
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

4-18-2011

Dealer: Dynamic Request Splitting for
Performance-Sensitive Applications in Multi-
Cloud Environments
Mohammad Hajjat
School of Electrical and Computer Engineering, Purdue University, hajjat@purdue.edu

Shankaranarayanan Narayanan
School of Electrical and Computer Engineering, Purdue University

David Maltz
Microsoft Research

Sanjay Rao
Electrical and Computer Engineering, Purdue University, sanjay@purdue.edu

Kunwadee Sripanidkulchai
NECTEC Thailand

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Hajjat, Mohammad; Narayanan, Shankaranarayanan; Maltz, David; Rao, Sanjay; and Sripanidkulchai, Kunwadee, "Dealer: Dynamic
Request Splitting for Performance-Sensitive Applications in Multi-Cloud Environments" (2011). ECE Technical Reports. Paper 416.
http://docs.lib.purdue.edu/ecetr/416

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages

Dealer: Dynamic Request Splitting for Performance-Sensitive Applications in Multi-Cloud Environments

Mohammad Hajjat

Shankaranarayanan Narayanan

David Maltz

Sanjay Rao

Kunwadee Sripanidkulchai

TR-ECE-11-10

April 18, 2011

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

Dealer: Dynamic Request Splitting For
Performance-Sensitive Applications in Multi-Cloud

Environments

Mohammad Hajjat†, Shankaranarayanan Narayanan†, David Maltz‡

Sanjay Rao†, and Kunwadee Sripanidkulchai⋆
†Purdue University, ‡Microsoft Research, ⋆NECTEC Thailand

ABSTRACT
Enterprises are increasingly deploying their applica-
tions in the cloud given the cost-saving advantages,
and the potential to geo-distribute applications to en-
sure resilience and better service experience. However,
a key unknown is whether it it is feasible to meet the
stringent response time requirements of enterprise ap-
plications using the cloud. We make several contribu-
tions. First, we show through empirical measurement
studies that (i) there is significant short-term variabil-
ity in application workload and response times of in-
dividual components; however (ii) the response times
of the same component in different data-centers are of-
ten uncorrelated. This leads us to argue that there are
potential latency savings if work related to a poorly
performing component is dynamically reassigned to
a replica in a remote data-center. We leverage this
insight to build a system that we termDealer which
for each component, dynamically splits transactions
among its replicas in different data-centers. In doing
so,Dealer seeks to minimize user response times, and
takes component performance, as well as intra-data-
center and inter-data-center communication latencies
into account. We have implementedDealer in a way
that it can be added to any multi-tier application. Eval-
uations of our approach on two multi-tier applications
on actual Azure cloud deployments indicates the im-
portance and feasibility of our mechanisms. For in-
stance, the90%ile of application response times could
be reduced by as much as 6 times under natural cloud
dynamics.

1 Introduction
Cloud computing promises to reduce the cost of IT or-
ganizations by allowing them to purchase just as much
compute and storage resources as needed, only when
needed, and through lower capital and operational ex-
pense stemming from the cloud’s economies of scale.
Further, moving to the cloud greatly facilitates the de-
ployment of applications across multiple geographi-

cally distributed data-centers. Geo-distributing appli-
cations, in turn, facilitates service resilience and disas-
ter recovery, and could enable better user experience
by having customers directed to data-centers located
close to them. These attractive advantages of cloud
computing are motivating a number of enterprises to
explore how their applications could be deployed us-
ing the cloud [1, 16, 24, 9].

While cloud computing offers several advantages, a
key challenge for enterprises is meeting service level
agreements (SLAs) associated with their applications.
Enterprise applications often have stringent require-
ments in terms of availability and response times. How-
ever, little is known about the variability in perfor-
mance of cloud components and data-center links given
that a cloud is a shared multi-tenant infrastructure on
which users have very little control over what other
tenants are doing.

In this paper, we take a first step towards under-
standing and addressing challenges associated with de-
ploying latency-sensitive multi-tier enterprise applica-
tions in the cloud. Such applications are composed
of multiple components often arranged as a pipeline
(with potentially complex interactions). Each com-
ponent is provisioned with enough servers to achieve
acceptable SLA. The applications are typically geo-
distributed with replicas of each component present in
multiple data-centers.

We begin by presenting a measurement study of work-
loads seen in real web-services, and a study of perfor-
mance seen by multi-tier applications when deployed
in the cloud. Our results indicate that (i) there is sig-
nificant short-term variability on load seen by applica-
tion components both due to variations in workload,
as well as types of transactions; and (ii) there is much
variability in response times of individual components
at shorter time-scales. Dynamic provisioning of new
cloud resources [21, 4], is inadequate to tackle these
shorter-term variations given the process could take
tens of minutes.

1

Our measurements also reveal that the latencies of
the same component in different data-centers are of-
ten uncorrelated. This leads us to argue that there are
potential latency savings if work related to a poorly
performing component is dynamically reassigned to a
replica in a remote data-center. Such dynamic reas-
signment is further facilitated given that typical appli-
cation deployments in data-centers must operate with
enough extra servers to handle short-term variations in
workload. This approach is distinguished from con-
ventional schemes that load-balance application traf-
fic across entire data-centers as a whole in a coarse-
grained fashion (for e.g., Akamai [14, 23]), in that
only the processing related to poorly performing com-
ponents is directed to alternate data-centers, and the
resources of other components is utilized to the extent
possible.

Based on these insights, we present the design of
a system which we term Dealer. For each compo-
nent, Dealer dynamically splits transactions directed
at a particular component across its replicas in differ-
ent data-centers. In doing so,Dealer seeks to minimize
user latencies, and takes component performance and
loads, as well as intra-data-center and inter-data-center
communication latencies into account.Dealer seeks
to be responsive to poor performance, while ensuring
stability. Dealer includes algorithms to dynamically
discover the load that can be handled by components,
and can automatically adapt these capacity estimates
to changes in the mix of application transactions.

We implementedDealer in a fashion that can be
integrated with any enterprise application. We have
extensively evaluated our approach on two multi-tier
applications on actual Azure cloud deployments. The
first application is data-intensive, while the second ap-
plication involves interactive transaction processing. Over-
all, the results indicate the importance and feasibility
of our mechanisms.

2 Measurement and Implications

In this section, we begin by characterizing variability
in workloads and transactions mixes of multi-tier ap-
plications. This work is based on an analysis of web
server traces of a large campus university. We next
characterize the extent and nature of the variability in
performance that may be present in cloud data-centers.
Our characterization is based on our experiences run-
ning multi-tier applications on the cloud.

2.1 Workload variability in multi-tier applications

We begin by presenting insights on the variability of
workloads of multi-tier applications, and the implica-
tions for cloud deployments. Our insights have been
gleaned by collecting logs from a web-service of a

large campus network. The web-service includes a
front-end and multiple back-end components. All re-
quests enter through a front-end, which are then di-
rected to different back-end component based on the
type of request. For instance, a separate component
is in charge of mail requests, another component in
charge of mailing list related transactions, a third com-
ponent in charge of web requests associated with a
subset of departments, a fourth component in charge
of web requests associated with another subset of de-
partments, and so on. The logs we collected were at
the front-end, but had sufficient information to iden-
tify which back-end component was involved in serv-
ing the requests.

