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Abstract

We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise
and random design. We study the true and empirical excess risks of the least-squares estimator on �nite-
dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic
and optimal to �rst order, allowing the dimension to depend on sample size. These bounds show the
equivalence between the true and empirical excess risks when, among other things, the least-squares esti-
mator is consistent in sup-norm with the projection of the regression function onto the considered model.
Consistency in the sup-norm is then proved for suitable histogram models and more general models of
piecewise polynomials that are endowed with a localized basis structure.

keywords: Least-squares regression, Heteroscedasticity, Excess risk, Lower bounds, Sup-norm, Localized
basis, Empirical process.

1 Introduction

A few years ago, Birgé and Massart [6] introduced a data-driven calibration method for penalized criteria in
model selection, called the Slope Heuristics. Their algorithm is based on the concept of the minimal penalty,
under which a model selection procedure fails. Given the shape of the ideal penalty, which in their Gaussian
setting is a known function of the dimension of the considered models, the algorithm �rst provides a data-driven
estimate of the minimal penalty. This is done by taking advantage of a sudden change in the behavior of the
model selection procedure around this level of penalty. Then, the algorithm selects a model by using a penalty
that is twice the estimated minimal penalty. Birgé and Massart prove in [6] that an asymptotically optimal
penalty is twice the minimal one, in the sense that the associated selected model achieves a nonasymptotic
oracle inequality with leading constant converging to one when the sample size tends to in�nity.
The slope heuristics algorithm has been recently extended by Arlot and Massart [2] to the selection of

M-estimators, whenever the number of models is not more than polynomial in the sample size. Arlot and
Massart highlight that, in this context, the mean of the empirical excess risk on each model should be a good,
rather general candidate for the - unknown - minimal penalty. In addition, they note that an optimal penalty
is roughly given by the sum of the true and the empirical excess risks on each model. A key fact underlying
the asymptotic optimality of the slope heuristics algorithm is the equivalence - in the sense that the ratio
tends to one when the sample size tends to in�nity - between the true and empirical excess risk, for each
model which is likely to be selected. Generally, these models are of moderate dimension, typically between
(log (n))

c and n= (log (n))c, where c is a positive constant and n is the sample size. This equivalence leads,
quite straightforwardly, to the factor two between the minimal penalty and the optimal one.
Arlot and Massart prove in [2], by considering the selection of �nite-dimensional models of histograms in

heteroscedastic regression with a random design, that the slope heuristics algorithm is asymptotically optimal.

�Research partly supported by the french Agence Nationale de la Recherche (ANR 2011 BS01 010 01 projet Calibration).
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The authors conjecture in [2], Section 1, that the restriction to histograms is �mainly technical�, and that the
slope heuristics �remains valid at least in the general least squares regression framework�.
The �rst motivation of the present paper is thus to tackle the challenging mathematical problem raised

by Arlot and Massart in [2], concerning the validity slope heuristics. More precisely, we isolate the question
of the equivalence, for a �xed model, between the true and empirical excess risks. As emphasized in [2], this
constitutes the principal part of the conjecture, since other arguments leading to model selection results are
now well understood. We thus postpone model selection issues to a forthcoming paper, and focus on the �xed
model case.
We consider least squares regression with heteroscedastic noise and random design, using a �nite-dimensional

linear model. Our analysis is nonasymptotic in the sense that our results are available for a �xed value of the
sample size. It is also worth noticing that the dimension of the considered model is allowed to depend on the
sample size and consequently is not treated as a constant of the problem. In order to determine the possible
equivalence between the true and empirical excess risks, we investigate upper and lower deviation bounds for
each quantity. We obtain �rst order optimal bounds, thus exhibiting the �rst part of the asymptotic expansion
of the excess risks. This requires to determine not only the right rates of convergence, but also the optimal
constant on the leading order term. We give two examples of models that satisfy our conditions: models of
histograms and models of piecewise polynomials, whenever the partition de�ning these models satisfy some
regularity condition with respect to the unknown distribution of data. Our results concerning histograms
roughly recover those derived for a �xed model by Arlot and Massart [2], but with di¤erent techniques. More-
over, the case of piecewise polynomials strictly extend these results, and thus tends to con�rm Arlot and
Massart conjecture on the validity of the slope heuristics.
We believe that our deviation bounds, especially those concerning the true excess risk, are interesting by

themselves. Indeed, the optimization of the excess risk is, from a general perspective, at the core of many
nonparametric approaches, especially those related to statistical learning theory. Hence, any sharp control of
this quantity is likely to be useful in many contexts.
In the general bounded M-estimation framework, rates of convergence and upper bounds for the excess risk

are now well understood, see [18], [17], [13], [4], [10]. However, the values of the constants in these deviation
bounds are suboptimal - or even unknown -, due in particular to the use of chaining techniques. Concerning
lower deviation bounds, there is no convincing contribution to our knowledge, except the work of Bartlett
and Mendelson [4], where an additional assumption on the behavior of underlying empirical process is used to
derive such a result. However, this assumption is in general hard to check.
More speci�c frameworks, such as least squares regression with a �xed design on linear models (see for

instance [6], [3] and [1]), least squares estimation of density on linear models (see [?] and references therein),
or least squares regression on histograms as in [2], allow for sharp, explicit computations that lead to optimal
upper and lower bounds for the excess risks. Hence, a natural question is: is there a framework, between
the general one and the special cases, that would allow to derive deviation bounds that are optimal at the
�rst order ? In other words, how far could optimal results concerning deviation bounds been extended ? The
results presented in this article can be seen as a �rst attempt to answer these questions.
The article is organized as follows. We present the statistical framework in Section 2, where we show in

particular the existence of an expansion of the least squares regression contrast into the sum of a linear and a
quadratic part. In Section 3, we detail the main steps of our approach at a heuristic level and give a summary
of the results presented in the paper. We then derive some general results in Section 4. These theorems are
then applied to the case of histograms and piecewise polynomials in Sections 5 and 6 respectively, where in
particular, explicit rates of convergence in sup-norm are derived. Finally, the proofs are postponed to the end
of the article.

2 Regression framework and notations

2.1 least squares estimator

Let (X ; TX ) be a measurable space and set Z = X�R. We assume that �i = (Xi;Yi) 2 X�R, i 2 f1; :::; ng,
are n i.i.d. observations with distribution P . The marginal law of Xi is denoted by PX : We assume that the
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data satisfy the following relation
Yi = s� (Xi) + � (Xi) "i ; (1)

where s� 2 L2
�
PX
�
, "i are i.i.d. random variables with mean 0 and variance 1 conditionally to Xi and � :

X �!R is a heteroscedastic noise level. A generic random variable of law P , independent of (�1; :::; �n), is
denoted by � = (X;Y ) :
Hence, s� is the regression function of Y with respect to X, to be estimated. Given a �nite dimensional linear
vector space M , that we will call a �model�, we denote by sM the linear projection of s� onto M in L2

�
PX
�

and by D the linear dimension of M .
We consider on the model M a least squares estimator sn (possibly non unique), de�ned as follows

sn 2 arg min
s2M

(
1

n

nX
i=1

(Yi � s (Xi))
2

)
: (2)

So, if we denote by

Pn =
1

n

nX
i=1

�(Xi;Yi)

the empirical distribution of the data and by K : L2
�
PX
�
�! L1 (P ) the least squares contrast, de�ned by

K (s) = (x; y) 2 Z ! (y � s (x))2 , s 2 L2
�
PX
�
,

we then remark that sn belongs to the general class of M-estimators, as it satis�es

sn 2 arg min
s2M

fPn (K (s))g : (3)

2.2 Excess risk and contrast

As de�ned in (3), sn is the empirical risk minimizer of the least squares contrast. The regression function s�
can be de�ned as the minimizer in L2

�
PX
�
of the mean of the contrast over the unknown law P ,

s� = arg min
s2L2(PX)

PK (s) ;

where
PK (s) = P (Ks) = PKs = E [K (s) (X;Y )] = E

h
(Y � s (X))2

i
is called the risk of the function s. In particular we have PKs� = E

�
�2 (X)

�
. We �rst notice that for any

s 2 L2
�
PX
�
, if we denote by

ksk2 =
�Z

X
s2dPX

�1=2
its quadratic norm, then we have, by (1) above,

PKs� PKs� = P (Ks�Ks�)

= E
h
(Y � s (X))2 � (Y � s� (X))2

i
= E

h
(s� � s)2 (X)

i
+ 2E

24(s� � s) (X)E [Y � s� (X) jX ]| {z }
=0

35
= ks� s�k22 � 0 :

The quantity PKs� PKs� is called the excess risk of s. Now, if we denote by sM the linear projection of s�
onto M in L2

�
PX
�
, we have

PKsM � PKs� = inf
s2M

fPKs� PKs�g ; (4)
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and for all s 2M
PX (s � (sM � s�)) = 0 : (5)

From (4), we deduce that
sM = arg min

s2M
PK (s) :

Our goal is to study the performance of the least squares estimator, that we measure by its excess risk. So we
are mainly interested in the random quantity P (Ksn �Ks�) : Moreover, as we can write

P (Ksn �Ks�) = P (Ksn �KsM ) + P (KsM �Ks�)

we naturally focus on the quantity
P (Ksn �KsM ) � 0

that we want to bound from upper and from below, with high probability. We will often call this last quantity
the excess risk of the estimator on M or the true excess risk of sn, in opposition to the empirical excess risk
for which the expectation is taken over the empirical measure,

Pn (KsM �Ksn) � 0 :

The following lemma establishes the expansion of the regression contrast around sM on M . This expansion
exhibits a linear part and a quadratic parts.

Lemma 1 We have, for every z = (x; y) 2 Z;

(Ks) (z)� (KsM ) (z) =  1;M (z) (s� sM ) (x) +  2 ((s� sM ) (x)) (6)

with  1;M (z) = �2 (y � sM (x)) and  2 (t) = t2, for all t 2 R: Moreover, for all s 2M ,

P
�
 1;M � s

�
= 0 : (7)

Proof. Start with

(Ks) (z)� (KsM ) (z)
= (y � s (x))2 � (y � sM (x))2

= ((s� sM ) (x)) ((s� sM ) (x)� 2 (y � sM (x)))
= �2 (y � sM (x)) ((s� sM ) (x)) + ((s� sM ) (x))2 ,

which gives (6). Moreover, observe that for any s 2M ,

P
�
 1;M � s

�
= �2E [(Y � s� (X)) s (X)] + 2E [s (X) (sM � s�) (X)] : (8)

We have

E [(Y � s� (X)) s (X)] = E

24E [(Y � s� (X)) jX ]| {z }
=0

s (X)

35 = 0 : (9)

and, by (5),
E [s (X) (sM � s�) (X)] = PX (s � (sM � s�)) = 0 : (10)

Combining (8), (9) and (10) we get that for any s 2M , P
�
 1;M � s

�
= 0. This concludes the proof. �

4



3 Outline of the approach

Having introduced the framework and notations in Section 2 above, we are now able to explain more precisely
the major steps of our approach to the problem of deriving optimal upper and lower bounds for the excess
risks. As mentioned in the introduction, one of our main motivations is to determine whether the true excess
risk is equivalent to the empirical one or not:

P (Ksn �KsM ) � Pn (KsM �Ksn) ? (11)

Indeed, such an equivalence is a keystone to justify the slope heuristics, a data-driven calibration method �rst
proposed by Birgé and Massart [6] in a Gaussian setting and then extended by Arlot and Massart [2] to the
selection of M-estimators.
The goal of this section is twofold. Firstly, it helps the reader to understand the role of the assumptions made
in the forthcoming sections. Secondly, it provides an outline of the proof of our main result, Theorem 2 below.
We suggest the reader interested in our proofs to read this section before entering the proofs.
We start by rewriting the lower and upper bound problems, for the true and empirical excess risks. Let C
and � be two positive numbers. The question of bounding the true excess risk from upper and with high
probability can be stated as follows: �nd, at a �xed � > 0, the smallest C > 0 such that

P [P (Ksn �KsM ) > C] � n�� .

We then write, by de�nition of the M-estimator sn as a minimizer of the empirical excess risk over the model
M ,

P [P (Ksn �KsM ) > C]

� P
�
inf
s2MC

Pn (Ks�KsM ) � inf
s2M>C

Pn (Ks�KsM )
�

= P

"
sup
s2MC

Pn (KsM �Ks) � sup
s2M>C

Pn (KsM �Ks)
#
, (12)

where
MC := fs 2M ; P (Ks�KsM ) � Cg

and
M>C :=MnMC = fs 2M ; P (Ks�KsM ) > Cg

are subsets of the model M , localized in terms of excess risk. As a matter of fact, MC is the closed ball of
radius C in (M; k�k2). In the same manner, the question of bounding the true excess risk from below and with
high probability is formalized as follows: �nd the larger C > 0 such that

P [P (Ksn �KsM ) � C] � n�� .

We then have, by de�nition of the M-estimator sn,

P [P (Ksn �KsM ) � C]

� P
�
inf
s2MC

Pn (Ks�KsM ) � inf
s2M>C

Pn (Ks�KsM )
�

= P

"
sup
s2MC

Pn (KsM �Ks) � sup
s2M>C

Pn (KsM �Ks)
#
. (13)

Expressions obtained in (12) and (13) allow to reduce both upper and lower bounds problems for the excess
risk to the comparison of two quantities of interest,

sup
s2MC

Pn (KsM �Ks) and sup
s2M>C

Pn (KsM �Ks) .
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Moreover, by setting DL = fs 2M ; P (Ksn �KsM ) = Lg, we get

sup
s2MC

Pn (KsM �Ks) = sup
0�L�C

�
sup
s2DL

Pn (KsM �Ks)
�

= sup
0�L�C

�
sup
s2DL

f(Pn � P ) (KsM �Ks) + P (KsM �Ks)g
�

= sup
0�L�C

�
sup
s2DL

f(Pn � P ) (KsM �Ks)g � L
�

(14)

and also

sup
s2M>C

Pn (KsM �Ks) = sup
L>C

�
sup
s2DL

f(Pn � P ) (KsM �Ks)g � L
�
. (15)

The study of the excess risk thus reduces to the control of the following suprema, on the spheres DL of radius L
in (M; k�k2), of the empirical process indexed by contrasted increments of functions inM around the projection
sM of the target,

sup
s2DL

f(P � Pn) (Ks�KsM )g , L � 0 . (16)

Similarly, the empirical excess risk can be written, by de�nition of the M-estimator sn,

Pn (KsM �Ksn) = sup
s2M

Pn (KsM �Ks)

= sup
L�0

�
sup
s2DL

Pn (KsM �Ks)
�

= sup
L�0

�
sup
s2DL

f(Pn � P ) (KsM �Ks)g � L
�
. (17)

Hence, the study of the empirical excess risk reduces again to the control of the quantities given in (16). As
these quantities are (local) suprema of an empirical process, we can handle, under the right hypotheses, the
deviations from their mean via the use of concentration inequalities - deviations from the right being described
with optimal constants by Bousquet inequality (Bousquet, [8], recalled in Section 7.5 at the end of the present
paper) and deviations from left being controlled with sharp constants by Klein and Rio inequality (Klein and
Rio [12], also recalled in Section 7.5). We can thus expect that, under standard assumptions, the deviations
are negligible compared to the means with large enough probability, at least for radii L not too small,

sup
s2DL

f(P � Pn) (Ks�KsM )g � E
�
sup
s2DL

f(P � Pn) (Ks�KsM )g
�
. (18)

Remark 1 It is worth noting that the above computations, which allow to investigate both upper and lower
bound problems, only rely on the de�nition of sn as a minimizer of the empirical risk over the model M , and
not on the particular structure of the least squares contrast. Thus, formula (12), (13), (14), (15) and (17) are
general facts of M-estimation - whenever the projection sM of the target onto the model M exists. Moreover,
although presented in a quite di¤erent manner, our computations related to the control of the true excess risk
are in essence very similar to those developed by Bartlett and Mendelson in [4], concerning what they call "a
direct analysis of the empirical minimization algorithm". Indeed, the authors highlight in Section 3 of [4] that,
under rather mild hypotheses, the true excess risk is essentially the maximizer of the function Vn (L) � L,
where we set

Vn (L) := E
�
sup
s2DL

f(P � Pn) (Ks�KsM )g
�
.

Now, combining (12), (13), (14) and (15), it is easily seen that in the case where sn is unique and where

8C � 0; sup
s2DC

Pn (KsM �Ks) is achieved
�
= max

s2DC

Pn (KsM �Ks)
�
,
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we have in fact the following exact formula,

P (Ksn �KsM ) = argmax
L�0

�
max
s2DL

Pn (KsM �Ks)
�

= argmax
L�0

�
max
s2DL

(P � Pn) (Ks�KsM )� L
�
. (19)

So, if (18) is satis�ed with high probability, we recover Bartlett and Mendelson�s observation, which is

P (Ksn �KsM ) � argmax
L�0

fVn (L)� Lg . (20)

In Theorem 3.1 of [4], a precise sense is given to (20), in a rather general framework. In particular, a lower
bound for the excess risk is given but only through an additional condition controlling the supremum of the
empirical process of interest itself over a subset of functions of �small�excess risks. This additional condition
remains the major restriction concerning the related result of Bartlett and Mendelson. In the following, we show
in our more restricted framework how to take advantage of the linearity of the model, as well as the existence of
an expansion of the least squares contrast around the projection sM of the target, to derive lower bounds without
additional assumptions on the behavior of the empirical process of interest. Moreover, our methodology allow to
explicitly calculate the �rst order of the quantity given at the right side of (20), thus exhibiting a rather simple
complexity term controlling the rate of convergence of the excess risk in the regression setting and relating
some geometrical characteristics of the model M to the unknown law P of data.

