
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

11-15-2010

Statistical Wear Leveling for PCM: Protecting
Against the Worst Case Without Hurting the
Common Case
Hamza Bin Sohail

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Sohail, Hamza Bin, "Statistical Wear Leveling for PCM: Protecting Against the Worst Case Without Hurting the Common Case"
(2010). ECE Technical Reports. Paper 412.
http://docs.lib.purdue.edu/ecetr/412

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4950946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F412&utm_medium=PDF&utm_campaign=PDFCoverPages

Statistical Wear Leveling for PCM: Protecting Against the

Worst Case Without Hurting the Common Case

Hamza Bin Sohail

Vijay S. Pai

T. N. Vijaykumar

TR-ECE-10-12

November 15, 2010

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

Statistical Wear Leveling for PCM: Protecting Against the
Worst Case Without Hurting the Common Case

Hamza Bin Sohail, Vijay S. Pai, and T. N. Vijaykumar
School of Electrical and Computer Engineering, Purdue University

{hsohail, vpai, vijay}@ecn.purdue.edu

Abstract

Phase change memory (PCM) is emerging as a lead alternative to DRAM due to its good combination of speed, density,
energy, and reliability. However, PCM can endure far fewer overwrites than DRAM before wearing out. PCM is susceptible to
malicious or accidental overwrites which can wear out a frame in a few hundreds of seconds. Previous papers have proposed to
randomize periodically the address-to-frame mapping in a memory region. Each randomization involves remapping the region’s
memory blocks which incurs significant write overhead. To guarantee reasonable worst-case lifetimes, the papers assume that
every write overwrites the same memory block and incur either high write overhead for normal applications (i.e., the common
case), or permanent, high hardware overhead (i.e., in all cases). We make the key observation that the overwrite rates of normal
applications (i.e., common case) are orders-of-magnitude lower than that of the worst case. However, naively measuring the
overwrite rate using brute-force hardware would incur significant complexity and power. Instead, we apply basic statistical sam-
pling to estimate accurately the overwrite rate while requiring a small sampling buffer. Our approach, calledstatistical wear lev-
eling (SWL), whichrandomizes address-to-frame mapping on the basis of the estimated overwrite rates instead of write
rates.SWL achieves both lower common-case write overhead and lower hardware overhead, and similar, high common-case
lifetime as compared to the previous schemes while achieving reasonable worst-case lifetime.

1 Introduction

It is widely agreed that DRAM’s charge-based storage is not likely to scale beyond a few more technology gener-

ations (e.g., 20nm) [23]. Many alternative technologies such as spin torque transfer RAM (STTRAM) [28] and

phase-change memory (PCM) [21] are being considered to replace DRAM. PCM, which uses phase (crystalline ver-

sus amorphous) to store state, is emerging as a lead contender due to its good combination of energy, speed, density,

and reliability (wear) characteristics. While PCM is projected to scale in density well after when DRAM scaling

slows down, PCM poses its own challenges. Compared to DRAM, PCM incurs longer latency and provides lower

bandwidth (especially for writes) and can endure far fewer overwrites before wearing out (108 in PCM versus 1016 in

DRAM) [23]. Though device- and circuit-level optimizations will continue to improve PCM, PCM’s reliability and

performance will benefit from architectural and system support (e.g., [13][20][30]). In this paper, we focus on

improving PCM’s reliability.

The issue is wear-out of PCM due to overwriting of memory locations. Repeated over-writing can wear out a

memory frame in a few hundreds of seconds (e.g., if each write takes 1µs then 108 overwrites would take 100 s)

[19]. This over-writing may be maliciously intentional resulting in a security problem or unintentional leading to a

reliability problem [19]. Because of the speed at which the damage can occur irrespective of the cause of the over-

writes and because the damage results in permanent loss of memory capacity, the solution shouldguaranteegood

2

reliability underworst-caseoverwrites. In the rest of the paper, we use the term “worst-case overwrites” without

specifying the cause.

While wear leveling for Flash is well-studied [27][12], Flash requires an erase before a write forcing every over-

write to remap the memory block to a new frame whereas PCM allows overwrites without any erases. Such remap-

ping involves migrating the block and incurs significant bandwidth and energy. Also, the erase and write

granularities are different in Flash, posing garbage collection challenges which do not exist in PCM. Thus, wear lev-

eling strategies for Flash are not a good fit for PCM. Some recent papers provide PCM wear-leveling solutions by

periodically randomizing the address-to-frame mapping in a memory region (e.g., 512 MB). To ensure that no mem-

ory frame is worn out severely before the next randomization, the schemes force a randomization after athreshold

number of writes to a region under the worst-case assumption the every write overwrites the same memory frame.

Each randomization involves remapping the region’s memory blocks which incurs significant write overhead and

consumes the already-scarce PCM write bandwidth, and energy. Though the remapping can be spread out over the

entire time between two consecutive randomizations, the bandwidth and energy overheads remain.

The write overhead can be reduced either (1) by increasing the write threshold per randomization and thereby

decreasing the number of randomizations, or (2) by shrinking the region so that a smaller region with fewer frames is

remapped for the same threshold. Unfortunately, both these approaches are problematic. Because the number of ran-

domizations have to be high enough to avoid birthday-paradox attacks [33], the threshold has to be several tens of

factors smaller than PCM’s endurance limit (e.g., 221 overwrites per randomization for a 108 endurance limit results

in about 50 randomizations before wear out). Therefore, the first approach is unacceptable. As a result, some previ-

ous schemes incur high write overhead to achieve reasonable worst-case lifetimes. For instance, Security Refresh’s

one-level wear leveling [24] and Start Gap [19] remap one block per write amounting to 100% write overhead.

Because of their worst-case assumption, the schemes incur this high write overhead for both normal applications

(i.e., common case) and malicious attacks (i.e., worst case).

The second approach randomizes a block in a smaller region resulting in overwrites being spread over fewer

frames. However, the approach can be strengthened by another level of randomization over a larger region so that

overwrites are spread over many frames. The second level of randomization can use a high threshold without

decreasing the number of randomizations as is the case with the first approach because there are sufficient first-level

randomizations. However, the second approach leads to significant hardware overhead. For instance, Security

Refresh’s two-level wear leveling [24] tracks every 2-MB region requiring 4192 sets of counters and secure keys for

a 8-GB memory.

While these counters are small (e.g., 12-15 bits), their total byte-count is misleading. There is significant logic

overhead in terms of incrementers for counters and pointers, comparators, XOR hash for secure keys, and tables to

identify a region’s counters within the larger memory bank (e.g., 512 MB). Because internal banks are accessed in

3

parallel, the pointers and counters have to be incremented in parallel disallowing sharing of the logic across multiple

banks. To ensure wear leveling despite a compromised OS, Security Refresh proposes to place all this logic in the

PCM chips. While modern DRAMs provide just one counter per bank for refresh purposes,

Security Refresh adds per bank a pair of incrementers and XOR hashes, a comparator, and a table of 256 sets of

counters, pointers, and keys. This substantial hardware overhead will impose significant loss of density. Further, in

the likely scenario of PCM density improving faster than PCM endurance, this solution does not scale well as it

would require tracking 2-MB regions in ever-growing memories, incurring exponentially larger hardware over tech-

nology generations. To sum up, because of their assumption that every write overwrites the same memory block, the

previous schemes incur either high write overhead in the common case, or permanent, high hardware overhead (i.e.,

in all cases) to achieve reasonable worst-case lifetimes.

To address these overheads, we make our first key observation that the previous schemes assume that every write

is a worst-case overwrite, and count every write against the threshold for the number of writes per randomization.

Due to good on-chip caches, however, the average memory overwrite rates in the common case, and even highly-

memory-intensive applications, are orders of magnitude lower (e.g., average overwrite rate is less than 1 per 10,000).

For the same threshold, and hence the same number of randomizations, a lower overwrite rate would imply (1) a

lower write overhead in the first approach above, or (2) a larger region with lower hardware overhead in the second

approach.

To determine the overwrite rate, we make our second key observation that overwrite rates below a low cut-off rate,

1/cutOff, can be approximated conservatively to be equal to1/cutOffwith the guarantee that the actual wear does not

exceed the approximate wear (e.g., overwrite rates below 1 in 4000 can be approximated to be 1/4000). While this

approximation increases the write overhead only slightly (at most 1/4000 = 0.025%), measuring the actual overwrite

rate poses a challenge. A brute-force approach of observing overwrites in a window ofcutOff writes would deter-

mine the actual overwrite rate above1/cutOff. However, this approach would require a hardware buffer to hold the

last window of writes so that every write searches through the buffer (e.g., a 4000-entry buffer forcutOff= 4000). A

lower1/cutOff implies less write overhead, but also a larger buffer which increases complexity and power.