We now summarize some of the key insights ob-
tained through our analysis:
There is much variability not only in workload but
also in the mix of transactions: Figure 1(a) shows
the request rate at the front-end server averaged over
10 second intervals, as a function of time. The work-
load exhibits significant variability, and diurnal effects.
Figure 1(b) and Figure 1(c) show the fraction of trans-
actions going to each component as a function of time.
The graphs exhibit significant variability with the frac-
tions ranging from5% to over30% for each compo-
nent. These results indicate that in addition to vari-
ability in overall workload, changes in composition of
transactions can lead to significant variability of loads
seen by individual components.
Short-term variability necessitates large margins even
in cloud deployments:To handle fluctuations in work-
load when deploying applications in data-centers, ap-
plication architects must maintain margins, i.e., pools
of servers beyond the expected load [8, 26, 25]. Cloud
deployments allow for dynamic invocation of resources
during peak periods, which can result in reduced mar-
gin requirements. However, cloud deployments may
still require margins to cope withshort-term fluctu-
ations in workload. This is because dynamic invo-
cation of new server instances in the cloud typically
takes several minutes (typically 10 minutes) in many
commercial cloud deployments today. Further, besides
the time to provision new instances, it may take even
longer to make sure a newly booted server is warmed
up, for e.g., a server may not be able to meet SLA re-
quirements until its caches are filled with relevant data.

Figure 2 depicts the short-term variability for both
the web front-end, and two back-end components. Each
10 minute period is considered, the average and peak
request rate during this period is determined, and the
peak to average ratio is then computed. Figure 2(a) de-
picts the short-term variability for the front-end, while
(b) and (c) depict the variability for two back-end com-
ponents. While the ratio is around 1.5 for the front-

2

(a) Request rate at front-end (b) Fraction of transactions for Component 1(c) Fraction of transactions for Component 2

Figure 1: Variability in overall workload and transaction mix. (a) sh ows the over-all request rate at the front-end. (b) and (c) respectively

show the fraction of all transactions directed to two back-end components.

(a) Front-end (all traffic) (b) Component 1 (c) Component 2

Figure 2: Short-term variability in workload for front-end and two ba ck-end components. The peak and average rates are computed

during each 10 minute window and the ratio of peak to average over each window is plotted as a function of time.

end, it is much higher for each of the two back-end
components, and can be as high as 3 or more dur-
ing some time periods. Overall, these results indicate
that a significant margin may be needed even in cloud
deployments to handle shorter-term workload fluctua-
tions.
Margins requirements across different tiers of multi-
tier applications are heterogeneous and exhibit much
variability: Figure 2 not only illustrates the need for
margins with cloud deployments, but also illustrates
the heterogeneity in margin that may be required for
different application tiers. While the margin require-
ment is about50% for the front-end, it is over300%
for the back-end components during some time peri-
ods. Figure 2 also illustrates that the exact margin
required is highly variable over time. These factors
make it difficult to simply over-provision a cloud com-
ponent since (i) it is complicated to exactly estimate
the extent of over-provisioning required; and (ii) over-
provisioning for the worst-case scenario could be ex-
pensive.

2.2 Performance variability in the cloud

In this section, we characterize variability in perfor-
mance experienced by applications when deployed on
the cloud. Our experiments have been conducted us-
ing two applications on the Windows Azure platform.
The first application,Thumbnails, is a typical 3-tier
application provided as part of the Windows Azure

SDK. The application involves users uploading a pic-
ture to a server and receiving thumbnail versions in
turn. The second application,StockTrader, is a tiered
enterprise web application that allows a user to buy
and sell stocks, view her portfolio information, mod-
ify her profile, and perform other tasks like viewing
a stock quote or her recent transactions. We used the
version ofStockTrader from Apache Stonehenge Inter-
operability Project [2] and re-wrote it to be deployed
on Azure cloud. Figure 3(a) and Figure 3(b) respec-
tively show the component architecture and data-flow
for each application.

We ran each application simultaneously in two sep-
arate data-centers, both located in the United States.
The users were assumed to be located in a campus net-
work, also in the United States. Each application was
carefully configured with enough instances of each com-
ponent so they could at least handle the average load
along with additional margins. More details of how we
configured the deployment are presented in§ 5.1.

We instrumented each application to measure the to-
tal response time, as well as the delays contributing to
total response time. The contributing delays include
processing delays encountered at individual applica-
tion components, communication delay between com-
ponents (internal data-center communication delays),
and the upload/download delays (Internet communica-
tion delays between users and each data-center).

We now present our key findings:

3

(a) Thumbnails application architecture and data-
flow. The application is composed of a Front-
End (FE), Back-End (BE), and Business-Logic (BL).
Users upload pictures (t0). The FE writes the image
to the BE (t1-b) and notifies the BL(t1-a). The BL
in turn creates a thumbnail, and stores it in BE (t3).
The FE retrieves the thumbnail (t4) and sends it to the
user (t5).

(b) StockTrader architecture and data-flow.
Components include a user facing front-end
(FS), a business logic server (BS) that handles
computation associated with most requests, the
Order Service (OS) that handles buy and sell
operations, a Database (DB), and a Config Ser-
vice (CS) that binds these components. The
precise data-flow depends on the type of trans-
action.

Figure 3: Applications Testbed.

There is significant variation in performance of cloud
components:Figure 4 considers theThumbnail appli-
cation and presents a box plot for the total response
time and each of the individual contributing delays for
each data-center. The X-axis is annotated with each of
the delays being measured, with the number in paren-
thesis represents the data-center being measured. The
first two box plots on the left are the total response time
for the two data-centers. The other box plots corre-
spond to delays of the components contributing to the
total response time. For e.g., BL-BE(1) represents the
delay between the Business-Logic (BL) and the Back-
End (BE) components, at the first data-center.

Several interesting observations can be made from
Figure 4. First, there is significant variability in all
delay values. For instance, while the75%ile of to-
tal response time is under 5 seconds, the outliers are
almost 20 seconds. Second, while the median delay
with the first data-center (DC1) is smaller than the sec-
ond data-center (DC2), DC1 shows significantly more
variability. Third, while the Internet upload delays are

0

5000

10000

15000

20000

T
ot

al
T

im
e(

1)

T
ot

al
T

im
e(

2)

U
pl

oa
d(

1)

U
pl

oa
d(

2)

F
E

−
B

E
(1

)

F
E

−
B

E
(2

)

B
E

−
B

L(
1)

B
E

−
B

L(
2)

B
L(

1)

B
L(

2)

B
L−

B
E

(1
)

B
L−

B
E

(2
)

D
ow

nl
oa

d(
1)

D
ow

nl
oa

d(
2)

D
el

ay
 (

in
 m

se
c)

Figure 4: Box plot for total response time, and contributing

processing and communication delays for Thumbnail applica-

tion. The bottom and top of each box represent the25th and

75th percentiles, and the line in the middle represents the me-

dian. The vertical line (whiskers) extends to the highest datum

within 3*IQR of the upper quartile, where IQR is the inter-

quartile range. Points larger than this value are considered out-

liers and shown separately.

