studied in this setting and several algorithms have been proposed
for particular topologies such as lines, rings, trees and grids. Here, we propose a unified approach
to solve the exclusive perpetual exploration, the exclusive perpetual clearing, and the gathering
problems on rings. The relevance of the ring topology is motivated by its completely symmetrical
structure. It means that algorithms for rings are more difficult to be devised as they cannot exploit
any topological structure, as all nodes look the same. In fact, our algorithms are only based on
robots’ disposal and not on topology.

We consider a minimalist variant of the Look-Compute-Move model which has very weak hy-
pothesis. Neither nodes nor edges of the graph are labeled and no local memory is available on nodes.
Robots are anonymous, asynchronous, uniform (i.e. they all execute the same algorithm), oblivious
(memoryless) and have no common sense of orientation. Apart for the gathering problem, guided by
physical constraints, the robots may also satisfy the exclusivity property, according to which at most
a node can be occupied by at most one robot [2]. In contrast to the CORDA model in the continuous
plane, we assume that moves are instantaneous, and hence any robot performing a Look operation
sees all other robots at nodes and not on edges. Note that, in a discrete asynchronous environment
this does not constitute a limitation to the model. In fact, an algorithm cannot take advantages
from seeing robots on the edges as the adversary can decide to perform the Look operations only
when the robots are on the nodes. On the other hand, if an algorithm takes advantage from the
assumption that the robots always occupy nodes, the same algorithm can be applied by adding the
rule that if a robot sees another robot on an edge, it just don’t move (i.e. it waits until all the robots
occupy only nodes). In the following, we denote such model as the discrete CORDA model.

The discrete CORDA model received a lot of attention in the recent years. Most of the proposed
algorithms consider that the starting configuration is exclusive, i.e., any node is occupied by at most
one robot, and rigid, i.e., asymmetric and aperiodic. An exclusive configuration is called symmetric
if the ring admits a geometrical axis of symmetry, dividing the ring into two specular halves, it is
called periodic if it is invariable under non-trivial (i.e., non-complete) rotations.

In the following, we review the literature concerning the CORDA model on various graph topolo-
gies. For the literature about the three problems under study in different settings, the interest reader
can refer to [1, 4, 9, 10, 20, 21, 27].

Related work. In the problem of graph exploration with stop [16–18], it is required that each
node (or each edge) of the input graph is visited a finite number of times by at least one robot and,
eventually, all the robots have to stop. Whereas, the exclusive perpetual graph exploration [2, 3, 7, 8]
requires that each robot visits each node of the graph infinitely many times. Moreover, it adds the
exclusivity constraint. In [7], first results on n-node rings are given. In detail, the paper gives
algorithms for k = 3 and n ≥ 10, for k = n − 5 (if n mod k 6= 0), and shows that the problem is
infeasible for k = 3 and n ≤ 9, and for some symmetric configurations where k ≥ n− 4.

Graph clearing (also called graph searching) has been widely studied in centralized [20] and
distributed settings (e.g., [21]). The aim is to make the robots clear all the edges of a contaminated
graph. An edge is cleared if it is traversed by a robot or if both its ends are occupied. However, a
cleared edge is recontaminated if there is a path without robots from a contaminated edge to it. The
study of graph clearing in the discrete CORDA model when the exclusivity property must be always
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satisfied is introduced in [6] where a characterization of the exclusive perpetual graph clearing on
tree topologies is given. As far as we know, no results have been proposed in ring topologies for the
exclusive perpetual graph clearing problem in the discrete CORDA model.

The gathering problem consists in moving all the robots in the same node and remain there.
In [11] and [14], a full characterization of the gathering on grid and tree topologies, respectively,
without any multiplicity detection is given. On rings, it has been proven that the gathering is
unsolvable if the robots are not empowered by the so-called multiplicity detection capability [26],
either in its global or local version. In the former type, a robot is able to perceive whether any
node of the graph is occupied by a single robot or more than one (i.e., a multiplicity occurs). In
the latter type, a robot is able to perceive the multiplicity only if it is part of it. Using the global
multiplicity detection capability, in [26], some impossibility results have been proven. Then, several
algorithms have been proposed for different kinds of exclusive initial configurations in [12, 25, 26].
These papers left open some cases which have been closed in [13] where a unified strategy for all
the gatherable configurations has been provided. With local multiplicity detection capability, an
algorithm starting from rigid configurations where the number of robots k is strictly smaller than
⌊

n
2

⌋

has been designed in [22]. In [23], the case where k is odd and strictly smaller than n − 3
has been solved. In [24], the authors provide an algorithm for the case where n is odd, k is even,
and 10 ≤ k ≤ n − 5. Papers [23] and [24] do not assume that the initial configuration is rigid.
The remaining cases with local multiplicity detection are left open and a the design of a unified
algorithm for all the cases is still not known.

Contribution. In this work, we provide a unified approach for solving different tasks in the dis-
crete CORDA model on ring topologies. Namely, starting from any rigid configuration, we solve
the exclusive perpetual exploration, the exclusive perpetual clearing, and the gathering with local
multiplicity detection capability. Our algorithms consist of two phases. The first phase is common to
all problems and allows k > 2 robots to achieve a particular rigid exclusive configuration, denoted
below by C∗, in an n-node ring, k < n − 2. The second phase depends on the task. We present
an algorithm that, starting from configuration C∗, solves both the exclusive perpetual exploration
and the exclusive perpetual clearing problems, for any team of k robots in n-node rings, n > 9,
5 ≤ k < n − 3 (but for k = 5 and n = 10). Moreover, we design a specific algorithm that, starting
from any rigid configuration, solves the exclusive perpetual clearing problem using n − 3 robots in
any n-node ring, n > 9. Finally, we provide some impossibility results for the exclusive perpetual
clearing problem, showing that for 3 ≤ n ≤ 9 and k < n, or k ∈ {1, 2, 3, n − 2, n − 1} and n > 4,
the problem cannot be solved in a n-node ring with k robots. All together, we obtain an almost full
characterization of exclusive perpetual clearing in rings, leaving only open the cases (k = 4, n > 9)
and (k = 5, n = 10). Concerning the gathering problem, we design an algorithm that starting from
configuration C∗ solves the problem with local multiplicity detection for any team of k robots in
n-node rings, 2 < k < n − 2 (note that, if n = 2 or k ≥ n − 2, no rigid configuration exists). It is
worth noting that for the exclusive perpetual exploration and for the gathering problems, besides
providing a unified approach, we solve some open cases.

Outline. In the next section we define the notation used in the paper and describe the discrete
CORDA model. In Section 3, we propose an algorithm to achieve the special configuration C∗.
Exclusive perpetual clearing is formally defined and studied in Section 4. We note that the algorithms
given in this section also solve the exclusive perpetual exploration problem. The gathering problem
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Fig. 1. A configuration C in a ring with 16 nodes. The occupied nodes are depicted in grey.

is considered in Section 5. We then conclude the paper by Section 6 with some possible future
research directions.

2 Model and Notations

We consider a team of k ≥ 1 robots located in an n-node ring, n ≥ 3. The ring is anonymous, that
is its nodes and edges are undistinguishable, and no orientation is provided.

A configuration consists of the set of nodes that are occupied by a robot. Note that, it does not
take into account the number of robots in each node. A configuration is said exclusive if each node
is occupied by at most one robot. For 2 ≤ k < n−2, we denote by C∗ the configuration that consists
of k − 1 consecutive occupied nodes, one empty node, one occupied node, and at least further two
consecutive empty nodes. An interval in a configuration is an inclusion-maximal (possibly empty)
subset of consecutive empty nodes, i.e., a subpath of empty nodes that stands between two occupied
nodes. For instance, in C∗, there are k − 2 intervals of length 0, one interval of length 1, and one
interval of length n− k − 1 > 1.

In a configuration C, a view from some occupied node r ∈ C is a sequence of integers W (r) =
(q0, q1, . . . , qj), j < k, that represents the sequence of the lengths of the intervals met when traversing
the ring in one direction (clockwise or anti-clockwise) starting from r. Abusing the notation, for
any i ≤ j, we refer to qi as the corresponding interval and its length. Note that, if C is exclusive,
then j = k− 1 and

∑

0≤i<j qj = n− k. Moreover, a node r may have 2 distinct views, depending on
the direction. Unless differently specified, we refer to W (r) = (q0, q1, . . . , qj) as the view at r that
is minimum in the lexicographical order.

For instance, given the configuration depicted in Figure 1, the possible views of the robot at
node x are (2, 1, 3, 1, 2, 1) and W (x) = (1, 2, 1, 3, 1, 2).

Let W (C) be the set of the at most 2k views (at most two views per occupied node) in the
configuration C. The supermin configuration view W C

min of the configuration C is the minimal view
in W (C) in the lexicographical order. Note that, in W C

min, no interval has length strictly smaller
than q0, and, moreover, if k < n, then qk−1 > 0. For instance, W C∗

min = (q0, . . . , qk−2, qk−1) with
q0 = . . . = qk−3 = 0, qk−2 = 1 and qk−1 = n− k − 1.

For any view W = (q0, q1, . . . , qj) in a configuration C, we set W = (q0, qj , qj−1, . . . , q1), and
Wi = (qi, q(i+1) mod (j+1), . . . , q(i+j) mod (j+1)) denotes the view obtained by reading W starting from

qi as first interval. Note that W (C) = {Wi, Wi, | 0 ≤ i ≤ j}. Let IC be the set of intervals qi such
that Wi or Wi are equal to W C

min. The intervals in IC are the supermins of C. E.g., |IC∗ | = 1.
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An exclusive configuration is called symmetric if the ring admits a geometrical axis of symmetry,
dividing the ring into two specular halves. An exclusive configuration is called periodic if it is
invariable under non-trivial (i.e., non-complete) rotations. A configuration which is aperiodic and
asymmetric is called rigid.

In Figure 1, the intervals (consisting of one node) between occupied nodes y and z and between
y′ and z′ are the supermins of C and W C

min = (1, 2, 1, 2, 1, 3). |IC | = 2 and C is aperiodic and has
one unique axis of symmetry passing through a and b.

We now give some useful properties that are proved in [13]. In particular, Lemma 1 is used to
detect possible symmetry or periodicity of a configuration.

Property 1 ([13]). Given a view W of a configuration C,

– there exists 0 < i ≤ j such that W = Wi iff C is periodic;
– there exists 0 ≤ i ≤ j such that W = Wi iff C is symmetric;
– C is aperiodic and symmetric iff there exists one unique axis of symmetry.

It follows that if a configuration is rigid, then each occupied node has a view which is different
from any other occupied node.

Lemma 1 ([13]). Given a configuration C,

– |IC | = 1 iff C is either rigid or it admits only one axis of symmetry passing through the supermin;
– |IC | = 2 iff C is either aperiodic and symmetric with the axis not passing through any supermin

or it is periodic with period n
2 ;

– |IC | > 2 iff C is periodic, with period at most n
3 .

We consider a discrete variant of the CORDA model introduced in [28] where the robots have
no explicit way of communicate to each other (e.g., they cannot exchange messages). However, they
are endowed with visibility sensors allowing each robot to perceive their own position in the graph
and the positions of all the other robots. However, when the exclusivity property does not hold, and
more than one robot reside at a same node, a robot only perceives a so called multiplicity, without
the information of the exact number of robots composing it.

The robots proceed by cycles of three phases Look-Compute-Move. In the Look-phase, a robot
at some node r accesses a snapshot of the network that consists of the view W (r). In the Compute-
phase, the robot decides its action based on the information it received during the Look-phase.
Finally, during the Move-phase, the robot executes its action, i.e., it moves to a neighboring node
or stays idle. The environment is fully asynchronous which, in particular, means that the Compute-
phase may be executed based on an out-dated view of the network.