Remark 2 Formula (17) and (19) above show that the true and empirical excess risks are of di¤erent nature,
in the sense that the �rst one is referred to the arguments of the function

�n : L (� 0) 7! max
s2DL

(P � Pn) (Ks�KsM )� L ,

whereas the second one is measured from the values of the function �n. Hence, the equivalence between the
true and the empirical excess risks, when satis�ed, is in general not straightforward. It is a consequence of the
following ��xed point type�equation,

argmax
R+

f�ng � max
R+

f�ng .

Considering that the approximation stated in (18) is suitably satis�ed, it remains to get an asymptotic
�rst order expansion of its right-hand term. Such a control is obtained through the use of the least squares
contrast expansion given in (6). Indeed, using (6), we get

E
�
sup
s2DL

f(P � Pn) (Ks�KsM )g
�

= E
�
sup
s2DL

�
(P � Pn)

�
 1;M � (s� sM )

�	�
| {z }

principal part

+ E
�
sup
s2DL

n
(P � Pn)

�
(s� sM )2

�o�
| {z }

residual term

. (21)

In order to show that the residual term is negligible compared with the principal part, it is natural to use a
contraction principle (see Theorem 4.12 of [15], also recalled in Section 7.5). Indeed, arguments of the empirical
process appearing in the residual term are related to the square of the arguments de�ning the empirical process
in the principal part. Moreover, it appears by using the contraction principle, that the ratio of the residual
term over the principal part is roughly given by the supremum norm of the indexes: sups2DL

j(s� sM ) (x)j (see
Lemma 14 in Section 7.4 for more details). Now, using assumption (H3) of Section 4.1, concerning the unit
envelope of the linear model M , we get that the last quantity is of order

p
DL. Since the values L of interest

are typically of order D=n, the quantity controlling the ratio is not sharp enough as it does not converge to
zero as soon as the dimension D is of order at least

p
n.
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We thus have to re�ne our analysis in order to be able to neglect the residual term. The assumption of
sup-norm consistency, of the least squares estimator sn toward the projection sM of the target onto the model
M , appears here to be essential. Indeed, if assumption (H5) of Section 4.1 is satis�ed, then all the above
computations can be restricted with high probability to the subset where belongs the estimator sn, this subset
being more precisely

BL1 (sM ; Rn;D;�) = fs 2M ; ks� sMk1 � Rn;D;�g �M , (22)

Rn;D;� � 1 being the rate of convergence in sup-norm of sn toward sM , de�ned in (H5). In particular, the
spheres of interest DL are now replaced in the calculations by their intersection ~DL with the ball of radius
Rn;D;� in (M; k�k1),

~DL = DL \BL1 (sM ; RM;n;�) .

The ratio between the consequently modi�ed residual term and principal part of (21) is then roughly controlled
by Rn;D;� (see again Lemma 14 in Section 7.4), a quantity indeed converging to zero as desired. Hence, under
the assumption (H5), we get

E

"
sup
s2 ~DL

f(P � Pn) (Ks�KsM )g
#
� E

"
sup
s2 ~DL

�
(P � Pn)

�
 1;M � (s� sM )

�	#
. (23)

A legitimate and important question is: how restrictive is assumption (H5) of consistency in sup-norm of
the least squares estimator ? We prove in Lemma 5 of Section 5 that this assumption is satis�ed for models
of histograms de�ned on a partition satisfying some regularity condition, at a rate of convergence of orderp
D ln (n) =n. Moreover, in Lemma 8, Section 6, we extend this result for models of piecewise polynomials

uniformly bounded in their degrees, again under some lower-regularity assumption on the partition de�ning
the model; the rate of convergence being also preserved. A systematical study of consistency in sup-norm of
least squares estimators, on more general �nite-dimensional linear models, is also postponed to a forthcoming
paper.
The control of the right-hand side of (23), which is needed to be sharp, is particularly technical, and is

essentially contained in Lemmas 12 and 13 of Section 7.4. Let us shortly describe the mathematical �gures
underlying this control. First, by bounding the variance of the considered supremum of the empirical process
- by using a result due to Ledoux [14], see Theorem 24 and also Corollary 25 in Section 7.5 -, we roughly get,
for values of L of interest,

E

"
sup
s2 ~DL

�
(P � Pn)

�
 1;M � (s� sM )

�	#
� E1=2

24 sup
s2 ~DL

�
(P � Pn)

�
 1;M � (s� sM )

�	!235 . (24)

Then, by assuming that the model M is ful�lled with a localized orthonormal basis, as stated in assumption
(H4) of Section 4.1, it can be shown that the localization on the ball BL1 (sM ; RM;n;�) can be removed from
the right-hand side of (24), in the sense that

E1=2
24 sup

s2 ~DL

�
(P � Pn)

�
 1;M � (s� sM )

�	!235 � E1=2 "� sup
s2DL

�
(P � Pn)

�
 1;M � (s� sM )

�	�2#
. (25)

The property of localized basis is standard in model selection theory (see for instance Chapter 7 of [16]) and
was �rst introduced by Birgé and Massart in [5], also for deriving sharp exponential bounds in a M-estimation
context. We show in Lemmas 4 and 7 that this assumption is satis�ed for models of histograms and piecewise
polynomials respectively, when they satisfy a certain regularity assumption concerning the underlying partition.
Finally, as DL is a sphere in (M; k�k2), we simply get, by the use of Cauchy-Schwarz inequality, that the

right-hand side of (25) is equal to
q
(L=n) �

PD
k=1Var

�
 1;M � 'k

�
, where ('k)

D
k=1 is an orthonormal basis of
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M . Gathering our arguments, we then obtain

P (Ksn �KsM ) � argmax
L�0

�
sup
s2DL

E [(Pn � P ) (KsM �Ks)]� L
�

� argmax
L�0

8<:
s
L �
PDM

k=1Var
�
 1;M � 'k

�
n

� L

9=; =
1

4

DM

n
K21;M , (26)

where K21;M := 1
DM

PDM

k=1Var
�
 1;M � 'k

�
. As shown in Section 4.3 below, the (normalized) complexity term

K1;M is independent of the choice of the basis ('k)
D
k=1 and is, under our assumptions, of the order of a constant.

Concerning the empirical excess risk, we have

Pn (KsM �Ksn) = max
L�0

�
sup
s2DL

E [(Pn � P ) (KsM �Ks)]� L
�

� max
L�0

8<:
s
L �
PDM

k=1Var
�
 1;M � 'k

�
n

� L

9=; =
1

4

DM

n
K21;M . (27)

In particular, the equivalence

P (Ksn �KsM ) � Pn (KsM �Ksn)
�
� 1

4

DM

n
K21;M

�
is justi�ed.
In Theorem 2 below, a precise, non-asymptotic sense, is given to equivalences described in (26) and (27).

This is done under the structural constraints stated in conditions (H4) and (H5), for models of reasonable
dimension. Moreover, we give in Theorem 3 upper bounds for the true and empirical excess risks, that are less
precise than the bounds of Theorem 2, but that are also valid for models of small dimension. Corollaries of these
theorems are given in the case of histograms and piecewise polynomials, in Corollaries 6 and 9 respectively.
Indeed, we show that in these particular cases, our general conditions (H4) and (H5) essentially reduce to a
simple lower-regularity assumption on the underlying partition.

4 True and empirical excess risk bounds

In this section, we derive under general constraints on the linear model M , upper and lower bounds for the
true and empirical excess risk, that are optimal - and equal - at the �rst order. In particular, we show that
the true excess risk is equivalent to the empirical one when the model is of reasonable dimension. For smaller
dimensions, we only achieve some upper bounds.

4.1 Main assumptions

We turn now to the statement of some assumptions that will be needed to derive our results in Section 4.2.
These assumptions will be further discussed in Section 4.3.

Boundedness assumptions:

� (H1) The data and the linear projection of the target onto M are bounded: a positive �nite constant A
exists such that

jYij � A a:s: (28)

and
ksMk1 � A : (29)

9



Hence, from (H1) we deduce that
ks�k1 = kE [Y jX = � ]k1 � A (30)

and that there exists a constant �max > 0 such that

�2 (Xi) � �2max � A2 a:s: (31)

Moreover, as  1;M (z) = �2 (y � sM (x)) for all z = (x; y) 2 Z, we also deduce that�� 1;M (Xi; Yi)
�� � 4A a:s: (32)

� (H2) The heteroscedastic noise level � is uniformly bounded from below: a positive �nite constant �min
exists such that

0 < �min � � (Xi) a:s:

Models with localized basis in L2
�
PX
�
:

Let us de�ne a function 	M on X , that we call the unit envelope of M , such that

	M (x) =
1p
D

sup
s2M;ksk2�1

js (x)j : (33)

AsM is a �nite dimensional real vector space, the supremum in (33) can also be taken over a countable subset
of M , so 	M is a measurable function.

� (H3) The unit envelope of M is uniformly bounded on X : a positive constant A3;M exists such that

k	Mk1 � A3;M <1 :

The following assumption is stronger than (H3).

� (H4) Existence of a localized basis in (M; k�k2): there exists an orthonormal basis ' = ('k)
D
k=1 in

(M; k�k2) that satis�es, for a positive constant rM (') and all � = (�k)
D
k=1 2 RD,

DX
k=1

�k'k


1

� rM (')
p
D j�j1 ,

where j�j1 = max fj�kj ; k 2 f1; :::; Dgg is the sup-norm of the D-dimensional vector �:

Remark 3 (H4) implies (H3) and in that case A3;M = rM (') is convenient.

The assumption of consistency in sup-norm:

In order to handle second order terms in the expansion of the contrast (6), we assume that the least squares
estimator is consistent for the sup-norm on the space X . More precisely, this requirement can be stated as
follows.

� (H5) Assumption of consistency in sup-norm: for any A+ > 0, ifM is a model of dimension D satisfying

D � A+
n

(lnn)
2 ;

then for every � > 0, we can �nd a positive integer n1 and a positive constant Acons satisfying the
following property: there exists Rn;D;� > 0 depending on D; n and �, such that

Rn;D;� �
Aconsp
lnn

(34)

and by setting

1;� = fksn � sMk1 � Rn;D;�g ; (35)

it holds for all n � n1,
P [
1;�] � 1� n�� : (36)

10



4.2 Theorems

We state here the general results of this article, that will be applied in Section 5 and 6 in the case of piecewise
constant functions and piecewise polynomials respectively.

Theorem 2 Let A+; A�; � > 0 and let M be a linear model of �nite dimension D. Assume that (H1), (H2),
(H4) and (H5) hold and take ' = ('k)

D
k=1 an orthonormal basis of (M; k�k2) satisfying (H4). If it holds

A� (lnn)
2 � D � A+

n

(lnn)
2 ; (37)

then a positive �nite constant A0 exists, only depending on �;A� and on the constants A; �min; rM (') de�ned
in assumptions (H1), (H2) and (H4) respectively, such that by setting

"n = A0max

(�
lnn

D

�1=4
;

�
D lnn

n

�1=4
;
p
Rn;D;�

)
; (38)

we have for all n � n0 (A�; A+; A;Acons; rM (') ; �min; n1; �),

P
�
P (Ksn �KsM ) � (1� "n)

1

4

D

n
K21;M

�
� 1� 5n�� ; (39)

P
�
P (Ksn �KsM ) � (1 + "n)

1

4

D

n
K21;M

�
� 1� 5n�� ; (40)

P
�
Pn (KsM �Ksn) �

�
1� "2n

� 1
4

D

n
K21;M

�
� 1� 2n�� ; (41)

P
�
Pn (KsM �Ksn) �

�
1 + "2n

� 1
4

D

n
K21;M

�
� 1� 3n�� ; (42)

where K21;M = 1
D

PD
k=1Var

�
 1;M � 'k

�
. In addition, when (H5) does not hold, but (H1), (H2) and (H4) are

satis�ed, we still have for all n � n0 (A�; A+; A; rM (') ; �min; �),

P

 
Pn (KsM �Ksn) �

 
1�A0max

(r
lnn

D
;

r
D lnn

n

)!
D

4n
K21;M

!
� 1� 2n�� : (43)

In Theorem 2 above, we achieve sharp upper and lower bounds for the true and empirical excess risks on M .
They are optimal at the �rst order since the leading constants are equal for upper and lower bounds. Moreover,
Theorem 2 states the equivalence with high probability of the true and empirical excess risks for models of
reasonable dimensions. We notice that second orders are smaller for the empirical excess risk than for the true
one. Indeed, when normalized by the �rst order, the deviations of the empirical excess risk are square of the
deviations of the true one. Our bounds also give another evidence of the concentration phenomenon of the
empirical excess risk exhibited by Boucheron and Massart [7] in the slightly di¤erent context of M-estimation
with bounded contrast where some margin condition hold. Notice that considering the lower bound of the
empirical excess risk given in (43), we do not need to assume the consistency of the least squares estimator sn
towards the linear projection sM .
We turn now to upper bounds in probability for the true and empirical excess risks on models with possibly
small dimensions. In this context, we do not achieve sharp or explicit constants in the rates of convergence.

Theorem 3 Let �;A+ > 0 be �xed and let M be a linear model of �nite dimension

1 � D � A+
n

(lnn)
2 .

Assume that assumptions (H1), (H3) and (H5) hold. Then a positive constant Au exists, only depending on
A;Acons; A3;M and �, such that for all n � n0 (Acons; n1),

P
�
P (Ksn �KsM ) � Au

D _ lnn
n

�
� 3n�� (44)
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and

P
�
Pn (KsM �Ksn) � Au

D _ lnn
n

�
� 3n�� : (45)

Notice that on contrary to the situation of Theorem 2, we do not assume that (H2) hold. This assumption
states that the noise level is uniformly bounded away from zero over the space X , and allows in Theorem
2 to derive lower bounds for the true and empirical excess risks, as well as to achieve sharp constants in
the deviation bounds for models of reasonable dimensions. In Theorem 3, we just derive upper bounds and
assumption (H2) is not needed. The price to pay is that constants in the rates of convergence derived in (44)
and (45) are possibly larger than the corresponding ones of Theorem 2, but our results still hold true for small
models. Moreover, in the case of models with reasonable dimensions, that is dimensions satisfying assumption
(37) of Theorem 2, the rate of decay is preserved compared to Theorem 2 and is proportional to D=n.
The proofs of the above theorems can be found in Section 7.3.

4.3 Some additional comments

Let us �rst comment on the assumptions given in Section 4.1. Assumptions (28) and (H2) are rather mild
and can also be found in the work of Arlot and Massart [2] related to the case of histograms, where they are
respectively denoted by (Ab) and (An). These assumptions state respectively that the response variable Y is
uniformly bounded and that the noise level is uniformly bounded away from zero. In [2], Arlot and Massart
also notice that their results can be extended to the unbounded case, where assumption (Ab) is replaced by
some condition on the moments of the noise, and where (An) is weakened into mild regularity conditions for
the noise level. We believe that moments conditions on the noise, in the spirit of assumptions stated by Arlot
and Massart, could also been taken into account in our study in order to weaken (28), but at the prize of
many technical e¤orts that are beyond the scope of the present paper. However, we explain at the end of this
section how condition (H2) can be relaxed - see hypothesis (H2bis) below.
In assumption (H4) we require that the model M is provided with an orthonormal localized basis in L2

�
PX
�
.