0

1000

2000

3000

4000

5000

6000

7000
T

ot
al

T
im

e(
1)

T
ot

al
T

im
e(

2)

F
E

(1
)

F
E

(2
)

B
S

(1
)

B
S

(2
)

ID
+

F
E

Q
(1

)

ID
+

F
E

Q
(2

)

F
E

−
B

S
(1

)

F
E

−
B

S
(2

)

F
E

−
C

S
(1

)

F
E

−
C

S
(2

)

B
S

−
C

S
(1

)

B
S

−
C

S
(2

)

D
el

ay
(in

 m
se

c)

Figure 5: Box plot for total response time, and contributing

processing and communication delays forStockTrader.

a significant portion of total response time (since the
application involves uploading large images), the pro-
cessing delays atBL, and the communication delays
between theBE andBL show high variability, and
contribute significantly to total response times.

Figure 5 presents a similar box plot forStockTrader.
Note that delays involving the OS component have not
been shown for space reasons. The figure shows a sim-
ilar trend, indicating significant variability in both to-
tal response time, and each of the contributing delays
for both data-centers. While the median delay with
DC1 is lower, both DCs do show significant variabil-
ity. The variation is particularly high for communi-
cation between the front-end (FE) and Business Ser-
vice (BS) (which includes queuing at BS). The delay

4

Figure 6: The total response time for the two data-centers for

the StockTrader for a 10 minute snapshot.

ID+FEQ denotes the sum of Internet transfer related
delays and queuing at the front-end. We notice this
term also shows noticeable variability, which we found
typically arises due to queuing at the front-end.
The performance of component replicas in multi-
ple data centers is not correlated:While our results
so far indicate that there is significant variability in re-
sponse times for both data-centers, Figure 6 next con-
siders the correlation between the response times of
the two data-centers. The figure shows the response
time with theStockTrader for a 10 minute snapshot,
at each of the data-centers. We see that while there is
variability in response times of both DCs, they are not
correlated with each other, and different DCs perform
differently at different times.

3 Dealer Design Rationale

In this section, we present the rationale underlying the
design ofDealer. Dealer is designed to enable appli-
cations deployed in multi-cloud settings adapt to short-
term variability in workloads, and to performance vari-
ations of cloud components. Such shorter term vari-
ability has been found to be common from our mea-
surement studies in Section 2.Dealer is meant to com-
plement rather than replace other adaptation mecha-
nisms, such as redirection based on the Domain Name
System (DNS), and dynamic invocation of cloud re-
sources. While such mechanisms are suitable for adap-
tation over longer time-scales, they may be unable to
cope with shorter term variability, as we discuss in this
section. We next describe key ideas behindDealer:
Exploit margins in remote data-centers of multi-
cloud deployments:Our measurement studies in Sec-
tion 2 show that cloud deployments must operate with
margins of over 300%, to handle short-term variability
in workload, given the time-scales involved in invok-
ing new cloud resources. This in turn presents sev-

eral opportunities. First, rather than provisioning the
margin for each data-center in isolation, there is poten-
tial for cost reductions by sharing margins across data-
centers. Such an approach is promising since the mar-
gin requirements are highly variable over time (Fig-
ure 2), and given both the margin requirements and la-
tencies of cloud components across data-centers may
not be correlated at any given instant(Figure 6). Sec-
ond, tapping into margins in remote DCs may enable
the application to adapt to short-term workload vari-
ability and performance problems, which may not oth-
erwise be possible. Transactions could be quickly redi-
rected from a temporarily overloaded or poorly per-
forming component to a replica in another data-center.
Temporary overloads may be particularly common dur-
ing maintenance of a data-center, when it is likely to be
operating with reduced margin levels.

Split transactions at the granularity of components
rather than data centers: The notion of redirecting
user traffic to remote data centers for reasons such as
load-balancing or avoidance of Internet congestion be-
tween a user and a certain data center is well known [23,
7]. However, most mechanisms used today are coarse-
grained, and move entire user requests to alternate data
centers. In large multi-tier applications (with poten-
tially hundreds of components), it is possible that only
a small number of components are impacted by a tem-
porary surge in requests (Figure 2) or performance prob-
lems (Figure 4). Redirecting all application traffic to
an alternate data center does not make effective use of
other components (which have already been paid for).
Further, since there is much heterogeneity in compo-
nent margins (e.g., Figure 2), it isn’t clear the redi-
rected requests can be accommodated by all compo-
nents in the alternate data center. For these reasons,
Dealer focuses on a new design point, involving split-
ting transactions at a finer per-component granularity.

Complement rather than replace DNS-based redi-
rection mechanisms:DNS-based redirection is a com-
monly used coarse-grained approach to redirect user
traffic to alternate data centers today [23, 7]. This ap-
proach works by providing clients the IP addresses of
front-end servers in alternate data centers. However,
in many web services, including the service studied
in Section 2.1, the front-end IP address contacted is
the same, though the back-end components contacted
might be different based on the type of transaction.
Thus, redirection based on DNS is not feasible for the
finer-grained component-level transaction redirection
targeted byDealer. Further, there have been studies
that have quantified the responsiveness of DNS [20],
which have suggested that DNS is a coarser-grained
mechanism that may be poorly suited for applications
which require quick response to link failures or perfor-

5

mance degradations. A primary reason for this is that
over 47% of clients and local DNS (LDNS) servers,
may violate time-to-live (TTLs) values that determine
how long an earlier DNS mapping must be cached,
and in some cases the violations are as large as two
hours. In contrast,Dealer is designed for fast response
to shorter-term variability and performance fluctuations.

That said,Dealer is intended to complement DNS-
based redirection. In particular,Dealer relies on DNS
to correctly map users to front-end servers in appropri-
ate data-centers, and relies on DNS to adapt to perfor-
mance problems between users and their front-ends.
Dealer is targeted at handling performance problems
associated with back-end components, and communi-
cation between components, and does not target prob-
lems between users and front-end servers, or the front-
ends themselves.

4 System Design
In this section we present the design ofDealer. We be-
gin by presenting an overview of the design, and then
discuss its various components.

4.1 System Overview

Figure 7: System overview

Consider an enterprise application with multiple com-
ponents{C1..Cl}. We consider a multi-cloud deploy-
ment where the application is replicated acrossd data-
centers, with instances corresponding to each appli-
cation component located in every one of the data-
centers. Note that there might be components like databases
which are only present in one or a subset of data-centers.
We represent all instances of componentCi in data-
centerm asCim.

Traffic from users is mapped to each of the data-
centers using standard mapping services that are used
today based on metrics such as geographical proxim-
ity, or latencies [23]. LetUk denote the set of users
whose traffic is mapped to data-centerk. We refer to
data-centerk as the primary data-center forUk, and
to all other data-centers as the secondary data-centers.