Instead, we explore an elegant alternative where we apply basic statistical sampling so that a much smaller buffer

can accurately estimate the overwrite rate (e.g., a 13-entry buffer per 2 GB suffices). We proposestatistical wear lev-

eling (SWL)which randomizes address-to-frame mapping on the basis of the estimated overwrite rates instead of

write rates. In general, sampling can provide estimates within a desired error at a desired level of confidence for a

given standard deviation of the population. However, worst-case guarantees would be hard if we make assumptions

about the standard deviation of overwrites. We avoid such assumptions based on our third key observation that

because we care only about overwrite rates above1/cutOff, we can bound the standard deviation to achieve high-con-

fidence estimates while requiring a small buffer. Bounding the deviation using1/cutOff is fundamental to making

4

sampling work for our worst-case problem. Further, in general sampling, the larger the standard deviation, the

smaller the error, or both, the more the samples and hence the larger our hardware buffer. By choosing1/cutOffto be

low enough to reduce the write overhead and at the same time high enough to ensure a tight bound on the standard

deviation, we can afford low error while requiring a small buffer. To provide worst-case guarantees, we conserva-

tively account for the error in our estimates.

The net effect is the following. Security Refresh incurs either high write overhead of 50% or more in the common

case (single level), or high hardware overhead of a set of logic for every 2 MB (two level) while achieving about 25

months of worst-case lifetime. In contrast, SWL achieves low write overhead of less than 0.15%, and similar, high

lifetime of thousands of years in the common case; SWL trades off higher write overhead of 400% and lower yet rea-

sonable lifetime of more than 6 months in the worst case to achieve low hardware overhead of a set of logic and a 13-

entry sampling buffer for every 2 GB. This trade-off is reasonable because (1) write overhead is unimportant in the

uncommon worst case, (2) a worst-case lifetime of about 6 months under malicious attack is acceptable assuming the

attack would be detected in that time (in fact, SWL can be used to detect the attacks), and (3) hardware overhead is

permanent (i.e., in all cases, even when there is no attack). Because of low overwrite rates of normal applications, all

the schemes achieve high common-case lifetimes.

The rest of the paper is organized as follows. We provide background on PCM wear leveling and discuss related

work in Section 2. We describe SWL in Section 3. We explain our methodology in Section 4. We show our results in

Section 5 and conclude in Section 6.

2 Phase Change Memory (PCM): Background and Related Work

While DRAM is a charge-based storage technology, PCM

uses phase — crystalline or amorphous — to store state.

The two phases exhibit different resistivities that can be

detected to determine the phase. PCM retains its phase

even in the absence of electric power, making PCM a non-

volatile technology. In a typical transistor-based imple-

mentation, each PCM cell is made of a BJT transistor and

a storage element (conceptually, a resistor) which is connected to the BJT’s emitter at one end and a bitline at the

other [7] (see Figure 1). The BJT’s base is connected to the wordline and the collector is connected to ground. Reads

occur by asserting the wordline which turns on the BJT, causing current flow through the storage element due to the

voltage applied at the bitline. This current, which varies depending on the storage element’s state, is sensed at the end

of the bitline to determine the state stored in the cell. For writes, instead of sensing the current flow through the stor-

age element, a current is sent through the bitline to heat the storage element, causing the element to change its phase.

FIGURE 1: PCM cell

Wordline
Bitline

BJT
Pass

Transistor

Storage
Element

5

The magnitude and duration of the current flow determines the element’s resultant phase.

2.1 Performance, energy, and wear

We briefly discuss PCM’s performance and energy before wear which is our main focus. PCM’s total read and

write latencies are longer than those of DRAM; write latencies are much longer (e.g., 10x-20x). Many architecture

papers have proposed techniques such as caching [20] and optimized row buffers [13] to address this latency issue.

Because wear leveling incurs write overhead, the longer write latency is a significant concern. The longer latency

fundamentally implies longer occupancy which reduces bandwidth even in heavily-banked PCM memories where

bank conflicts are inevitable. While PCM’s longer latencies can be hidden by multi-threading, such hiding exacer-

bates bandwidth pressure. PCM’s total read and write energies are more than those of DRAM; write energies are

much higher (e.g., 20x-30x). To address the high write energy, many architecture papers have proposed bit-level

compare-and-write schemes [30] (caching and row buffers also reduce write energy).

Because writes involve heating the storage element to change its phase, writes cause PCM cells to wear out. In

general, PCM cells can endure about 108 writes whereas DRAM cells wear out after about 1016 writes [23]. If left

unaddressed, PCM-based memory could wear out in a few days even with normal applications; a malicious attack

can wear out a memory frame in a few hundred seconds [19].

2.2 Related work

There has been significant recent work on technology, devices, and materials for PCM [6][7][8][11][21][26].

Some recent architecture papers propose hardware techniques to alleviate PCM’s reliability problem. Many papers

target average-case wear without any worst case guarantees which are important because of the speed at which the

damage can occur and the permanence of the damage. Some papers propose rotation within a row ([30]) or a page

[20] to level wear within a row or a page. Other papers propose bit-level compare and write so that only the differ-

ence is written [30][34]. To hold the rotation amounts (e.g., one per 4-KB row or 8-KB page), these schemes employ

hardware tables which are as large as virtual memory and add overhead. Another work [9] proposes to spread the

contents of a physical page into two pages that have complementary wear which incurs the overhead of tracking

wear at cache-block granularity. In contrast, SWL provides worst-case guarantees while incurring significantly less

overhead (e.g., 13-entry buffer per 2 GB). An orthogonal work proposes to tackle wear out via error correction dif-

ferent from traditional ECC which primarily target soft errors [22].

2.2.1 Wear leveling via randomization

Start Gap [19] performs wear leveling by statically randomizing the physical memory layout and by periodically

changing the address-to-frame mapping to the next frame. Security Refresh [24] strengthens Start Gap’s approach to

provide worst-case lifetime guarantee by periodically randomizing the address-to-frame mapping of amemory

region(e.g., 512 MB). To bound the worst-case wear incurred by any memory frame between two randomizations of

6

a region, Security Refresh forces a randomization afternumWriteswrites to the region assuming that every write

overwrites the same location. Remapping an entire region in one go would be bursty. Instead, the scheme spreads out

the remapping in time by swapping one memory block at a time with a randomly-chosen block. Accordingly, if there

arenumFramesframes in the region then the next block is swapped afterswapThreshold writes where

swapThreshold= numWrites/numFrames (EQ 1)

For example, for a 512-MB region and 512-byte blocks, and assumingnumWrites= 221, numFrames= 220 and

swapThreshold= 1/2. We call one set ofnumWriteswrites as ageneration.

A key issue with the choice ofnumWritesis that assuming PCM can endure 108 overwrites, the number of gener-

ations is given by

numGenerations = 108/numWrites (EQ 2)

numGenerationsmust be large enough to ensure that each block gets randomized after the frame loses only a

small amount of its life in the worst case (in our above example, the number of generations is 108/221 or about 50).

To see why, assume that the number of generations is just two so that a frame may lose half its lifetime in just one

generation. Then, a malicious attack that repeatedly overwrites a block 108/2 times before picking a random block to

overwrite can find the frame with half remaining lifetime in about(2*numFrames)1/2 attempts [33]. This assertion

follows from the birthday paradox which states that givend days in the year, there is a high probability that a set of

(2*d)1/2 people will include at least two people with the same birthday [31]. A sufficiently large number of genera-

tions (e.g., 50) makes such attacks ineffective as it would take an astronomically many attempts to find randomly the

same frame that number of times. Start Gap’s approach of statically randomizing achieves insufficient number of

generations and is vulnerable to birthday-paradox attacks whereas Security Refresh’s sufficient randomization

avoids this pitfall.

Each randomization involves remapping the region’s memory blocks which incurs significant write overhead and

consumes the already-scarce PCM write bandwidth and energy; remapping incurs extra reads too but writes are

much slower than reads and hence write overhead is more important. Returning to the above example, we see that

swapThreshold= 1/2 implies 50% write overhead as every other write turns into a swap (2 reads and 2 writes). That

is,

Single-level Security Refresh’s writeOverhead= 1/swapThreshold (EQ 3)

With good randomization, each block has the potential to be mapped to all thenumFramesframes over time.

Assuming the worst-case of overwriting the same block, all the frames have one generation of theirworst-case life-

time left after about

number of worst-case writes= (numGenerations - 1) * numWrites * numFrames / (1+ writeOverhead) (EQ 4)

In the above equation, we conservatively exclude the last generation of lifetime (i.e., the “- 1” term) because in the

last generation some frames would fail before the others. Also, swaps per frame, being as many as generations are

7

not counted because such swaps are much fewer than the above expression (e.g., 50 generations means 50 swaps

which is much less than the above expression). We include the effect of the write overhead of the swaps which

degrade lifetime. While the swap overhead would extend lifetime by delaying application writes, we do not consider

this effect in the above expression because such extensions are not useful lifetimes available to the application. While

worst-case lifetime is in the context of an attack or a bug and not normal application, we still do not include such

extension to keep our lifetime calculations uniform between common-case and worst-case contexts. (Because Secu-

rity Refresh includes this extension in its lifetime calculations, our results are somewhat different from that paper’s.).