This property is convenient when dealing with the L1-structure on the model, and this allows us to con-
trol the sup-norm of the functions in the model by the sup-norm of the vector of their coordinates in the
localized basis. For examples of models with localized basis, and their use in a model selection framework,
we refer for instance to Section 7.4.2 of Massart [16], where it is shown that models of histograms, piecewise
polynomials and compactly supported wavelets are typical examples of models with localized basis for the
L2 (Leb) structure, considering that X �Rk. In Sections 5 and 6, we show that models of piecewise constant
and piecewise polynomials respectively can also have a localized basis for the L2

�
PX
�
structure, under rather

mild assumptions on PX . Assumption (H4) is needed in Theorem 2, whereas in Theorem 3 we only use the
weaker assumption (H3) on the unit envelope of the model M , relating the L2-structure of the model to the
L1-structure. In fact, assumption (H4) allows us in the proof of Theorem 2 to achieve sharp lower bounds
for the quantities of interest, whereas in Theorem 3 we only give upper bounds in the case of small models.
We ask in assumption (H5) that the M-estimator is consistent towards the linear projection sM of s� onto the
model M , at a rate at least better than (lnn)�1=2 . This can be considered as a rather strong assumption, but
it is essential for our methodology. Moreover, we show in Sections 5 and 6 that this assumption is satis�ed
under mild conditions for histogram models and models of piecewise polynomials respectively, both at the rate

Rn;D;� /
r
D lnn

n
:

Secondly, let us comment on the rates of convergence given in Theorem 2 for models of reasonable dimensions.
As we can see in Theorem 2, the rate of estimation in a �xed model M of reasonable dimension is determined
at the �rst order by a key quantity that relates the structure of the model to the unknown law P of data. We
call this quantity the complexity of the model M and we denote it by CM : More precisely, let us de�ne

CM =
1

4
D �K21;M

12



where

K1;M =

vuut 1

D

DX
k=1

Var
�
 1;M � 'k

�
for a localized orthonormal basis ('k)

D
k=1 of (M; k�k2) : Notice that K1;M is well de�ned as it does not depend

on the choice of the basis ('k)
D
k=1 : Indeed, since we have P

�
 1;M � 'k

�
= 0, we deduce that

K21;M = P

 
 21;M �

 
1

D

DX
k=1

'2k

!!
:

Now observe that, by using Cauchy-Schwarz inequality in De�nition (33), as pointed out by Birgé and Massart
[5], we get

	2M =
1

D

DX
k=1

'2k (46)

and so

K21;M = P
�
 21;M	

2
M

�
= 4E

h
E
h
(Y � sM (X))2 jX

i
	2M (X)

i
= 4

�
E
�
�2 (X)	2M (X)

�
+ E

h
(sM � s�)2 (X)	2M (X)

i�
: (47)

On the one hand, if we assume (H1) then we obtain by elementary computations

K1;M � 2�max + 4A � 6A : (48)

On the other hand, (H2) implies
K1;M � 2�min > 0 : (49)

To �x ideas, let us explicitly compute K21;M in a simple case. Consider homoscedastic regression on a histogram
model M , in which the homoscedastic noise level � is such that

�2 (X) = �2 a:s: ,

so we have
E
�
�2 (X)	2M (X)

�
= �2E

�
	2M (X)

�
= �2 :

Now, under notations of Lemma 4 below,

sM =
X
I2P

E [Y 'I (X)]'I =
X
I2P

E [Y jX 2 I ]1I ;

thus we deduce, by (46) and the previous equality, that

E
h
(sM � s�)2 (X)	2M (X)

i
=

1

jPj
X
I2P

E
h
(sM � s�)2 (X)'2I (X)

i
=

1

jPj
X
I2P

E
�
(E [Y jX 2 I ]� E [Y jX ])2 1X2I

PX (I)

�
=

1

jPj
X
I2P

E
h
(E [Y jX 2 I ]� E [Y jX ])2 jX 2 I

i
=

1

jPj
X
I2P

V [E [Y jX ] jX 2 I ] ;
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where the conditional variance V [U jA ] of a variable U with respect to the event A is de�ned to be

V [U jA ] := E
h
(U � E [U jA ])2 jA

i
= E

�
U2 jA

�
� (E [U jA ])2 .

By (47), we explicitly get

K21;M = 4

 
�2 +

1

jPj
X
I2P

V [E [Y jX ] jX 2 I ]
!
: (50)

A careful look at the proof of Theorem 2 given in Section 7.3 show that condition (H2) is only used through
the lower bound (49), and thus (H2) can be replaced by the following slightly more general assumption :

(H2bis) Lower bound on the normalized complexity K1;M : a positive constant Amin exists such that

K1;M � Amin > 0 .

When (H2) holds, we see from Inequality 49 that (H2bis) is satis�ed with Amin = 2�min. For suitable models
we can have for a positive constant A�	 and for all x 2 X ,

	M (x) � A�	 > 0 , (51)

and this allows to consider vanishing noise level, as we then have by (47),

K1;M � 2A�	
p
E [�2 (X)] = 2A�	 k�k2 > 0 .

As we will see in Sections 5 and 6, Inequality (51) can be satis�ed for histogram and piecewise polynomial
models on a partition achieving some upper regularity assumption with respect to the law PX .

5 The histogram case

In this section, we particularize the results stated in Section 4 to the case of piecewise constant functions. We
show that under a lower regularity assumption on the considered partition, the assumption (H4) of existence
of a localized basis in L2

�
PX
�
and (H5) of consistency in sup-norm of the M-estimator towards the linear

projection sM are satis�ed.

5.1 Existence of a localized basis

The following lemma states the existence of an orthonormal localized basis for piecewise constant functions in
L2
�
PX
�
, on a partition which is lower-regular for the law PX .

Lemma 4 Let consider a linear model M of histograms de�ned on a �nite partition P on X , and write
jPj = D the dimension of M . Moreover, assume that for a positive �nite constant cM;P ,q

jPj inf
I2P

PX (I) � cM;P > 0 : (52)

Set, for I 2 P,
'I =

�
PX (I)

��1=2
1I .

Then the family ('I)I2�M is an orthonormal basis in L2
�
PX
�
and we have,

for all � = (�I)I2P 2 R
D;

X
I2P

�I'I


1

� c�1M;P

p
D j�j1 : (53)

Condition (52) can also be found in Arlot and Massart [2] and is named lower regularity of the partition P for
the law PX . It is easy to see that the lower regularity of the partition is equivalent to the property of localized
basis in the case of histograms, i.e. (52) is equivalent to (53). The proof of Lemma 4 is straightforward and
can be found in Section 7.1.
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5.2 Rates of convergence in sup-norm

The following lemma allows to derive property (H5) for histogram models.

Lemma 5 Consider a linear model M of histograms de�ned on a �nite partition P of X , and denote by
jPj = D the dimension of M . Assume that Inequality (28) holds, that is, a positive constant A exists such
that jY j � A a:s: Moreover, assume that for some positive �nite constant cM;P ,q

jPj inf
I2P

PX (I) � cM;P > 0 (54)

and that D � A+n (lnn)
�2 � n for some positive �nite constant A+: Then, for any � > 0 and for all

n � n0 (�; cM;P ; A+), there exists an event of probability at least 1� n�� on which sn exists, is unique and it
holds,

ksn � sMk1 � LA+;A;cM;P ;�

r
D lnn

n
: (55)

In Lemma 5 we thus achieve the convergence in sup-norm of the regressogram sn towards the linear projection
sM at the rate

p
D ln (n) =n . It is worth noticing that for a model of histograms satisfying the assumptions

of Lemma 5, if we set

Acons = LA;cM;P ;�

p
A+ , n1 = n0 (�; cM;P ; A+) and Rn;D;� = LA+;A;cM;P ;�

r
D lnn

n
;

then Assumption (H5) is satis�ed. To derive Inequality (55), we need to assume that the response variable
Y is almost surely bounded and that the considered partition is lower-regular for the law PX . Hence, we �t
again with the framework of [2] and we can thus view the general set of assumptions exposed in Section 4.1
as a natural generalization for linear models of the framework developed in [2] in the case of histograms. The
proof of Lemma 5 can be found in Section 7.1.

5.3 Bounds for the excess risks

The next results is a straightforward application of Lemmas 4, 5 and Theorems 2, 3.

Corollary 6 Given A+; A�; � > 0, consider a linear model M of histograms de�ned on a �nite partition P
of X , and write jPj = D the dimension of M . Assume that for some positive �nite constant cM;P , it holdsq

jPj inf
I2P

PX (I) � cM;P > 0 . (56)

If (H1) and (H2) of Section 4.1 are satis�ed and if

A� (lnn)
2 � D � A+

n

(lnn)
2 ;

then there exists a positive �nite constant A0, only depending on �;A; �min; A�; A+; cM;P such that, by setting

"n = A0max

(�
lnn

D

�1=4
;

�
D lnn

n

�1=4)

we have, for all n � n0 (A�; A+; A; ; �min; cM;P ; �),

P
�
(1 + "n)

1

4

D

n
K21;M � P (Ksn �KsM ) � (1� "n)

1

4

D

n
K21;M

�
� 1� 10n�� (57)

and

P
��
1 + "2n

� 1
4

D

n
K21;M � Pn (KsM �Ksn) �

�
1� "2n

� 1
4

D

n
K21;M

�
� 1� 5n�� : (58)
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If (56) holds together with (H1) and if we assume that

1 � D � A+
n

(lnn)
2 ,

then a positive constant Au exists, only depending on A; cM;P ; A+ and �, such that for all n � n0 (A; cM;P ; A+; �),

P
�
P (Ksn �KsM ) � Au

D _ lnn
n

�
� 3n��

and

P
�
Pn (KsM �Ksn) � Au

D _ lnn
n

�
� 3n�� :

We recover in Corollary 6 the general results of Section 4.2 for the case of histograms on a lower-regular
partition. Moreover, in the case of histograms, assumption (29) which is part of (H1) is a straightforward
consequence of (28). Indeed, we easily see that the projection sM of the regression function s� onto the model
of piecewise constant functions with respect to P can be written

sM =
X
I2P

E [Y jX 2 I ]1I : (59)

Under (28), we have jE [Y jX 2 I ]j � kY k1 � A for every I 2 P and we deduce by (59) that ksMk1 � A:

5.4 Comments

Our bounds in Corollary 6 are obtained by following a general methodology that consists, among other things,
in expanding the contrast and to take advantage of explicit computations that can be derived on the linear
part of the contrast - for more details, see the proofs in Section 7.3 below. It is then instructive to compare
them to the best available results in this special case. Let us compare them to the bounds obtained by Arlot
and Massart in [2], in the case of a �xed model. Such results can be found in Propositions 10, 11 and 12 of [2].
The strategy adopted by the authors in this case is as follows. They �rst notice that the mean of the empirical
excess risk on histograms is given by

E [Pn (KsM �Ksn)] =
D

4n
K21;M .

Then they derive concentration inequalities for the true excess risk and its empirical counterpart around their
mean. Finally, the authors compare the mean of the true excess risk to the mean of the empirical excess risk.
More precisely, using our notations, inequality (34) of Proposition 10 in [2] states that for every x � 0 there
exists an event of probability at least 1� e1�x on which,

jPn (KsM �Ksn)� E [Pn (KsM �Ksn)]j

� Lp
DM

�
P (KsM �Ks�) +

A2E [Pn (KsM �Ksn)]
�2min

�p
x+ x

��
, (60)

for some absolute constant L. One can notice that inequality (60), which is a special case of general concen-
tration inequalities given by Boucheron and Massart [7], involves the bias of the model P (KsM �Ks�). By
pointing out that the bias term arises from the use of some margin conditions that are satis�ed for bounded
regression, we believe that it can be removed from Proposition 10 of [2], since in the case of histograms models
for bounded regression, some margin-like conditions hold, that are directly pointed at the linear projection
sM . Apart for the bias term, the deviations of the empirical excess risk are then of the order

ln (n)
p
DM

n
;

considering the same probability of event as ours, inequality (60) becomes signi�cantly better than inequality
(58) for large models.
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Concentration inequalities for the true excess risk given in Proposition 11 of [2] give a magnitude of deviations
that is again smaller than ours for su¢ ciently large models and that is in fact closer to "2n than "n, where "n is
de�ned in Corollary 6. But the mean of the true excess risk has to be compared to the mean of the empirical
excess risk and it is remarkable that in Proposition 12 of [2] where such a result is given in a way that seems
very sharp, there is a term lower bounded by�

n� inf
I2P

PX (I)

��1=4
/
�
D

n

�1=4
,

due to the lower regularity assumption on the partition. This tends to indicate that, up to a logarithmic factor,

the term proportional to
�
D lnn
n

�1=4
appearing in "n is not improvable in general, and that the empirical excess

risk concentrates better around its mean than the true excess risk.
We conclude that the bounds given in Proposition 10, 11 and 12 of [2] are essentially more accurate than
ours, apart for the bias term involved in concentration inequalities of Proposition 10, but this term could
be removed as explained above. Furthermore, concentration inequalities for the empirical excess risk are
signi�cantly sharper than ours for large models.
Arlot and Massart [2] also propose generalizations in the case of unbounded noise and when the noise level
vanishes. The unbounded case seems to be beyond the reach of our strategy, due to our repeated use of
Bousquet and Klein-Rio�s inequalities along the proofs. However, we recover the case of vanishing noise level
for histogram models, when the partition is upper regular with respect to the law PX , a condition also needed
in [2] in this case. Indeed, we have noticed in Section 4.3 that assumption (H2) can be weakened into (H2bis),
where we assume that

K1;M � Amin > 0

for some positive constant Amin. So, it su¢ ces to bound from below the normalized complexity. We have from
identity (47),

K21;M � 4E
�
�2 (X)	2M (X)

�
.

Moreover, from identity (46), we have in the case of histograms,

	2M (x) =
1

jPj
X
I2P

1x2I
PX (I)

, for all x 2 X .

Now, if we assume the upper regularity of the partition P with respect to PX , that is

jPj sup
I2P

PX (I) � c+M;P < +1 (61)

for some positive constant c+M;P , we then have

	2M (x) �
�
c+M;P

��1
> 0 , for all x 2 X ,

and so Amin = 2
�
c+M;P

��1=2
k�k2 > 0 is convenient in (H2bis).

6 The case of piecewise polynomials

In this Section, we generalize the results given in Section 5 for models of piecewise constant functions to models
of piecewise polynomials uniformly bounded in their degrees.

6.1 Existence of a localized basis

The following lemma states the existence of a localized orthonormal basis in (M; k�k2), where M is a model of
piecewise polynomials and X = [0; 1] is the unit interval.
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Lemma 7 Let Leb denote the Lebesgue measure on [0; 1]. Let assume that X = [0; 1] and that PX has a
density f with respect to Leb satisfying, for a positive constant cmin,

f (x) � cmin > 0; x 2 [0; 1] :

Consider a linear model M of piecewise polynomials on [0; 1] with degree r or smaller, de�ned on a �nite
partition P made of intervals. Then there exists an orthonormal basis

�
'I;j ; I 2 P; j 2 f0; :::; rg

	
of (M; k�k2)

such that,
for all j 2 f0; :::; rg , 'I;j is supported by the element I of P,

and a constant Lr;cmin depending only on r; cmin exists, satisfying for all I 2 P;

max
j2f0;:::;rg

'I;j1 � Lr;cmin
1p

Leb (I)
. (62)

As a consequence, if it holds q
jPj inf

I2P
Leb (I) � cM;Leb (63)

a constant Lr;cmin;cM;Leb
depending only on r; cmin and cM;Leb exists, such that for all � =

�
�I;j

�
I2P;j2f0;:::;rg 2

RD, 
X
I;j

�I;j'I;j


1

� Lr;cmin;cM;Leb

p
D j�j1 (64)

where D = (r + 1) jPj is the dimension of M .

Lemma 7 states that if X = [0; 1] is the unit interval and if PX has a density with respect to the Lebesgue
measure Leb on X , which is uniformly bounded away form zero, then there exists an orthonormal basis in
(M; k�k2) satisfying good enough properties in terms of the sup-norm of its elements. Moreover, if we assume
the lower regularity of the partition with respect to Leb, then the orthonormal basis is localized and the
constant of localization given in (64) depend on the maximal degree r. We notice that in the case of piecewise
constant functions we do not need to assume the existence of a density for PX or to restrict ourselves to the
unit interval. The proof of Lemma 7 can be found in Section 7.2.

6.2 Rates of convergence in sup-norm

The following lemma allows to derive property (H5) for piecewise polynomials.

Lemma 8 Assume that Inequality (28) holds, that is a positive constant A exists such that jY j � A a:s:
Denote by Leb the Lebesgue measure on [0; 1]. Assume that X = [0; 1] and that PX has a density f with
respect to Leb, satisfying for positive constants cmin and cmax,

0 < cmin � f (x) � cmax < +1; x 2 [0; 1] : (65)

Consider a linear modelM of piecewise polynomials on [0; 1] with degree less than r, de�ned on a �nite partition
P made of intervals, that satis�es for some �nite positive constants cM;Lebq

jPj inf
I2P

Leb (I) � cM;Leb > 0 : (66)

Assume moreover that D � A+n (lnn)
�2 for a positive �nite constant A+: Then, for any � > 0, there exists

an event of probability at least 1 � n�� such that sn exists, is unique on this event and it holds, for all
n � n0 (r;A+; cmin; cM;Leb; �),

ksn � sMk1 � LA;r;A+;cmin;cmax;cM;Leb;�

r
D lnn

n
: (67)
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In Lemma 5, we thus obtain the convergence in sup-norm of the M-estimator sn toward the linear projection
sM at the rate

p
D ln (n) =n . It is worth noting that, for a model of piecewise polynomials satisfying the

assumptions of Lemma 5, if we set

Acons = LA;r;A+;cmin;cmax;cM;Leb;�

p
A+ ; Rn;D;� = LA;r;A+;cmin;cmax;cM;Leb;�

r
D lnn

n
;

n1 = n0 (r;A+; cmin; cM;Leb; �) ;

then Assumption (H5) is satis�ed. The proof of Lemma 8 can be found in Section 7.2.

6.3 Bounds for the excess risks

The forthcoming result is a straightforward application of Lemmas 7, 8 and Theorems 2, 3.