The excess capacity of each component of a data-center
is the additional load that can be served by that compo-
nent which is not being utilized for the primary traffic
of that data-center. Traffic corresponding toUk can
use the entire available capacity of all components in
data-centerk, as well as the excess capacity of compo-
nents in all other data-centers.

For each user groupUk, Dealer seeks to determine
how application transactions must be split in the multi-
cloud deployment. In particular, the goal is to deter-
mineTFim,jn, that is the number of user transactions
that must be directed between componenti in data-
centerm to componentj in data-centern, for every
pair of <component,data-center> combinations. In
doing so, the objective is to ensure the overall delay of
transactions can be minimized. Further,Dealer peri-
odically recomputes how application transactions must
be split given dynamics in behavior of cloud compo-
nents.

In making its determination,Dealer estimates sev-
eral parameters including (i) delay of processing user
requests in individual components, and data-center links;
(ii) available capacity of components in each data-center,
i.e., the load that each component can handle; and (iii)
application communication patterns, i.e., the fraction
of requests that involve communication between each
pair of application components, and the average size
of transactions between each component pair. We will
discuss how all this information is estimated and dy-
namically updated in the later subsections.

4.2 Determining delays

There are three key components to the estimation al-
gorithms used byDealer when determining the pro-
cessing delay of components and communication de-
lays between them. These include: (i) passive mon-
itoring of components and links over which applica-
tion requests are routed; (ii) heuristics for smoothing
and combining multiple estimates of delay for a link or
component; and (iii) active probing of links and com-
ponents which are not being utilized to estimate the
delays that may be incurred if they were used. We de-
scribe each of these in turn:
Monitoring: Monitoring distributed applications is a
well studied area, and a wide range of techniques have
been developed both by the research community, and
in the industry [10, 19, 15, 6]. While any of these tech-
niques may be applied, in our current implementation,
each application is instrumented using knowledge of
the application to capture the delays incurred by user
transactions on individual components and links. This
information is periodically reported to a central moni-
tor. A smaller reporting time ensures greater agility of
Dealer. We use reporting times of 10 seconds in our

6

implementation, which we believe reasonable.
Smoothing delay estimates: It is important to trade-off
the agility ofDealer in responding to performance dips
in components or links, with potential instability that
might arise if the system is overly aggressive. To han-
dle this, we use a weighted moving average (WMA)
scheme. For each link and component, the average de-
lay seen during the lastW time windows of observa-
tion is considered. The weighted average of these val-
ues is then computed according to the following for-
mula:

D(t) =

∑W

i=1(W − i+ 1) ∗D(t− i) ∗N(t− i)
∑W

i=1(W − i+ 1) ∗N(t− i)
(1)

Briefly, the weight depends on the number of sam-
ples seen during a time window, and the recency of
the estimate (i.e., recent windows are given a higher
weight). D(t) is the delay seen by a link/component
in Window t, andN(t) is the number of delay sam-
ples obtained in that window. Considering N(t) en-
sures a higher weight is given to windows with more
transactions compared to windows with fewer ones.
The use of a WMA scheme ensures thatDealer re-
acts to prolonged performance episodes that last sev-
eral seconds, while not aggressively reacting to ex-
tremely short-lived performance problems within a time
window. W determines the number of windows for
which a link/component must perform poorly (well)
for it to be avoided(reused) byDealer. Our empirical
experience has shown choosingW values between 3
and 5 are most effective for good performance.
Probing: Dealer uses active probes to estimate the
performance of components and links that are not cur-
rently being used. This enablesDealer to decide whether
it should switch transactions to a replica of a compo-
nent in a different data-center, and determine which
replica must be chosen. Probe traffic is generated by
test-clients using application workload generators (e.g.,
[3]). To bound the overhead of such probes, we limit
the probe rate to10% of the application traffic rate.
Dealer biases the probes based on the quality of the
path. In particular, the probabilityPi that a path is
probed is given as:

Pi =
CRi∑
j CRj

(2)

Here,CRi is the compliance ratio, or the fraction of
requests that use a given path which have a response
time lower than the Service Level Agreement (SLA).
The intuition is that a path that has generally been good
might temporarily suffer poor performance. Biasing
the probing algorithm ensures that such a path is likely
to be probed more frequently, which ensuresDealer

can quickly switch back to it when its performance im-
proves. In addition,Dealer probes 5% of the paths at
random to ensure more choices can be explored. In the
initialization stage,Dealer probes paths in a random
fashion. As an enhancement,Dealer can bias probing
during the initialization phased based on coarse esti-
mates of link delays. Such coarse estimates can be ob-
tained based on the size of transactions exchanged be-
tween the components (obtained through monitoring
application traffic), and the bandwidth between data-
centers. While each individual application may mea-
sure the bandwidth between every pair of data-centers,
cloud providers could provide such bandwidth estima-
tion services in the future amortizing the overheads
across all applications.

4.3 Determining transaction split ratios

In the last section, we discussed howDealer estimates
the processing delays of components, and communi-
cation times of links. In this section, we discuss how
Dealer uses this information to compute the split ra-
tio matrix TF. Here,TFim,jn is the number of user
transactions that must be directed between component
i in data-centerm to componentj in data-centern,
for every pair of<component,data-center> choices.
In determining the split ratio matrix,Dealer considers
several factors including i) the total response time; ii)
stability of the overall system; and iii) capacity con-
straints of application components.

In our discussion below, the term combination refers
to an assignment of each application component to ex-
actly one data-center. For example, in Figure 7, a map-
ping ofC1 toDC1, C2 toDCk, Ci toDCm andCj to
DCm represents a combination. The algorithm oper-
ates by iteratively assigning a fraction of transactions
to each combination. The split ratio matrix is easily
computed once the fraction of transactions assigned to
each combination is determined.

We now present the details of the assignment algo-
rithm:
Considering total response time: Dealer computes
the mean delay for each possible choice of combina-
tions. The mean delay is computed like in [17]. It
is the weighted sum of the processing delays of nodes
and communication delay of links associated with that
combination. The weights are determined by the frac-
tion of user transactions that traverse that node or link.
Specifically, consider a combination where component
i is assigned to data-centerd(i). Then, the mean delay
of that combination is:

∑

i

∑

j

fij ∗Did(i),jd(j) (3)

Here,Did(i),jd(j) denotes the communication delay be-
tween componenti in data-centerd(i), and component

7

j in data-centerd(j). Wheni = j, D represents the
processing delay of componenti. Further,fij denotes
the fraction of transactions that involve an interaction
between application componentsi andj, andfii de-
notes the fraction of transactions that are processed at
componenti. The fractionsfij may be determined by
monitoring the application in its past window like in
§ 4.2. Once the delays of combinations are determined,
Dealer sorts the combinations in ascending order of
mean delay such that best combinations get utilized the
most, thereby ensuring a better performance.