If each write takes 1µs then the worst-case lifetime for our example is more than 2 years. Recall from Section 1 that

without any wear leveling, repeated overwrites take mere 100 s to wear out a frame. Note that (1) throughout the

paper we repeat similar calculations and therefore it is important to understand the above terms and calculations; (2)

because all schemes achieve good common-case lifetime due to low common-case overwrite rate, we discuss that

metric only in Section 5 and not throughout the paper.

Security Refresh uses a running pointer per region to identify the next block to be swapped, and two secure keys

per region — an old and a new — for the random swaps. The blocks above the pointer have already been swapped

and hence use the new key to locate the new frame, whereas the blocks below the pointer have not been swapped and

use the old key. In addition, every region has a counter that counts the writes to the region and triggers the next swap

whenever the counter exceedsswapThreshold. When the running pointer wrap around (i.e., all the frames have been

swapped in one round), the next new key is generated. Security Refresh places all of these circuits on-chip so that the

swaps are done securely in hardware even if that the OS is compromised.

The key reason for the high write overhead is thatswapThresholdis small becausenumFramesis large andnum-

Writescannot be increased. One option to decreasenumFramesis larger memory blocks but if the granularity of

writes reaching memory — L2 or L3 cache block — is smaller than the memory block then the swaps incur higher

write overhead (e.g., write backs of 128-byte cache blocks would trigger swaps of 2-K memory blocks). Another

option is to decrease the memory region but doing so would reduce the overall lifetime because overwrites would get

spread out over a smaller region.

To overcome this dilemma, Security Refresh employs a two-level wear leveling where the first level uses a smaller

region for a largerswapThresholdwhereas the second level uses a larger region over which overwrites get spread

out. For example, the first level uses 2-MB regions and 512-byte blocks so thatnumWrites1 = 219, numFrames1 = 212

andswapThreshold1 = 64. The second level uses 512-MB regions and 512-byte blocks so thatnumFrames2 = 220,

and setsswapThreshold2 = 128. While thisswapThreshold2 value increasesnumWrites2 (for the second level) to be

227 which in turn decreases the second level’s number of generations to less than 1, the first level’s number of gener-

ations is high enough (about 400) to thwart any birthday-paradox attacks. The write overhead is1/swapThreshold1 +

1/swapThreshold2 = numFrames1/numWrites1 + numFrames2/numWrites2. BecausenumWrites1 must be small to

8

resist attacks andnumFrames2 must be large for high lifetime, the two-level scheme achieve low write overhead by

making numFrames1 small andnumWrites2 large. While the single-level scheme incurs 50% write overhead to

achieve more than 2 years of worst-case lifetime, the two-level scheme incurs 1/64 + 1/128 = 2.3% write overhead to

achieve more than 3 years of worst-case lifetime.

Unfortunately, a smallnumFrames1 incurs high hardware overhead. For a 8-GB memory using 2-MB first-level

regions, there are 4196 sets of secure keys, counters, and pointers. As mentioned in Section 1, though the counters

are only 12-15 bits in size, there is significant logic overhead in terms of incrementers for the counter and pointer,

comparators, XOR hashes for the secure keys, and tables for the regions within an internal memory bank which is

typically much bigger (e.g., 512 Mb or 64 MB). Because of internal-bank parallelism in memory.chips, the pointers

and counters cannot share the logic among multiple banks. Adding this amount of logic on-chip is a substantial over-

head which will cause loss of density given that modern DRAMs place just one counter per bank to support

refreshes. The overhead is problematic especially considering that PCM density is likely to improve faster than PCM

endurance requiring the same 2-MB regions in larger and larger memories. Thus, because of their worst-case

assumption, the single-level scheme incurs high write overhead in the common case, and two-level scheme incurs

permanent, high hardware overhead (i.e., in all cases) to achieve reasonable worst-case lifetimes.

3 Statistical Wear Leveling

Recall from Section 1 that we wish to reduce the above overheads based on our first observation that the previous

schemes count every write againstswapThresholdunder the worst-case assumption that every write is an overwrite

of the same location. However, typical average overwrite rates of normal applications, including highly-memory

intensive ones, are orders of magnitude lower than the write rate due to good caching (e.g., one in 4000 writes is an

overwrite). With lower overwrite rates, we can achieve either lower write overhead in Security Refresh’s single-level

scheme or lower hardware overhead in Security Refresh’s two-level scheme while maintaining the samenumWrites,

and hence the same number of generations. Nevertheless, we must guarantee reasonable lifetimes for the worst-case

overwrite rates and not just the average-case rates. To this end, we proposestatistical wear leveling (SWL)which

randomizes on the basis of overwrite rates instead of write rates.

We determine the overwrite rate based on our second observation that overwrite rates lower than1/cutOffcan be

approximated conservatively to be equal to1/cutOff(e.g., overwrite rates below 1 in 4000 can be approximated to be

1/4000). While this approximation guarantees that the actual wear does not exceed the approximate wear and only

slightly increases the write overhead (at most 1/4000 = 0.025%), measuring the actual overwrite rate poses a chal-

lenge. Observing overwrites in a window ofcutOffwrites would determine the actual overwrite rate above1/cutOff.

However, this brute-force approach would require a hardware buffer to hold the last window of writes for every later

write to search through the buffer (e.g., a 4000-entry buffer forcutOff= 4000). This buffer would increase hardware

9

complexity and power.

Instead, we employ a much smaller buffer by applying basic statistical sampling to estimate the overwrite rate.

While sampling can provide estimates within a desired error at a desired level of confidence for a given standard

deviation of the population, making assumptions about the standard deviation of the overwrite rate would make

worst-case guarantees hard. We avoid this problem via our third observation that because we wish to estimate over-

write rates only above1/cutOff, we can bound the standard deviation to achieve high-confidence estimates. This

bounding is fundamental to making sampling work for our worst-case problem. Further, while larger standard devia-

tion and/or smaller error require more samples and hence a larger buffer, we choose1/cutOff to be low enough to

reduce the write overhead and high enough to bound tightly the standard deviation. Therefore, we can achieve a low

error with a small buffer. To ensure worst-case guarantees, we conservatively account for the error in our estimates.

3.1 Sampling

We estimate the overwrite rate by observing the number of writes between consecutive overwrites to a memory

location. This number and the overwrite rate are inverses of each other. We call this intervening number of writes as

the overwrite distance, or simply thedistance. To estimate the distance, we samplenumSampleswrites from a popu-

lation ofnumPopulationwrites and record the distance to the next overwrite for each of the samples. The population

is the set of writes after which some action is taken — i.e., triggering a randomization — based on the estimates

obtained. For a large enough number of samples selected uniformly at random, sampling theory states that the mini-

mum required number of samples is given by:

wherez is the normal distribution value dependent on the desired confidence level,s is the standard deviation in

the population, andε is the allowed error in the estimated variable [32].

We are interested in estimating the overwrite rate only above1/cutOff, or equivalently, the overwrite distance

belowcutOff. That is, we conservatively set any of our samples’ distance abovecutOff to be equal tocutOff. Thus,

our samples’ distance can be only between 0 andcutOff. Now,

where eachx is an instance in the population, is the average, andn is the number of instances. Because eachx

for us is between 0 andcutOff, s is largest when half the instances are 0 and the other half arecutOff. In that

case, and for largen,

numSamples
z
2

s
2

ε2
-----------≥

s
1

n 1–
------------ x∑

2() x
2

–=

x

x cutOff 2⁄=

s
1

n 1–
------------ cutOff

2
n

2

 
 
  cutOff

4

2
–≤ cutOff

2
-----------------≈

10

Further, settingz = 3 gives us 99.99% confidence. Thus,

BecausenumSamplesdirectly affects the size of our hardware buffer (as we show later in Section 3.3), we wish to

reducenumSamples. Though reducingcutOff2 would reducenumSamples, doing so would increase our cut-off rate

which in turn would loosen our approximation and increase our write overhead. Therefore, we wish to keepcutOffas

large as possible. In contrast,numSamplesis inversely proportional toε2 whereasε affects the sampled distance only

additively (i.e., real distance is sampled distance± ε). By subtractingε from the sampled distance with a lower bound

of 1, our estimate can be conservative (i.e., the estimated overwrite rate is higher than the actual overwrite rate). Of

course, drastically increasingε would lead to highly conservative estimates. Therefore, we increaseε to a small frac-

tion of cutOffto reducenumSamplesby a large amount.