We consider a minimalist variant of the model, where the robots have very weak abilities. Robots
are anonymous, i.e., they do not have identifiers, uniform, i.e., they all run the same algorithm,
oblivious, i.e., memoryless, and they have no sense of direction, i.e., they do not agree on a common
orientation of the ring. Unless differently specified, two or more robots cannot occupy the same node
(exclusivity property). When the exclusivity property is not imposed (e.g. for solving the gathering
problem), the robots have the so called local multiplicity detection capability that is, a robot is able
to detect whether the node where it resides is occupied by more than one robot or only by itself,
but it is not able to detect the exact number of robots occupying the node. Note that this is the
weakest assumption that has to be made to solve the gathering since it has been shown that the
gathering is impossible if no multiplicity detection capability is allowed [26].
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In contrast to the CORDA model in the continuous plane, we assume that moves are instanta-
neous, and hence any robot performing a Look operation sees all other robots at nodes and not on
edges. We remark that, in a discrete asynchronous environment this does not constitute a limitation
to the model. We call such model the discrete CORDA model.

Our goal is to investigate the feasibility of several collaborative tasks with these weak hypothesis.
We assume that the starting configuration is rigid and exclusive.

3 Reaching configuration C∗

In this section, we propose an algorithm, called Align, in the discrete CORDA model that allows
to reach configuration C∗ starting from any exclusive rigid configuration. Algorithm Align will be
used in next sections to achieve the configurations suitable for the exclusive perpetual exploration,
clearing, or gathering problems. We first describe the algorithm that allows to reach configuration
C∗. Then, we prove its correctness.

3.1 Algorithm Align

The idea at the basis of Algorithm Align is to exploit the initial rigidity and exclusivity properties.
In so doing, we can ensure that one single robot moves at time. The moves performed aim to
(lexicographically) reduce the unique supermin configuration view of a rigid configuration in a way
that the obtained configuration is still rigid and exclusive, until configuration C∗ is achieved.

By rigidity and exclusivity, the starting configuration has a unique supermin interval and each
node has a unique supermin configuration view (see Property 1 and Lemma 1). Therefore, the
snapshots provided to the robots allow them to agree on a common view (the unique minimum
one) where each robot can identify its position. This ensures that a single robot will move and that
the next configuration is still exclusive. Given a configuration C, four rules, called reductioni(C),
i ∈ {−1, 0, 1, 2}, are defined below where, for each rule, a single robot is asked to move to an
empty node. reduction0(C) is executed only if the supermin has length at least one. If the su-
permin has null length, reduction1(C) is executed if the corresponding move does not create
any symmetry. Otherwise, reduction2(C) is executed if it does not create any symmetry, and
reduction−1(C) is executed otherwise. We prove that, starting from any rigid configuration, the
move resulting from this algorithm achieves a new rigid configuration. The only exception is config-
uration Cs such that W Cs

min = (0, 1, 1, 2). In fact, from such a configuration, any single move would
generate either a symmetric configuration or configuration Cs itself. In this case, we first perform
reduction1(C

s), obtaining the symmetric configuration C′ such that W C′

min = (0, 0, 2, 2), then we
perform reduction1(C

′) which leads to C∗. In any case, in the entire algorithm, only one robot
is allowed to move at one time. Moreover, we prove that reductioni(C), i ∈ {0, 1, 2} strictly de-
creases the supermin. Finally, from some configuration C, applying reduction−1(C) may lead to a
configuration C′ with a greater supermin configuration view. However, we prove that, in this case,
the next move will reach a new configuration whose supermin configuration view is strictly smaller
that the one of C. Since, clearly, C∗ is the rigid configuration with smallest supermin configuration
view, this will prove that executing Algorithm Align eventually achieves C∗.

We now formally define the four rules mentioned above. Let C be any exclusive and rigid con-
figuration and let W C

min = (q0, q1, . . . , qk−1) be its unique supermin configuration view. Let ℓ1 be
the smallest integer such that qℓ1 > 0 and let ℓ2 be the smallest integer such that qℓ2 > qℓ1 . That
is, if ℓ1 > 0 and ℓ2 > ℓ1 + 1, W C

min = (0, . . . , 0, qℓ1 , 0, . . . , 0, qℓ2 , qℓ2+1, . . . , qk−1). Let a, b, c and d
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be the nodes between the intervals q0 and qk−1, qℓ1 and qℓ1+1, qℓ2 and qℓ2+1, and qk−2 and qk−1,
respectively.

– reduction0(C): The robot at a moves to its neighbor in the interval q0 > 0. Then, the new
configuration is (q0 − 1, q1, . . . , qk−2, qk−1 + 1);

– reduction1(C): The robot at b moves to its neighbor in the interval qℓ1 > 0. Then, the new
configuration is (q0, q1, . . . , qℓ1−1, qℓ1 − 1, qℓ1+1 + 1, . . . , qk−1);

– reduction2(C): The robot at c moves to its neighbor in the interval qℓ2 > 0. Then, the new
configuration is (q0, q1, . . . , qℓ2−1, qℓ2 − 1, qℓ2+1 + 1, . . . , qk−1);

– reduction−1(C): The robot at d moves to its neighbor in the interval qk−1 > 0. Then, the
new configuration is (q0, q1, . . . , qk−2 + 1, qk−1 − 1).

The pseudo-code of algorithm Align is formally given in Figure 2 and described later. It is
clear from the definition of the rules that, from an exclusive rigid configuration, only one robot
can execute a move and that the reached configuration is still exclusive. Note that, in the case
that the configuration is Cs (i.e. W Cs

min = (0, 1, 1, 2)), any reduction move creates a symmetric
configuration. In this case, we perform reduction1 which produces the symmetric configuration
C such that W C

min = (0, 0, 2, 2). After this, reduction1 is again performed and it leads to C∗

(i.e W C∗

min = (0, 0, 1, 3)). As C is symmetric, the supermin configuration view can be obtained by

reading the ring in both possible directions (i.e. W C
min = (W C

min)). However robot b is unequivocally
identified as the single robot on the axis of symmetry and reduction1 corresponds to moving b

in an arbitrary direction. In any case C∗ is achieved. In next subsection, we formally prove that C∗

is eventually achieved and that, except for the case of Cs, the obtained intermediate configurations
are always rigid.

Pseudo-code of Align. The pseudo-code of Align is given in Figure 2 and it is performed by
a generic robot r. It makes use of procedure reductioni whose pseudo-code is given in Figure 3
and described later.

Let qmin be the first interval of W C
min. If qmin > 0, the algorithm performs reduction0 (lines 2–

3). Otherwise, it first tries to perform reduction1 by computing the configuration C ′ that would be
obtained (line 5) and by checking whether C ′ is symmetric (line 6). In the negative case, reduction1

is performed (line 7), Otherwise, the algorithm tries to perform reduction2 (lines 9–11) and then
reduction−1 (lines 13–15). If the configuration obtained is still symmetric, then it must be Cs

such that W Cs

min = (0, 1, 1, 2). In this case, reduction1 is performed at line 17. The configuration
obtained is C such that W C

min = (0, 0, 2, 2). At the next step, reduction1 is again performed at
line 7.

We now describe the pseudo-code of reductioni which is given in Figure 3 as performed by
each robot. Let W = (q0, q1, . . . , qk−1) be the view of C read by the robot r which performs the
procedure and let W C

min = (q̄0, q̄1, . . . , q̄k−1). At lines 1–6, the algorithm moves the last robot in
a supermin configuration view, that is it performs reduction−1. If (W C

min)k−2 ≥ (W C
min)k−1,

then the robot has to move if and only if W1 = W C
min (line 2), that is, q0 = q̄k−1, q1 = q̄0, . . . ,

qk−1 = q̄k−2, and it has to move towards q0 (line 3) in order to reduce q̄k−1 by enlarging q̄k−2. If
(W C

min)k−2 ≤ (W C
min)k−1, then the robot has to move if and only if Wk−2 = W C

min (line 5) and it
has to move towards qk−1 (line 6). Lines 7–9 implement reduction0 which consists in reducing
the supermin interval by moving the robot on the largest side of such interval, that is the robot
whose view is the supermin one. At lines 10–15 the algorithm performs reductioni for i ∈ {1, 2}.
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Algorithm: Align

Input: Rigid and exclusive configuration C with view W = (q0, q1, . . . , qk−1) as seen from a robot r

1 Let qmin be the first interval of W C

min;
2 if qmin > 0 then

3 Apply reduction0(C,W );
4 else

5 Let C′ be the configuration obtained after reduction1(C,W );
6 if not symmetric(C′) then

7 Apply reduction1(C,W );
8 else

9 Let C′′ be the configuration obtained after reduction2(C,W );
10 if not symmetric(C′′) then

11 Apply reduction2(C,W );
12 else

13 Let C′′′ be the configuration obtained after reduction−1(C,W );
14 if not symmetric(C′′′) then

15 Apply reduction−1(C,W );
16 else

17 Apply reduction1(C,W );

Fig. 2. Algorithm Align.

If (W C
min)ℓi ≥ (W C

min)ℓi+1, then a robot has to move if and only if there exists an integer m such
that q̄0 = qm, q̄1 = qm−1, . . . , q̄ℓi = q0, that is if and only if Wm = W C

min and m = ℓi (line 11). In
this case, such robot has to move towards q0 (line 12). If (W C

min)ℓi ≤ (W C
min)ℓi+1, then a robot has

to move if and only if there exists an integer m such that q̄0 = qm, q̄1 = qm+1, . . . , q̄ℓi = qk−1, that
is if and only if Wm = W C

min and k − 1 − m = ℓi (line 14). In this case, such robot has to move
towards qk−1 (line 15).

3.2 Correctness

We consider a rigid exclusive configuration C with unique (by Lemma 1) supermin configuration
view W C

min = (q0, q1, . . . , qk−1). We prove that, when one of the four rules is applied by Algorithm
Align, the resulting configuration C′ is still rigid. Moreover, in the case of the first three rules, the
supermin configuration view of C′ is strictly smaller than W C

min. In the case of reduction−1, we
must consider the next move to strictly reduce the supermin configuration view.

Since W C
min = (q0, q1, . . . , qk−1) is the supermin configuration view, no interval has length

smaller than q0 and q1 ≤ qk−1. Therefore, if q0 > 0 and reduction0 is applied, the view (q0 −
1, q1, . . . , qk−2, qk−1 + 1) is clearly the unique supermin configuration view of the resulting configu-
ration C′. By Lemma 1, we obtain:

Property 2. The configuration C′ obtained by applying reduction0 in the rigid exclusive configu-
ration C with q0 > 0 is rigid. Moreover, W C

min > W C′

min (in lexicographical order).

Algorithm Align performs reduction0 until it reaches a rigid exclusive configuration C with
supermin configuration view W C

min = (0, q1, . . . , qk−1) (i.e., q0 = 0). In this case, reduction0

cannot be applied as otherwise there would be a collision, that is, a multiplicity is created but at
this stage we want to avoid it. Therefore reduction1, reduction2 or reduction−1 are applied

8



Procedure: reductioni

Input: Rigid and exclusive configuration C with view W = (q0, q1, . . . , qk−1) as seen from a robot r

1 if i = −1 then

2 if W1 = W C

min then

3 move towards q0;
4 else

5 if Wk−2 = (W C

min) then

6 move towards qk−1;

7 if i = 0 then

8 if W = W C

min then

9 move towards q0;

10 if i ∈ {1, 2} then

11 if for some m, Wm = W C

min and m = ℓi then

12 move towards q0;
13 else

14 if for some m, Wm = W C

min and k − 1−m = ℓi then

15 move towards qk−1;

Fig. 3. Procedure reduction.

depending on the configuration C. In particular, reduction1 is applied if it does not create any
symmetry. If q0 = 0, by performing reduction1 we cannot obtain a symmetry except for some
particular configurations given in the next lemma.

Lemma 2. Let C be a rigid exclusive configuration with supermin configuration view W C
min =

(q0, q1, . . . , qk−1), with 2 < k < n − 2 and q0 = 0. Then, the configuration C′ resulting from
the application of reduction1 is aperiodic. Moreover, C′ is symmetric if and only if the following
conditions hold:

qi = 0, for each i = 0, 1, . . . , ℓ1 − 1; (1)

qℓ1 = 1; (2)

qℓ1+1 + 1 = qk−1; (3)

the sequence qℓ1+2, qℓ1+3, . . . qk−2 is symmetric. (4)

Proof. By rigidity of C, only one robot can perform reduction1 and then C′ is well defined and
admits a view W = (q′0, q

′
1, . . . , q

′
k−1) = (q0, q1, . . . , qℓ1 − 1, qℓ1+1 + 1, . . . , qk−1).