Corollary 9 Denote by Leb the Lebesgue measure on [0; 1] and �x some positive �nite constant �. Assume
that X = [0; 1] and that PX has a density f with respect to Leb satisfying, for some positive �nite constants
cmin and cmax,

0 < cmin � f (x) � cmax < +1; x 2 [0; 1] : (68)

Consider a linear modelM of piecewise polynomials on [0; 1] with degree less than r, de�ned on a �nite partition
P made of intervals, that satisfy for a �nite constant cM;Leb,q

jPj inf
I2P

Leb (I) � cM;Leb > 0 : (69)

Assume that (H1) and (H2) hold. Then, if there exist some positive �nite constants A� and A+ such that

A� (lnn)
2 � D � A+

n

(lnn)
2 ;

then there exists a positive �nite constant A0, depending on �;A; �min; A�; A+; r; cM;Leb; cmin and cmax such
that, by setting

"n = A0max

(�
lnn

D

�1=4
;

�
D lnn

n

�1=4)
we have, for all n � n0 (A�; A+; A; r; �min; cM;Leb; cmin; cmax; �),

P
�
(1 + "n)

1

4

D

n
K21;M � P (Ksn �KsM ) � (1� "n)

1

4

D

n
K21;M

�
� 1� 10n��

and

P
��
1 + "2n

� 1
4

D

n
K21;M � Pn (KsM �Ksn) �

�
1� "2n

� 1
4

D

n
K21;M

�
� 1� 5n�� :

Moreover, if (68) and (69) hold together with (H1) and if we assume that

1 � D � A+
n

(lnn)
2 ,

then a positive constant Au exists, only depending on A+; A; r; cM;Leb; cmin and �, such that for all n �
n0 (A+; A; r; cmin; cmax; cM;Leb; �),

P
�
P (Ksn �KsM ) � Au

D _ lnn
n

�
� 3n��

and

P
�
Pn (KsM �Ksn) � Au

D _ lnn
n

�
� 3n�� :
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We derive in Corollary 9 optimal upper and lower bounds for the excess risk and its empirical counterpart in
the case of models of piecewise polynomials uniformly bounded in their degree, with reasonable dimension.
We give also upper bounds for models of possibly small dimension, without assumption (H2). Notice that
we need stronger assumptions than in the case of histograms. Namely, we require the existence of a density
uniformly bounded from above and from below for the unknown law PX , with respect to the Lebesgue measure
on the unit interval. However, we recover essentially the bounds of Corollary 6, since by Lemma 8, we still
have Rn;D;� /

p
D ln (n) =n.

Moreover, as in the case of histograms, assumption (29) which is part of (H1), is a straightforward consequence
of (28). Indeed, we easily see that the projection sM of the regression function s� onto the model of piecewise
polynomials with respect to P can be written

sM =
X

(I;j)2P�f0;:::;rg

P
�
Y 'I;j

�
'I;j ,

where 'I;j is the orthonormal basis given in Lemma 7. It is then easy to show, using (62) and (28), that
ksMk1 � LA;r;cmin;cmax :
Again, we can consider vanishing noise at the prize to ask that the partition is upper regular with respect to
Leb. By (H2bis) of Section 4.3, if we show that

K1;M � Amin > 0

for a positive constant Amin instead of (H2), then the conclusions of Corollary 9 still hold. Now, from identity
(47) we have

K21;M � 4E
�
�2 (X)	2M (X)

�
.

Moreover, from identity (46), it holds in the case of piecewise polynomials, for all x 2 X ,

	2M (x) =
1

(r + 1) jPj
X

(I;j)2P�f0;:::;rg

'2I;j �
1

(r + 1) jPj
X
I2P

1x2I
PX (I)

. (70)

Furthermore, if we ask that
jPj sup

I2P
Leb (I) � c+M;P < +1 (71)

for some positive constant c+M;P , then by using (68), (70) and (71), we obtain for all x 2 X ,

	2M (x) �
�
cmax � c+M;P � (r + 1)

��1
> 0 ,

and so Amin = 2
�
cmax � c+M;P � (r + 1)

��1=2p
E [�2 (X)] > 0 is convenient in (H2bis).

7 Proofs

We begin with the simpler proofs of Sections 5 and 6, in Sections 7.1 and 7.2 respectively. The proofs of
Theorems 2 and 3 of Section 4.2 can be found in Section 7.3.

7.1 Proofs of Section 5

Proof of Lemma 4. It su¢ ces to observe thatX
I2P

�I'I


1

� j�j1 sup
I2P

k'Ik1

= j�j1 sup
I2P

�
PX (I)

��1=2
� c�1M;P

p
D j�j1 :
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�
We now intend to prove (55) under the assumptions of Lemma 5.

Proof of Lemma 5. Along the proof, we denote by abusing the notation, for any I 2 P,

P (I) := P (I � R) = PX (I) and Pn (I) := Pn (I � R) .

Let � > 0 be �xed and let � > 0 to be chosen later. We �rst show that, since we have D � A+n (lnn)
�2, it

holds with large probability and for all n su¢ ciently large,

inf
I2P

Pn (I) > 0 :

Since
k1Ik1 � 1 and E

�
12I
�
= P (I) ,

we get by Bernstein�s inequality (230), for any x > 0 and I 2 P,

P

"
j(Pn � P ) (I)j �

r
2P (I)x

n
+

x

3n

#
� 2 exp (�x) : (72)

Further note that by (54), D � c2M;PP (I)
�1

> 0 for any I 2 P, and thus by taking x = � lnn, we easily

deduce from inequality (72) that there exists a positive constant L(1)�;cM;P;A+
only depending on cM;P and �

such that, for any I 2 P,

P

"
j(Pn � P ) (I)j

P (I)
� L

(1)
�;cM;P;A+

r
D lnn

n

#
� 2n�� : (73)

Now, as D � A+n (lnn)
�2 for some positive constant A+, a positive integer n0 (�; cM;P ; A+) exists such that

L
(1)
�;cM;P;A+

r
D lnn

n
� 1

2
, for all n � n0 (�; cM;P ; A+) : (74)

Therefore we get, for all n � n0 (�; cM;P ; A+),

P [8I 2 P; Pn (I) > 0]

� P
�
8I 2 P; P (I)

2
> j(Pn � P ) (I)j

�
� P

"
8I 2 P; j(Pn � P ) (I)j

P (I)
< L

(1)
�;cM;P;A+

r
D lnn

n

#
by (74)

� 1� 2Dn�� :

Introduce the event

+ = f8I 2 P; Pn (I) > 0g :

We have shown that
P [
+] � 1� 2Dn�� : (75)

Moreover, on the event 
+, the least squares estimator sn exists, is unique and it holds

sn =
X
I2P

Pn (y1x2I)

Pn (I)
1I :
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We also have

sM =
X
I2P

P (y1x2I)

P (I)
1I :

Hence it holds on 
+;

ksn � sMk1 = sup
I2P

����Pn (y1x2I)Pn (I)
� P (y1x2I)

P (I)

����
= sup

I2P

������ Pn (y1x2I)

P (I)
�
1 + (Pn�P )(I)

P (I)

� � P (y1x2I)

P (I)

������
� sup

I2P

������ (Pn � P ) (y1x2I)
P (I)

�
1 + (Pn�P )(I)

P (I)

�
������

+ sup
I2P

����P (y1x2I)P (I)

����� sup
I2P

������1� 1

1 + (Pn�P )(I)
P (I)

������ . (76)

Moreover, by Bernstein�s inequality (230), as

ky1x2Ik1 � A and E
h
(Y 1X2I)

2
i
� A2P (I) ,

we get for all I 2 P,

P

"
j(Pn � P ) (y1x2I)j �

r
2A2P (I)x

n
+
Ax

3n

#
� 2 exp (�x) :

By putting x = � lnn in the latter inequality and using the fact that D � c2M;PP (I)
�1 it follows that there

exists a positive constant L(2)A;cM;P ;�;A+
only depending on A; cM;P and � such that

P

"
j(Pn � P ) (y1x2I)j

P (I)
� L

(2)
A;cM;P ;�;A+

r
D lnn

n

#
� 2n�� : (77)

Now de�ne


1;2 =
\
I2P

((
j(Pn � P ) (I)j

P (I)
< L

(1)
�;cM;P;A+

r
D lnn

n

)\(
j(Pn � P ) (y1x2I)j

P (I)
< L

(2)
A;cM;P ;�;A+

r
D lnn

n

))
:

Clearly, since D � n we have, by (73) and (77),

P
�

c1;2

�
� 4n��+1 : (78)

Moreover, for all n � n0 (�; cM;P ; A+), we get by (74) that

j(Pn � P ) (I)j
P (I)

<
1

2

on the event 
1;2, and so, for all n � n0 (�; cM;P ; A+), 
1;2 � 
+. Hence, we get that

sup
I2P

������ (Pn � P ) (y1x2I)
P (I)

�
1 + (Pn�P )(I)

P (I)

�
������+ supI2P

����P (y1x2I)P (I)

����� sup
I2P

������1� 1

1 + (Pn�P )(I)
P (I)

������
� 2 sup

I2P

���� (Pn � P ) (y1x2I)P (I)

����+ 2 sup
I2P

����P (y1x2I)P (I)

����� sup
I2P

���� (Pn � P ) (I)P (I)

����
� 2L(2)A;cM;P ;�;A+

r
D lnn

n
+ 2L

(1)
�;cM;P;A+

r
D lnn

n
� sup
I2P

����P (y1x2I)P (I)

���� : (79)
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Finally we have, for any I 2 P,
jP (y1x2I)j � P (jyj1x2I) � AP (I) ; (80)

so by (76), (79) and (80) we �nally get, on the event 
1;2 and for all n � n0 (�; cM;P ; A+),

ksn � sMk1 �
�
2L

(2)
A;cM;P ;�;A+

+ 2AL
(1)
�;cM;P;A+

�rD lnn

n
.

Taking � = �+ 3, we get by (78) for all n � 2, P
�

c1;2

�
� n�� which implies (55).

�

7.2 Proofs of Section 6

Under the assumptions of Lemma 7, we intend to establish (64).

Proof of Lemma 7. Let I be any interval of [0; 1] and w a positive measurable function on I. Denote by
L2 (I;Leb) the space of square integrable functions on I with respect to the Lebesgue measure Leb and set

L2 (I; w) =
�
g : I �! R ; g

p
w 2 L2 (I;Leb)

	
:

This space is equipped with the natural inner product

hg; hiI;w =
Z
x2I

g (x)h (x)w (x) dx :

Write k:kI;w its associated norm.
Now, consider an interval I of P with bounds a and b, a < b. Also denote by fjI : x 2 I 7�! f (x) the
restriction of the density f to the interval I: We readily have for g; h 2 L2

�
I; fjI

�
;Z

x2I

g (x)h (x) fjI (x)
dx

Leb (I)

=

Z
y2[0;1]

g ((b� a) y + a)h ((b� a) y + a) fjI ((b� a) y + a) dy . (81)

De�ne the function f I from [0; 1] to R+ by

f I (y) = fjI ((b� a) y + a) ; y 2 [0; 1] :

If (pI;0; pI;1; :::pI;r) is an orthonormal family of polynomials in L2
�
[0; 1] ; f I

�
then by setting, for all x 2 I,

j 2 f0; :::; rg,

~'I;j (x) = pI;j

�
x� a
b� a

�
1p

Leb (I)
;

we deduce from equality (81) that
�
~'I;j

�r
j=0

is an orthonormal family of polynomials in L2
�
I; fjI

�
such that

deg
�
~'I;j

�
= deg (pI;j).

Now, it is a classical fact of orthogonal polynomials theory (see for example Theorems 1.11 and 1.12 of [9])
that there exists a unique family (qI;0; qI;1; :::qI;r) of orthogonal polynomials on [0; 1] such that deg (qI;j) = j
and the coe¢ cient of the highest monomial xj of qI;j is equal to 1. Moreover, each qI;j has j distinct real
roots belonging to ]0; 1[. Thus, we can write

qI;j (x) =

jY
k=1

�
x� �kI;j

�
; �kI;j 2 ]0; 1[ and �kI;j 6= �lI;j for k 6= l . (82)

23



Clearly, kqI;jk1 � 1: Moreover,

kqI;jk2[0;1];fI =
Z
[0;1]

(qI;j)
2
f Idx

� cmin

Z
[0;1]

(qI;j)
2
dx :

Now we set B (�; r) = ]�� r; �+ r[ for � 2 R, so that by (82) we get

8x 2 [0; 1] n [jk=1B
�
�kI;j ; (4j)

�1
�
; jqI;j (x)j � (4j)�j ;

and
Leb

�
[0; 1] n [jk=1B

�
�kI;j ; (4j)

�1
��
� 1

2
:

Therefore,

kqI;jk2[0;1];fI � cmin

Z
[0;1]

(qI;j)
2
dx

� cmin

Z
[0;1]n[jk=1B(�kI;j ;(4j)

�1)

(qI;j)
2
dx

� cmin
2
(4j)

�2j
:

Finally, introduce pI;j = kqI;jk�1[0;1];fI qI;j and denote by 'I;j its associated orthonormal family of L2
�
I; fjI

�
:

Then, by considering the extension 'I;j of ~'I;j to [0; 1] by adding null values, it is readily checked that the
family �

'I;j ; I 2 P; j 2 f0; :::; rg
	

is an orthonormal basis of (M; k�k2) : In addition,'I;j1 =
~'I;j1

= kqI;jk�1[0;1];fI kqI;jk1 Leb (I)
�1=2

�
p
2c
�1=2
min (4r)

r
Leb (I)

�1=2 (83)

�
p
2c�1M;Lebc

�1=2
min (4r)

r
(r + 1)

�1=2p
D (84)

where in the last inequality we used the fact thatq
jPj inf

I2P
Leb (I) � cM;Leb and D = (r + 1) jPj :

For all j 2 f0; :::; rg, 'I;j is supported by the element I of P, hence we deduce from (83) that the orthonormal
basis

�
'I;j ; I 2 P; j 2 f0; :::; rg

	
of (M; k�k2) satis�es (62) with

Lr;cmin =
p
2c
�1=2
min (4r)

r
:

To conclude, observe that 
X
I;j

�I;j'I;j


1

= max
I2P

8<:


rX
j=0

�I;j'I;j


1

9=;
� j�j1maxI2P

8<:
rX
j=0

'I;j1
9=;

� (r + 1) j�j1maxI2P
max

j2f0;:::;rg

n'I;j1o
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and thus, by plugging (84) into the right-hand side of the last inequality, we �nally obtain that the value

Lr;cmin;cM;Leb
=
p
2c�1M;Lebc

�1=2
min (4r)

r
(r + 1)

1=2

gives the desired bound (64). �
We now turn to the proof of (67) under the assumptions of Lemma 8. The proof is based on concentration
inequalities recalled in Section 7.5 and on inequality (62) of Lemma 7, that allows us to control the sup-norm
of elements of an orthonormal basis for a model of piecewise polynomials.

Proof of Lemma 8. Let � > 0 be �xed and  > 0 to be chosen later. The partition P associated to M will
be denoted by

P = fI0; :::; Im�1g ,
so that jPj = m and D = (r + 1)m where D is the dimension of the model M . By (62) of Lemma 7 there
exist an orthonormal basis

�
'Ik;j ; k 2 f0; :::;m� 1g ; j 2 f0; :::; rg

	
of
�
M;L2

�
PX
��
such that,

'Ik;j is supported by the element Ik of P, for all j 2 f0; :::; rg

and a constant Lr;cmin depending only on r; cmin and satisfying

max
j2f0;:::;rg

'Ik;j1 � Lr;cmin
1p

Leb (Ik)
, for all k 2 f0; :::;m� 1g . (85)

In order to avoid cumbersome notation, we de�ne a total ordering � on the set

I = f(Ik; j) ; k 2 f0; :::;m� 1g ; j 2 f0; :::; rgg ,

as follows. Let � be a binary relation on I � I such that

(Ik; j) � (Il; i) if (k < l or (k = l and j < i)) ,

and consider the total ordering � de�ned to be

(Ik; j) � (Il; i) if ((Ik; j) = (Il; i) or (Ik; j) � (Il; i)) .