Because normal yet even highly-memory-intensive applications’ typical average case overwrite rate is less than 1/

4000, we setcutOff= 4000 andε = 200 and obtain

 and (EQ 5)

samplingRate = numSamples/numPopulation (EQ 6)

AssumingnumPopulation= 220, our sampling rate is 900/220 = 0.000858. In other words, each write has a

0.086% chance of being sampled. Note that because we take samples fromnumPopulationwrites and then decide to

trigger a randomization during the nextnumPopulationwrites, at most2 * numPopulationwrites may occur between

our randomizations. This observation implies that

numWrites = 2 * numPopulation (EQ 7)

By settingnumPopulationto be 220, we achievenumWrites= 221or about 50 generations for an endurance of 108

overwrites.

3.2 Sample buffer operation

Using the above sampling rate, SWL samples the writes arriving at a memory region. The sampling uses hardware

random number generation typically implemented using a linear shift register. SWL places the samples in a FIFO

buffer, called thesample buffer, and compares every write to the region against all the samples. If an incoming write

address matches a sample address (i.e., an overwrite has occurred) then the sample is complete, else the sample’s dis-

tance is incremented signifying that another write has occurred without an overwrite. If the incremented distance hits

cutOff then also the sample is complete signifying that the sample has fallen below the cut-off. Upon a sample com-

pletion, the sample’s distance minusε (lower-bounded by 1) is added into the per regiontotal distanceand the pe

regionsample count is incremented.ε is subtracted to compensate for the error as explained before.

numSamples
9cutOff

2

4ε2
------------------------≥

numSamples
9 4000

2×

4 200× 2
------------------------≥ 900=

11

At the end ofnumPopulationwrites,sample count/total distancegives thesampleOverwriteRate, andnumPopula-

tion * sampleOverwriteRategives the estimated number of overwrites in the lastnumPopulationwrites. Though the

overwrites could have gone to different memory locations, we conservatively assume the worst case that the over-

write count corresponds to a single memory location within thebank? region. Consequently, when the estimated

overwrites exceednumPopulationthen SWL should trigger a randomization of thebank? region. To avoid randomiz-

ing an entire region in one go, the previous schemes spread out the region’s swaps over the entire generation ofnum-

Writes writes. That is, the schemes trigger a swap after everyswapThresholdwrites (from Equation 1). Because

SWL estimates overwrites and does not count writes, SWL should spread out the swaps overnumPopulationesti-

mated overwrites.

Accordingly, SWL should trigger a swap after everynumPopulation/numFramesestimated overwrites which cor-

responds tonumPopulation/numFrames * 1/sampleOverwriteRatewrites. Here,sampleOverwriteRateis the over-

write rate obtained by the samples (as explained above). Because SWL observes only the sampled writes and not all

writes, we adjust this value by the sampling rate to trigger a swap after everynumPopulation/numFrames * numSam-

ples/numPopulation * 1/sampleOverwriteRate= numSamples/numFrames * 1/sampleOverwriteRatecompleted sam-

ples. A separate counter called theswap counttracks the number completed samples since the last swap and triggers

a swap aftersampleSwapThreshold completed samples where

SWL’s sampleSwapThreshold = numSamples/numFrames * 1/sampleOverwriteRate (EQ 8)

sampleSwapThresholdcompleted samples in SWL plays the role ofswapThresholdwrites in Security Refresh.

For example, assumingnumSamples= 900,numFrames= 220, and a common-casesampleOverwriteRateof 1/4000,

sampleSwapThreshold= 3.43. Because SWL has to count this number of completed samples before triggering a

swap, real designs can simplify the abovesampleSwapThresholdcalculation by approximating the relevant quanti-

ties to powers of two. Nevertheless, it would be problematic if this number were a fraction. We address this issue

later in Section 3.4.2.

Recall from Section 2.2.1 that single-level Security Refresh incurs high write overhead and two-level Security

Refresh incurs high hardware overhead. While the previous single-level schemes (single-level Security Refresh or

Start Gap) trigger a swap afterswapThresholdwrites, SWL triggers a swap aftersampleSwapThresholdcompleted

samples. Because each completed sample corresponds to1/samplingRate writes in the application,

SWL’s writeOverhead= samplingRate/sampleSwapThreshold (EQ 9)

= numFrames * sampleOverwriteRate/numPopulation (from Equation 6 and Equation 8)

= Single-level Security Refresh’s writeOverhead * sampleOverwriteRate * 2 (from Equation 3 and Equation 7)

The expression for SWL’s worst-case lifetime in terms of number of writes is same as that of Security Refresh

(Equation 4). Because the overwrite rate is typically orders-of-magnitude smaller than the write rate for normal

applications (i.e., the common case),sampleOverwriteRateis a small quantity (e.g., 1/4000). Consequently, SWL

12

achieves orders-of-magnitude lower common-case write overhead than the previous schemes while maintaining the

same number of generations (i.e., samenumWritesimplying samenumGenerations, from Equation 2).

For the one-level Security Refresh example in Section 2.2.1 wherenumWrites= 221, numFrames= 220, and

swapThreshold= 1/2 or 50% write overhead, SWL’s common-case write overhead is less than 0.03% assumingsam-

pleOverwriteRate <1/4000. Recall from Section 2.2.1 that two-level Security Refresh’s smallnumFrames1 results in

low write overhead (about 2.3%) but high hardware overhead of tracking 2-MB first-level regions. For the example,

this tracking requires 4192 sets of two keys, one counter, and one pointer. In contrast, SWL tracks 512-MB regions

(220 x 512-byte blocks = 512 MB) requiring just 16 sets of two keys, one counter, one pointer, and one 13-entry sam-

ple buffer for the entire 8-GB memory (we reduce this overhead further in Section 3.4.2). Thus, by leveraging the

fact that common-case overwrites are orders-of-magnitude fewer than writes, SWL can achieve similar. low write

overhead as two-level Security Refresh while tracking orders-of-magnitude larger regions and hence cutting hard-

ware overhead by that much.

In the worst case, wheresampleOverwriteRateis 1, SWL’s write overhead is 100% (Equation 9) and worst-case

lifetime is more than 1.5 years (Equation 4), as compared to two-level Security Refresh’s write overhead of 2.3% and

worst-case lifetime of more than 3 years. As discussed in Section 1, (1) write overhead is unimportant in the uncom-

mon worst case, (2) a worst-case lifetime of 1.5 years under malicious attack is acceptable assuming the attack would

be detected in that time (SWL can be used for such detection), and (3) hardware overhead is permanent (i.e., in all

cases, even when there is no attack).

3.3 Sample buffer size

The remaining issue is the size of the sample buffer needed for our samples. Samples are inserted into the buffer

using a memoryless process. Our cut-off implies that any sampled write stays in the buffer for at mostcutOffwrites.

Therefore, the number of entries in the buffer is at most the number of samples chosen in the lastcutOff writes,

which follows the Poisson distribution. The samples are chosen independently of each other and the average number

of buffer entriesλ is bounded by Little’s law as (maximum buffer residency * sampling rate) so that

λ = cutOff * samplingRate (EQ 10)

Consequently, the number of buffer entries follows the Poisson distribution and the probability of exceedingk

entries is given by

SettingcutOff= 4000,samplingRate= 0.000858, yieldsλ to be less than 4 and the probability of exceeding a 13-

entry sample buffer to be less than 0.01%. Thus, a small sample buffer suffices.

We note that upon exceeding the buffer capacity we simply remove the oldest sample (FIFO order) and add the

Pr i k>() 1 e
λ– λi

i!

i 0=

k

∑–=

13

sample’s current distance to the total distance. Because the sample’s distance is recorded before completion, the

recorded distance is shorter than the real distance if the sample had completed, and hence, is conservative. Because

the overflow probability is small, this conservative distance would only slightly increase the write overhead.

3.4 Implementation

To ensure wear leveling even in the presence of a compromised OS, Security Refresh places all the wear leveling

logic in the PCM chip and employs on-chip hardware to swap the memory blocks, obfuscating the address-to-frame

mapping from the OS. One may think that the logic could be placed in the memory controller and not in the PCM

chip. However, doing so poses correctness difficulties for modern I/O devices which access memory through DMA

independently of the memory controller (viabus-masteringand first-party DMA). The memory controller would

have to propagate the secure keys and region pointers to the I/O devices to ensure that the DMAs use the correct

address-to-frame mapping. Given that the mappings would change at arbitrary times with respect to the DMA occur-

rences, it would be hard to keep the mappings up-to-date. Further, the independent DMA accesses would be missed

in the memory controller’s count of writes inswapThreshold, so that DMA writes would not undergo wear leveling.

Indeed, this problem could give rise to DMA-based attacks. If the wear-leveling logic is in the PCM chip, then the

DMA accesses can both be mapped and be counted correctly. SWL helps the on-chip option by greatly reducing the

amount of the on-chip hardware,

Apart from being resilient to a compromised OS, there is another advantage of wear leveling in hardware (on-chip

or memory controller). Modern OSs often rely on physical addresses that do not change due to various reasons such

as legacy I/O devices that cannot handle larger physical addresses, and I/O buffers and kernel pages whose addresses

do not change after boot-up, While these physical addresses do not change, the wear leveling hardware can change

the address-to-frame mapping underneath the OS to achieve wear leveling for the corresponding frames.