If C′ is periodic, by Property 1, there must exist j > 0 such that (q′j mod k, q
′
(j+1) mod k

, . . . , q′(j+ℓ1) mod k
) =

(q0, q1, . . . , qℓ1 − 1) = (0, . . . , 0, qℓ1 − 1). Note that, as q′ℓ1+1 = qℓ1+1+1 > 0, then j > ℓ1+1. Hence,

in that case, the view (qj , . . . , qk−1, q0, . . . , qj−1) is a view of C strictly smaller than W C
min, a contra-

diction. Therefore, C′ is aperiodic.

If equations 1–4 hold, then C′ has a view W = (0, . . . , 0, qℓ1+1 + 1, qℓ1+2, qℓ1+3, . . . qk−2, qℓ1+1 +
1) which is symmetric with the axis of symmetry passing through the middle of the sequences
q0, q1, . . . , qℓ1 − 1 and qℓ1+2, qℓ1+3, . . . qk−2.

We now show the only if statement. Note that Condition 1 is always satisfied by the hy-
pothesis that q0 = 0 and the definition of ℓ1. Let us assume that C′ is symmetric and let W =
(q0, q1, . . . , qℓ1−1, qℓ1 − 1, qℓ1+1 + 1, . . . , qk−1) = (0, 0, . . . , 0, qℓ1 − 1, qℓ1+1 + 1, . . . , qk−1).
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For the sake of contradiction, let us assume that qℓ1 > 1. Then, since qℓ1 ≤ qk−1 and qℓ1 −1 > 0,
it is easy to check that W is the supermin configuration view of C′, and W < W C

min. Hence, q0 must
be the unique supermin of C′ since otherwise, a supermin interval different from q0 would have been
a supermin interval in C, contradicting the fact that W C

min is the supermin minimum view of C. By
Lemma 1, since |IC′ | = 1 and C′ is symmetric, the (unique) axis of symmetry of W passes through
the edge corresponding to q0. However, since qℓ1 − 1 < qk−1, C

′ is not symmetric, a contradiction.
It follows that qℓ1 = 1. In this case, the first ℓ1 elements of W are 0 and, as before, this sequence is
unique and the possible axis of symmetry of C′ passes through the middle of such unique sequence.
This implies that C′ is symmetric only if qℓ1+1+1 = qk−1 and that the sequence qℓ1+2, qℓ1+3, . . . , qk−2

is symmetric. ⊓⊔

It follows that if W C
min does not satisfy Conditions 1–4, the application of reduction1 results in

a rigid configuration. Otherwise, reduction2 is applied unless it creates symmetries. The following
Lemma 3 shows that actually, when Conditions 1–4 hold, reduction2 can create symmetries only
for some specific configurations.

For the next lemmata, we need further notation. A pattern is the set of possible configurations
admitting a view that fulfills some rules defined by a string of integer numbers and the following
symbols. Let x be an integer number: x∗ denotes the repetition of x zero or more times; x+ denotes
the repetition of x one or more times; x{n} denotes the repetition of x exactly n times. Given
a configuration C we say that C belongs to a pattern P if it has a view W that matches the
rules of the pattern. We denote it by W ∈ P . As an example, the configuration C with a view
(0, 0, 0, 1, . . . , 1, 2, 2, . . . , 2) belongs to (0{3}, 1∗, 2+).

Lemma 3. Let C be a rigid exclusive configuration with supermin configuration view W C
min =

(q0, q1, . . . , qk−1), such that 2 < k < n − 2, q0 = 0, and Conditions 1–4 hold. Then, the config-
uration C′ resulting from the application of reduction2 is aperiodic. Moreover, C′ is symmetric if
and only if one of the following conditions hold:

W C
min ∈ (0, 1, 1+, 2); (5)

W C
min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1). (6)

Proof. By rigidity of C, only one robot can perform reduction2 and then C′ is well defined and
admits a view W = (q′0, . . . , q

′
k−1) = (q0, q1, . . . , qℓ2 − 1, qℓ2+1 + 1, . . . , qk−1).

Because C satisfies Conditions 1–4, it is straightforward to see that C′ is aperiodic.
If W C

min ∈ (0, 1, 1+, 2), by performing reduction2 we obtain either W = (0, 1, 0, 3) or W =
(0, 1, 0, 2, 1∗ , 2). In the first case, C′ is symmetric with the axis of symmetry passing through the
intervals of size 1 and 3. In the second case, C′ is symmetric with the axis of symmetry passing
through the single node of interval q1 and either in the middle of the sequence 1∗ or in the occupied
node which separates the two intervals of size 2.

If W C
min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1), by performing reduction2 we obtain either W ∈

(0{ℓ1}, 1, 0{ℓ1}, 1, 0{ℓ1−2}, 1, {0{ℓ1−1}, 1}∗, 0{ℓ1−2}, 1) or W ∈ (0{ℓ1}, 1, 0{ℓ1}, 1, 0{ℓ1−3}, 1). In both cases
C′ is symmetric with the axis of symmetry passing through the single node of interval q1 and either
in the middle of the sequence 1, {0{ℓ1−1}, 1}∗ in the first case, or in the middle of the sequence
0{ℓ1−3} in the second case.

Let us assume that C′ is symmetric. We prove the only if statement by case analysis on qℓ1+1.

– qℓ1+1 > 0. Let us first assume that ℓ1 + 2 < k − 1. The hypothesis qℓ1+1 > 0, implies that
ℓ2 = ℓ1 + 1 and hence, W ∈ (0{ℓ1}, 1, qℓ1+1 − 1, qℓ1+2 + 1, S′, qℓ1+1 + 1), for some sequence S′.
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Note that S′ may be empty if ℓ1 + 2 = k − 2, otherwise we set S′ = (S, qk−2) (where S may be
an empty sequence).

The possible axis of symmetry cannot pass through the middle of the initial sequence of 0s
because, under the hypothesis that qℓ1+1 > 0, we have that qk−1 = qℓ1+1 + 1 > 1 = qℓ1 and
hence qℓ1 6= qk−1.

Therefore, W contains a subsequence (q′j , . . . , q
′
j+ℓ1

) = (1, 0{ℓ1}) where the sequence of ℓ1 0s is
disjoint from the initial sequence of 0s, i.e., ℓ1 < j and j + ℓ1 < k − 1. If ℓ1 + 1 < j, then
the view W C

min has to contain (q′j, . . . , q
′
j+ℓ1

) or (q′j − 1, . . . , q′j+ℓ1
) (the second case occurs only

if j = ℓ1 + 2) as a subsequence disjoint from (q0, . . . , qℓ1−1). This would constitute another
supermin, smaller than or equal to the original one, contradicting the rigidity of C. Therefore,
j = ℓ1 + 1 and, thus, qℓ1+1 = 1. By similar arguments, we show that ℓ1 must be equal to 1.

Therefore, W = (0, 1, 0, qℓ1+2 + 1, S′, qℓ1+1 + 1), and the axis in C′ passes through the single
node of q1 and the middle of sequence S′ which thus is symmetric. Hence, qℓ1+2 + 1 = qk−1

and, as qℓ1+1 = 1 and qk−1 = qℓ1+1 + 1, then qk−1 = 2 and qℓ1+2 = 1. Since sequence S′ is
symmetric, we have that qℓ1+2+m = qk−1−m, for all m = 1, 2, . . . , ⌊k−1−ℓ1−4

2 ⌋. Moreover, by

Condition 4, qℓ1+1+m = qk−1−m, for all m = 1, 2, . . . , ⌊k−1−ℓ1−3
2 ⌋. As qℓ1+2 = 1, this implies that

(qℓ1+2, qℓ1+3, . . . qk−2) ∈ (1+). In conclusion, W C
min ∈ (0, 1, 1, 1+ , 2).

If qℓ1+1 > 0 and ℓ1 + 2 = k − 1, we have that W C
min ∈ (0{ℓ1}, 1, qℓ1+1, qℓ1+1 + 1) and W ∈

(0{ℓ1}, 1, qℓ1+1 − 1, qℓ1+1 +2). By similar arguments as above, C′ is symmetric only if ℓ1 = 1 and
qℓ1+1 − 1 = 0 which implies that W C

min = (0, 1, 1, 2).

Summarizing if qℓ1+1 > 0 and C′ is symmetric, then W C
min ∈ (0, 1, 1+, 2).

– qℓ1+1 = 0. In this case qk−1 = qℓ1+1 + 1 = 1 and then W C
min ∈ (0{ℓ1}, 1, 0, S, 1), where, by

Condition 4, S is a symmetric sequence. We first show that the possible axis of symmetry
cannot pass through the sequence 0{ℓ1}. Let W = (q′0, q

′
1, . . . , q

′
k−1) ∈ (0{ℓ1}, 1, 0, S′, 1), for some

sequence S′, and note that q′i = qi for all i ∈ {0, 1, . . . , k − 1} \ {ℓ2, ℓ2 + 1}. If the axis passes
through the sequence 0{ℓ1}, then the sequence (q′ℓ1+1, q

′
ℓ1+2, . . . , q

′
k−2) = (0, S′) is symmetric.

Therefore, since q′ℓ1+1 = 0, then q′k−2 = 0. Since q′ℓ2+1 ≥ 1, it follows that q′k−2 6= q′ℓ2+1, that is
j − 1 6= ℓ2 + 1 and then qk−2 = q′k−2 = 0. Moreover, since also S is symmetric, qℓ1+2 = 0 and
ℓ1 + 2 6= ℓ2, which implies that q′ℓ1+2 = qℓ1+2 = 0. By iterating these arguments, we have that
q′i = qi = 0 for all i ∈ {ℓ1 + 1, . . . , k − 2} which implies that k = n− 2, a contradiction.

Let us assume that there is an axis not passing through the sequence of 0{ℓ1}. This implies that
W contains a subsequence (q′j , . . . , q

′
j+ℓ1

) = (1, 0{ℓ1}) where the sequence of ℓ1 zeros is disjoint
from the initial sequence of zeros, i.e., ℓ1 < j and j + ℓ1 < k − 1.

Three cases may arise:

• reduction2 creates a sequence 0{ℓ1+1} (i.e., there was in W C
min a sequence 0{ℓ1} distinct

from the initial one). In this case, the axis of symmetry of C′ has to pass through the middle
of the unique sequence 0{ℓ1+1}.

This implies that W ∈ (0{ℓ1}, 1, 0{ℓ1+1}, 1, 0{ℓ1}, S′′), where S′′ is a symmetric sequence.
Therefore, W C

min = (0{ℓ1}, 1, 0{ℓ1}, 1, 0{ℓ1+1}, S′′) which is a contradiction to the fact that
W C

min is the supermin configuration view as there is a sequence of ℓ1 + 1 of zeros.

• reduction2 creates a sequence 0{ℓ1} (disjoint from the initial one). Under this hypothesis,
qℓ2 = 1, either W C

min = (0{ℓ1}, 1, 0{ℓ1−1}, 1, 1) or
W C

min ∈ (0{ℓ1}, 1, 0ℓ1−1, 1, qℓ2+1, S
′′, 1) where S′′ is a sequence that may be empty. Because

W C
min satisfies Conditions 1–4, the first case may occur only for ℓ1 = 2, and in that case,

W C
min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1).
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Assume that W C
min ∈ (0{ℓ1}, 1, 0ℓ1−1, 1, qℓ2+1, S

′′, 1). In that case, W ∈ (0{ℓ1}, 1, 0{ℓ1}, qℓ2+1+
1, S′′, 1).

We first show that the possible axis of symmetry passes through the middle of the initial
subsequence (0{ℓ1}, 1, 0{ℓ1}). By contradiction, let us assume that the axis of symmetry passes
through another interval which implies that there exists an index m ≥ ℓ2+1 such that W =
Wm (see Property 1). However, W < W C

min while Wm > (W C
min)m (because qℓ2+1 increased)

and (W C
min)m > W C

min (because W C
min is the unique supermin). Therefore W < Wm, a

contradiction.