So, from the de�nition of �, the vector � =
�
�Ik;j

�
(Ik;j)2I

2 RD has coordinate �Ik;j at position (r + 1) k+j+1
and the matrix

A =
�
A(Ik;j);(Il;i)

�
(Ik;j);(Il;i)2I�I

2 RD�D ;

has coe¢ cient A(Ik;j);(Il;i) at line (r + 1) k + j + 1 and column (r + 1) l + i+ 1.
Now, for some s =

P
(Ik;j)2I �Ik;j'Ik;j 2M , we have

Pn (K (s)) = Pn

264
0@y �

0@ X
(Ik;j)2I

�Ik;j'Ik;j (x)

1A1A2
375

= Pny
2 � 2

X
(Ik;j)2I

�Ik;jPn
�
y'Ik;j (x)

�
+

X
(Ik;j);(Il;i)2I�I

�Ik;j�Il;iPn
�
'Ik;j'Il;i

�
:

Hence, by taking the derivative with respect to �Ik;j in the last quantity,

1

2

@

@�Ik;j
Pn

264
0@y �

0@ X
(Ik;j)2I

�Ik;j'Ik;j (x)

1A1A2
375

= �Pn
�
y'Ik;j (x)

�
+

X
(Il;i)2I

�Il;iPn
�
'Ik;j'Il;i

�
. (86)
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We see that if �(n) =
�
�
(n)
Ik;j

�
(Ik;j)2I

2 RD is a critical point of

Pn

264
0@y �

0@ X
(Ik;j)2I

�Ik;j'Ik;j (x)

1A1A2
375 ,

it holds 0B@ @

@�Ik;j
Pn

264
0@y �

0@ X
(Ik;j)2I

�Ik;j'Ik;j (x)

1A1A2
375
1CA��(n)� = 0

and by combining (86) with the fact that

P
�
'Ik;j

�2
= 1 ; for all (Ik; j) 2 I and P

�
'Ik;j'Il;i

�
= 0 if (Ik; j) 6= (Il; i) ,

we deduce that �(n) satis�es the following random linear system,

(ID + Ln;D)�
(n) = Xy;n (87)

where Xy;n =
�
Pn
�
y'Ik;j (x)

��
(Ik;j)2I

2 RD; ID is the identity matrix of dimension D and

Ln;D =
�
(Ln;D)(Ik;j);(Il;i)

�
(Ik;j);(Il;i)2I�I

is a D �D matrix satisfying

(Ln;D)(Ik;j);(Il;i) = (Pn � P )
�
'Ik;j'Il;i

�
:

Now, by inequality (99) in Lemma 10 below, one can �nd a positive integer n0 (r;A+; cmin; cM;Leb; ) such that
for all n � n0, we have on an event 
n of probability at least 1� 3Dn� ,

kLn;Dk �
1

2
; (88)

where for a D �D matrix L, the operator norm k�k associated to the sup-norm on vectors is

kLk = sup
x6=0

jLxj1
jxj1

:

Then we deduce from (88) that (ID + Ln;D) is a non-singular D �D matrix and, as a consequence, that the
linear system (87) admits a unique solution �(n) on 
n for any n � n0 (r;A+; cmin; cM;Leb; ). Moreover, since

Pn

�
y �

�P
(Ik;j)2I �Ik;j'Ik;j (x)

��2
is a nonnegative quadratic functional with respect to

�
�Ik;j

�
(Ik;j)2I

2 RD

we can easily deduce that on 
n, �
(n) achieves the unique minimum of Pn

�
y �

�P
(Ik;j)2I �Ik;j'Ik;j (x)

��2
on RD. In other words,

sn =
X

(Ik;j)2I

�
(n)
Ik;j

'Ik;j

is the unique least squares estimator on M , and by (87) it holds,

�
(n)
Ik;j

0@1 + X
(Il;i)2I

(Pn � P )
�
'Ik;j'Il;i

�1A = Pn
�
y'Ik;j (x)

�
, for all (Ik; j) 2 I. (89)

Now, as 'Ik;j and 'Il;i have disjoint supports when k 6= l, it holds 'Ik;j'Il;i = 0 whenever k 6= l, and so
equation (89) reduces to

�
(n)
Ik;j

�
 
1 +

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!
= Pn

�
y'Ik;j (x)

�
, for all (Ik; j) 2 I . (90)
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Moreover, recalling that sM =
P

(Ik;j)2I P
�
y'Ik;j (x)

�
'Ik;j , it holds

ksn � sMk1 =


X

(Ik;j)2I

�
�
(n)
Ik;j

� P
�
y'Ik;j (x)

��
'Ik;j


1

� max
k2f0;:::;m�1g


rX
j=0

�
�
(n)
Ik;j

� P
�
y'Ik;j (x)

��
'Ik;j


1

� (r + 1) max
k2f0;:::;m�1g

��
max

j2f0;:::;rg

����(n)Ik;j
� P

�
y'Ik;j (x)

�����
� max
j2f0;:::;rg

'Ik;j1� (91)

where the �rst inequality comes from the fact that 'Ik;j and 'Il;i have disjoint supports when k 6= l. We next
turn to the control of the right-hand side of (91). Let the index (Ik; j) be �xed. By subtracting the quantity�
1 +

Pr
i=0 (Pn � P )

�
'Ik;j'Ik;i

��
� P

�
y'Ik;j (x)

�
in each side of equation (90), we get

�
�
(n)
Ik;j

� P
�
y'Ik;j (x)

��
�
 
1 +

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!

= (Pn � P )
�
y'Ik;j (x)

�
�
 

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!
� P

�
y'Ik;j (x)

�
: (92)

Moreover, by Inequality (100) of Lemma 10, we have for all n � n0 (r;A+; cmin; cM;Leb; ),

rX
i=0

��(Pn � P ) �'Ik;j'Ik;i��� � Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)
� 1

2
(93)

on the event 
n. We thus deduce that�������(n)Ik;j
� P

�
y'Ik;j (x)

��
�
 
1 +

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!����� � 1

2

����(n)Ik;j
� P

�
y'Ik;j (x)

���� (94)

and�����
 

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!
� P

�
y'Ik;j (x)

������ � Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)
�
��P �y'Ik;j (x)��� . (95)

Moreover, by (28), (65) and (85) we have��P �y'Ik;j (x)��� � A
'Ik;j1 P (Ik)

� Acmax
'Ik;j1 Leb (Ik)

� AcmaxLr;cmin
p
Leb (Ik)

� LA;r;cmin;cmax
p
Leb (Ik) : (96)

Putting inequality (96) in (95) we obtain�����
 

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!
� P

�
y'Ik;j (x)

������ � Lr;A+;cmin;cmax;cM;Leb;

r
lnn

n
. (97)

Hence, using inequalities (94), (97) and inequality (101) of Lemma 10 in equation (92), we obtain that����(n)Ik;j
� P

�
y'Ik;j (x)

���� � LA;r;A+;cmin;cmax;cM;Leb;

r
lnn

n
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on 
n. Since the constant LA;r;A+;cmin;cmax;cM;Leb; does not depend on the index (Ik; j) we deduce by (85)
that �

max
j2f0;:::;rg

����(n)Ik;j
� P

�
y'Ik;j (x)

������ max
j2f0;:::;rg

'Ik;j1
� LA;r;A+;cmin;cmax;cM;Leb;

r
lnn

n
� max
j2f0;:::;rg

'Ik;j1
� LA;r;A+;cmin;cmax;cM;Leb;

s
lnn

nLeb (Ik)
. (98)

Finally, by using (66) and (98) in (91), we get for all n � n0 (r;A+; cmin; cM;Leb; ), on the event 
n of
probability at least 1� 3Dn� ,

ksn � sMk1 � (r + 1) max
k2f0;:::;m�1g

��
max

j2f0;:::;rg

����(n)Ik;j
� P

�
y'Ik;j (x)

������ max
j2f0;:::;rg

'Ik;j1�
� LA;r;A+;cmin;cM;Leb;

r
lnn

n
max

k2f0;:::;m�1g

1p
Leb (Ik)

� LA;r;A+;cmin;cM;Leb;

r
jPj lnn
n

� LA;r;A+;cmin;cM;Leb;

r
D lnn

n
:

To conclude, simply take  = ln 3
ln 2 + �+ 1, so that it holds for n � 2, P [


c
n] � n�� which implies (67).

It remains to prove the following lemma that has been used all along the proof.

Lemma 10 Recall that Ln;D =
�
(Ln;D)(Ik;j);(Il;i)

�
(Ik;j);(Il;i)2I�I

is a D �D matrix such that for all (k; l) 2

f0; :::;m� 1g2 , (j; i) 2 f0; :::; rg2 ,

(Ln;D)(Ik;j);(Il;i) = (Pn � P )
�
'Ik;j'Il;i

�
.

Also recall that for a D �D matrix L, the operator norm k�k associated to the sup-norm on the vectors is

kLk = sup
x6=0

jLxj1
jxj1

:

Then, under the assumptions of Lemma 8, a positive integer n0 (r;A+; cmin; cM;Leb; ) exists such that, for all
n � n0 (r;A+; cmin; cM;Leb; ), the following inequalities hold on an event 
n of probability at least 1�3Dn� ,

kLn;Dk � Lr;A+;cmin;cM;Leb;

r
D lnn

n
� 1

2
(99)

and for all k 2 f0; :::;m� 1g ;

max
j2f0;:::;rg

(
rX
i=0

��(Pn � P ) �'Ik;j'Ik;i���
)
� Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)
� 1

2
, (100)

max
j2f0;:::;rg

��(Pn � P ) �y'Ik;j (x)��� � LA;A+;r;cmin;cM;Leb;

r
lnn

n
. (101)

Proof of Lemma 10. Let us begin with the proof of inequality (101). Let the index (Ik; j) 2 I be �xed. By
using Bernstein�s inequality (230) and observing that, by (28),

Var
�
y'Ik;j (x)

�
� P

h�
y'Ik;j (x)

�2i � kY k21 � A2
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and, by (28), (85) and (66), Y 'Ik;j (X)1 � A
'Ik;j (X)1

� ALr;cmin
1p

Leb (Ik)

� LA;r;cmin;cM;Leb

p
jPj

� LA;r;cmin;cM;Leb

p
D ,

we get

P

"��(Pn � P ) �y'Ik;j (x)��� �r2A2 xn + LA;r;cmin;cM;Leb

p
D

3n
x

#
� 2 exp (�x) : (102)

By taking x =  lnn in inequality (102), we obtain that

P

"��(Pn � P ) �y'Ik;j (x)��� �
r
2A2

lnn

n
+
LA;r;cmin;cM;Leb

p
D lnn

3n

#
� 2n� : (103)

Now, asD � A+n (lnn)
�2, we deduce from (103) that for some well chosen positive constant LA;A+;r;cmin;cM;Leb; ,

we have

P

"��(Pn � P ) �y'Ik;j (x)��� � LA;A+;r;cmin;cM;Leb;

r
lnn

n

#
� 2n�

and by setting


(1)n =
\

(Ik;j)2I

(��(Pn � P ) �y'Ik;j (x)��� � LA;A+;r;cmin;cM;Leb;

r
lnn

n

)
we deduce that

P
�

(1)n

�
� 1� 2Dn� . (104)

Hence the expected bound (101) holds on 
(1)n , for all n � 1.
We turn now to the proof of inequality (100). Let the index (Ik; j) 2 I be �xed. By Cauchy-Schwarz inequality,
we have

rX
i=0

��(Pn � P ) �'Ik;j'Ik;i��� � pr + 1
vuut rX

i=0

�
(Pn � P )

�
'Ik;j'Ik;i

��2
. (105)

Let write

�Ik;j =

vuut rX
i=0

�
(Pn � P )

�
'Ik;j'Ik;i

��2
and BIk =

(
rX
i=0

�Ik;i'Ik;i ;
�
�Ik;i

�r
i=0

2 Rr+1 and
rX
i=0

�2Ik;i � 1
)
.

By Cauchy-Schwarz inequality again, it holds

�Ik;j = sup
s2BIk

��(Pn � P ) �'Ik;js��� .
Then, Bousquet�s inequality (231), applied with " = 1 and F =BIk , implies that

P
�
�Ik;j � E

�
�Ik;j

�
�
r
2�2Ik;j

x

n
+ E

�
�Ik;j

�
+
4

3

bIk;jx

n

�
� exp (�x) (106)

where, by (85),

�2Ik;j = sup
s2BIk

Var
�
'Ik;js

�
�
'Ik;j21 � Lr;cmin

Leb (Ik)
(107)
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and
bIk;j � 2 sup

s2BIk

'Ik;js1 � 2
'Ik;j1 sup

s2BIk

ksk1 : (108)

Moreover, for s =
Pr

i=0 �Ik;i'Ik;i 2 BIk , we have maxi
���Ik;i�� �qPr

i=0 �
2
Ik;i

� 1, so by (85),

sup
s2BIk

ksk1 �
rX
i=0

'Ik;i1 � Lr;cminp
Leb (Ik)

and injecting the last bound in (108) we get

bIk;j �
'Ik;j1 Lr;cminp

Leb (Ik)
� Lr;cmin
Leb (Ik)

: (109)

In addition, we have

E
�
�Ik;j

�
�
r
E
h
�2Ik;j

i
=

sPr
i=0Var

�
'Ik;j'Ik;i

�
n

�
'Ik;j1

vuutPr
i=0 P

�
'2Ik;i

�
n

=
'Ik;j1

r
r + 1

n

� Lr;cmin

s
1

nLeb (Ik)
: (110)

Therefore, combining (107), (109), (110) and (106) while taking x =  lnn, we get

P

"
�Ik;j � Lr;cmin;

 s
1

nLeb (Ik)
+

s
lnn

nLeb (Ik)
+

lnn

nLeb (Ik)

!#
� n� . (111)

Now, since by (66) and the fact that D � A+n (lnn)
�2 we have

1

Leb (Ik)
� c�2M;LebD � c�2M;LebA+

n

(lnn)
2 ,

we obtain from (111) that a positive constant Lr;A+;cmin;cM;Leb; exists, depending only on ; r; A+; cmin and
cM;Leb such that

P

"
�Ik;j � Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)

#
� n� . (112)

Finally, de�ne


(2)n =
\

(Ik;j)2I

(
�Ik;j � Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)

)
.

For all n � n0 (r;A+; cmin; cM;Leb; ), we have

p
r + 1� Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)

� Lr;A+;cmin;cM;Leb;

r
D lnn

n

� Lr;A+;cmin;cM;Leb;
1p
lnn

� 1

2
. (113)
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Moreover by (112) it holds

P
�

(2)n

�
� 1�Dn� (114)

and, by (105), the expected bound (100) holds on 
(2)n , for all n � n0 (r;A+; cmin; cM;Leb; ).
Next, notice that for a D�D matrix L =

�
L(Ik;j);(Il;i)

�
(Ik;j);(Il;i)2I�I

we have the following classical formula,

kLk = max
(Ik;j)2I

X
(Il;i)2I

��L(Ik;j);(Il;i)�� :
Applied to the matrix of interest Ln;D , this gives

kLn;Dk = max
(Ik;j)2I

X
(Il;i)2I

��(Pn � P ) �'Ik;j'Il;i���
= max

k2f0;:::;m�1g
max

j2f0;:::;rg

8<: X
(Il;i)2I

��(Pn � P ) �'Ik;j'Il;i���
9=; : (115)

Thus, using formula (115), inequalities (100), (66) and (113) give that for all n � n0 (r;A+; cmin; cM;Leb; ),
we have on 
(2)n ,

kLn;Dk � Lr;A+;cmin;cM;Leb;

r
D lnn

n
� 1

2
:

Finally, by setting 
n = 

(1)
n
T


(2)
n , we have P (
n) � 1� 3Dn� , and inequalities (100), (99) and (101) are

satis�ed on 
n for all n � n0 (r;A+; cmin; cM;Leb; ), which completes the proof of Lemma 10. �

7.3 Proofs of Section 4

In order to express the quantities of interest in the proofs of Theorems 2 and 3, we need preliminary de�nitions.
Let � > 0 be �xed and for Rn;D;� de�ned in (H5), see Section 4.1, we set

~Rn;D;� = max

(
Rn;D;� ; A1

r
D lnn

n

)
(116)

where A1 is a positive constant to be chosen later. Moreover, we set

�n = max

(r
lnn

D
;

r
D lnn

n
; Rn;D;�

)
: (117)

Thanks to the assumption of consistency in sup-norm (H5), our analysis will be localized in the subset

B(M;L1)

�
sM ; ~Rn;D;�

�
=
n
s 2M; ks� sMk1 � ~Rn;D;�

o
of M .
Let us de�ne several slices of excess risk on the model M : for any C � 0,

FC = fs 2M;P (Ks�KsM ) � Cg
\
B(M;L1)

�
sM ; ~Rn;D;�

�
F>C = fs 2M;P (Ks�KsM ) > Cg

\
B(M;L1)

�
sM ; ~Rn;D;�

�
and for any interval J � R;

FJ = fs 2M;P (Ks�KsM ) 2 Jg
\
B(M;L1)

�
sM ; ~Rn;D;�

�
:
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We also de�ne, for all L � 0,

DL = fs 2M;P (Ks�KsM ) = Lg
\
B(M;L1)

�
sM ; ~Rn;D;�

�
:

Recall that, by Lemma 1 of Section 2.2, the contrasted functions satisfy, for every s 2M and z = (x; y) 2 X�R;

(Ks) (z)� (KsM ) (z) =  1;M (z) (s� sM ) (x) +  2 ((s� sM ) (x))

where  1;M (z) = �2 (y � sM (x)) and  2 (t) = t2, for all t 2 R: For convenience, we will use the following
notation, for any s 2M ,

 2 � (s� sM ) : x 2 X 7�! 2 ((s� sM ) (x)) .