3.4.1 Memory controller scheduling issues

Performing wear leveling without the knowledge of the memory controller raises two issues. First, if the wear lev-

eling region is larger than an internal PCM bank, then the random block swaps would cause memory blocks to cross

internal banks. Such swaps would imply that the memory controller cannot determine the bank to which a specific

access occurs, preventing bank scheduling optimizations done by modern memory controllers. To avoid this prob-

lem, we ensure that our regions do not exceed a bank, like Security Refresh. Because PCM banks would be large like

DRAM banks, our regions are large enough to achieve sufficient wear leveling. For instance, 512-byte blocks and

512-MB banks in a 8-GB memory with 16 banks givesnumFrames= 220. Thus, each block has a choice of 220

frames for random mapping, and withnumWrites= 221, SWL’s worst-case write overhead is 100% (Equation 9) and

more than 1.5 years of worst-case lifetime (Equation 4). AssumingsampleOverwriteRate <1/4000, SWL’s com-

mon-case write overhead is less than 0.03% (Equation 9). This bank constraint is fundamental to all the schemes that

14

perform on-chip wear leveling and limitsnumFrameswhich in turn limits the worst-case lifetime (wear leveling

using the memory controller has some difficulties, as discussed above in Section 3.4).

We note that banks become larger as memory chip capacity grows to avoid an explosion of the bank count. Conse-

quently, our write overhead would either hold steady if the cache block size also grows with memory size (i.e.,num-

Framesstays the same), or decrease if the cache block size remains the same (i.e.,numFramesincreases). We caution

the reader that one could arrive at the same result by recomputing the above numbers by considering each chip. For

example, assuming 8 1-GB chips to make up the above 8-GB memory and 16 512-Mb internal banks within each

chip, each 512-byte block contributes 512 bits per chip givingnumFrames= 220.

Second, the memory controller should not schedule an access while the PCM module performs a random block

swap. This constraint is unique in that though the DRAM refresh counter is on-chip in a modern DRAM which inter-

nally performs refreshes, the refresh trigger comes from the memory controller which avoids scheduling accesses till

the refresh is complete (in current systems, independent DMA controllers and the memory controller go through

arbitration to avoid scheduling conflicts). However, adding a handshake between the memory controller and the

PCM module for every access would impose significant latency. Instead, we propose that the memory controller

speculatively send requests to the PCM module which would nack the request if a block swap is in progress. Given

that SWL’s swaps are infrequent (i.e., the common-case write overhead is less than 1%), the requests would not be

nacked in the common case. In addition to being infrequent, the swaps are fast as they move only a few blocks (we

batch a few swaps together, as discussed in Section 3.4.2). Therefore, the nacked requests are not delayed signifi-

cantly.

3.4.2 Reducing our hardware overhead

While the above issues are due to bypassing the memory controller, placing the wear leveling logic on-chip raises

the issue that using memory regions as large as banks would imply one sample buffer per bank. As mentioned in

Section 3.2, each sample buffer is a fully-associative FIFO accompanied by a few counters and a linear shift register

to generate random numbers. Though SWL’s overhead is per 512-MB region whereas Security Refresh’s overhead is

per 2-MB region, we further reduce SWL’s overhead by observing that the sample buffer and associated logic can be

shared among multiple banks. That is, one sample buffer and associated logic is shared among multiple banks even

though each block is swapped only within its own bank to avoid the bank scheduling problem discussed above.

For example, one sample buffer for 4 banks or 2 GB of memory (2 Gb per chip) results in 4 sample buffers per

chip. Using 512-byte blocks,numFrames= 2 GB/512 = 222, and withnumWrites= 221, we get single-level Security

Refresh’sswapThreshold= numWrites/numFrames= 1/2 (Equation 1) and write overhead is 200% (Equation 3).

Assuming sampleOverwriteRate< 1/4000 gives SWL’s common-case write overhead to be less than 0.1%

(Equation 9). Thus, we can trade off the common-case write overhead and the hardware overhead due to the region

15

size. Though reducing the number of sample buffers by a factor ofn increases the common-case write overhead by

the same factor, SWL’s low common-case write overhead makes this trade-off practical.

In addition, the worst case behavior is also affected by the trade-off. SWL’s worst-case write overhead goes to

400% (Equation 9). Further, because 512-byte blocks are swapped within 512-MB regions and not within 2-GB

regions,numFramesrelevant for worst-case lifetime in Equation 4 remains 220 (i.e., overwrites are spread over 1-GB

regions and not 4-GB regions). Thus, SWL’s worst-case lifetime is more than 7 months (Equation 4), Recall from

Section 3.2 that trading off some worst-case performance to lower the permanent hardware overhead is acceptable.

Moreover, because the buffer size depends only oncutOffandsamplingRate(Equation 10) which do not change due

to the sharing, the shared sample buffer remains as small as before.

We note that the shared buffer samples for the 2-GB region and uses all the samples to obtain a singlesample-

OverwriteRatefor the region. One may think that the worst-case overwrite overhead can be reduced by tracking

banks which are smaller than 2 GB (i.e., smallernumFrames), and at the same time reduce the hardware overhead by

using a shared buffer for 2 GB. However, doing so would imply that the number of samples per bank may not satisfy

Equation 5.

The remaining issue is that sharing the sample buffer among multiple banks increasesnumFrames(e.g., from 220

to 222) and thereby reducessampleSwapThreshold(Equation 8). For example, our previoussampleSwapThresholdof

3.43 reduces to 0.86. Recall from Section 3.2 thatsampleSwapThresholdbecoming a fraction is problematic because

SWL has to count this number of completed samples before triggering a swap. To address this problem, we trigger a

batch of swaps whensampleSwapThresholdbecomes integral (e.g., for a batch size of 7 corresponding tosam-

pleSwapThresholdof 6). Note that batching changes only the schedule of the swaps and notnumWritesor numGen-

erations. Therefore, batching does not affect lifetime in any way. Long batches, however, would make the swaps

bursty and thereby may make the memory module unresponsive for the long duration of the batch. Because our

swaps are infrequent and batches are small, this concern is not serious. As a comparison point, we note that modern

DRAMs refresh an entire bank in one go to reduce the number of the refresh triggers on the command channel (e.g.,

a 1-Gb bank may have 32K, 32-Kb rows).

Each chip in the memory module has its own sample buffer(s) which can operate independently of the other chips’

buffer(s). That is, there is no need for the different chips to pick the same writes to sample or to perform swaps in

lock step. In fact, each chip’s random number generator state and secure keys could be different from those of the

other chips so that a given block could be stored in different frames across the chips. Because the swaps occur within

an internal bank, the block is stored in the same bank across the chips. Upon an access, each chip retrieves its part of

the block using its key. The only requirement is that the actions of a swap — updating of the pointers within the

banks and the swaps themselves — be atomic. This requirement is satisfied by the PCM module nacking any request

during a swap, as explained above.

16

We note that while modern DRAMs employ one refresh counter per internal bank to sweep through the bank

whereas PCM being non-volatile does not need to be refreshed. One could think of the two sample buffers and asso-

ciated counters to be in place of the refresh support.

3.4.3 Preserving row locality

Apart from the sample buffer hardware overhead issue, randomizing memory blocks that are smaller than a row

destroys row locality (e.g., in each chip, 512-bit blocks versus 32-Kb row or for the whole module 512-byte block

versus 32-KB row). That is, consecutive blocks when randomized may be fall into different rows. Making the blocks

as large as a row for the same region would reducenumFrameswhich in turn reduces lifetime because blocks are

randomized over fewer frames (Equation 4). Instead, we propose to preserve row locality by randomizing the rows

and then randomizing the blocks within a row (Security Refresh briefly alludes to this approach). That is, we keep

the rows intact by swapping a row with a random row and then swap the row’s blocks with each other. This approach

does not need any extra keys as the higher-order bits of a key can be applied to the row address to randomize the row

and the lower-order bits to the block addresses within each row to randomize the blocks. We emphasize that because

we randomize both the row and its blocks, each block has as many choices as frames in a region. Therefore we retain

the samenumFrames,and hence lifetime, as before. Though a row’s blocks stay together, the number of blocks per

row is large enough to prevent malicious or accidental overwriting of the same frame (e.g., there are 64 512-bit

blocks in a 32-Kb row).

4 Methodology

We simulate SWL using Wisconsin GEMS-2.1 [20] built on top of Simics, a full-system simulator. We simulate a

SPARC-based multicore running Solaris 10. For comparison, we also simulate both single-level and two-level Secu-

rity Refresh. The hardware parameters are given in Table 1. Because PCM is an emerging technology, there are some

differences in the latency numbers reported by various papers [21][6][11][7][26][8]. We choose a mid value as a

compromise. We also use CACTI’s DRAM models [25] for the array decode, row buffers, and wiring latencies (these

components are similar in PCM and DRAM). We account for latencies, bank and bus occupancies, and queuing at

the controllers in all the memory components.