Ensuring system stability: To ensure stability of the
system and prevent oscillations,Dealer avoids abrupt
changes in the split ratio matrix in response to minor
performance changes. To achieve this,Dealer limits
the maximum fraction of transactions that may be as-
signed to a given combination. The limit (which we
refer to as the damping ratio) is based on how well that
combination has performed relative to others, and how
much traffic was assigned to that combination in the
recent past. In particular, the damping ratio (DR) for
each combination is calculated periodically as follows:

DR(Li, t) =
W (Li, t)∑
k W (Lk, t)

, where

W (Li, t) =

W−1∑

ℓ=0

Rank(Li, t− ℓ) ∗Req(Li, t− ℓ)

(4)
Here,Rank(L, t) is the ranking of combinationL at
the end of time window t (with the lowest mean delay
combination assigned the highest ranking), andReq(L, t)
is the number of requests sent on combinationL during
that time window. The algorithm computes the weight
of a combination based on its rank and the requests
assigned to it in each of the lastW windows. Simi-
lar to §4.2, we have found that choosing values ofW

between3 and5 results in the best performance.

Honoring capacity constraints: In assigning transac-
tions to a combination of application components,Dealer
ensures the capacity constraints of each of the compo-
nents is honored as described in Algorithm 1.Dealer
considers the combinations in ascending order of mean
delay (line 8). It then determines the maximum frac-
tion of transactions that can be assigned to that combi-
nation without saturating any component (lines 9-11).
Dealer assigns this fraction of transactions to the com-
bination, or the damping ratio, whichever is lower (line
12). The available capacities of each component and
the split ratio matrix are updated to reflect this assign-
ment (lines 14-16). If the assignment of transactions
is not completed at this point, the process is repeated
with the next best combination (lines 17-18).

Algorithm 1 Determining transaction split ratios.
1: procedure COMPUTESPLITRATIO()
2: Let C[i,m] be the capacity matrix, with each cell(i,m)

corresponding to capacity of componentCim (componenti in
data-centerm), calculated as in§4.4

3: Let AC[i,m] be the available-capacity matrix forCim

Initialized asAC[i,m]← C[i,m]
4: Let T [i, j] be the transaction matrix, with each cell(i, j)

indicating the number of transactions per second between ap-
plication componentsi andj

5: Let Ti be the load on each component (
∑

j Tji)
6: Let FA be fraction of transactions that has been assigned

to combinations. Initialized as FA← 0
7: Goal: Find TF [im, jn]: the number of transactions that

must be directed betweenCim andCjn

8: Foreach combinationL, sorted by mean delay values
9: For eachCim in L

10: fi ←
AC[i,m]

Ti

11: minf ← min∀i(fi)
12: ratio = min(minf , DR(L, t))
13: Rescale damping ratios if necessary
14: For eachCim in L
15: AC[i,m]← AC[i,m]− ratio ∗ Ti

16: TF [id(i), jd(j)]← TF [id(i), jd(j)]+ratio∗Tij ,
∀i, j

17: FA← FA+ ratio

18: Repeat until FA = 1
19: end procedure

Algorithm 2 Dynamic capacity estimation.
1: procedure COMPUTECAPACITYTHRESH-

OLD(T,D)
2: if D > 1.1 ∗DelayAtThresh then
3: if T <= Thresh then
4: LowerThresh← 0.8 ∗ T
5: ComponentCapacity ← Thresh
6: else
7: Thresh← unchanged
8: ComponentCapacity ← Thresh
9: end if

10: else if D <= DelayAtThresh then
11: if T >= Thresh then
12: Thresh← T

13: ComponentCapacity ← T + 5%ofT
14: else
15: Thresh← unchanged
16: ComponentCapacity ← Thresh
17: end if
18: end if
19: end procedure

4.4 Estimating capacity of components

We next discuss howDealer determines the capacity of
components in terms of the user load that each compo-
nent can handle. Typically, application delays are not
impacted by an increase in load upto a point which we
term as thethreshold. Beyond this point, application
delays increase gradually with load, until we enter a
breakdown region where vastly degraded performance
is seen. Ideally,Dealer must operate at the threshold
to ensure the component is saturated while not result-
ing in degraded performance. The threshold is sensi-

8

tive to the types of application transactions, and may
change dynamically as the mix of application transac-
tions changes. Hence,Dealer relies on algorithms for
dynamically estimating the threshold, and seeks to op-
erate just above the threshold.

Dealer starts with an initial threshold value based on
a conservative stress test assuming the worst-case load
(i.e., transactions that are most expensive for that com-
ponent to process). Alternately,Dealer may learn an
initial threshold during the boot-up phase of an appli-
cation in the data-center, given application traffic typi-
cally ramps up slowly before production workloads are
handled.

Dealer dynamically updates the threshold in response
to application behavior using the algorithm summa-
rized in Algorithm 2. The parameterDelayAtThresh
represents the delay in the flat region learnt from the
initialization phase, which is the desirable levels to
which the component delay must be restricted. At all
times, the algorithm maintains an estimate of the thresh-
old, Thresh, which is the largest load in recent mem-
ory where a component delay ofDelayAtThresh was
achieved.T andD represent the current transaction
load on the component, and the delay experienced at
the component respectively. The algorithm strives to
operate at a point whereD is slightly more thanDelay-
AtThresh, andT slightly more thanthresh. If Dealer
operated exactly atthresh, it would not be possible
to know if thresh has increased, and hence discover
whetherDealer is operating too conservatively.

The algorithm begins by checking whether the de-
lay is unacceptably high (line 2). In such a scenario, if
T ≤ Thresh, (line 3) it is an indication that the thresh-
old must be lowered. Otherwise (line 6), the algorithm
leaves the threshold unchanged, and lowers the com-
ponent capacity to the threshold. If the delayD is
comparable toDelayAtThresh (line 10), then, it is an
indication the component can take on more load. If
T ≥ Thresh (line 11), this is an indication that the
threshold estimate is too conservative, and hence the
threshold is increased. FurtherComponentCapacity is
set to slightly higher than the threshold to experiment
whether the component can in fact absorb more trans-
actions. If howeverT < Thresh, (line 14), thenCom-
ponentCapacity is set toThresh, to allow more transac-
tions to be directed to that component. Finally, while
we have used component delays as a means of esti-
mating if the component is saturated, we note that one
could also use other metrics such as CPU and memory
utilization of components as well as sizes of queues
being processed.

5 Experimental Evaluation
In this section, we evaluate the importance and effec-
tiveness ofDealer in ensuring good performance of
applications in the cloud. We begin by discussing our
methodology in Section 5.1. We then evaluate the ef-
fectiveness ofDealer in responding to various events
that occur naturally in a real cloud deployment (§ 5.2).
These experiments both highlight the inherent perfor-
mance variability in cloud environments, and evaluate
the ability ofDealer to cope with them. We then eval-
uateDealer using a series of controlled experiments
which stress the system, and gauge its effectiveness
in coping with extreme scenarios such as sharp spikes
in application load, failure of cloud components, and
abrupt shifts in application transaction mixes. (§ 5.3-
§ 5.5).