Note that, for all s 2M ,
P
�
 1;M � s

�
= 0 (118)

and by (H1) inequality (32) holds true, that is 1;M1 � 4A : (119)

Also, for K1;M de�ned in Section 4.3, we have

K1;M =

vuut 1

D

DX
k=1

Var
�
 1;M � 'k

�
for any orthonormal basis ('k)

D
k=1 of (M; k�k2) : Moreover, inequality (48) holds under (H1) and we have

K1;M � 2�max + 4A � 6A . (120)

Assuming (H2), we have from (49)
0 < 2�min � K1;M . (121)

Finally, when (H3) holds (it is the case when (H4) holds), we have by (33),

sup
s2M; ksk2�1

ksk1 � A3;M
p
D (122)

and so, for any orthonormal basis ('k)
D
k=1 of (M; k�k2), it holds for all k 2 f1; :::; Dg, as P

�
'2k
�
= 1,

k'kk1 � A3;M
p
D . (123)

7.3.1 Proofs of the theorems

The proof of Theorem 2 relies on Lemmas 16, 17 and 18 stated in Section 7.4, and that give sharp estimates
of suprema of the empirical process on the contrasted functions over slices of interest.

Proof of Theorem 2. Let � > 0 be �xed and let ' = ('k)
D
k=1 be an orthonormal basis of (M; k�k2) satisfying

(H4). We divide the proof of Theorem 2 into four parts, corresponding to the four Inequalities (39), (40), (41)
and (42). The values of A0 and A1, respectively de�ned in (38) and (116), will then be chosen at the end of
the proof.
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Proof of Inequality (39). Let r 2 (1; 2] to be chosen later and C > 0 such that

rC =
D

4n
K21;M : (124)

By (H5) there exists a positive integer n1 such that it holds, for all n � n1,

P (P (Ksn �KsM ) � C) � P
�
fP (Ksn �KsM ) � Cg

\

1;�

�
+ n�� (125)

and also

P
�
fP (Ksn �KsM ) � Cg

\

1;�

�
� P

�
inf
s2FC

Pn (Ks�KsM ) � inf
s2F>C

Pn (Ks�KsM )
�

� P
�
inf
s2FC

Pn (Ks�KsM ) � inf
s2F(C;rC]

Pn (Ks�KsM )
�

= P

 
sup
s2FC

Pn (KsM �Ks) � sup
s2F(C;rC]

Pn (KsM �Ks)
!
: (126)

Now, by (124) and (121) we have

D

2n
�2min � C � (1 +A4�n)2

D

4n
K21;M

where A4 is de�ned in Lemma 16. Hence we can apply Lemma 16 with � = �, Al = �2min=2 and A3;M = rM ('),
by Remark 3. Therefore it holds, for all n � n0 (A1; Acons; A+; �min; �),

P

"
sup
s2FC

Pn (KsM �Ks) �
�
1 + LA1;A;rM (');�min;A�;� � �n

�rCD

n
K1;M � C

#
� 2n�� : (127)

Moreover, by using (121) and (120) in (124) we get

D

n
�2min � rC � D

n
(�max + 2A)

2
:

We then apply Lemma 18 with

� = �; Al = �2min; Au = (�max + 2A)
2

and
A1 � 64

p
2B2A (�max + 2A)�

�1
minrM (') ; (128)

so it holds for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;A;A1;�max;�min;rM (');� � �n

�rrCD

n
K1;M � rC

!
� 2n�� : (129)

Now, from (127) and (129) we can �nd a positive constant ~A0, only depending on A�; A;A1; �max; �min; rM (')
and �, such that for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �), there exists an event of
probability at least 1� 4n�� on which

sup
s2FC

Pn (KsM �Ks) �
�
1 + ~A0�n

�rCD

n
K1;M � C (130)
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and

sup
s2F(C;rC]

Pn (KsM �Ks) �
�
1� ~A0�n

�rrCD

n
K1;M � rC : (131)

Hence, from (130) and (131) we deduce, using (125) and (126), that if we choose r 2 (1; 2] such that�
1 + ~A0�n

�rCD

n
K1;M � C <

�
1� ~A0�n

�rrCD

n
K1;M � rC (132)

then, for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; n1; �) we have

P (Ksn �KsM ) � C

with probability at least 1� 5n��. Now, by (124) it holdsr
rCD

n
K1;M = 2rC =

1

2

D

n
K21;M ,

and as a consequence Inequality (132) is equivalent to�
1� 2 ~A0�n

�
r � 2

�
1 + ~A0�n

�p
r + 1 > 0 : (133)

Moreover, we have by (117) and (H5), for all n � n0

�
A+; A�; Acons; ~A0; �

�
,

~A0�n �
1

4
(134)

and so, for all n � n0

�
A+; A�; Acons; ~A0; �

�
, simple computations involving (134) show that by taking

r = 1 + 48

q
~A0�n (135)

inequality (133) is satis�ed. Notice that, for all n � n0

�
A+; A�; Acons; ~A0; �

�
we have 0 < 48

p
~A0�n < 1, so

that r 2 (1; 2). Finally, we compute C by (124) and (135), in such a way that for all n � n0

�
A+; A�; Acons; ~A0; �

�
,

C =
rC

r
=

1

1 + 48
p
~A0�n

1

4

D

n
K21;M �

�
1� 48

q
~A0�n

�
1

4

D

n
K21;M > 0 (136)

which yields the result by noticing that the dependence on �max can be released in n0 and ~A0 since by (H1)
we have �max � A.

Proof of Inequality (40). Let C > 0 and � 2
�
0; 12
�
to be chosen later in such a way that

(1� �)C = D

4n
K21;M (137)

and

C � 1

4
(1 +A5�n)

2 D

n
K21;M , (138)

where A5 is de�ned in Lemma 17. We have by (H5), for all n � n1;

P (P (Ksn �KsM ) > C) � P
�
fP (Ksn �KsM ) > Cg

\

1;�

�
+ n�� (139)
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and also

P
�
fP (Ksn �KsM ) > Cg

\

1;�

�
� P

�
inf
s2FC

Pn (Ks�KsM ) � inf
s2F>C

Pn (Ks�KsM )
�

= P

 
sup
s2FC

Pn (KsM �Ks) � sup
s2F>C

Pn (KsM �Ks)
!

� P

0@ sup
s2F
(C2 ;(1��)C]

Pn (KsM �Ks) � sup
s2F>C

Pn (KsM �Ks)

1A : (140)

Now by (138) we can apply Lemma 17 with � = � and we obtain, for all n � n0 (A1; Acons; A+; �),

P

"
sup

s2F>C
Pn (KsM �Ks) � (1 +A5�n)

r
CD

n
K1;M � C

#
� 2n�� (141)

where A5 only depends on A;A3;M ; A1; �min; A� and �. Moreover, we can take A3;M = rM (') by Remark 3.
Also, by (137), (121) and (120) we can apply Lemma 18 with the quantity C in Lemma 18 replaced by C=2,
� = �, r = 2 (1� �), Au = (�max + 2A)2, Al = �2min and the constant A1 satisfying

A1 � 64
p
2B2A (�max + 2A)�

�1
minrM (') ; (142)

and so it holds, for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �),

P

0@ sups2F
(C2 ;(1��)C]

Pn (KsM �Ks)

�
�
1� LA�;A;A1;�max;�min;rM (');� � �n

�q (1��)CD
n K1;M � (1� �)C

1A � 2n�� : (143)

Hence from (141) and (143), we deduce that a positive constant �A0 exists, only depending onA�; A;A1; �max; �min; rM (')
and �, such that
for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �) it holds on an event of probability at least
1� 4n��,

sup
s2F
(C2 ;(1��)C]

Pn (KsM �Ks) �
�
1� �A0�n

�r (1� �)CD
n

K1;M � (1� �)C (144)

and

sup
s2F>C

Pn (KsM �Ks) �
�
1 + �A0�n

�rCD

n
K1;M � C . (145)

Now, from (144) and (145) we deduce, using (139) and (140), that if we choose � 2
�
0; 12
�
such that (138) and

�
1 + �A0�n

�rCD

n
K1;M � C <

�
1� �A0�n

�r (1� �)CD
n

K1;M � (1� �)C (146)

are satis�ed then, for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; n1; �),

P (Ksn �KsM ) � C ,

with probability at least 1� 5n��: By (137) it holdsr
(1� �)CD

n
K1;M = 2 (1� �)C = 1

2

D

n
K21;M ,

and by consequence, inequality (146) is equivalent to�
1� 2 �A0�n

�
(1� �)� 2

�
1 + �A0�n

�p
1� � + 1 > 0 . (147)

35



Moreover, we have by (117) and (H5), for all n � n0
�
A+; A�; Acons; �A0; A5; �

�
,�

�A0 _A5
�
�n <

1

72
(148)

and so, for all n � n0
�
A+; A�; Acons; �A0; �

�
, simple computations involving (148) show that by taking

� = 6

�q
�A0 _

p
A5

�
p
�n , (149)

inequalities (147) and (138) are satis�ed and � 2
�
0; 12
�
. Finally, we can compute C by (137) and (149), in

such a way that for all n � n0
�
A+; A�; Acons; �A0; �

�
0 < C =

(1� �)C
(1� �) =

1

(1� �)
1

4

D

n
K21;M �

�
1 + 12

�q
�A0 _

p
A5

�
p
�n

�
1

4

D

n
K21;M ; (150)

which yields the result by noticing that the dependence on �max can be released from n0 and �A0 since by (H1)
we have �max � A.

Proof of Inequality (41). Let C = D
8nK

2
1;M > 0 and let r = 2. By (120) and (121) we have

D

n
�2min � rC =

D

4n
K21;M � D

n
(�max + 2A)

2

so we can apply Lemma 18 with � = �, Al = �2min and Au = (�max + 2A)
2. So if

A1 � 64
p
2B2A (�max + 2A)�

�1
minrM (') ; (151)

it holds, for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;A;A1;�max;�min;rM (');� � �n

�rrCD

n
K1;M � rC

!
� 2n�� : (152)

Since rC = D
4nK

2
1;M , if we set Â0 = 2LA�;A;A1;�max;�min;rM (');� with LA�;A;A1;�max;�min;rM (');� the constant

in (152), we get

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� Â0�n

� D
4n
K21;M

!
� 2n�� : (153)

Notice that
Pn (KsM �Ksn) = sup

s2M
Pn (KsM �Ks) � sup

s2F(C;rC]
Pn (KsM �Ks)

so from (153) we deduce that

P
�
Pn (KsM �Ksn) �

�
1� Â0�n

� D
4n
K21;M

�
� 1� 2n�� : (154)

Remark 4 Notice that in the proof of inequality (41), we do not need to assume the consistency of the least
squares estimator sn towards the projection sM . Straightforward adaptations of Lemma 18 allow to take

~�n = max

(r
lnn

D
;

r
D lnn

n

)
instead of the quantity �n de�ned in (117). This readily gives the expected bound (43) of Theorem 2.
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Proof of Inequality (42). Let

C =
1

4
(1 +A5�n)

2 D

n
K21;M > 0 (155)

where A5 is de�ned in Lemma 17 applied with � = �. By (H5) we have

P (Pn (KsM �Ksn) > C) � P
�
fPn (KsM �Ksn) > Cg

\

1;�

�
+ n�� . (156)

Moreover, on 
1;�, we have

Pn (KsM �Ksn) = sup
s2B(M;L1)(sM ; ~Rn;D;�)

Pn (KsM �Ks)

= sup
s2F>0

Pn (KsM �Ks) (157)

and by (215) of Lemma 17 applied with � = � it holds, for all n � n0 (A1; Acons; A+; �),

P

 
sup
s2F>0

Pn (KsM �Ks) > C

!
� 2n�� . (158)

Finally, using (157) and (158) in (156) we get, for all n � n0 (A1; Acons; n1; A+; �),

P (Pn (KsM �Ksn) > C) � 3n�� .

Conclusion. To complete the proof of Theorem 2, just notice that by (128), (142) and (151) we can take

A1 = 64
p
2B2A (�max + 2A)�

�1
minrM (')

and by (136), (150), (154) and (155),

A0 = max

�
48

q
~A0; 12

�q
�A0 _

p
A5

�
;

q
Â0;

p
A5

�
is convenient. �

Proof of Theorem 3. We localize our analysis in the subset

B(M;L1) (sM ; Rn;D;�) = fs 2M; ks� sMk1 � Rn;D;�g �M .

Unlike in the proof of Theorem 2, see (116), we need not to consider the quantity ~Rn;D;�, a radius possibly
larger than Rn;D;�. Indeed, the use of ~Rn;D;� rather than Rn;D;� in the proof of Theorem 2 is only needed
in Lemma 12, where we derive a sharp lower bound for the mean of the supremum of the empirical process
indexed by the contrasted functions centered by the contrasted projection over a slice of interest. To prove
Theorem 3, we just need upper bounds, and Lemma 12 is avoided as well as the use of ~Rn;D;�.
Let us de�ne several slices of excess risk on the model M : for any C � 0,

GC = fs 2M;P (Ks�KsM ) � Cg
\
B(M;L1) (sM ; Rn;D;�) ,

G>C = fs 2M;P (Ks�KsM ) > Cg
\
B(M;L1) (sM ; Rn;D;�) .
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We also de�ne, for all U � 0,

DU = fs 2M;P (Ks�KsM ) = Ug
\
B(M;L1) (sM ; Rn;D;�) :

I. Proof of Inequality (44). Let C1 > 0 to be �xed later, satisfying

C1 �
D

n
=: C� > 0 . (159)

We have by (H5), for all n � n1;

P (P (Ksn �KsM ) > C1) � P
�
fP (Ksn �KsM ) > C1g

\

1;�

�
+ n�� (160)

and also

P
�
fP (Ksn �KsM ) > C1g

\

1;�

�
� P

�
inf

s2GC1
Pn (Ks�KsM ) � inf

s2G>C1
Pn (Ks�KsM )

�
= P

 
sup
s2GC1

Pn (KsM �Ks) � sup
s2G>C1

Pn (KsM �Ks)
!

� P
 
0 � sup

s2G>C1
Pn (KsM �Ks)

!
: (161)

Moreover, it holds

sup
s2G>C1

Pn (KsM �Ks)

= sup
s2G>C1

�
Pn
�
 1;M � (sM � s)�  2 � (s� sM )

�	
= sup

s2G>C1

�
(Pn � P )

�
 1;M � (sM � s)

�
� (Pn � P ) ( 2 � (s� sM ))� P (Ks�KsM )

	
= sup

s2G>C1

�
(Pn � P )

�
 1;M � (sM � s)

�
� P (Ks�KsM )� (Pn � P ) ( 2 � (s� sM ))

	
= sup

U>C1

sup
s2DU

�
(Pn � P )

�
 1;M � (sM � s)

�
� U � (Pn � P ) ( 2 � (s� sM ))

	
� sup

U>C1

8<:pU
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� U + sup

s2GU
j(Pn � P ) ( 2 � (s� sM ))j

9=; . (162)

Now, from inequality (181) of Lemma 11 applied with � = �, we get

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

r
D _ lnn

n

35 � n�� . (163)

In addition, we handle the empirical process indexed by the second order terms by straightforward modi�cations
of Lemmas 14 and 15 as well as their proofs. It thus holds, by the same type of arguments as those given in
Lemma 14,

E

"
sup
s2GC1

��(Pn � P ) � s2;M � (s� sM )
���# � 8rCD

n
Rn;D;� : (164)

Moreover, using (164), the same type of arguments as those leading to inequality (208) of Lemma 15, allow to
show that for any q � 1 and j 2 N�, for all x > 0;

P

24 sup
s2GqjC�

j(Pn � P ) ( 2 � (s� sM ))j � 16
r
qjC�D

n
Rn;D;� +

s
2R2n;D;�q

jC�x

n
+
8

3

R2n;D;�x

n

35
� exp (�x) : (165)
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Hence, taking x =  lnn in (165) and using the fact that C� = Dn�1 � n�1, we get

P

24 sup
s2GqjC�

j(Pn � P ) ( 2 � (s� sM ))j � LAcons;Rn;D;�

r
qjC� (D _ lnn)

n

35 � n� : (166)

Now, by straightforward modi�cations of the proof of Lemma 15, we get that for all n � n0 (Acons),

P

"
8U > C�; sup

s2GU
j(Pn � P ) ( 2 � (s� sM ))j � LAcons;�Rn;D;�

r
U (D _ lnn)

n

#
� 1� n�� : (167)

Combining (162), (163) and (167), we have on an event of probability at least 1�2n��, for all n � n0 (Acons),

sup
s2G>C1

Pn (KsM �Ks) � sup
U>C1

(
LA;A3;M ;�

r
U (D _ lnn)

n
� U + LAcons;�Rn;D;�

r
U (D _ lnn)

n

)

� sup
U>C1

(
LA;Acons;A3;M ;� (1 +Rn;D;�)

r
U (D _ lnn)

n
� U

)
. (168)

Now, as Rn;D;� � Acons (lnn)
�1=2, we deduce from (168) that for

C1 = LA;Acons;A3;M ;�
D _ ln (n)

n
> C� (169)

with LA;Acons;A3;M ;� large enough, it holds with probability at least 1� 2n�� and for all n � n0 (Acons),

sup
s2G>C1

Pn (KsM �Ks) < 0 ,

and so by using (160) and (161), this yields inequality (44).