We use commercial and scientific workloads briefly described in Table 2. The table also shows the memory foot-

prints, the L3 miss rates, and the L3 writebacks per 10K CPU cycles which we use in Section 5.2. To account for sta-

tistical variations, we use enough randomly-perturbed runs to achieve 95% confidence [2].

5 Experimental Results

We first present the common-case overwrite distance for our benchmarks. Then we present the common-case

results — write overhead, performance degradation, lifetime, and hardware overhead — for our benchmarks. Finally,

17

we present the worst-case write overhead and lifetime.

5.1 Common-case overwrite distance

Because measuring the overwrite distance using a brute-force approach of search-

ing through a large window of past writes inordinately slows down the simulations,

we use SWL’s sampling approach to solve this simulation problem. However,

because the approach does not allow us to observe overwrite distances larger than the

cutOff, we use a largecutOff (20,000), a smallε (100), and an unrealistically large

sample buffer (3000-entry). Note that we use such a large sample buffer only to solve

the simulation problem in determining the real overwrite distances; we simulate a

much smaller, realistic hardware buffer in later experiments. In Table 3, we show the

average overwrite distances for our benchmarks. We see that the overwrite distances are well over 10,000 (or over-

write rate is lower than 1/10000), which is our main observation that the common-case overwrite rates are orders-of-

Table 1: Hardware parameters

Cores 8, in-order

L1 Caches Split I&D, Private, 32K 4-way set associative, write-back, 64B cache block, LRU replacement, 3 cycle hit

L2 Cache Unified, Shared, 8M 8-way set associative, write-back, 8 banks, LRU replacement, 37 cycle hit

L3 Cache Unified, Shared, 32M 16-way set associative, 512B block, write-back, 16 banks, LRU replacement, 77
cycle hit

Coherence MESI Directory, Full bit vector

PCM-based memory 8 GB (8 8-Gb chips), 55 memory cycles for reads and 132 memory cycles for writes, 16 banks (512Mb per
chip), 64-byte interleaving, 32-entry bank queues (1 memory cycle = 10 CPU cycles)

Bus 128 bits (total), 1 memory cycle

SWL 13-entry sampling buffer per 2 Gb per chip (0.01% probability of overflow), samplingRate = 0.09%,
99.99% confidence, cutOff = 4000,ε = 200.

PCM endurance = 108, 512B memory blocks, numWrites = 221

Table 2: Workloads

C
om

m
er

ci
al

Apache is a web server. We use Apache 2.2.11 and SURGE v1.3 [3] with http 1.1 capability to generate
web requests from a repository of 20,000 files (~500 MB). We simulate 3200 clients, each with 25ms think
time between requests, and warm up for ~1.5M transactions before taking measurement for 600 transac-
tions.

L3 miss
rate

L3 write-
backs per
10K CPU
cycles

15% 1.27

Online Transaction Processing (OLTP) models a database for a supplier, with many users performing
concurrent transactions. We use PostgreSQL v8.3.7 database server and Open Source Development Labs
Test Suite DBT-2 v0.40 [1] for modeling users based on TPC-C specifications. We use a5 GB database with
25,000 warehouses. We simulate 128 users with 0 think time, and warm up the database for ~100K transac-
tions before taking measurements for 200 transactions.

25% 4.68

SPECjbb2005is a Java-based server workload for OLTP in middleware. We use Sun J2SE v1.5.0 JVM. We
simulate 1.5 warehouses/CPU (~300 MB total) with 0 think time, warm up for 350K transactions and mea-
sure for 10K transactions.

22% 8.13

S
ci

en
tifi

c Radix performs radix sort of 16M integers (64 MB). 12% 0.16

FFT computes Fourier transforms. We run the transpose computation of 222 complex numbers (64 MB). 13% 5.74

FMM implements a fast multi-pole method (FMM) for an N-body problem of 64K particles (~64 MB). 10% 0.36

Table 3: Overwrite
distance

Bench-
marks

Distance

apache 14,800

OLTP 17,005

specjbb 17,100

radix 16,047

FFT 10,300

FMM ~19.900

18

magnitude lower than the worst-case rate of 1. FMM sees few overwrites so that its estimated distance iscutOff - ε.

5.2 SWL vs. Security Refresh: Common case

We compare single-level and two-level Security Refresh (SR) with SWL in the common case. We use

swapThresholdof 1 for single-level SR andswapThreshold1 of 32 andswapThreshold2 of 128 for two-level SR

which are Security Refresh’s best settings. For a realistic sample buffer size of 13 entries (Table 1), SWL uses acut-

Off of 4000 andε of 200. Though the real overwrite distances are much larger (Section 5.1), we use a smallercutOff

for a realistic sample buffer size (Equation 10). SWL’s other settings are shown in Table 1.

First, we compare the schemes’ write overhead in Table 4.

Because Security Refresh’s write overhead is independent of the

workload (Equation 3), the write overhead is constant — 100% for

one-level SR and 4% for two-level SR. In contrast, SWL’s common-

case write overhead reduces by a factor ofsampleOverwriteRate

(Equation 9). Because the real overwrite rates are much lower than

the cutOff used in this experiment,sampleOverwriteRatefor all the

benchmarks are close to1/(cutOff-ε) = 1/3800. Thus, SWL’s common-case write overhead is less than 0.15% for all

the benchmarks.

Second, to see how write overhead affects performance, we compare the schemes’ performance in Figure 2 which

shows performance of one-level SR, two-level SR, and SWL normalized to that of a system without any wear level-

ing. Due to its high write overhead, one-level SR incurs more than 30% degradation for the commercial workloads

which have high miss rates (Table 2) and hence high memory traffic. While two-level SR incurs less than 5% degra-

dation, SWL incurs less than 1% degradation. The scientific workloads behave similarly but incur less degradation

due to their lower miss rates. The performance trend across the schemes tracks that of the write overheads in Table 4.

Table 4: Common-case write overhead

Bench-
marks

One-
level SR

Two-
level SR

SWL

apache 100% 4% 0.12%

OLTP 100% 4% 0.13%

specjbb 100% 4% 0.11%

radix 100% 4% 0.11%

FFT 100% 4% 0.11%

FMM 100% 4% 0.11%

FIGURE 2: Common-case Performance: (a) Commercial Workloads (b) Scientific Workloads

specjbb oltp apache mean
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 no-wear-leveling

 one-level SR

 two-level SR

 SWL

fmm radix fft mean
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

no-wear-leveling

one-level SR

two-level SR

SWL

(a) (b)

19

Third, we compare the schemes’ lifetime in Table 5. Through-

out the paper, we show worst-case lifetimes based on Equation 4.

While the common-case lifetime depends on overwrites patterns of

applications, determining the common-case lifetime via simula-

tions is not feasible due to inordinate simulation time. Instead, we

extend Equation 4 so that all the frames have one generation of

their common-case lifetime left after about

number of common-case writes= (EQ 11)

There are two differences between this expression and the worst-case lifetime (Equation 4). First, thesample-

OverwriteRateterm accounts for the fact that the frames are overwritten at the rate ofsampleOverwriteRatein the

common case. This equation assumes that all the blocks see the same overwrite rate ofsampleOverwriteRate. Note

that though Security Refresh triggers swaps assuming the worst-case overwrites of the same block, the common-case

lifetime is affected by the actual overwrite rate and not the worst-case rate (i.e., lifetime is degraded only when over-

writes actually occur, and not when overwrites are assumed to occur). Second, while the worst-case lifetime is com-

puted assuming a workload that floods memory with back-to-back writes, real applications’ rates of writes to

memory vary from one application to another. This effect is accounted for by thewriteRateterm. Table 2 (L3 write-

backs per 10K CPU cycles) showswriteRatefor the various benchmarks in the baseline system with no wear level-

ing. We assume PCM write latency of 1320 CPU cycles (Table 1) which at 2-GHz clock is about 0.66µs. From

Table 5, we see that all the schemes achieve high common-case lifetimes due to both low absolute write rates and

low overwrite rates (allsampleOverwriteRateare close to 1/3800). For a given application, the writeback rates under

the various schemes differ due to the variation in the write overheads (Table 4) and both these variations cause the

schemes’ common-case lifetimes to vary.SPECjbb’s lifetime for one-level SR is better than that for two-level SR

because one-level SR’s high performance degradation (Figure 2) ends up throttling the L3 writeback rate.