5.1 Evaluation Methodology

We study and evaluate the design ofDealer by con-
ducting experiments on the two applications,Thumb-
nail andStockTrader, that we had introduced in§ 2.
All experiments were conducted on the Azure cloud
platform, and by deploying a given application simul-
taneously in two Azure data-centers located geograph-
ically apart within the United States. In all experi-
ments, application traffic to one of the data-centers (re-
ferred to as the primary data-center) was subjected to
a range of application workloads, and the performance
compared with and withoutDealer. Application traf-
fic to the other data-center (referred to as the secondary
data-center) on the other hand was maintained at a steady
rate, and was run withoutDealer. The objective was to
not only study the effectiveness ofDealer in enhanc-
ing performance of traffic to the primary data-center,
but also ensure thatDealer did not negatively impact
performance of traffic to the secondary data-center.

Application traffic to both the primary and secondary
data-center was generated using a Poisson arrival pro-
cess. Spikes in workload were achieved through a higher
mean arrival rate for the Poisson process. TheThumb-
nail application was relatively simple since it had only
one type of transaction. However, a key workload pa-
rameter that we did vary was the size of pictures that
were uploaded by users. TheStockTrader application
was more complex as it involved a variety of trans-
actions (requests that involve viewing the homepage,
buying or selling stocks, fetching quotes etc.) To gen-
erate a realistic mix of transactions, we used the pub-
licly available DaCapo benchmarks [13]. A set of user
sessions were generated using a Poisson arrival pro-
cess, with each session consisting of series of requests
as specified in the benchmark.

The applications were deployed in both data-centers
with enough instances of each component so that they

9

could handle typical loads along with additional mar-
gins. We estimated the capacities of the various com-
ponents deployed on each data-center separately through
a series of stress-tests. For instance, theThumbnail
application was provisioned to handle an average load
of 2 requests per second (typical rates in our experi-
ments) along with a 100% margin (typical of real de-
ployments as shown in§ 2. We found empirically that
this required2 instances of the front-end (FE), and5
instances of the business-logic servers (BL). Like-
wise, for theStockTrader application, we found that
handling a load of 0.5 user sessions per second (each
session consisting of a series of4 requests) required
provisioning5 instances of the front-end (FE),2 in-
stances of the Business Service (BS), and1 instance of
the Order Processing Service (OS). TheStockTrader
application involves a database that could only be lo-
cated in one data-center (primary in our setup). We
found that this resulted in slightly higher transaction
processing times for requests entering the secondary
data-center, consequently resulting in more active ses-
sions and queuing at all components. To compensate
for this, we used a lower request rate of 0.35 sessions
per second at the secondary data-center.

When deploying applications across data-centers, it
is important to honor natural application constraints.
As described above, in theStockTrader application, the
database is deployed only in the primary data-center.
Further, each component can only contact the Config
Service (CS) in its local data-center, since all compo-
nents (FE, BS or OS) bind themselves to their local
CS for obtaining the communication credentials of the
other components. Finally, inStockTrader, all requests
belonging to a user session must use the same set of
components given the stateful nature of the applica-
tion.

5.2 Dealer under natural cloud dynamics

In this section, we evaluate the effectiveness ofDealer
in responding to dynamics that occur naturally in a real
cloud deployment. Our goal is to both explore the in-
herent performance variability in cloud environments,
and evaluate the ability ofDealer to cope with such
variability.

Our experiments are conducted using theThumbnail
application configured as described in§ 5.1. The focus
of these experiments was to compare the performance
of the application with and withoutDealer. Ideally it is
desirable to compare the two schemes under identical
conditions. Since this is not feasible on a real cloud,
we ran a large number of experiments with and with-
out Dealer, alternating between the two approaches.
In particular, the duration of our experiment was48
hours, with each hour split into two half-hour runs; one

 0

 0.2

 0.4

 0.6

 0.8

 1

 3000 4000 5500 7500 10000 17000

C
D

F

Delay in msec [log scale]

Without Dealer
With Dealer

Figure 8: CDF of total response time for 48 hours with and

without Dealer under natural cloud dynamics. X-axis trimmed

at 20 seconds.

without activatingDealer, and another with it.
We deployed a mix of PlanetLab nodes and a set

of hosts within a campus network to generate traffic
to both data-centers. A total of66 PlanetLab users,
spread across the US, were used to send requests to the
primary data-center. Furthermore, another set of users,
all located inside a campus network, were used to gen-
erate traffic to the secondary data-center. Requests had
an average size of1.4 MB (in the form of an image),
and an average request rate of 2 requests per second at
each data-center generated using a Poisson process.

Figure 8 shows a CDF of the total response time
when operating withDealer and without it, for the
whole experiment. The X-axis is in milliseconds, and
is trimmed at 20 seconds for better visualization. The
figure showsDealer performs significantly better. The
50th, 75th, 90th, and99th percentiles withDealer were
4.6, 5.4, 6.6 and12.7 seconds respectively. In contrast,
the corresponding values withoutDealer were4.9, 6.8,
43.2 and90.9 seconds. The reduction was more than a
factor of 6.5x for the top 10 percentiles.

Figure 9 helps better understand whyDealer per-
forms better. The figure shows a box-plot of total re-
sponse time for each run of the experiment. The X-axis
indicates the run number, and the Y-axis shows the to-
tal response time, in milliseconds. Figure 9(a) shows
the runs withDealer enabled, and 9(b) shows the runs
with Dealer disabled (i.e., all traffic going to the pri-
mary data-center stay within the data-center). In both
figures, runs with the same number indicate that the
runs took place in the same hour, back to back.

The figures show several interesting observations:
• First, in the absence ofDealer, most of the runs
had a normal range of total response time with a me-
dian value close to 5 seconds. However, the delays

10

were much higher in runs 13-16 and 43-48. Further in-
vestigation showed these high delays were caused by
the BL components in the primary data-center, which
seemed to have lower capacity to absorb requests dur-
ing those periods, and consequently experienced sig-
nificant queuing. Such a sudden dip in the component
capacity is an example of the kind of event that may
occur in the cloud, and highlights the need forDealer.
• Second,Dealer too experienced the same perfor-
mance problem with the BL component in the primary
data-center during runs 13-16 and 43-48. Figure 9(a)
shows this trend where total response time has a me-
dian at about8 seconds during these bad periods. How-
ever,Dealer was able to mitigate the problem by tap-
ping into the margin available at the secondary data-
center. Figure 10 shows the fraction of requests that
were directed to one or more components in the sec-
ondary data-center byDealer. Each bar corresponds
to a run and is split according the the combination of
components chosen byDealer. For example, for run 0
around9% of all requests handled byDealer used one
or more components from the secondary data-center.
Further, for this run,5% of the requests used the path
PPS (primary FE, primary BE, and secondary BL),
while 1% usedPSP , and3% used the pathPSS. We
see thatDealer directs a much larger fraction of re-
quests to the secondary data-center in runs 13-16 and
43-48. Further, most of the requests directed to the
secondary DC take the pathPPS, which indicates the
BL component in the secondary DC is used.
• Third, we have compared the performance with and
without Dealer, when runs 13-16 and 43-48 are not
considered. While the benefits ofDealer are not as
pronounced, it still results in a significant improvement
in the tail. In particular the90th percentile of total
response time was reduced from6.4 to 6.1 seconds,
while the99th percentile was reduced from18.1 to 8.9
seconds. Most of these benefits were due toDealer
being able to handle short-term spikes in workload by
directing transactions to the BL component of the sec-
ondary data-center. There were also some instances
of congestion in the blob of the primary data-center
which ledDealer to direct transactions to the blob of
the secondary data-center.
• Finally, Figure 9(a) shows that the performance is
not as good in run 8. Further inspection revealed that
the outliers during this run were all due to requests di-
rected to the secondary data-center, and were caused
by high upload delays of requests going to the sec-
ondary data-center. This was likely due to Internet
congestion between the users and the secondary data-
center. We note that such performance problems are
not the focus ofDealer, and should rather be handled
by schemes for Global Traffic Management such as

0 5 10 15 20 25 30 35 40 45

5000

10000

20000

40000

80000

160000

Run number

De
lay

 in
 m

se
c [

Lo
g s

ca
le]

(a) With Dealer.