II. Proof of Inequality (45). Let C2 > 0 to be �xed later, satisfying

C2 �
D

n
= C� > 0 . (170)

We have by (H5), for all n � n1;

P (Pn (KsM �Ksn) > C2) � P
�
fPn (KsM �Ksn) > C2g

\

1;�

�
+ n�� . (171)

Moreover, we have on 
1;�,

Pn (KsM �Ksn) = sup
s2B(M;L1)(sM ;Rn;D;�)

Pn (KsM �Ks)

= max

(
sup
s2GC1

Pn (KsM �Ks) ; sup
s2G>C1

Pn (KsM �Ks)
)
, (172)

where C1 is de�ned in the �rst part of the proof dedicated to the establishment of inequality (44). Moreover,
let us recall that in the �rst part of the proof, we have proved that an event of probability at least 1� 2n��
exists, that we call 
1, such that it holds on this event, for all n � n0 (Acons),vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

r
D _ lnn

n
, (173)

8U > C�; sup
s2GU

j(Pn � P ) ( 2 � (s� sM ))j � LAcons;�Rn;D;�

r
U (D _ lnn)

n
, (174)
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and
sup

s2G>C1
Pn (KsM �Ks) < 0 . (175)

By (172) and (175), we thus have on 
1;�

T

1, for all n � n0 (Acons),

0 � Pn (KsM �Ksn) = sup
s2GC1

Pn (KsM �Ks) . (176)

In addition, it holds

sup
s2GC1

Pn (KsM �Ks)

= sup
s2GC1

�
Pn
�
 1;M � (sM � s)�  2 � (s� sM )

�	
= sup

s2GC1

�
(Pn � P )

�
 1;M � (sM � s)

�
� (Pn � P ) ( 2 � (s� sM ))� P (Ks�KsM )

	
� sup

s2GC1

�
(Pn � P )

�
 1;M � (sM � s)

�	
+ sup
s2GC1

j(Pn � P ) ( 2 � (s� sM ))j . (177)

Now, we have on 
1, for all n � n0 (Acons),

sup
s2GC1

�
(Pn � P )

�
 1;M � (sM � s)

�	
�

p
C1

vuut DX
k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

r
C1 (D _ lnn)

n
by (173)

= LA;Acons;A3;M ;�
D _ ln (n)

n
by (169) , (178)

and also, by (174) and (169),

sup
s2GC1

j(Pn � P ) ( 2 � (s� sM ))j � LAcons;�Rn;D;�

r
C1 (D _ lnn)

n

� LA;Acons;A3;M ;�Rn;D;�
D _ ln (n)

n
. (179)

Finally, as Rn;D;� � Acons (lnn)
�1=2, we deduce from (176), (177), (178) and (179), that it holds on 
1;�

T

1,

for all n � n0 (Acons),

Pn (KsM �Ksn) � LA;Acons;A3;M ;�
D _ ln (n)

n
,

and so, this yields to inequality (45) by using (171) and this concludes the proof of Theorem 3. �

7.4 Technical Lemmas

We state here some lemmas needed in the proofs of Section 7.3. First, in Lemmas 11, 12 and 13, we derive some
controls, from above and from below, of the empirical process indexed by the �linear parts�of the contrasted
functions over slices of interest. Secondly, we give upper bounds in Lemmas 14 and 15 for the empirical process
indexed by the �quadratic parts� of the contrasted functions over slices of interest. And �nally, we use all
these results in Lemmas 16, 17 and 18 to derive upper and lower bounds for the empirical process indexed by
the contrasted functions over slices of interest.

Lemma 11 Assume that (H1), (H2) and (H3) hold. Then for any � > 0; by setting

�n = LA;A3;M ;�min;�

 r
lnn

D
_
p
lnn

n1=4

!
;
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It holds, for any orthonormal basis ('k)
D
k=1 of (M; k�k2),

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� (1 + �n)

r
D

n
K1;M

35 � n�� : (180)

If (H1) and (H3) hold, then for any � > 0; it holds

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

r
D _ lnn

n

35 � n�� : (181)

Proof. By Cauchy-Schwarz inequality we have

�M :=

vuut DX
k=1

(Pn � P )2
�
 1;M � 'k

�
= sup

s2M , ksk2�1

���(Pn � P ) � 1;M � s
���	 :

Hence, we get by Bousquet�s inequality (232) applied with F =
�
 1;M � s ; s 2M; ksk2 � 1

	
, for all x > 0,

� > 0;

P
�
�M �

r
2�2

x

n
+ (1 + �)E [�M ] +

�
1

3
+
1

�

�
bx

n

�
� exp (�x) (182)

where
�2 � sup

s2M; ksk2�1
P
h�
 1;M � s

�2i �  1;M21 � 16A2 by (119)

and
b � sup

s2M; ksk2�1

 1;M � s� P
�
 1;M � s

�
1 � 4A

p
DA3;M by (118), (119) and (122).

Moreover,

E [�M ] �
q
E [�2M ] =

r
D

n
K1;M :

So, from (182) it follows that, for all x > 0, � > 0;

P

"
�M �

r
32A2

x

n
+ (1 + �)

r
D

n
K1;M +

�
1

3
+
1

�

�
4A
p
DA3;Mx

n

#
� exp (�x) : (183)

Hence, taking x = � lnn, � =
p
lnn
n1=4

in (183), we derive by (121) that a positive constant LA;A3;M ;�min;� exists
such that

P

"
�M �

 
1 + LA;A3;M ;�min;�

 r
lnn

D
_
p
lnn

n1=4

!!r
D

n
K1;M

#
� n�� ;

which yields inequality (180). By (120) we have K1;M � 6A, and by taking again x = � lnn and � =
p
lnn
n1=4

in
(183), simple computations give

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

 r
D

n
_
r
lnn

n
_
r
D lnn

n3=2

!35 � n�� ;

and by consequence, (181) follows. �
In the next lemma, we state sharp lower bounds for the mean of the supremum of the empirical process on
the linear parts of contrasted functions of M belonging to a slice of excess risk. This is done for a model of
reasonable dimension.
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Lemma 12 Let r > 1 and C > 0. Assume that (H1), (H2), (H4) and (34) hold and let ' = ('k)
D
k=1 be an

orthonormal basis of (M; k�k2) satisfying (H4). If positive constants A�; A+; Al; Au exist such that

A+
n

(lnn)
2 � D � A� (lnn)

2 and Al
D

n
� rC � Au

D

n
;

and if the constant A1 de�ned in (116) satis�es

A1 � 64B2A
p
2Au�

�1
minrM (') ; (184)

then a positive constant LA;Al;Au;�min exists such that, for all n � n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�#
�
�
1� LA;Al;Au;�minp

D

�r
rCD

n
K1;M : (185)

Our argument leading to Lemma 12 shows that we have to assume that the constant A1 introduced in (116)
is large enough. In order to prove Lemma 12 the following result is needed.

Lemma 13 Let r > 1; � > 0 and C � 0. Assume that (H1), (H2), (H4) and (34) hold and let ' = ('k)
D
k=1

be an orthonormal basis of (M; k�k2) satisfying (H4). If positive constants A+; A� and Au exist such that

A+
n

(lnn)
2 � D � A� (lnn)

2
; rC � Au

D

n
;

and if
A1 � 32B2A

p
2Au��

�1
minrM (')

then for all n � n0 (A�; A+; A;B2; rM (') ; �min; �), it holds

P
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p
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�
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rM (')
p
D

35 � 2D + 1
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:

Proof of Lemma 13. By Cauchy-Schwarz inequality, we get

�M =

vuut DX
k=1

(Pn � P )2
�
 1;M � 'k

�
= sup

s2SM

��(Pn � P ) � 1;M � s
��� ;

where SM is the unit sphere of M , that is

SM =

8<:s 2M; s =
DX
k=1

�k'k and

vuut DX
k=1

�2k = 1

9=; :

Thus we can apply Klein-Rio�s inequality (234) to �M by taking F =SM and use the fact that

sup
s2SM

 1;M � s� P
�
 1;M � s

�
1 � 4A

p
DrM (') by (118), (119) and (H4). (186)
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s2SM

Var
�
 1;M � s

�
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s2SM
P
�
 1;M � s

�2 � 16A2 by (118), (119)

and also, by using (186) in Inequality (229) applied to �M , we get that

E [�M ] � B�12

q
E [�2M ]�
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p
DrM (')

n
:
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We thus obtain by (234), for all "; x > 0;
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�M � (1� ")B�12

r
D

n
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r
32A2

x

n
�
�
1� "+

�
1 +

1

"

�
x

�
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p
DrM (')

n

!
� exp (�x) : (187)

So, by taking " = 1
2 and x = � lnn in (187), and by observing that D � A� (lnn)

2 and K1;M � 2�min, we
conclude that, for all n � n0 (A�; A;B2; rM (') ; �min; �),

P

"
�M � B�12

8

r
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n
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#
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Furthermore, combining Bernstein�s inequality (230), with the observation that we have, for every k 2
f1; :::; Dg,  1;M � 'k


1 � 4A

p
DrM (') by (119) and (H4)

P
�
 1;M � 'k

�2 �  1;M21 � 16A2 by (119)

we get that, for every x > 0 and every k 2 f1; :::; Dg,
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n
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3
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#
� 2 exp (�x)

and so
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"
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n
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3

x

n

#
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Hence, taking x = � lnn in (189), it comes

P

"
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��� �r32A2� lnn

n
+
4A
p
DrM (')� lnn

3n

#
� 2D

n�
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then, by using (188) and (190), we get for all n � n0 (A�; A;B2; rM (') ; �min; �),

P
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p
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Finally, as A+ n
(lnn)2

� D we have, for all n � n0 (A;A+; rM (') ; �),
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p
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�
r
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and we can check that, since rC � Au
D
n and K1;M � 2�min, if

A1 � 32B2
p
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then, for all n � n0 (A�; A+; A;B2; rM (') ; �min; �),
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p
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r
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#
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which readily gives the result. �
We are now ready to prove the lower bound (185) for the expected value of the largest increment of the
empirical process over F(C;rC]:
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Proof of Lemma 12. Let us begin with the lower bound of

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2
;

a result that will be need further in the proof. Introduce for all k 2 f1; :::; Dg,

�k;n =

p
rC (Pn � P )

�
 1;M � 'k

�qPD
j=1 (Pn � P )

2 �
 1;M � 'j

� ;
and observe that the excess risk on M of

�PD
k=1 �k;n'k + sM

�
2M is equal to rC. We also set

~
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(
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rM (')
p
D

)
:

By Lemma 13 we have that for all � > 0, if A1 � 32B2
p
2AuA2��

�1
minrM (') then,

for all n � n0 (A�; A+; A;B2; rM (') ; �min; �),

P
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: (191)

Moreover, by (H4), we get on the event ~
,
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k=1

�k;n'k


1

� ~Rn;D;� ;

and so, on ~
,  
sM +
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�k;n'k

!
2 F(C;rC] : (192)

As a consequence, by (192) it holds
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#
: (193)

Furthermore, since by (118) P
�
 1;M � 'k

�
= 0 and by (H4) k'kk1 �

p
DrM (') for all k 2 f1; :::; Dg ; we
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and it ensures
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Comparing inequality (194) with (193) and using (191), we obtain the following lower bound for all n �
n0 (A�; A+; A;B2; rM (') ; �min; �),

E
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r
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: (195)

We take � = 4, and we must have

A1 � 64AB2
p
2Au�

�1
minrM (') .

Since D � A+n (lnn)
�2 and K1;M � 2�min under (H2), we get, for all n � n0 (A;A+; rM (') ; �min),

4ArM (')D
p
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r
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� 1p

D
�
r
rCD

n
K1;M (196)

and so, by combining (195) and (196), for all n � n0 (A�; A+; A;B2; rM (') ; �min), it holds
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Now, as D � A� (lnn)
2 we have for all n � n0 (A�), D�1=2 � 1=2. Moreover, we have K1;M � 2�min by (H2)

and rC � AlDn
�1, so we �nally deduce from (197) that, for all n � n0 (A�; A+; A;B2; Al; rM (') ; �min),
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p
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We turn now to the lower bound of E
h
sups2F(C;rC] (Pn � P )

�
 1;M � (sM � s)

�i
. First observe that s 2 F(C;rC]

implies that (2sM � s) 2 F(C;rC], so that

E
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In the next step, we apply Corollary 25. More precisely, using notations of Corollary 25, we set

F =
�
 1;M � (sM � s) ; s 2 F(C;rC]

	
and

Z = sup
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��(Pn � P ) � 1;M � (sM � s)
��� :

Now, since for all n � n0 (A+; A�; A1; Acons) we have ~Rn;D;� � 1, we get by (118) and (119), for all
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we set b = 4A. Since we assume that rC � Au
D
n , it moreover holds by (119),

sup
f2F
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P
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n
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n
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Furthermore, since D � A� (lnn)
2, we have for all n � n0 (A�; A;Au; Al; �min),

{n 2 (0; 1) :

So, using (199) and Corollary 25, it holds for all n � n0 (A�; A+; Al; Au; A;B2; rM (') ; �min),
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Finally, by comparing (197) and (201), we deduce that for all n � n0 (A�; A+; Al; Au; A;B2; rM (') ; �min),
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and so (185) is proved. �
Let us now turn to the control of second order terms appearing in the expansion of the least squares contrast,
see (6). Let us de�ne


C (x) = sup
s2F(C;rC]

�
j 2 ((s� sM ) (x))�  2 ((t� sM ) (x))j

js (x)� t (x)j ; (s; t) 2 FC ; s (x) 6= t (x)

�
:

After straightforward computations using that  2 (t) = t2 for all t 2 R and assuming (H3), we get that, for
all x 2 X ,
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Lemma 14 Let C � 0. Under (H3), it holds
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Proof. We de�ne the Rademacher process Rn on a class F of measurable functions from X to R, to be

Rn (f) =
1

n

nX
i=1

"if (Xi) , f 2 F

where "i are independent Rademacher random variables also independent from the Xi. By the usual sym-
metrization argument we have
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where the functions 'i : R �! R are de�ned by
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Then by (202) we deduce that 'i is a contraction mapping with 'i (0) = 0. We thus apply Theorem 21 to get
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and so we derive successively the following upper bounds in mean,
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We consider now an orthonormal basis of (M; k�k2) and denote it by ('k)
D
k=1. WhencevuutE"� sup

s2FC
jRn (s� sM )j
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to complete the proof, it remains to observe that, by (203),s
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�
In the following Lemma, we provide uniform upper bounds for the supremum of the empirical process of second
order terms in the contrast expansion when the considered slices are not too small.

Lemma 15 Let A+; A�; Al; �; C� > 0, and assume (H3) and (34). If C� � Al
D
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~Rn;D;� � 1 : (206)

Now, since [C>C�FC � B(M;L1)

�
sM ; ~Rn;D;�

�
where

B(M;L1)

�
sM ; ~Rn;D;�

�
=
n
s 2M; ks� sMk1 � ~Rn;D;�

o
;

we have by (206), for all s 2 [C>C�FC and for all n � n0 (A1; Acons; A+),

P (Ks�KsM ) = P
h
(s� sM )2

i
� ks� sMk21
� ~R2n;D;� � 1.

We thus have, for all n � n0 (A1; Acons; A+),[
C>C�

FC =
[

C�^1<C�1
FC

48



and by monotonicity of the collection FC , for some q > 1 and J =
j
jln(C�^1)j

ln q

k
+ 1, it holds
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Given j 2 f1; :::; Jg ; Lemma 14 yields
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and next, we apply Bousquet�s inequality (232) to handle the deviations around the mean. We have
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It follows that, for " = 1 and all x > 0;
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By consequence, as D � A� (lnn)
2 and as ~Rn;D;� � 1 for all n � n0 (A1; Acons; A+), taking x =  lnn in

(208) for some  > 0, easy computations show that a positive constant LA�;Al; independent of j exists such
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Hence, using (207), we get for all n � n0 (A1; Acons; A+),
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And �nally, as J � LAl;q lnn, taking  = � + 1 and q = 2 gives the result for all n � n0 (A1; Acons; A+; Al).
�

Having controlled the residual empirical process driven by the remainder terms in the expansion of the contrast,
and having proved sharp bounds for the expectation of the increments of the main empirical process on the
slices, it remains to combine the above lemmas in order to establish the probability estimates controlling the
empirical excess risk on the slices.