It follows that the axis of symmetry passes through the middle of the initial subsequence
(0{ℓ1}, 1, 0{ℓ1}) and therefore, qℓ2+1 = 0 and S′′ is a symmetric sequence. Summarizing, W ∈
(0{ℓ1}, 1, 0{ℓ1}, 1, S′′, 1) and W C

min ∈ (0{ℓ1}, 1, 0{ℓ1−1}, 1, 0, S′′, 1) = (0{ℓ1}, 1, 0, 0{ℓ1−2}, 1, 0, S′′, 1),
where S′′ is symmetric and, by Condition 4, (0{ℓ1−2}, 1, 0, S′′) is also symmetric. By the latter
symmetry, we have that S′′ ends with (0, 1, 0{ℓ1−2}) and by the former one it follows that S′′

starts with (0{ℓ1−2}, 1, 0).

By iterating these arguments, we obtain S′′ ∈ (0{ℓ1−2}, 1, 0, 0{ℓ1−2}, 1, 0, . . . , 0, 1, 0{ℓ1−2}, 0,
1, 0{ℓ1−2}) = (0{ℓ1−2}, 1, {0{ℓ1−1}, 1}∗, 0{ℓ1−2}) and hence, by plugging S′′ into W C

min, W C
min ∈

(0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1).

• reduction2 does not create a sequence 0{x}, for any x ≥ ℓ1. In this case, the sequence
(1, 0{ℓ1}) is contained also in W C

min. Let m be the position of the first 0 of this sequence in W .
Note that, such sequence does not contain neither qℓ2 nor qℓ2+1. Hence W ∈ (0{ℓ1}, 1, 0, . . . , qℓ2−

1, qℓ2+1+1, . . . , 1, 0{ℓ1}, . . . , 1). Moreover W < W C
min while Wm > (W C

min)m. Hence Wm can-
not be equal to W . It follows that no such axis of symmetry can exist.

In conclusion, if qℓ1+1 = 0 and C′ is symmetric, then

W C
min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1). ⊓⊔

It follows that we can use reduction2 in all the configurations which satisfy Conditions 1–4 but
not Conditions 5–6. The next lemma shows that in the remaining cases we can use reduction−1,
still ensuring that the resulting configuration is rigid.

Lemma 4. Let C be a rigid exclusive configuration with supermin configuration view W C
min. If ei-

ther W C
min ∈ (0, 1, 1, 1+, 2) or W C

min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1), then, the configuration C′

resulting from the application of reduction−1 is rigid.

Proof. By rigidity of C, only one robot can perform reduction−1 and then C′ is well defined.

If W C
min ∈ (0, 1, 1, 1+, 2), then C′ admits a view W ∈ (0, 1, 1, 1∗, 2, 1) which is always rigid.

Indeed, there is only one interval of size 0 and only one interval of size 2 which implies that a
possible axis can pass only through these two intervals. However, the number of nodes between
theses two intervals on one side is different from that on the other side.

If W C
min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1), then C′ admits a view W ∈ (0{ℓ1+1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−3}, 1)

which is rigid. Indeed, the axis of symmetry can pass only through the middle of the initial sequence
0{ℓ1+1} but the two sides of such sequence are different. ⊓⊔

By the above lemma, it follows that if we apply reduction−1 to a supermin configuration view
W C

min fulfilling Condition 5 or 6, the only case in which the obtained configuration can be symmetric
is when W C

min = (0, 1, 1, 2). The correctness of Align then follows from next theorem.
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Theorem 1. Let 2 < k < n−2 robots standing in an n-node ring and forming a rigid exclusive con-
figuration, Algorithm Align eventually terminates achieving configuration C∗ and all intermediate
configurations obtained are exclusive and either rigid or such that the supermin view is (0, 0, 2, 2).

Proof. As Align starts from a rigid exclusive configuration, by Lemma 1, there exists a unique
supermin in the initial configuration. Hence exactly one robot moves at one time. Moreover, all the
performed movements reduce an interval which is strictly greater than 0 and hence the obtained
configuration is exclusive.

First, we assume that the initial configuration is not Cs.

In a current rigid exclusive configuration C with unique supermin configuration view W C
min =

(q0, q1, . . . , qk−1), we prove that the next move is unique and result in a rigid exclusive configuration.

If q0 > 0, the algorithm performs reduction0. This involves a unique robot and the resulting
configuration is rigid by Property 2.

If q0 = 0, a unique robot executes reduction1 if the resulting configuration is rigid. Otherwise,
by Lemma 2, W C

min satisfies Conditions 1–4. In that case, a unique robot executes reduction2

if the resulting configuration is rigid. Otherwise, by Lemma 3, W C
min ∈ (0, 1, 1+, 2) or W C

min ∈
(0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1). In this case, a unique robot executes reduction−1. By Lemma 4,
as the initial configuration is different from Cs, this results in a rigid configuration.

Since configuration C∗ is the configuration with the smallest supermin configuration view, it
only remains to show that each movement reduces the supermin. Hence, in the following, we show
that each movement (or each two movements) of Align reduces the supermin.

Let us denote by W = (q′0, q
′
1, . . . , q

′
k−1) the view of the configuration C′ obtained after the

movement. W is the view of C′ at the same node and in the same direction as W C
min. Let W C′

min

be the supermin configuration view of C′. If the movement is reduction0, then q′0 = q0 − 1 and
hence W C′

min ≤ W < W C
min. If the movement is reductioni, i ∈ {1, 2} then W = (q0, q1, . . . , qℓi −

1, qℓi+1+1, . . . , qk−1) < W C
min and therefore W C′

min ≤ W < W C
min. If the movement is reduction−1

it follows that W C
min ∈ (0, 1, 1, 1+, 2) or W C

min ∈ (0{ℓ1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−2}, 1). In the latter
case, W ∈ (0{ℓ1+1}, 1, {0{ℓ1−1}, 1}+, 0{ℓ1−3}, 1) and hence W C′

min ≤ W < W C
min. In the former case,

W ∈ (0, 1, 1, 1∗, 2, 1) and hence W > W C
min. However, C′ is rigid and does not satisfy Conditions 1–4

and hence the movement performed in C′ is reduction1. Therefore, the configuration C′′ obtained
after performing reduction1 on C′ is W ′′ ∈ (0, 0, 2, 1∗ , 2, 1). Therefore, W ′′ < W C

min.

Let us now assume that the initial configuration is Cs. Note that, this is the only initial configu-
ration with k = 4 and n = 8 which is rigid and different from C∗. From Cs, reduction1 is performed
and the symmetric configuration C such that W C

min = (0, 0, 2, 2) is achieved. The next movement
performed is again reduction1 which leads to C∗ (i.e. W C∗

min = (0, 0, 1, 3)) independently from the
supermin view. In fact, even if configuration C is symmetric, robot b is unequivocally identified as
the single robot on the axis of symmetry and reduction1 corresponds to moving b in an arbitrary
direction. In any case C∗ is achieved. ⊓⊔

4 Clearing and Exploring a ring

In this section, we study the exclusive perpetual clearing and exploration problems in the discrete
CORDA model. In detail, we study the exclusive perpetual clearing and note that any algorithm
provided to this respect also solves the exclusive perpetual exploration and hence in the following
we only refer to the clearing.
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Let us consider an n-node ring (n ≥ 3) and a team of 1 ≤ k ≤ n robots forming a rigid and
exclusive configuration. In the case, 4 < k < n − 3 and n > 9 (or n > 10 if k = 5), we propose an
algorithm that makes use of Algorithm Align presented in the previous section. We then propose
a specific algorithm for the case k = n − 3 and n > 9. On the impossibility side, we show that for
k ∈ {1, 2, 3, n − 2, n − 1} and n > 3, or for 3 ≤ n ≤ 9 and k < n, there is no algorithm that solves
the problem, even if the initial configuration is rigid. The cases k = 4 and (k = 5, n = 10) are left
as open problems.

4.1 Exclusive perpetual clearing

Given a graph G where all edges are contaminated, the graph clearing problem consists in coordi-
nating a team of robots to eventually clear all edges. The robots occupy the nodes of G and a robot
can move along an edge from its current position to a neighboring node. An edge is cleared when it is
traversed by a robot or if both its endpoints are simultaneously occupied by some robots. However,
a cleared edge is instantaneously recontaminated if there is a path from one of its endpoint to the
endpoint of a contaminated edge and no node of this path is occupied by some robot. This variant of
graph clearing is classically referred as mixed graph searching [5]. Motivated by physical constraints
and following [6], we moreover impose the exclusivity constraint, i.e., a node can be occupied by at
most one robot.

A clearing strategy using 1 ≤ k ≤ n robots consists of choosing a set of k nodes, the initial
positions, and a sequence of moves of the robots, sliding the robots along the edges to empty
neighbors, that eventually clear all edges. For instance, there is no clearing strategy that clears a n-
node ring using one robot. On the other hand, a possible strategy using two robots is the following:
first place two robots at adjacent nodes u and v, then slide the robot at u along the empty nodes
of the ring until it reaches the other neighbor w of v.

In this section, we consider the graph clearing problem in n-node rings in the discrete CORDA
model. More precisely, we aim at designing algorithms that allow robots to clear a n-node ring
starting from any rigid exclusive configuration. As our algorithms ensure that all met configurations
are rigid and exclusive, and as the robots are oblivious of the cleared edges, the resulting strategies
clear the ring perpetually, i.e., the whole ring is cleared infinitely often. Moreover, we study the
exclusive perpetual exploration. Exclusive perpetual clearing and exclusive perpetual exploration
are not equivalent. For instance, one robot always moving clockwise will perpetually explore a ring
without clearing it. On the other hand, the above clearing strategy using two robots perpetually
clears a ring (one robot is at v and the other one alternate its move from u to w and then from w to
u) but does not perpetually explore it since the robot at v never moves. The algorithms we propose
in the sequel both perpetually explore and clear the rings, exclusively.

4.2 Impossibility results

In this section, we show that for k ∈ {1, 2, 3, n− 2, n− 1} or for n ≤ 9, no algorithm in the discrete
CORDA model allows to clear an n-node ring using k robots. For these results we do not assume
that the initial configurations are rigid, that is the impossibility results hold on a stronger model.
We start with a simple result.

Lemma 5. For any n > 2 and for any exclusive configuration C, there is no algorithm that solves
the exclusive perpetual clearing problem in a n-node ring using n− 1 robots starting from C.
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Proof. In any configuration with n−1 occupied nodes, only two robots may move without violating
the exclusivity property: the two robots adjacent to the empty node. Since these two robots have the
same view of the network, whatever be the algorithm in the discrete CORDA model, they are forced
by the adversary to take the same decision. Either they never move and the ring cannot be cleared,
or both decide to move to their empty neighbor. In the latter case, their moves can be scheduled
(due to the asynchronicity) such that they collide, hence violating the exclusivity property. ⊓⊔

Let us consider the case of two robots in a ring with at least three nodes. Two nodes u and v

of an n-node ring are called diametral if either n is even and there are two shortest paths between
u and v; or n is odd and the length of the two paths from u to v differ by one. We say that two
robots occupy a diametral configuration if they occupy two diametral nodes.

We show that any algorithm for exclusive perpetual clearing on rings with two robots needs to
reach a configuration where the two robots occupy two diametral nodes. Then, we show that once
the two robots occupy two diametral nodes they cannot break the symmetry and hence they cannot
clear the ring. The next theorem follows.

Theorem 2. For any n > 2 and for any initial configuration C, there is no algorithm that solves
the exclusive perpetual graph clearing problem in a n-node ring using k ≤ 2 robots starting from C.

Proof. Since there is no strategy to exclusively and perpetually clear a ring using one robot, it
follows that at least two robots are necessary.

We first give general remarks on the clearing of a ring with two robots, independently of the
distributed model of computation. Let us assume only two robots are occupying the nodes of a
n-node ring, n > 2, all edges of which are initially contaminated. If the two robots never occupy
adjacent nodes, then the ring will never be cleared. Therefore, consider the first time that such a
situation occurs. Let u and v be the two neighbors occupied by the robots at this step. Then, all
edges but {u, v} are contaminated at this step. Moreover, for the ring to be eventually cleared, there
must be a later step such that, up to a symmetry, the robot that was occupying v is now at w 6= v

and the other robot reaches w′ the neighbor of w on the path between u and w not containing v.
In particular, this proves that, at some step of any clearing strategy of the ring, the two robots are
occupying diametral nodes.