0 5 10 15 20 25 30 35 40 45

5000

10000

20000

40000

80000

160000

Run number

De
lay

 in
 m

se
c [

Lo
g s

ca
le]

(b) Without Dealer.

Figure 9: Box-plots showing the total response time for all

runs in the experiment.

Figure 10: Fraction of Dealer traffic sent from the primary to

the secondary data-center.

DNS-based redirection [29, 14].

5.3 Reaction to surges in user load

In this section, we evaluateDealer’s effectiveness in
reacting to sudden increases in the application work-
load and present our results for this scenario using the
StockTrader application. Figure 11(a) shows the num-
ber of user sessions per second that arrive at the front-
end server in the primary data-center. The user ses-
sions are generated with Poisson arrivals having a mean
rate of 0.5 per second under normal conditions and at
a mean rate of2 per second during the spike. Fig-
ure 11(b) compares the total response time seen by the
requests issued to the application at the primary data-
center deployed with and withoutDealer for the same
workload. We can clearly see that the performance of
the application withDealer (the solid curve) is sub-
stantially better during the spike than without it (dot-
ted curve). This is becauseDealer is quickly able to
redirect some of the excess traffic over to the BS in the
secondary data-center and prevent the degradation of
the application’s response time.

11

Figure 11: Performance under change in work-

load(StockTrader).

5.4 Reaction to component failures

Applications deployed in the cloud may see failures of
components both due to actual physical failures, and
due to maintenance and upgrades. For instance, Win-
dows Azure’s SLA states that an application’s com-
ponent has to to have two or more instances to get
99.95% availability, as instances can be taken off for
maintenance and platform upgrades at any time [5].
Maintenance and upgrade operations make the appli-
cation work with lower margins, and render the appli-
cation susceptible to even modest workload spikes.

In this experiment, we testDealer’s capability to
adapt to such component failures using theThumbnail
application. We use the same setup as in§ 5.1 with two
additional modifications: i) at time 400, we introduce
a slight increase in user load at the primary data-center
(from 2 reqs/sec to 3.5 reqs/sec), thus decreasing the
margin from100% to 25%; and ii) at time 600, we re-
boot one of the BL instances in the primary data-center
to reproduce the case of an instance that is taken down
for maintenance, upgrade or physical failure. After re-
booting, the instance becomes available at around time
900.

Figure 12(a) shows the request rate to the primary
data-center. The shaded area under the curve shows
the number of these requests at each time snapshot that
were serviced by at least one component in the sec-
ondary data-center. Different shades are used to repre-
sent the different paths used byDealer. Figure 12(b)
shows the total response time of all requests, compar-
ing the performance with and withoutDealer. The x-
axis in all figures represent the time in seconds, and is
aligned in all figures.

The figure clearly shows the benefits ofDealer. Around
time 600,Dealer detected an increase in total response

Figure 12: Performance under component failures (Thumb-

nail).

time and starts redirecting transactions that arrive at
the front-end of the primary data-center to the business
logic of the secondary data-center. After the instance
was brought back up around time 900,Dealer returned
to using its original path.

5.5 Reaction to change in transaction mix

Multi-tier applications show a lot of variability not only
in the arrival rate of user requests but also in the mix
of transactions, as we discussed in§2. In this section,
we evaluate the effectiveness ofDealer in adapting to
changes in transaction mix using bothThumbnail and
StockTrader.

TheThumbnail application is relatively simple with
just one type of transaction. However, the performance
does depend on the size of user images. Using the
same configuration described in§ 5.1, we increase the
size of images that users upload to the primary data-
center’s from 860 KB to 1.4 MB during time 400 to
800, and reduce it to 860 KB after that. Figure 13
shows the total response time, comparing the perfor-
mance with and withoutDealer. The performance with-
outDealer is significantly affected even by a moderate
increase in image size of60%. Further, although the
problem lasted for only 400 seconds (6.6 minutes), it
took the application withoutDealer around 960 sec-
onds (16 minutes) to recover after the transaction sizes
returned to normal due to the large build-up of queues.
However, the performance withDealer is good as the
application could dynamically direct transactions to the
secondary data-center.

We next present our evaluation ofDealer’s response
to a similar scenario using theStockTrader. While we
make use of sessions from the DaCapo benchmark for
the normal workload, we stress the system by increas-
ing theheaviness of the Fetch Quotes request for a
short duration. In particular, we increase the number
of quotes to be fetched from the default number of5

12

Figure 13: Performance under varying transaction size

(Thumbnail).

to 30 quotes per session. The heavier transactions ar-
rive at around time200 and lasts for about100 sec-
onds after which the transactions go back to the nor-
mal mix. Figure 14(a) compares the Total Response
Time of all the requests seen by the application when
deployed with and withoutDealer on the primary data-
center. It can be seen that the application withDealer
performs much better than without it.

Figure 14: Performance under change in transaction

mix(StockTrader).

Figure 14(b) shows the number of user sessions seen
over time along with the corresponding combination of
components that was chosen byDealer for those ses-
sions. For instance, at time 250, whenDealer saw an
increase in the response time of the requests along the
combination PPP, i.e. FE (primary), BS (primary) and
OS (primary), it decided to direct some of the sessions

along the combination PPS, which is FE (primary), BS
(primary) and OS (secondary). While it is clear from
figure 14(a) that this decision helped the application,
we now explain why and how the decision was made
by Dealer. As we mentioned earlier in§ 5.1, all the
components need to communicate frequently with CS.
To process a Fetch Quotes request, BS has to contact
the CS and DB as many times as the number of quotes
fetched, which results in a large number of connec-
tions made to the CS. This increase causes queue for-
mation at the CS resulting in bad performance of the
application. WhenDealer chooses to route the Order
processing requests to the OS in the secondary data-
center, all connections from OS (secondary) remains
local to its corresponding CS (secondary) and there-
fore do not contribute to the queue build up in the pri-
mary. The benefit of this reaction can be observed
from Figure 14(c) which shows the number of active
sessions over time for both the cases. During the pe-
riod (250-300) whenDealer decides to route requests
along the PPS combination, the number of active ses-
sions remains fairly constant (around 135) as can be
observed from the solid curve. An interesting obser-
vation here is thatDealer did not choose to direct re-
quests to the BS (secondary), i.e. along the PSS com-
bination. This is because a large number of requests
from BS (secondary) to the DB (located only at the
primary data-center) would result in a higher amount
of data transfer across the data-centers thereby incur-
ring higher latencies.Dealer determines this through
the probes, and therefore decides to direct only the or-
der processing traffic to the secondary data-center.