Finally, we compare the schemes’ hardware overhead in Table 6. The 20-bit incrementer is for the 20-bit pointer

which sweeps through the bank’s 220 frames for swapping (the 12-bit incremeter is for the 12-bit pointer used in each

first-level 2-MB region in two-level SR). The rest of the incrementers are for theswapThreshold1 and

swapThreshold2 (32 and 128) in two-level SR andsampleSwapThreshold(6) in SWL. The two 20-bit keys corre-

spond to the old and new keys for each region (Section 2.2.1). The two-level SR achieves low write overhead

(Table 4) at the cost of high hardware overhead whereas SWL achieves both low write overhead and low hardware

overhead. The key source of two-level SR’s overhead is the hardware for every first-level, 2-MB region which results

in 4192 sets of first-level keys, pointers, and counters for 8-GB memory. To keep the first-level write overhead low,

the first-level regions must remain fixed at 2 MB even as memory grows (Equation 3). This constraint implies that

Table 5: Common-case lifetime (x 10 3 years)

Bench-
marks

One-
level SR

Two-
level SR

SWL

apache 182 353 367

OLTP 159 197 214

specjbb 133 119 123

radix 3,142 4,902 6,208

FFT 186 193 174

FMM 1,451 2,656 2,781

numGenerations 1–() numWrites numFrames××
1 writeOverhead+() sampleOverwriteRate×

--- writeRate×

20

two-level SR’s extra hardware grows rapidly as memory scales. In contrast, because SWL’s regions are the same as

the memory banks, which grow as memory grows, SWL’s extra hardware grows much more slowly (8-GB vs. 64-GB

memory in Table 6).

5.3 SWL vs. Security Refresh: Worst case

We show the worst-case write overhead (Equation 3 and

Equation 9) in Table 7 and the worst-case lifetime (Equation 4) in

Table 8. (We omit worst-case performance degradation which is not

meaningful.) We assume PCM write latency of 1320 CPU cycles (Table 1) which at 2-GHz clock is about 0.66µs.

As discussed in Section 3.4.2, SWL’s worst-case write overhead is higher due to the sharing of the sample buffer and

associated logic among 4 banks, which helps reduce the hardware overhead. Higher write overhead in the uncom-

mon worst case is acceptable. The higher write overhead also impacts the worst-case lifetime. SWL’s worst-case life-

time at 6 months is lower but acceptable assuming that the attack would be detected in that time (SWL can be used

for such detection).

Our numbers for SR are lower than those reported by Security

Refresh because of some differences in the metrics and configura-

tions. As mentioned in Section 2.2.1, the swaps extend the lifetime

by delaying program writes. While Security Refresh includes such

extension in the lifetime we do not because such extensions are not available to the application. Also, Security

Refresh uses 1-GB banks and 256-byte blocks in the second level whereas we use 512-MB banks and 512-byte

blocks which makes ournumFrames,and hence the absolute lifetime values, smaller by a factor of four. In the oppo-

site direction, Security Refresh assumes a write latency of 450 ns whereas we assume a longer 660 ns which makes

our absolute lifetimes longer by about a third. Thus there is a difference of a factor of 4/1.3 and 4/1,3 * 25 months

(our two-level SR lifetime) = 77 months which is close to what Security Refresh reports. We note that increasing

Table 6: Hardware overhead

Schemes Logic per
512-MB bank

Logic per
2-GB

State per 512-MB bank State per 2-GB Total for 8-GB
16-bank memory

Total for 64-GB
32-bank memory

One-
level SR

1 20-bit incre-
menter, 1 20-
bit XOR

2 20-bit keys, 1 20-bit
pointer

16 sets of logic +
state

32 sets of logic +
state

Two-
level SR

One-level SR
+ 1 12-bit, 1 5-
bit and 1 7-bit
incrementers

One-level SR + 1 7-bit
counter, 1 256-entry
table,each entry = 2 12-
bit keys, 1 12-bit pointer,
and 1 5-bit counter

One-level SR + 16
256-entry tables

One-level SR + 32
1024-entry tables

SWL One-level SR 1 3-bit
incre-
menter

One-level SR + 1 3-bit
counter

1 13-entry FIFO,
each entry = 1 43-
bit block address

One-level SR + 4
13-entry FIFOs &
3-bit counters

One-level SR + 8
13-entry FIFOs &
3-bit counters

Table 7: Worst-case write overhead

One-
level SR

Two-
level SR

SWL

100% 4% 400%

Table 8: Worst-case lifetime (months)

One-
level SR

Two-
level SR

SWL

13 25 6

21

numFramesvia larger regions and smaller blocks can help SWL without hurting SWL’s common-case write over-

head due tosampleOverwriteRate.

6 Conclusion

To address PCM’s wear out problem, previous papers have proposed periodic randomization of the address-to-

frame mapping in a memory region. To guarantee reasonable worst-case lifetimes, the papers assume that every write

overwrites the same memory block and incur either high write overhead due to for normal applications (i.e., the com-

mon case), or permanent, high hardware overhead (i.e., in all cases). We made the key observation that the overwrite

rates of normal applications (i.e., common case) are orders-of-magnitude lower than that of the worst case. Based on

this observation, we applied basic statistical sampling to estimate accurately the overwrite rate while requiring a

small sample buffer. We proposedstatistical wear leveling (SWL)which randomizes address-to-frame mapping on

the basis of the estimated overwrite rates instead of write rates.

SWL achieves both lower common-case write overhead and lower hardware overhead, and similar, high common-

case lifetime as compared to the previous schemes while achieving reasonable worst-case lifetime. By reducing the

common-case write overhead, SWL shields applications from the performance tax of wear leveling. By reducing the

permanent hardware overhead, SWL provides scalable wear leveling as PCM scales over technology generations.

In addition to the proposed scheme, SWL may also be used to detect anomalous write behavior by errant applica-

tions. Further, our statistical approach may be applicable to other areas of computer architecture, such as perfor-

mance monitoring. Our sample buffer could be configured to detect performance pathologies in the memory system.

We will explore these possibilities in future work.

7 References

[1] Open source development labs database test suite 2 v0.40 http://osdldb t.sourceforge.net/.
[2] A. R. Alameldeen and D. A. Wood. Variability in architectural simulations of multi-threaded workloads. InHPCA ’03: Proceedings of

the 9th International Symposium on High-Performance Computer Architecture, page 7. IEEE Computer Society, 2003.
[3] P. Barford and M. Crovella. Generating representative web workloads for network and server performance evaluation.SIGMETRICS

Perform. Eval. Rev., 26(1):151–160, 1998.
[4] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: using flash memory to build fast, power-efficient clusters for data-intensive

applications.SIGPLAN Not., 44(3):217–228, 2009.
[5] D. Nobunaga et al. A 50nm 8Gb NAND flash memory with 100MB/s program throughput and 200MB/s DDR interface. InSolid-State

Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pages 426–625, Feb. 2008.
[6] F. Bedeschi et al. An 8Mb demonstrator for high-density 1.8v phase-change memories. InVLSI Circuits, 2004. Digest of Technical Pa-

pers. 2004 Symposium on, pages 442–445, June 2004.
[7] F. Bedeschi et al. A multi-level-cell bipolar-selected phase-change memory. InSolid-State Circuits Conference, ISSCC 2008. Digest of

Technical Papers. IEEE International, pages 428–625, Feb. 2008.
[8] H-r. Oh et al. Enhanced write performance of a 64-mb phase-change random access memory.Solid-State Circuits, IEEE Journal of,

41(1):122–126, Jan. 2006.
[9] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda. Dynamically replicated memory: building reliable systems from

nanoscale resistive memories. InASPLOS ’10: Proceedings of the fifteenth edition of ASPLOS on Architectural support for program-
ming languages and operating systems, pages 3–14, 2010.

[10] J. Condit et al. Better I/O through byte-addressable, persistent memory. InProceedings of the ACM SigOPS 22nd symposium on Oper-
ating systems principles, pages 133–146, Oct 2009.

[11] K-J. Lee et al. A 90 nm 1.8 v 512 mb diode-switch pram with 266 mb/s read throughput.Solid-State Circuits, IEEE Journal of,
43(1):150–162, Jan. 2008.

[12] T. Kgil, D. Roberts, and T. Mudge. Improving nand flash based disk caches. InISCA ’08: Proceedings of the 35th International Sym-

22

posium on Computer Architecture, pages 327–338, 2008.
[13] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable dram alternative. InISCA ’09: Proceed-

ings of the 36th annual international symposium on Computer architecture, pages 2–13, New York, NY, USA, 2009. ACM.
[14] M. M. K. Martin et al. Multifacet’s general execution-driven multiprocessor simulator (gems) toolset.SIGARCH Comput. Archit. News,

33(4):92–99, 2005.
[15] Micron. Micron System Power Calculator. http://www.micron.com/support/part info/powercalc, 2009.
[16] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operating system support for nvm+dram hybrid main memory. In12th Workshop

on Hot Topics in Operating Systems, 2009.
[17] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Monta, no, and J. P. Karidis. Morphable memory system: a robust architecture for

exploiting multi-level phase change memories. InISCA ’10: Proceedings of the 37th annual international symposium on Computer ar-
chitecture, pages 153–162, New York, NY, USA, 2010. ACM.

[18] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-montaÒo. Improving read performance of phase change memories via write can-
cellation and write pausing. InHPCA ’10: Proceedings of the 16th International Symposium on High-Performance Computer Archi-
tecture, 2010.