In what follows, we show that no algorithm in the discrete CORDA model can ensure the above
properties because the symmetry cannot be broken when the robots pass through diametral nodes.
This will prove the theorem.

It is worth noting that in symmetric configurations, any robot allowed to move either resides on
the axis of symmetry or it admits a symmetric robot also allowed to move. If an algorithm allows
to move two symmetric robots, it might happen that while one robot moves, its symmetric one
has only performed its Look phase. This results in a possible pending move, that is, the symmetric
robot will perform the scheduled move, eventually. We consider an adversarial scheduler that always
alternates the moves of the two robots until it reaches a diametral configuration for the first time.
That is, it first makes one robot do its Look-Compute-Move cycle, and then do the same with the
second robot, and so on. By the above remarks, if a diametral configuration is never reached, then
the ring cannot be cleared. Moreover, when a diametral configuration is reached, then there are no
pending moves. Now there are two cases depending on the parity of n. In what follows, the robots
always are in diametral configuration. Therefore, whatever be the algorithm used, both robots are
forced to move when they look such a configuration.
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– Assume first that n is even. Then, since there are no pending moves, the adversarial scheduler
can synchronize the two robots such that after their respective moves the configuration has not
changed and there still are no pending moves. Indeed, the two robots look and decide before any
move and then both of them move before the next look. Going on this way, the robots remain
in a diametral configuration and the ring cannot be clear.

– Now consider the case when n is odd. Consider the path between the two robots with an odd
number of nodes and let v be the node on this path at same distance from both robots. Then,
the adversarial scheduler makes the two robots do their Look-Compute actions and then their
Move action. Since they are in a symmetrical configuration (with axis passing through v), they
move symmetrically. Doing so, after each move of both robots, i.e., each time they are looking,
the node v remains at equal distance from both robots. Therefore, it cannot be reached unless
both robots collide in it. Hence, the ring cannot be cleared. ⊓⊔

Let us now consider the case of three robots in a ring with at least four nodes. For ease of
presentation, we give identifiers to the robots. Of course, the robots are anonymous in the sense
that they are not aware of these identifiers and that no algorithm for clearing the ring can make use
of them. However, the adversarial scheduler will use them. Hence, let us call the three robots by r, r′′

and r′′′. At any step s, we denote by dists(x, y) the distance (i.e., the number of consecutive edges)
between the nodes occupied by robots x and y at this step (if there is no ambiguity, the subscript
will be omitted). Let Cc be the configuration where the three robots occupy three consecutive nodes.
Given any algorithm Alg for exclusively and perpetually clearing a ring with 3 robots, we say that
a configuration C is bad if, in this configuration, dist(r′, r′′) ≤ dist(r′′, r′′′) and there exists a robot
such that, if this robot executes Alg in configuration C, then the configuration reached after its
move is such that dist(r′, r′′) > dist(r′′, r′′′).

In what follows, we show that any algorithm for exclusively and perpetually clearing a ring with
three robots must always avoid the configuration Cc. Then, we show that such an algorithm cannot
avoid to reach a bad configuration. Finally, we show that from any bad configuration, it is possible
to schedule the three robots such that either they reach the configuration Cc, or (1) each robot is
scheduled at least once; (2) this reaches a configuration such that dist(r′, r′′) ≤ dist(r′′, r′′′) and r′′

has been adjacent to r′′′ in the meantime; and (3) if the new configuration is not Cc, then from this
new configuration, Alg will reach another bad configuration before r′′ is adjacent to r′′′.

Since any algorithm for exclusively and perpetually clearing the ring must ensure that r′′ is
infinitely many times adjacent to r′′′, this proves that such an algorithm cannot exist.

Theorem 3. For any n > 3 and for any initial configuration C, there is no algorithm that solves
the exclusive perpetual graph clearing problem in a n-node ring using 3 robots starting from C.

Proof. First, if n = 4, the single node that is not occupied cannot be reached without collision.
Therefore, let us assume that n > 4.

For purpose of contradiction, let us consider any algorithm Alg that exclusively and perpetually
clears the ring with 3 robots. Let us consider the periodic infinite sequence S of moves of the robots
following Alg, subject to a scheduler that alternate the robots, i.e., first r′ makes its Look-Compute-
Move actions, then r′′, then r′′′ and so on. The goal of considering such a scheduler is to be able
to analyze the behavior of Alg in some particular configurations (without pending moves). Then,
taking use of a more clever scheduler, Alg can fail. There are two cases to be considered.

Case 1. Let us first assume that S contains the configuration Cc where the three robots are occupying
three consecutive nodes. Considering the moves just before and just after this configuration, we
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can derive two facts. First, in the configuration where two robots are adjacent and the third one
is at distance two of the closest of the others, if it is the turn of the third one, it will get closer
to the other robots and reached the configuration Cc. Second, in the configuration Cc, if it is the
turn of a robot not in the middle, then it moves to its empty neighbor.
Then, let us consider the following adversarial scheduler against Alg. First, it schedules the
robots alternatively until they reach configuration Cc. W.l.o.g., say r′′ is in the middle. From
this step, the adversarial schedules twice r′, then r′′ and then twice r′′′. That is, r′ moves
to its empty neighbor, then comes back; then r′′ cannot move, and finally C goes and back.
Clearly, Alg cannot exclusively and perpetually clear the ring against the proposed adversarial,
a contradiction.

Case 2. Second, assume that Cc never occurs in S. Note that, in any infinite sequence of moves that
exclusively and perpetually clear the ring, the three robots must be pairwise adjacent infinitely
often.
W.l.o.g. (up to a renaming of the robots), since S does not contain the configuration Cc, there
must be a step s such that r′ and r′′ are occupying adjacent nodes and then a further step s′

when r′′ and r′′′ are occupying adjacent nodes, such that r′′′ and r′ never are never occupying
adjacent nodes between steps s and s′ (including s and s′). Therefore, between steps s and s′,
there must be a step s0 such that x = dists0(r

′, r′′) ≤ dists0(r
′′, r′′′) = y and after the next step,

dists0+1(r
′, r′′) > dists0+1(r

′′, r′′′). Let C0 be the configuration reached at step s0. Note that C0
is a bad configuration.
The proof is a case-analysis depending on whether x = y or not and on how Algorithm Alg

behaves in configuration C0, i.e., what are the moves that can be done by robots r′, r′′ and r′′′

in configuration C0 when executing Alg.

– Let assume first that x = y. Then, the three robots are scheduled simultaneously, that is, all
three robots performs a Look-Compute-Move cycle, following Alg in configuration C0.
Moreover, if r′′ decides to move in configuration C0, we make it moving towards r′. This is
possible since C0 is symmetric from the point of view of r′′. Similarly, r′ and r′′′ must move
symmetrically: either both of them go towards r′′, or they move to their neighbor on the
path between r′ and r′′′ not containing r′′.
There cannot be a collision since otherwise Alg would not be a valid algorithm. Therefore, af-
ter each robot has moved, the reached configuration C1 is such that dist(r′, r′′) ≤ dist(r′′, r′′′)
and r′′ has not met r′′′.
There are two cases, depending on C1.
• Either C1 is Cc and then Case 1. ensures that Alg cannot exclusively and perpetually

clear the ring, a contradiction.
• Or, we go back using the scheduler that alternates the three robots until a new bad

configuration is reached. The same discussion as above ensures that another bad config-
uration will be reached before r′′ mets r′′′. Note that, possibly Configuration C1 is a bad
configuration. Again, we process as in Case 2. Therefore, we can avoid forever that r′′

mets r′′′, which contradicts the correctness of Alg.
– Second, assume that x < y. Note that, since only one robot moves during step s0 + 1 and

dists0+1(r
′, r′′) > dists0+1(r

′′, r′′′), this implies that the robot that moves during this step is
r′′. Therefore, y = x+1 and the configuration C′

0 reached after step s0+1 is symmetric with
C0. In particular, r′′ cannot distinguish C0 and C′

0. Note that, r′ must move in configuration
C′
0, and r′′′ must move in configuration C0. Indeed, otherwise, scheduling alternatively r′′,

then r′, then r′′, then r′′′, and so on, Algorithm Alg would oscillate between configurations
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C0 and C′
0 which cannot clear the ring since n > 4. Moreover, in the configuration C′

0, r
′ acts

in the same way as r′′′ in the configuration C0 (by symmetry).
There are three cases to be considered.
• First assume that x = 0 and, when executing Algorithm Alg in configuration C0, robot
r′′′ goes to the neighbor of r′′. In that case, configuration Cc is reached then Case 1 ensures
that Alg cannot exclusively and perpetually clear the ring, a contradiction.

• Second assume that x > 0. In that case, r′′ and r′′′ first look and compute in configuration
C0, then r′′ moves. Note that, because x > 0 and y = x + 1, r′′ does not meet r′′′.
Then, r′ and r′′ look and compute in configuration C′

0. Then, r′′ moves and reaches
the configuration C0. Finally, r′′ and r′′′ move. As mentioned above, they must move
symmetrically, i.e., in opposite orientation. Therefore, after each robot has moved (r′′

has moved twice), the reached configuration C1 is such that dist(r′, r′′) ≤ dist(r′′, r′′′)
and r′′ has not met r′′′. We get a contradiction as above.

• The last case to be considered is when x = 0 and, when executing Algorithm Alg in
configuration C0, r

′′′ goes to its neighbor that is not adjacent with r′′. In that case, there
are two possibilities for r′ in configuration C0.
∗ Either it does not move, in which case, the three robots look and compute in Con-

figuration C0, then r′′′ and r′ move first (but r′ remains on its position) and finally
r′′ moves. Therefore, after each robot has moved (r′′ has moved twice), the reached
configuration C1 is such that dist(r′, r′′) ≤ dist(r′′, r′′′) and r′′ has not met r′′′. We
get a contradiction as above.

∗ Otherwise, r′ looks, computes and moves. Here the configuration is such that r′′ is
at distance 2 from both other robots. Then, r′ and r′′′ looks, computes and moves.
Since their views are identical, they must do the same move.
If they go to the neighbors of r′′, we have reached the configuration Cc and then Case
1 ensures that Alg cannot exclusively and perpetually clear the ring, a contradiction.
Otherwise, r′′ looks, computes and moves. Since its view is symmetrical, the adver-
sarial can let it move toward r′. Therefore, after each robot has moved (r′′ has moved
twice), the reached configuration C1 is such that dist(r′, r′′) ≤ dist(r′′, r′′′) and r′′ has
not met r′′′. We get a contradiction as above. ⊓⊔

By using similar argument as Theorem 2 the next theorem can be shown.

Theorem 4. For any n > 2 and for any exclusive initial configuration C, there is no algorithm that
solves the exclusive perpetual graph clearing problem in a n-node ring using n − 2 robots starting
from C.

Proof. If k = n − 2, then all the nodes of the ring but two are occupied. If n ≤ 4, then k ≤ 2
and hence it is impossible to clear the ring. Let us assume that n ≥ 5. Two cases may arise: either
the two empty nodes are consecutive (see Figure 4a) or not (see Figure 4b). In both cases, all the
possible configurations are symmetric and an axis of symmetry either passes through the middle of
the interval of empty nodes or through the middle of the two intervals of occupied nodes between
the empty nodes, respectively.

In the first case there are only two robots which can move without creating a collision: those
close to an empty node. The adversary can force to move only one of these two symmetric robots
while the other robot does not perform the look phase (it does not wake up). In the obtained
configuration (see Figure 4c) the two empty nodes are not consecutive and the ring is not cleared.
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Fig. 4. Configurations with k = n− 2.

Hence, we can assume without loss of generality that in the initial configuration the two empty
nodes are not consecutive.

In such configurations only the three or four robots close to an empty node can move and two
cases may arise: the two intervals of occupied nodes between the empty nodes have the same size or
not. In the first case, the configuration is periodic with two axis of symmetry and the second axis
passes through the two empty nodes (see Figure 4d). In this case, no robot can move as the four
robots close to an empty interval are indistinguishable and the adversary can force them to move
synchronously causing a collision. Hence let us assume that the two intervals of occupied nodes
between the empty nodes have different sizes, which implies that the configuration is symmetric but
not periodic.