Lemma 16 Let �;A�; A+; Al; C > 0. Assume that (H1), (H2), (H3) and (34) hold. A positive constant A4
exists, only depending on A;A3;M ; �min; �, such that, if

Al
D

n
� C � 1

4
(1 +A4�n)

2 D

n
K21;M and A+

n

(lnn)
2 � D � A� (lnn)

2

where �n = max
�q

lnn
D ;

q
D lnn
n ; Rn;D;�

�
is de�ned in (117), then for all n � n0 (A1; Acons; A+; Al),

P

"
sup
s2FC

Pn (KsM �Ks) �
�
1 + LA1;A;A3;M ;�min;A�;Al;� � �n

�rCD

n
K1;M � C

#
� 2n�� :

Proof. Start with

sup
s2FC

Pn (KsM �Ks) = sup
s2FC

�
Pn
�
 1;M � (sM � s)�  2 � (s� sM )

�	
= sup

s2FC

�
(Pn � P )

�
 1;M � (sM � s)

�
� (Pn � P ) ( 2 � (s� sM ))� P (Ks�KsM )

	
� sup

s2FC

�
(Pn � P )

�
 1;M � (sM � s)

�
� P (Ks�KsM )

	
+ sup
s2FC

j(Pn � P ) ( 2 � (s� sM ))j : (209)

Next, recall that by de�nition,

DL =
n
s 2 B(M;L1)

�
sM ; ~Rn;D;�

�
; P (Ks�KsM ) = L

o
;
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so we have

sup
s2FC

�
(Pn � P )

�
 1;M � (sM � s)

�
� P (Ks�KsM )

	
= sup

0�L�C
sup
s2DL

�
(Pn � P )

�
 1;M � (sM � s)

�
� L

	
� sup

0�L�C

8<:pL
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� L

9=;
where the last bound follows from Cauchy-Schwarz inequality. Hence, we deduce from Lemma 11 that

P

"
sup
s2FC

�
(Pn � P )

�
 1;M � (sM � s)

�
� P (Ks�KsM )

	
� sup

0�L�C

(
p
L (1 + �n)

r
D

n
K1;M � L

)#
� n�� ,

(210)
where

�n = LA;A3;M ;�min;�

 r
lnn

D
_
p
lnn

n1=4

!

� LA;A3;M ;�min;�

 r
lnn

D
_
r
D lnn

n

!
� LA;A3;M ;�min;� � �n : (211)

So, injecting (211) in (210) we have

P

"
sups2FC

�
(Pn � P )

�
 1;M � (sM � s)

�
� P (Ks�KsM )

	
� sup0�L�C

np
L
�
1 + LA;A3;M ;�min;� � �n

�q
D
nK1;M � L

o # � n��

and since we assume C � 1
4

�
1 + LA;A3;M ;�min;� � �n

�2 D
nK

2
1;M we see that

sup
0�L�C

(
p
L
�
1 + LA;A3;M ;�min;��n

�rD

n
K1;M � L

)
=
p
C
�
1 + LA;A3;M ;�min;� � �n

�rD

n
K1;M � C

and therefore

P

"
sup
s2FC

�
(Pn � P )

�
 1;M � (sM � s)

�
� P (Ks�KsM )

	
�
�
1 + LA;A3;M ;�min;��n

�rCD

n
K1;M � C

#
� n�� :

(212)
Moreover, as C � Al

D
n , we derive from Lemma 15 that it holds, for all n � n0 (A1; Acons; A+; Al),

P

"
sup
s2FC

j(Pn � P ) ( 2 � (s� sM ))j � LA�;Al;�

r
CD

n
~Rn;D;�

#
� n�� : (213)

Finally, noticing that

~Rn;D;� = max

(
Rn;D;�; A1

r
D lnn

n

)

� LA1;�min max

(
Rn;D;�;

r
D lnn

n

)
�K1;M by (121)

� LA1;�min � �n �K1;M ,
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we deduce from (213) that, for all n � n0 (A1; Acons; A+; Al),

P

"
sup
s2FC

j(Pn � P ) ( 2 � (s� sM ))j � LA1;�min;A�;Al;� � �n
r
CD

n
K1;M

#
� n�� (214)

and the conclusion follows by making use of (212) and (214) in inequality (209). �
The second deviation bound for the empirical excess risk we need to establish on the upper slice is proved in
a similar way.

Lemma 17 Let �;A�; A+; C � 0. Assume that (H1), (H2), (H3) and (34) hold. A positive constant A5,
depending on A;A3;M ; A1; �min; A� and �, exists such that, if it holds

C � 1

4
(1 +A5�n)

2 D

n
K21;M and A+

n

(lnn)
2 � D � A� (lnn)

2

where �n = max
�q

lnn
D ;

q
D lnn
n ; Rn;D;�

�
is de�ned in (117), then for all n � n0 (A1; Acons; A+),

P

"
sup

s2F>C
Pn (KsM �Ks) � (1 +A5�n)

r
CD

n
K1;M � C

#
� 2n�� :

Moreover, when we only assume C � 0, we have for all n � n0 (A1; Acons; A+),

P

"
sup

s2F>C
Pn (KsM �Ks) � 1

4
(1 +A5�n)

2 D

n
K21;M

#
� 2n�� : (215)

Proof. First observe that

sup
s2F>C

Pn (KsM �Ks) = sup
s2F>C

�
Pn
�
 1;M � (sM � s)�  2 � (s� sM )

�	
= sup

s2F>C

�
(Pn � P )

�
 1;M � (sM � s)

�
� (Pn � P ) ( 2 � (s� sM ))� P (Ks�KsM )

	
= sup

s2F>C

�
(Pn � P )

�
 1;M � (sM � s)

�
� P (Ks�KsM )� (Pn � P ) ( 2 � (s� sM ))

	
= sup

L>C
sup
s2DL

�
(Pn � P )

�
 1;M � (sM � s)

�
� L� (Pn � P ) ( 2 � (s� sM ))

	
� sup

L>C

8<:pL
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� L+ sup

s2FL
j(Pn � P ) ( 2 � (s� sM ))j

9=;
(216)

where the last bound follows from Cauchy-Schwarz inequality. Now, the end of the proof is similar to that of
Lemma 16 and follows from the same kind of computations. Indeed, from Lemma 11 we deduce that

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
�
�
1 + LA;A3;M ;�min;� � �n

�rD

n
K1;M

35 � n�� (217)

and, since

C � 1

4

D

n
K21;M � �2min

D

n
,

we apply Lemma 15 with Al = �2min, and deduce that, for all n � n0 (A1; Acons; A+),

P

"
8L > C; sup

s2FL

��(Pn � P ) � s2;M � (s� sM )
��� � LA1;�min;A�;� � �n

r
LD

n
K1;M

#
� n�� . (218)
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Now using (217) and (218) in (216) we obtain, for all n � n0 (A1; Acons; A+),

P

"
sup

s2F>C
Pn (KsM �Ks) � sup

L>C

(�
1 + LA;A3;M ;A1;�min;A�;� � �n

�rLD

n
K1;M � L

)#
� 2n�� (219)

and we set A5 = LA;A3;M ;A1;�min;A�;� where LA;A3;M ;A1;�min;A�;� is the constant in (219). For C �
1
4 (1 +A5�n)

2 D
nK

2
1;M we get

sup
L>C

(
p
L (1 +A5�n)

r
D

n
K1;M � L

)
= (1 +A5�n)

r
CD

n
K1;M � C

and by consequence,

P

"
sup

s2F>C
Pn (KsM �Ks) � (1 +A5�n)

r
CD

n
K1;M � C

#
� 2n�� ,

which gives the �rst part of the lemma. The second part comes from (219) and the fact that, for any value of
C � 0,

sup
L>C

(
p
L (1 +A5�n)

r
D

n
K1;M � L

)
� (1 +A5�n)2

D

4n
K21;M .

�

Lemma 18 Let r > 1 and C; � > 0. Assume that (H1), (H2), (H4) and (34) hold and let ' = ('k)
D
k=1 be

an orthonormal basis of (M; k�k2) satisfying (H4). If positive constants A�; A+; Al; Au exist such that

A+
n

(lnn)
2 � D � A� (lnn)

2 and Al
D

n
� rC � Au

D

n
;

and if the constant A1 de�ned in (116) satis�es

A1 � 64B2A
p
2Au�

�1
minrM (') ;

then a positive constant LA�;Al;Au;A;A1;�min;rM (');� exists such that,
for all n � n0 (A�; A+; Au; Al; A;A1; Acons; B2; rM (') ; �min),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;Al;Au;A;A1;�min;rM (');� � �n

�rrCD

n
K1;M � rC

!
� 2n�� ;

where �n = max
�q

lnn
D ;

q
D lnn
n ; Rn;D;�

�
is de�ned in (117).

Proof. Start with

sup
s2F(C;rC]

Pn (KsM �Ks)

= sup
s2F(C;rC]

f(Pn � P ) (KsM �Ks) + P (KsM �Ks)g

� sup
s2F(C;rC]

(Pn � P )
�
 1;M � (sM � s)

�
� sup
s2F(C;rC]

(Pn � P ) ( 2 � (s� sM ))� sup
s2F(C;rC]

P (Ks�KsM )

� sup
s2F(C;rC]

(Pn � P )
�
 1;M � (sM � s)

�
� sup
s2FrC

(Pn � P ) ( 2 � (s� sM ))� rC (220)
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and set

S1;r;C = sup
s2F(C;rC]

(Pn � P )
�
 1;M � (sM � s)

�
M1;r;C = E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�#
b1;r;C = sup

s2F(C;rC]

 1;M � (sM � s)� P
�
 1;M � (sM � s)

�
1

�21;r;C = sup
s2F(C;rC]

Var
�
 1;M � (sM � s)

�
:

By Klein-Rio�s Inequality (234), we get, for all �; x > 0,

P

0@S1;r;C � (1� �)M1;r;C �

s
2�21;r;Cx

n
�
�
1 +

1

�

�
b1;r;Cx

n

1A � exp (�x) : (221)

Then, notice that all conditions of Lemma 12 are satis�ed, and that it gives by (185),
for all n � n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

M1;r;C �
�
1� LA;Al;Au;�minp

D

�r
rCD

n
K1;M : (222)

In addition, observe that

�21;r;C � sup
s2F(C;rC]

P
�
 21;M � (sM � s)2

�
� 16A2rC by (119) (223)

and
b1;r;C = sup

s2F(C;rC]

 1;M � (sM � s)

1 � 4ArM (')

p
rCD by (119) and (H4) (224)

Hence, using (222), (223) and (224) in inequality (221), we get for all x > 0 and
for all n � n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

P

 
S1;r;C � (1� �)

�
1� LA;Al;Au;�minp

D

�r
rCD

n
K1;M �

r
32A2rCx

n
�
�
1 +

1

�

�
4ArM (')

p
rCDx

n

!
� exp (�x) :

Now, taking x = � lnn, � =
p
lnn
n1=4

and using (121), we deduce by simple computations that for all n �
n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),
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1� LA;Al;Au;�min;rM (');� �

 r
lnn

D
_
p
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!!r
rCD

n
K1;M

!
� n�� (225)

and as r
lnn

D
_
p
lnn

n1=4
�
r
lnn

D
_
r
D lnn

n
� �n

(225) gives, for all n � n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

P

 
S1;r;C �

�
1� LA;Al;Au;�min;rM (');� � �n

�rrCD

n
K1;M

!
� n�� : (226)

Moreover, from Lemma 15 we deduce that, for all n � n0 (A1; Acons; A+; Al),

P

"
sup
s2FrC

j(Pn � P ) ( 2 � (s� sM ))j � LA�;Al;�

r
rCD

n
~Rn;D;�

#
� n�� (227)
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and noticing that

~Rn;D;� = max

(
Rn;D;� ; A1

r
D lnn

n

)

� LA1;�min max

(
Rn;D;� ;

r
D lnn

n

)
�K1;M by (121)

� LA1;�min � �n �K1;M ,

we deduce from (227) that for all n � n0 (A1; Acons; A+; Al),

P

"
sup
s2FrC

j(Pn � P ) ( 2 � (s� sM ))j � LA�;Al;A1;�min;� � �n �
r
rCD

n
K1;M

#
� n�� : (228)

Finally, using (226) and (228) in (220) we get that,
for all n � n0 (A�; A+; Au; Al; A;A1; Acons; B2; rM (') ; �min),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;Al;Au;A;A1;�min;rM (');� � �n

�rrCD

n
K1;M � rC

!
� 2n�� ;

which concludes the proof. �

7.5 Probabilistic Tools

We recall here the main probabilistic results that are instrumental in our proofs.
Let us begin with the Lp-version of Ho¤mann-Jørgensen�s inequality, that can be found for example in [15],
Proposition 6.10, p.157.

Theorem 19 For any independent mean zero random variables Yj ; j = 1; :::; n taking values in a Banach
space (B; k:k) and satisfying E [kYjkp] < +1 for some p � 1; we have

E1=p

nX
j=1

Yj


p

� Bp

0@E

nX
j=1

Yj

+ E1=p
�
max
1�j�n

kYjk
�p1A

where Bp is a universal constant depending only on p.

We will use this theorem for p = 2 in order to control suprema of empirical processes. In order to be
more speci�c, let F be a class of measurable functions from a measurable space Z to R and (X1; :::; Xn) be
independent variables of common law P taking values in Z. We then denote by B = l1 (F) the space of
uniformly bounded functions on F and, for any b 2 B, we set kbk = supf2F jb (f)j. Thus (B; k:k) is a Banach
space. Indeed we shall apply Theorem 19 to the independent random variables, with mean zero and taking
values in B, de�ned by

Yj = ff (Xj)� Pf; f 2 Fg :

More precisely, we will use the following result, which is a straightforward application of Theorem 19. Denote
by

Pn =
1

n

nX
i=1

�Xi

the empirical measure associated to the sample (X1; :::; Xn) and by

kPn � PkF = sup
f2F

j(Pn � P ) (f)j

the supremum of the empirical process over F .
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Corollary 20 If F is a class of measurable functions from a measurable space Z to R satisfying

sup
z2Z

sup
f2F

jf (z)� Pf j = sup
f2F

kf � Pfk1 < +1

and (X1; :::; Xn) are n i.i.d. random variables taking values in Z, then an absolute constant B2 exists such
that,

E1=2
h
kPn � Pk2F

i
� B2

�
E [kPn � PkF ] +

supf2F kf � Pfk1
n

�
: (229)

Another tool we need is a comparison theorem for Rademacher processes, see Theorem 4.12 of [15]. A function
' : R! R is called a contraction if j' (u)� ' (v)j � ju� vj for all u; v 2 R. Moreover, for a subset T � Rn
we set

kh (t)kT = khkT = sup
t2T

jh (t)j :

Theorem 21 Let ("1; :::; "n) be n i.i.d. Rademacher variables and F : R+ �! R+ be a convex and increasing
function. Furthermore, let 'i : R �! R; i � n; be contractions such that 'i (0) = 0. Then, for any bounded
subset T � Rn;

EF

 X
i

"i'i (ti)


T

!
� 2EF

 X
i

"iti


T

!
:

The next tool is the well known Bernstein�s inequality, that can be found for example in [16], Proposition 2.9.

Theorem 22 (Bernstein�s inequality) Let (X1; :::; Xn) be independent real valued random variables and de�ne

S =
1

n

nX
i=1

(Xi � E [Xi]) :

Assuming that

v =
1

n

nX
i=1

E
�
X2
i

�
<1

and
jXij � b a:s:

we have, for every x > 0,

P
�
jSj �

r
2v
x

n
+
bx

3n

�
� 2 exp (�x) : (230)

We turn now to concentration inequalities for the empirical process around its mean. Bousquet�s inequality
[8] provides optimal constants for the deviations at the right. Klein-Rio�s inequality [12] gives sharp constants
for the deviations at the left, that slightly improves Klein�s inequality [11].

Theorem 23 Let (�1; :::; �n) be n i.i.d. random variables having common law P and taking values in a
measurable space Z. If F is a class of measurable functions from Z to R satisfying

jf (�i)� Pf j � b a:s:; for all f 2 F ; i � n;

then, by setting

�2F = sup
f2F

n
P
�
f2
�
� (Pf)2

o
;

we have, for all x � 0,
Bousquet�s inequality :

P
�
kPn � PkF � E [kPn � PkF ] �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

3n

�
� exp (�x) (231)
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and we can deduce that, for all "; x > 0, it holds

P
�
kPn � PkF � E [kPn � PkF ] �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+
1

3

�
bx

n

�
� exp (�x) : (232)

Klein-Rio�s inequality :

P
�
E [kPn � PkF ]� kPn � PkF �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

n

�
� exp (�x) (233)

and again, we can deduce that, for all "; x > 0, it holds

P
�
E [kPn � PkF ]� kPn � PkF �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+ 1

�
bx

n

�
� exp (�x) : (234)

The following result is due to Ledoux [14]. We will use it along the proofs through Corollary 25 which is stated
below. From now on, we set for short Z = kPn � PkF .

Theorem 24 Let (�1; :::; �n) be independent random with values in some measurable space (Z; T ) and F be
some countable class of real-valued measurable functions from Z. Let

�
�01; :::; �

0
n

�
be independent from (�1; :::; �n)

and with the same distribution. Setting

v = E

"
sup
f2F

1

n

nX
i=1

�
f (�i)� f

�
�0i
��2#

then
E
�
Z2
�
� E [Z]2 � v

n
.

Corollary 25 Under notations of Theorem 23, if some {n 2 (0; 1) exists such that

{2nE
�
Z2
�
� �2

n

and

{2n
p
E [Z2] � b

n

then we have, for a numerical constant A1;�,

(1� {nA1;�)
p
E [Z2] � E [Z] :

Proof of Corollary 25. Just use Theorem 24, noticing the fact thatp
E [Z2]� E [Z] �

p
V (Z)

and that, with notations of Theorem 24,

v � 2�2 + 32bE [Z] .

The result then follows from straightforward calculations. �
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