6 Related Work

Several works have studied the problem of mapping
users to appropriate data-centers [29, 14, 27]. Such
techniques focus on alleviating performance problems
related to Internet congestion between users and data-
centers, or coarse-grained load-balancing at the gran-
ularity of data-centers. In contrast, our focus is on
splitting transactions across data-centers at the gran-
ularity of individual components. The goal is to allevi-
ate short-term performance problems or transient over-
loads on particular components inside a data-center,
while still utilizing those components inside the data-
center that perform well. To our knowledge, this is the
first work that explores component-level performance-
aware transaction splitting in multi-cloud deployments.

The cloud industry already provides mechanisms to
scale up or down the number of servers in a partic-
ular component in a particular data center based on
workload [21, 4]. However, it takes tens of minutes
to invoke new cloud instances and ensure the servers
are warmed up. Our focus is on faster adaptation at

13

shorter time-scales, and is intended to complement so-
lutions for dynamic resource invocation.

Recent work [17] has developed algorithms for plan-
ning hybrid cloud deployments of enterprise applica-
tions. This work is limited to a static snapshot of appli-
cation workload, and network conditions. In contrast
our focus is on dynamically adapting multi-cloud lay-
outs to short-term dynamics in cloud performance and
application workload.

Several researchers have pointed out the presence
of performance problems with the cloud [28, 18, 12,
11]. In contrast our focus is on designing systems to
adapt to short-term variability in application workload
and performance. Other researchers have started look-
ing at support that can be provided by cloud providers
to achieve performance isolation in data-centers in the
presence of multiple tenants [22]. Our work is comple-
mentary in that we take an enterprise-centric view, and
focus on ways to adapt applications to performance
variability that may occur in the cloud.

7 Conclusions
In this paper, we have shown that it is critical for multi-
tier enterprise applications to adapt to short-term vari-
ability in the performance of cloud components and
application workloads when deployed in the cloud. We
have shown the importance and feasibility of adapting
to such variability by dynamically splitting transac-
tions across data-centers at the granularity of individ-
ual application components in a performance-aware fash-
ion. Our work is in contrast to traditional approaches
that employ coarse-grained load-balancing at the gran-
ularity of data-centers. We have presentedDealer, a
system built around this new design point. We have
shown that it is easy to integrateDealer with two con-
trasting multi-tier applications. Evaluations on actual
Azure cloud deployments indicate the benefits ofDealer.
Under natural cloud dynamics, the90th and higher
percentiles of application response times were reduced
by more than a factor of 6 withDealer. Our con-
trolled experiments showDealer ensures good appli-
cation performance under a variety of controlled ex-
periments including abrupt spikes in workload, changes
in transaction mixes, and component failures. While
the results are promising, they are a start. As future
work, we plan to explore the performance ofDealer
with a wider range of applications and cloud environ-
ments, as well as evaluate the performance under scale.

8 References

[1] Animoto - Scaling Through Viral Growth.http://aws.typepad.
com/aws/2008/04/animoto---scali.html.

[2] Apache, Project Stonehenge.http:
//wiki.apache.org/incubator/StonehengeProposal.

[3] Grinder Load Testing Framework.
http://grinder.sourceforge.net/index.html.

[4] Microsoft Windows Azure.
http://www.microsoft.com/windowsazure/.

[5] Windows Azure SLA.
http://www.microsoft.com/windowsazure/sla/.

[6] Microsoft Corp., Event Tracing for Windows (ETW).
http://msdn.microsoft.com/en-us/library/
aa363668(v=VS.85).aspx, 2002.

[7] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig. Comparing
DNS resolvers in the wild. InIMC 2010.

[8] F. Ahmad and T. Vijaykumar. Joint optimization of idle and cooling
power in data centers while maintaining response time.ASPLOS 2010.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. Above the clouds: A Berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, EECS Department, University
of California, Berkeley, Feb 2009.

[10] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: Online
modelling and performance-aware systems. InHOTOS 2003.

[11] S. Barker and P. Shenoy. Empirical evaluation of latency-sensitive
application performance in the cloud. InMMSys 2010.

[12] T. Benson, S. Sahu, A. Akella, and A. Shaikh. A first look at problems
in the cloud. InHotCloud 2010.

[13] S. M. Blackburn and et al. The DaCapo benchmarks: Java
benchmarking development and analysis. InOOPSLA 2006.

[14] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman,and B. Weihl.
Globally distributed content delivery.Internet Computing, IEEE, 2002.

[15] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. X-trace: A
pervasive network tracing framework. InNSDI 2007.

[16] D. Gottfrid. The New York Times Archives + Amazon Web Services =
TimesMachine.
http://open.blogs.nytimes.com/2008/05/21/.

[17] M. Hajjat and et al. Cloudward bound: Planning for beneficial
migration of enterprise applications to the cloud.SIGCOMM 2010.

[18] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: comparing
public cloud providers. InIMC 2010.

[19] M. Massie, B. Chun, and D. Culler. The ganglia distributed monitoring
system: design, implementation, and experience.Parallel Computing
2004.

[20] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan. On the
responsiveness of DNS-based network control. InIMC 2004.

[21] RightScale Inc. Cloud computing management platform.
http://www.rightscale.com.

[22] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the
Data Center Network. InNSDI 2011.

[23] A. Su, D. Choffnes, A. Kuzmanovic, and F. Bustamante. Drafting
behind akamai.SIGCOMM 2006.

[24] Symantec. 2010 State of the Data Center Global Data.http:
//www.symantec.com/content/en/us/about/media/
pdfs/Symantec_DataCenter10_Report_Global.pdf.

[25] B. Urgaonkar and P. Shenoy. Cataclysm: Handling extreme overloads
in internet services. InPODC 2004.

[26] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms.OSDI 2002.

[27] V. Valancius, N. Feamster, J. Rexford, and A. Nakao. Wide-area route
control for distributed services. InUSENIX 2010.

[28] G. Wang and T. S. E. Ng. The impact of virtualization on network
performance of Amazon EC2 data center. InIEEE INFOCOM 2010.

[29] P. Wendell, J. Jiang, M. Freedman, and J. Rexford. DONAR:
decentralized server selection for cloud services. InSIGCOMM 2010.

14

	Purdue University
	Purdue e-Pubs
	4-18-2011

	Dealer: Dynamic Request Splitting for Performance-Sensitive Applications in Multi-Cloud Environments
	Mohammad Hajjat
	Shankaranarayanan Narayanan
	David Maltz
	Sanjay Rao
	Kunwadee Sripanidkulchai