Let us denote as A and B the sizes of the smallest and the largest intervals of consecutive occupied
nodes, respectively. Moreover, we denote ad x and x′ the two symmetric robots at the border of A
and with y and y′ the two symmetric robots at the border of B. Note that x (y, respectively) cannot
be distinguished by x′ (y′, respectively) and hence they will do the same movements, see Figure 4b
for a visualization. There are two possible movements:

1. x and x′ move towards y and y′, respectively;
2. y and y′ move towards x and x′, respectively.

By performing the first (second, respectively) movement, A is decreased (increased, respectively)
and B is increased (decreased, respectively). We now show that if an algorithm does one of such
movements, then it cannot do the other movement in a subsequent step where A > 1 and it still
holds that A < B. By contradiction let us assume that an algorithm first does movement 1 and then
movement 2, the other case is symmetric. Let us assume that the adversary moves x towards y but
let the symmetric movement of x′ towards y′ pending, that is x′ performs the look and compute
phases but it does not move yet. In the obtained configuration if the new y moves towards the new
x, then, as the configuration is still symmetric, also y′ as to move towards x′ causing a collision
between x′ and y′ due to the pending move of x′. It follows that an algorithm has to do always the
same movement: either moving x towards y or moving y towards x.

19



We first analyze the case where an algorithm always do movement 2. If an algorithm moves y

towards x, then A is increased and B is decreased until either A = B or A = B − 1. The case
that A = B has been already shown to be impossible. If A = B − 1, the adversary can force y to
move towards x while the symmetric move of y′ remains pending. The configuration obtained is
identical to the previous one but the intervals are flipped. Hence the new y′ (which is the old x′)
has to move towards the new x′ (which is the old y′), causing a collision due to the pending move
of the latter. Therefore, an algorithm can only move x towards y (movement 1) until the two empty
nodes are adjacent (Figure 4a) or at distance one (Figure 4c). In the case of two empty adjacent
nodes, as already discussed, the adversary can force to move only one of two symmetric robots
adjacent to an empty node and then the two empty nodes will be at distance one. We then assume
that the two empty nodes are at distance one. In this configuration there are three robots that can
move: the robot in the middle of the empty nodes which we call x and the two symmetric robots
close to an empty node which we call y and y′. Two movements are possible: x move towards an
arbitrary direction or y and y′ move towards x. If the first movement is performed, we go back to
the configuration with two empty adjacent nodes and from this configuration again the adversary
can force to move always the same robot infinitely many times without clearing the ring. If y and
y′ move towards x, the adversary can force to move only one among y and y′, let us say y. In the
obtained configuration, the two empty nodes are at distance two, that is A = 2 < B and, as shown
above, the algorithm has to perform movement 1, that is nodes x and x′ of the new configuration
have to move towards nodes y and y′. Note that node x of the new configuration corresponds to
node y of the old one. Hence, the adversary can force to move only such node, obtaining again the
configuration with the empty nodes at distance one. This two configurations can alternate infinitely
many times by moving always the same robot and hence without clearing the ring. ⊓⊔

In the next subsections, we prove that it is possible to clear n-node rings using at most n − 3
robots for all n ≥ 10. The next theorem, shows that in all the remaining cases the problem is
unsolvable. This is proven by an exhaustive study of the possible configurations and it is based on
the following lemmata.

Lemma 6. Let an even number k of robots be in a symmetrical exclusive configuration in an n-node
ring with n odd. No algorithm starting from (or reaching at some step) such a configuration allows
the exclusive perpetual clearing of the ring.

Proof. Indeed, there is a node v that is empty on the axis of symmetry of the initial configuration.
Because of the symmetry, the adversarial scheduler can ensure that at each step, two robots occu-
pying symmetrical positions execute the same move. Thus, the axis of symmetry always remains
the same. Therefore, if at some step, the vertex v would be occupied, then during the previous
step, both its neighbors were occupied and both robots occupying these neighbors would move to
v. Hence, v cannot be occupied without collision. ⊓⊔

Theorem 5. For any 2 ≤ k < n ≤ 9 and for any initial configuration C, there is no algorithm that
solves the exclusive perpetual clearing problem in a n-node ring using k robots starting from C.

Proof. By the previous results of this section, for any k ∈ {1, 2, 3, n− 2, n− 1}, no algorithm allows
k robots to exclusively and perpetually clear an n-node ring. Therefore, it only remains to show the
theorem for (k, n) ∈ {(4, 7); (4, 8); (5, 8); (4, 9); (5, 9); (6, 9)}. We prove it by an exhaustive study of
the possible configurations in each case.
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In what follows, we consider any algorithm Alg for exclusive perpetual graph clearing. The
adversary schedules the moves sequentially: the adversary chooses a set of robots (generally one robot
or two robots having symmetrical positions) that look, then they compute and move simultaneously.
In particular, this implies that the robots always look the current configuration, i.e., there is no
problem of asynchrony. Of course, in any configuration, any Algorithm must execute some move
since otherwise the system would never change and the ring cannot be cleared.

In the proof below, we use the Figures 5-8. In these figures, grey nodes are the occupied nodes. An
arc from Configuration C1 to Configuration C2, with label a means that Robot a in Configuration
C1 moves such that Configuration C2 is reached. Note that the labels of robots in C1 and C2 may
be not consistent because of the symmetries.

– Case (k, n) = (4, 7). In that case, there are only four distinct configurations that are depicted in
Figure 5. Moreover, Configurations A2, A3 and A4 are symmetric and satisfy the requirements
of Lemma 6. Therefore, by Lemma 6, no algorithm can exclusively and perpetually clear a ring if
it reaches one of these three configuration. It only remains to prove that Algorithm Alg cannot
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exclusively and perpetually avoid these configurations. Indeed, in Configuration A1, moving
robot b or c, or moving robot a toward c leads to A4, A3 or A2 respectively. The only remaining
move consists in moving a toward b. However, perpetually executing this move cannot clear the
ring.

– Case (k, n) = (4, 8). In that case, there are 8 distinct configurations that are depicted in
Figure 6. If Algorithm Alg reaches Configuration B1, then only two robots can move, that
is, those with an empty neighbor. In this case, the adversary can force both to move hence
obtaining Configuration B6. If Configuration B8 is reached then the clearing fails since, in such
a configuration, all robots have the same view. Therefore, the adversary can schedule all robots
simultaneously such that they all move clockwise, which does not clear the ring. Now we show
that any Algorithm Alg eventually reaches Configuration B8 and thus cannot clear the ring.

In Configuration B3, only robots a and b can move since, otherwise, the adversary could simul-
taneously move the other two robots (that have the same view) so that they collide in their
common empty neighbor. Moreover, since robots a and b have the same view, the adversary can
schedule both of them simultaneously such that Configuration B8 is reached. In Configuration
B7, all robots have the same view. Then, the adversary can schedule robots a and b such that
Configuration B8 is reached. Therefore, if Alg reaches Configurations B3 or B7, it will even-
tually reach Configuration B8, which, by previous paragraph, cannot clear the ring. Thus, Alg

must never reach Configurations B3 or B7.

Now, let us consider Configuration B6. In such a configuration, robots a and b have the same view
and robots c and d have the same view. If Alg allows robots c and d to move, the adversary can
move them simultaneously to reach Configuration B7. If robots a and b can move, the adversary
can move them simultaneously and symmetrically to reach Configuration B7. Note that, B1
cannot be reached from B6 since it would be the opposite move to the only one allowed from
B1. Thus, Alg must never reach Configuration B6.

In Configuration B2, if Algorithm Alg makes a move towards b, then the adversary can reach
Configuration B1, and subsequently B6. If robot b (resp. robot d) can move to its empty neigh-
bor, then the adversary can reach Configuration B3 (resp., Configuration B6). Therefore, any
Algorithm Alg that exclusively and perpetually clears the ring must never reach Configuration
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B2 or, in such a configuration, only allows a to move to its empty neighbor that is symmetric
to c.
In Configuration B4, robots b and c have the same view. If Algorithm Alg allows them to move,
the adversary can move them simultaneously to reach Configuration B8. Therefore, only robot
a can move. However, in that case, Configuration B2 is reached and, by previous paragraph,
this would lead to a strategy where only robot a moves, oscillating between Configurations B4
and B2, which does not clear the ring.
To conclude, in Configuration B5, all robots have distinct views, but any move of one of the
robot would lead to one of the previous configurations that we prove to be forbidden.

– Case (k, n) = (5, 8). In that case, there are 5 distinct configurations that are depicted in
Figure 7.
If Algorithm Alg reaches Configuration C2, then only two robots can move, that is, those
with an empty neighbor. In this case, the adversary can force both to move hence obtaining
Configuration C4. Therefore, in Configuration C4, Algorithm Alg must not allow robots a and
b (that have the same view) to move since, otherwise, Configuration C2 would be reached again
or they collide in their common neighbor. Therefore, in Configuration C4, only robots c and d

(that have the same view) can move to their unique empty neighbor. Hence, any Algorithm Alg

that clears the ring and that reaches Configuration C4 must reach Configurations C5.
We now show that any Algorithm Alg that clears the ring must reach Configurations C1, C4
or C5. Indeed, otherwise (since C2 cannot be reached), it would mean that Algorithm Alg

perpetually stays in Configuration C3 (the single possibility is then that robot a oscillates and
that the neighbor of b is never occupied nor cleared) which clearly does not clear the ring. By
previous paragraph, any Algorithm Alg that clears the ring must reach Configurations C1 or
C5.
In Configuration C5, robots c and e (that have the same view) cannot move, since otherwise, the
adversary could make them collide in their common empty neighbor. Now, we prove that robots
a and d (that have the same view) cannot move. Indeed, otherwise, the adversary schedule c

and e that cannot move, then a and d that move toward b reaching Configuration C4, then b

(the robot labelled b in C5) that cannot move because now its two neighbors are occupied, and
then a and d (that must be able to move by previous paragraph) to go back to Configuration

23



C5. Perpetually executing this schedule is valid since any robot infinitely often executes its
cycle. However, the node between c and e is never cleared. Therefore, in Configuration C5, any
Algorithm Alg that exclusively and perpetually clears the ring can only allow robot b to move.
In particular, any Algorithm Alg that clears the ring must reach Configuration C1.
Now, assume that, in Configuration C1, Algorithm Alg allows robots b to move. Therefore, in
Configuration C1, the adversary can schedule robot b to reach Configuration C5, where robots
a, c, d and e are scheduled without being able to move (by previous paragraph). Finally, the
adversary schedules robot b to reach back Configuration C1. Perpetually executing this schedule
is valid since any robot infinitely often executes its cycle. However, the node between c and e

is never cleared. Therefore, any Algorithm Alg that exclusively and perpetually clears the ring
must not allow robot b to move in Configuration C1.
Similarly, let us assume that, in Configuration C1, Algorithm Alg allows robots d to move.
Therefore, in Configuration C1, the adversary can schedule robot d to reach Configuration C4
where the adversary schedules robots a, b and e that cannot move by above paragraphs. Then,
the adversary schedules robot c, which reaches Configuration C5 without clearing the neighbor
of b. Then, by above paragraph, the adversary can schedule robots a, c, d and e without any
move, and then schedules robot b to reach back Configuration C1, still without clearing the
ring. Therefore, any Algorithm Alg that exclusively and perpetually clears the ring must not
allow robot d to move in Configuration C1.
Since we proved that any Algorithm Alg that exclusively and perpetually clears the ring must
reach Configuration C1 and that, in such a configuration, neither d nor b can move, then robot e
must be able to move. Indeed, otherwise, Alg would reach Configuration C1 and would remain
in this configuration, robot c being the only one to be able to move, without clearing the ring.
Now, assume that, in Configuration C3, Algorithm Alg allows robot b to move. In that case,
the adversary can schedule b (in C3), then a, b, d, e in C4 without any move, then c in C4, then
b in C5, and finally e in C1 reaching back C3 without clearing the ring the green vertices are
never cleared). Therefore, in C3, only e may move towards a or a may move towards e.
To conclude, it is sufficient to note that, when C1 is eventually reached (which must be by
above discussion), then the adversary can ensure to oscillate between Configurations C1 and
C3, such that all robots execute a cycle infinitely often (only e, c and a actually may move)
without clearing the ring.

– Case (k, n) = (6, 9). In that case, there are 7 distinct configurations that are depicted in
Figure 8.
By Lemma 6, if Algorithm Alg reaches Configuration D3 or D4, then the clearing fails. If
Configuration D2 is reached, all robots have the same view, if one of them can move, the one
with the same common empty neighbor can also move which would create a collision. Therefore,
if Algorithm Alg reaches Configuration D2, then the clearing fails. If Configuration D1 is
reached, only robots a and b may move (if the other two robots with an empty neighbor move,
they would collide in it). In that case, robots a and b are scheduled simultaneously which reaches
Configuration D2 that is forbidden. Therefore, any Algorithm Alg that clears the ring must
never reach one of these four configurations.
Therefore, the only possible moves are the following. In Configuration D5, robot a can move
towards b, and c can move. In Configuration D6, only robots c and a can move. In Configuration
D7, b and f can move, and a can move towards e. Hence, the adversary executes the following
schedule. Arriving (or starting) in D7, it sequentially moves d, e, c (that do not move), thenf
twice, then a and, if a does not move, it moves b twice and goes on. Arriving from D7 by moving a
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Fig. 9. Theorem 5. Case (k, n) = (4, 9). Grey nodes are the occupied ones.

(resp., arriving from D5 by moving c, resp., starting) at D6, the adversary sequentially schedules
b, d, e, f (that do not move), then c (resp., a), and if c (resp., a) does not move, it moves a (resp.,
c) (possibly going to D7, resp. to D5) and goes on. Arriving from D6 by moving c (or starting)
at D5, the adversary sequentially schedules b, d, e, f (that does not move), then a twice, and
then c (possibly going to D6) and goes on. It is easy to check that this does not clear the ring.

– Case (k, n) = (4, 9). In that case, there are 10 distinct configurations that are depicted in
Figure 9.

By Lemma 6, if Algorithm Alg reaches Configuration E1 to E6, then the clearing fails. There-
fore, in particular, any Algorithm Alg that clears the ring never reaches Configuration E7 or
only b is allowed to move towards a in that configuration. Similarly, in Configuration E9, the
possible moves are: robot b moving towards c and robot a moving towards d. In Configuration
E10, the possible moves are: robot b moving towards c, robot c moving towards d, and moving
robot d. Any movement of robots a, b, c are allowed in Configuration E8. It is easy to check that,
allowing only these moves cannot clear the green vertices.

– Case (k, n) = (5, 9). In that case, there are 10 distinct configurations that are depicted in
Figure 10. For purpose of contradiction, let us assume that Algorithm Alg clears the ring. We
consider several cases depending on the Algorithm Alg.
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Fig. 10. Theorem 5. Case (k, n) = (5, 9). Grey nodes are the occupied ones. In case of symmetrical configurations,
there are several cases depending whether the adversary schedules one robot (pink transitions) or two symmetrical
robots (red transitions).

If Algorithm Alg reaches Configuration F1, then only two robots can move, that is, those
with an empty neighbor. In this case, the adversary can force both to move hence obtaining
Configuration F2.
First, let us assume that, in configuration F6, Alg allows other move than moving robot a

toward b. In that case, the adversary schedules robots one by one. Moreover, it ensures that
robot a does not move in Configuration F6 by moving another robot first. This case is depicted
in Figure 11 where the dotted move is never executed. Hence, in that case, the green vertices
are never cleared (of course, the adversary ensures that, in the case of symmetries, e.g. from
F8 to F7, the considered robot moves to the “bad" side). Indeed, we can check that, for any
configuration, if the green vertices are initially contaminated, then after any move leading to
another configuration, the new green vertices are contaminated. Therefore, such an Algorithm
Alg cannot clear the ring.
By previous paragraph, in Configuration F6, Algorithm Alg only allows robots a to move
towards b. Moreover, Configuration F6 followed by Configuration F2 must be met infinitely
often. Therefore, we can assume that F2 is the initial configuration and that we have to go back
to it via F6.
Now, assume that, in Configuration F9, Alg allows other move than moving robot a towards
c or moving d. Such an Algorithm Alg cannot clear the ring since the adversary can ensure
that only Configurations F2, F7, F8 and F9 are perpetually reached, which does not allow to
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Fig. 11. Theorem 5. Case (k, n) = (5, 9). Grey nodes are the occupied ones.

clear the green nodes. Therefore, in Configuration F9, Algorithm Alg must allows robots a to
move towards c (all other robots decide not to move but d that may move remaining in the same
configuration).

We now show that, in Configuration F2, Algorithm Alg has to allow robots c and d to move
and that these are the single possible moves. Indeed, let us assume that, in Configuration F2,
Algorithm Alg allows robot a (resp., b) decides to move toward b (resp., towards a). In that case,
the adversary executes the following schedule: in F2, it schedules robot a going to Configuration
F6, then in F6, it schedules all robots but a, that do not move, and then a going back to
Configuration F2 without having cleared the ring. Therefore, in Configuration F2, Algorithm
Alg does not allow robot a to move toward b as otherwise it would lead back to F1. Hence, the
only possible move is to allow robot c (resp., d) to move towards a (resp., towards b).

To conclude, we prove that, in Configuration F10, robot e must be allowed to move.

First, assume robot b is allowed to move in F10. Then, the adversary can schedule robots c

and d in F2 but only robot c moves, i.e., robot d has looked and computed but not moved
yet. Therefore, arriving in Configuration F10, the adversary can schedule robot b and makes it
moving simultaneously with robot d which results in a collision. Hence, robot b have to decide
not to move in Configuration F10.

Second, assume for purpose of contradiction, that robot a (resp., robot d) is allowed to move
in F10. Then, the adversary can execute the following schedule: robot c moves in F2 to reach
F10, then robot a moves reaching F9 (resp., robot d moves to F8 and then robot e moves to
F9), then all robots but a are scheduled without moving in F9 (see above), then robot a move
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Fig. 12. Second phase of the Ring Clear algorithm. The arrows close to the robots indicate the robot that is moving
and its direction.

to reach back F10 and then, the adversary can alternate Configurations F9 and F10 (resp.,
F8, F9 and F10) without clearing the ring.

Similarly, assume for purpose of contradiction, that robot c is allowed to move in F10. Then, the
adversary can execute the following schedule: in F2, robots a, b, e are scheduled without moving
(see above), then robot c moves in F2 to reach F10, then robot c moves reaching back F2, and
then this cycle is done again with robot d moving in F2 instead of c. Thus, the adversary can
alternate Configurations F2 and F10 without clearing the ring.

Therefore, in Configuration F10, only moving e and b may be possible. Of course, if moving
robot e is not allowed, then the adversary can schedule robot c in F2 to reach F10, and then,
it schedules all robots, where only robot b moves perpetually remaining in Configuration F10
which does not clear the ring.

To conclude the proof, the adversary does the following. In Configuration F2 (we proved above
that we may assume we can start with this configuration), robot c (or d) moves and reaches
Configuration F10, where robot e moves which reaches Configuration F6, where all robots but
a are scheduled without moving. Finally, robot a is moving reaching back Configuration F2. It
is easy to check that this does not allow to clear the ring. ⊓⊔
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4.3 Algorithm Ring Clear

In this section, we give an algorithm, called Algorithm Ring Clear, to clear a ring of n > 9 nodes
with 4 < k < n− 3 robots (except for n = 10 and k = 5) starting from any rigid configuration.

Algorithm Ring Clear works in two phases. In the first phase, Algorithm Align is executed
until one configuration in the set of configurations A (described below and that contains C∗) is
reached. Then, the robots execute the algorithm illustrated in Figure 12. The assumption of initial
rigidity ensures that, in the entire algorithm, only one robot is allowed to move at one time. Moreover,
the set of configurations in the two phases are disjoint and hence the robots can always distinguish
which phase is performing.

We denote as A the set of the following configurations:

A-a: Those with k − 2 adjacent robots and two adjacent robots separated by one empty node from
the first k − 2 (Figure 12a).

A-b: Those with k − 2 adjacent robots, one robot separated by an empty node from the first k − 2,
and another robot not adjacent to any other one (Figure 12b).

A-c: Those with k − 2 adjacent robots, one robot separated by one empty node from the first k − 2,
and another robot separated by two empty nodes from the first k − 2 on the other side of the
first robot. (Figure 12c).

A-d: Those with k − 3 adjacent robots, two adjacent robots separated by one empty node from the
first k− 3 on one side, and another robot separated by two empty nodes from the first k− 3 on
the other side (Figure 12d).

A-e: Those with k − 3 adjacent robots, two adjacent robots separated by one empty node from the
first k − 3 on one side, and another robot separated by one empty node from the first k − 3 on
the other side (Figure 12e).

A-f: Asymmetric configurations with k − 1 adjacent robots and one single robot (Figure 12f).

Note that the configuration C∗ belongs to the set A-f.
The algorithm perpetually cycles among configurations A-a — A-e as depicted in Figure 12.

The pseudo-code of Ring Clear is reported in Figure 13. First, at line 2, the algorithm performs
Align until a configuration in A is achieved. Let us refer to r, r′, and r′′ as the two robots
identified in Figure 12. At line 4, the algorithm identifies a robot r in a configuration in A-a as
the one with view (q0, q1, . . . , qk−1) = (0, 1, 0, 0, . . . , 0, qk−1), where qk−1 > 2. In this case r has
to move towards qk−1 (line 10). Note that as the configuration is rigid, only r can read such a
configuration. Configurations in A-b are identified at lines 5 and 11. In particular, the robot r

allowed to move can read the configuration in two directions, depending on the size of the its
adjacent intervals. If it reads in clockwise order with respect to Figure 12, then the configuration read
is (q0, q1, . . . , qk−1) = (q0, 0, 0, . . . , 0, 1, qk−1), where q0 > 2 and qk−1 > 0 (line 11) and r has to move
towards q0 (line 15). Otherwise, the configuration read is (q0, q1, . . . , qk−1) = (q0, 1, 0, 0, . . . , 0, qk−1),
where q0 > 0 and qk−1 > 2 (line 5) and r has to move towards qk−1 (line 10). Configurations in
A-c, A-d, A-e, and A-f are identified similarly at lines 6, 7 and 12, 13, 8, respectively. Finally, we
observe that the conditions at lines 4–13 are pairwise disjoint and, in the same configuration, only
one condition is satisfied for exactly one robot.

The next theorem shows that it exclusively and perpetually clears the ring.

Theorem 6. Starting from any exclusive and rigid configuration, Algorithm Ring Clear solves
both the exclusive perpetual clearing and exploration problems using k robots in any n-node ring, n9
and 4 < k < n− 3 (but for n = 10 and k = 5).
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Procedure: Ring Clear

Input: Rigid and exclusive configuration C with view W = (q0, q1, . . . , qk−1) as seen from a robot r

1 if C /∈ A then

2 Apply Algorithm Align

3 else

4 if (q0 = 0, q1 = 1, qi = 0 ∀i ∈ {2, 3, . . . , k − 2}, qk−1 > 2) // A-a

5 OR (q0 > 0, qk−1 > 2, q1 = 1, qi = 0 ∀i ∈ {2, 3, . . . , k − 2}) // A-b

6 OR (qi = 0 ∀i ∈ {0, 1, . . . , k − 4}, qk−3 = 2, qk−2 > 0, qk−1 = 1) // A-c

7 OR (q0 > 0, q1 = 0, q2 = 1, qi = 0 ∀i ∈ {3, 4, . . . , k − 2}, qk−1 > 2) // A-d

8 OR (qi = 0 ∀i ∈ {0, 1, . . . , k − 3}, qk−2 > qk−1 > 0, qk−2 + qk−1 > 3) // A-f

9 then

10 move towards qk−1;

11 if (q0 > 2, qk−1 > 0, qi = 0 ∀i ∈ {1, 2, . . . , j − 2}, qk−2 = 1) // A-b

12 OR (q0 = 2, qi = 0 ∀i ∈ {1, 2, . . . , k − 4}, qk−3 = 1, qk−2 = 0, qk−1 > 0) // A-d

13 OR (q0 = 1, qi = 0 ∀i ∈ {1, 2, . . . , k − 4}, qk−3 = 1, qk−2 = 0, qk−1 > 1) // A-e

14 then

15 move towards q0;

Fig. 13. Algorithm Ring Clear.

Proof. By Theorem 1, Algorithm Align eventually achieves configuration C∗ ∈ A-f. If the configu-
ration is in A-f, let us denote as r the single robot and by r′ the robot on the border of the sequence
of k − 1 robots which is the closest to r. Note that, as the initial configuration is assumed to be
rigid, then we can always distinguish robot r′. The algorithm let move r′ towards the only direction
allowed. The obtained configuration is either A-a or A-b.

In the following, we show that if a configuration is in any of the configurations in A, the algorithm
perpetually cycles among them in the sequence (A-a, A-b, A-c, A-d, A-e). Hence the algorithm
never goes back to a configuration in A-f and without loss of generality, we can assume that the
first configuration is of type A-a.

In this case, we call S the sequence of k− 2 adjacent robots and r and r′ the robot at distance 3
and 2 from S, respectively. The algorithm identifies robot r in a configuration in A-a. The view read
by r is (q0, q1, . . . , qk−1) = (0, 1, 0, 0, . . . , 0, qk−1), where qk−1 > 2. In a configuration of type A-a,
the edges which are cleared are the internal edges of S and the edge between r and r′. The algorithm
first clears the edges in the sequence of empty nodes. To this aim, it moves robot r towards the
direction opposite to r′. Note that as the configuration is rigid, only r can read such a configuration.

The configuration obtained is of type A-b where the distance between the two single robots is
2. In particular, robot r can read the configuration in two directions, depending on the size of the
its adjacent intervals.

In this way, r cleared the edge where it passed through. The algorithm keeps on moving r in
the same direction until it reaches a configuration of type A-c, in this way the configuration is still
A-b and all the edges between r and r′ where r passed through are cleared. Note that, the robots
are always able to identify the correct direction thanks to the position of robot r′. More precisely,
robot r can read the configuration in two directions, depending on the size of the its adjacent
intervals. If it reads in clockwise order with respect to Figure 12, then the configuration read is
(q0, q1, . . . , qk−1) = (q0, 0, 0, . . . , 0, 1, qk−1), where q0 > 2 and qk−1 > 0 and r has to move towards
q0. Otherwise, the configuration read is (q0, q1, . . . , qk−1) = (q0, 1, 0, 0, . . . , 0, qk−1), where q0 > 0
and qk−1 > 2 and r has to move towards qk−1.
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When the configuration is of type A-c, the only edges which are not cleared are the two edges
between r′ and S and the three edges between r and S. Let r′′ be the robot on the border of S
which is the closest to r′. If the configuration is of type A-c, the algorithm moves robot r′′ towards
r′, clearing the two edges between r′ and S \{r′′}. The obtained configuration is of type A-d, where
the only edges which are not cleared are those between r and S. Therefore, the algorithm moves r

towards S obtaining first a configuration of type A-e and again a configuration of type A-a. Note
that, in all the above configurations, it is always possible to distinguish robots r, r′ and r′′. Moreover,
the direction of the movements can be identified by the robots thanks to the position of robots r,
r′ and r′′ themselves. Summarizing, the algorithm perpetually cycles among configurations A-a –
A-e. ⊓⊔

4.4 Clearing an n-node ring using n − 3 robots

In this section, we propose a specific algorithm to clear any n-node ring, n ≥ 10 using n− 3 robots.
Together with the previous algorithm and the impossibility results, this closes all the cases, but for
n = 10 and k = 5.

In any exclusive configuration with k = n − 3 robots, all the nodes of the rings but three are
occupied. In other words, the ring is made of at most three sequences of adjacent occupied nodes.
We denote by A, B and C the number of nodes in such three sequences. If two empty nodes are
adjacent, the corresponding sequence between them has size 0. Note that, as the configuration is
rigid, such three sequences are all different and then, we can assume w.l.o.g. that A < B < C.
In the following, we denote a configuration as (A,B,C). We call final configurations the three
configurations: (0, 2, k − 2), (0, 3, k − 3), and (1, 2, k − 3). Note that, since k = n− 3 ≥ 7, the final
configurations are well defined and distinguishable, that is B is always strictly smaller than C. Our
algorithm is denoted as NminusThree, its pseudo-code is formally given in Figure 14, and it works
in two phases: In the first phase, it creates a final configuration and in the second one it performs
the exclusive perpetual clearing.

The first phase is performed if the configuration is not final and it is accomplished by performing
the following rules in the priority given by the following ordering.

R1.1: If A > 0, move towards C the robot on the border of A which is closer to C (line 12);

R1.2: If B = 1, move towards B the robot on the border of C which is closer to B (line 15);

R1.3: If B > 3, move towards C the robot on the border of B which is closer to C (line 17).

Rule R1.1 is executed for A steps until A = 0. Afterwards, either Rule R1.2 or Rule R1.3 is
executed. If A = 0 and B = 1, then C = k−1. It follows that, after one step of Rule R1.2, the final
configuration (0, 2, k − 2) is achieved. If A = 0 and B > 3, then the configuration is (0, B, k − B)
and the final configuration (0, 3, k − 3) is achieved after B − 3 steps or Rule R1.3. If A = 0 and
either B = 2 or B = 3, the configuration is final. The following lemma follows.

Lemma 7. The first phase of the algorithm eventually achieves a final configuration if n ≥ 10 and
k = n− 3.

Proof. We first prove that, any configuration obtained by applying Rules R1.1—R1.3 is still rigid.
Let us denote as A′, B′ and C ′ the number of nodes in the sequences of occupied nodes obtained
after one movement that corresponds to A, B and C, respectively. By performing Rule R1.1, we
obtain that A′ = A−1, B′ = B, and C ′ = C+1, therefore A′ < B′ < C ′. If Rule R1.2 is performed,
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it follows that A = 0, B = 1 and C = k−1. Therefore, after performing Rule R1.2, we have A′ = 0,
B′ = 2, C ′ = k − 2 ≥ 5 that is, A′ < B′ < C ′. By performing Rule R1.3, we obtain that A′ = 0,
B′ = B − 1, C ′ = C + 1 and then A′ < B′ < C ′.

To conclude the proof, it is enough to observe that if k ≥ 7 (that is n ≥ 10) and the configuration
is not final, one of the conditions of Rules R1.1—R1.3 is always true. Moreover, by the discussion
which follows the rules, the phase one of the algorithm terminates in a finite number of steps in a
final configuration. ⊓⊔

The second phase of the algorithm performs the clearing. It starts from any final configuration
and performs the following rules.

R2.1: If (A,B,C) = (0, 2, k − 2), move towards B the robot on the border of C which is closer to
B (line 3);

R2.2: If (A,B,C) = (0, 3, k − 3), move towards A the robot on the border of B which is closer to
A (line 6);

R2.3: If (A,B,C) = (1, 2, k − 3), move the robot of A towards C (line 9).

Procedure: NminusThree

Input: Rigid and exclusive configuration C with k = n− 3 robots

1 Let (A,B,C) be the current configuration with 0 ≤ A < B < C
// Phase 2: clearing the ring

2 if (A,B,C) = (0, 2, k − 2) then

3 Move towards B the robot of C which is closer to B // Rule R2.1

4 else

5 if (A,B,C) = (0, 3, k − 3) then

6 move towards A the robot of B which is closer to A // Rule R2.2

7 else

8 if (A,B,C) = (1, 2, k − 3) then

9 Move the robot of A towards C // Rule R2.3

10 else

// Phase 1: reaching starting configuration

11 if A > 0 then

12 Move towards C the robot of A which is closer to C // Rule R1.1

13 else

14 if B = 1 then

15 Move towards B the robot of C which is closer to B // Rule R1.2

16 else

17 Move towards C the robot of B which is closer to C // Rule R1.3

Fig. 14. Algorithm NminusThree.

The next theorem states the correctness of the algorithm.

Theorem 7. Starting from any exclusive and rigid configuration, Algorithm NminusThree solves
both the exclusive perpetual exclusive graph clearing and exploration problems using n− 3 robots in
any n-node ring, n ≥ 10.

Proof. By the hypothesis that n ≥ 10, it follows that k ≥ 7, and then the final configurations are
well defined and distinguishable. Moreover, by Lemma 7 the first phase of the algorithm always
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achieves a final configuration. It remains to show that the second phase exclusively and perpetually
performs the clearing. Note that if we perform Rule R2.i we obtain the configuration in the condition
of Rule R2.((i mod 3) + 1). It follows that Rules R2.1—R2.3 are performed cyclically infinitely
many times. Let us assume that the second phase starts from configuration (0, 2, k − 2). In this
configuration, the edges inside sequences B and C are cleared. By performing Rule R2.1, also the
two edges adjacent to B and C are cleared. The non-cleared edges are the three edges between to
B and C which pass through A. At this point Rules R2.2 and R2.3 are performed which in turn
clear first the edge between B and A which is adjacent to B and then the two remaining edges. ⊓⊔

5 Gathering in a ring

In this section, we devise a strategy to accomplish the gathering task on a ring under the discrete
CORDA model. The problem requires the robots to reach a common node and remain in there.
Hence, more than one robot must be allowed to occupy a node, i.e. a multiplicity occurs. We
assume that the robots have the local multiplicity detection capability. This is necessary as proven
in [26].

In accordance to the other tasks previously shown, we make use of procedure Align in order
to achieve configuration C∗ starting from any (exclusive) rigid configuration on n-node rings with
2 < k < n − 2 robots. In fact, any configuration with k = 2, k = n − 1, or k = n − 2 robots is
symmetric. Hence, the next algorithm provides a full characterization of rigid configurations where
the gathering can be accomplished. Before providing the algorithm, we need some more notation.

A configuration is said to be of type C∗ if it is composed by an ordered sequence of j−2 intervals
of length 0, one interval of length 1 and one interval of length n−j−1, with 3 ≤ j ≤ k. Consequently,
also the nodes of the ring can be considered ordered according to the intervals’ order. Hence, the
first two nodes of the sequence will constitute interval q0 = 0 in the current configuration. Clearly,
C∗ is a C∗-type configuration.

Rule Contraction allows to move any robot occupying the first node of a C∗-type configuration
towards the second one. Possibly, such nodes can be occupied by many robots. Whenever a robot r
wakes up, it executes the algorithm Gathering given in Figure 15.

Algorithm: Gathering

Input: Rigid and exclusive configuration C

1 if C is not a C∗-type configuration then

2 Align(C);
3 else

4 if More than two nodes are occupied then

5 Apply Contraction(C);
6 else

7 if r is not part of a multiplicity then

8 Move towards the other occupied node;

Fig. 15. Algorithm Gathering.

From C∗-type configurations, the algorithm simply applies Contraction until only two nodes
are occupied. Note that, at each intermediate step, the current configuration is always a C∗-type,
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and the algorithm allows to move the robot(s) from the first node of the current interval q0 towards
the second one. Eventually, the number of intervals of length 0 is reduced by one. This is repeated
until only two nodes at distance 2 remain occupied. Note that, in such a configuration, k− 1 robots
are gathered on the same node and the other occupied node contains a single robot. From this
configuration the robots can distinguish which is the node occupied by a single robot by using the
local multiplicity detection. Therefore, only the single robot is allowed to move towards the other
occupied node until joining it, while robots composing the multiplicity do not move. We can now
state the next theorem.

Theorem 8. There exists an algorithm performing the gathering of k > 2 robots on rings of n >

k+ 2 nodes when the initial configuration is exclusive and rigid, and the robots are empowered with
the local multiplicity detection.

6 Conclusion

In this work, we provided a unified strategy for solving three tasks in the discrete CORDA model on
ring topologies when the initial configuration is rigid. Namely we solved the exclusive perpetual clear,
the exclusive perpetual exploration and the gathering with local multiplicity detection capability.
Moreover, the given algorithms solve some open problems and the impossibility results provided
for the exclusive perpetual clearing problem fully characterize any initial rigid configuration. Our
work opens two main research direction: use the Align algorithm to solve other problems in rigid
configurations and devise similar algorithms to handle symmetric or periodic configurations.
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