[19] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali. Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling. InMICRO 42: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 14–23, New York, NY, USA, 2009. ACM.

[20] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high performance main memory system using phase-change memory technol-
ogy. InISCA ’09: Proceedings of the 36th annual international symposium on Computer architecture, pages 24–33, 2009.

[21] S. Kang et al. A 0.1-?m 1.8-v 256-mb phase-change random access memory (pram) with 66-mhz synchronous burst-read operation.
Solid-State Circuits, IEEE Journal of, 42(1):210–218, Jan. 2007.

[22] S. Schechter, G. H. Loh, K. Straus, and D. Burger. Use ecp, not ecc, for hard failures in resistive memories. InISCA ’10: Proceedings
of the 37th annual international symposium on Computer architecture, pages 141–152, New York, NY, USA, 2010. ACM.

[23] Semiconductor Industry Association. International technology roadmap for semiconductors, 2007.
[24] N. H. Seong, D. H. Woo, and H.-H. S. Lee. Security refresh: prevent malicious wear-out and increase durability for phase-change mem-

ory with dynamically randomized address mapping. InISCA ’10: Proceedings of the 37th annual international symposium on Computer
architecture, pages 383–394, New York, NY, USA, 2010. ACM.

[25] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi. A comprehensive memory modeling tool and its application
to the design and analysis of future memory hierarchies. InISCA ’08: Proceedings of the 35th International Symposium on Computer
Architecture, pages 51–62, Washington, DC, USA, 2008.

[26] W. Cho et al. A 0.18-nm 3.0-v 64-mb nonvolatile phase-transition random access memory (pram).Solid-State Circuits, IEEE Journal
of, 40(1):293–300, Jan. 2005.

[27] M. Wu and W. Zwaenepoel. envy: a nonvolatile main memory storage system. InWorkstation Operating Systems, 1993. Proceedings.,
Fourth Workshop on, pages 116–118, Oct 1993.

[28] X. Dong et al. Circuit and microarchitecture evaluation of 3d stacking magnetic ram (mram) as a universal memory replacement. In
DAC ’08: Proceedings of the 45th annual Design Automation Conference, pages 554–559, New York, NY, USA, 2008. ACM.

[29] W. Zhang and T. Li. Exploring phase change memory and 3d die-stacking for power/thermal friendly, fast and durable memory archi-
tectures. InPACT ’09: Proceedings of the 2009 18th International Conference on Parallel Architectures and Compilation Techniques,
pages 101–112, Washington, DC, USA, 2009.

[30] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient main memory using phase change memory technology. In
ISCA ’09: Proceedings of the 36th annual international symposium on Computer architecture, pages 14–23, New York, NY, USA,
2009.

[31 M. Klamkin and D. Newman. Extensions of the birthday surprise.Journal of Combinatorial Theory, 3(3); 279-282, 1967.
[32] Ian B. MacNeill et al.,Applied Probability, Stochastic Processes, and Sampling Theory, 1986.
[33] A. Seznec. A Phase Change Memory as a Secure Main Memory.IEEE Computer Architecture Letters, 99 (RapidPosts), 2010.
[34] S. Cho and H. Lee. Flip-N-Write: A Simple Deterministic Technique to Improve PRAM Write Performance, Energy and Endurance.In

Proceedings of the International Symposium on Microarchitecture, 2009.

	Purdue University
	Purdue e-Pubs
	11-15-2010

	Statistical Wear Leveling for PCM: Protecting Against the Worst Case Without Hurting the Common Case
	Hamza Bin Sohail

	Abstract
	1 Introduction
	2 Phase Change Memory (PCM): Background and Related Work
	FIGURE 1: PCM cell
	2.1 Performance, energy, and wear
	2.2 Related work
	2.2.1 Wear leveling via randomization
	swapThreshold = numWrites/numFrames (EQ 1)
	numGenerations = 108/numWrites (EQ 2)
	Single-level Security Refresh’s writeOverhead = 1/swapThreshold (EQ 3)
	number of worst-case writes = (numGenerations - 1) * numWrites * numFrames / (1+ writeOverhead) (...

	3 Statistical Wear Leveling
	3.1 Sampling
	and (EQ 5)
	samplingRate = numSamples/numPopulation (EQ 6)
	numWrites = 2 * numPopulation (EQ 7)

	3.2 Sample buffer operation
	SWL’s sampleSwapThreshold = numSamples/numFrames * 1/sampleOverwriteRate (EQ 8)
	SWL’s writeOverhead = samplingRate/sampleSwapThreshold (EQ 9)

	3.3 Sample buffer size
	l = cutOff * samplingRate (EQ 10)

	3.4 Implementation
	3.4.1 Memory controller scheduling issues
	3.4.2 Reducing our hardware overhead
	3.4.3 Preserving row locality

	4 Methodology
	Table 1: Hardware parameters

	Cores
	8, in-order
	L1 Caches
	Split I&D, Private, 32K 4-way set associative, write-back, 64B cache block, LRU replacement, 3 cy...
	L2 Cache
	Unified, Shared, 8M 8-way set associative, write-back, 8 banks, LRU replacement, 37 cycle hit
	L3 Cache
	Unified, Shared, 32M 16-way set associative, 512B block, write-back, 16 banks, LRU replacement, 7...
	Coherence
	MESI Directory, Full bit vector
	PCM-based memory
	8 GB (8 8-Gb chips), 55 memory cycles for reads and 132 memory cycles for writes, 16 banks (512Mb...
	Bus
	128 bits (total), 1 memory cycle
	SWL
	13-entry sampling buffer per 2 Gb per chip (0.01% probability of overflow), samplingRate = 0.09%,...
	PCM endurance = 108, 512B memory blocks, numWrites = 221
	Table 2: Workloads

	Commercial
	Apache is a web server. We use Apache 2.2.11 and SURGE v1.3 [3] with http 1.1 capability to gener...
	L3 miss rate
	L3 writebacks per 10K CPU cycles
	15%
	1.27
	Online Transaction Processing (OLTP) models a database for a supplier, with many users performing...
	25%
	4.68
	SPECjbb2005 is a Java-based server workload for OLTP in middleware. We use Sun J2SE v1.5.0 JVM. W...
	22%
	8.13
	Scientific
	Radix performs radix sort of 16M integers (64 MB).
	12%
	0.16
	FFT computes Fourier transforms. We run the transpose computation of 222 complex numbers (64 MB).
	13%
	5.74
	FMM implements a fast multi-pole method (FMM) for an N-body problem of 64K particles (~64 MB).
	10%
	0.36
	5 Experimental Results
	5.1 Common-case overwrite distance
	Table 3: Overwrite distance

	Benchmarks
	Distance
	apache
	OLTP
	specjbb
	radix
	FFT
	FMM
	5.2 SWL vs. Security Refresh: Common case
	Table 4: Common-case write overhead

	Benchmarks
	One- level SR
	Two- level SR
	SWL
	apache
	OLTP
	specjbb
	radix
	FFT
	FMM
	FIGURE 2: Common-case Performance: (a) Commercial Workloads (b) Scientific Workloads
	Table 5: Common-case lifetime (x 103 years)

	Benchmarks
	One- level SR
	Two- level SR
	SWL
	apache
	OLTP
	specjbb
	radix
	FFT
	FMM
	number of common-case writes = (EQ 11)
	Table 6: Hardware overhead

	Schemes
	Logic per 512-MB bank
	Logic per 2-GB
	State per 512-MB bank
	State per 2-GB
	Total for 8-GB 16-bank memory
	Total for 64-GB 32-bank memory
	One- level SR
	1 20-bit incrementer, 1 20- bit XOR
	2 20-bit keys, 1 20-bit pointer
	16 sets of logic + state
	32 sets of logic + state
	Two- level SR
	One-level SR + 1 12-bit, 1 5- bit and 1 7-bit incrementers
	One-level SR + 1 7-bit counter, 1 256-entry table,each entry = 2 12- bit keys, 1 12-bit pointer, ...
	One-level SR + 16 256-entry tables
	One-level SR + 32 1024-entry tables
	SWL
	One-level SR
	1 3-bit incrementer
	One-level SR + 1 3-bit counter
	1 13-entry FIFO, each entry = 1 43- bit block address
	One-level SR + 4 13-entry FIFOs & 3-bit counters
	One-level SR + 8 13-entry FIFOs & 3-bit counters
	5.3 SWL vs. Security Refresh: Worst case
	Table 7: Worst-case write overhead

	One- level SR
	Two- level SR
	SWL
	Table 8: Worst-case lifetime (months)

	One- level SR
	Two- level SR
	SWL
	6 Conclusion
	7 References

	[1] Open source development labs database test suite 2 v0.40 http://osdldb t.sourceforge.net/.
	[2] A.�R. Alameldeen and D.�A. Wood. Variability in architectural simulations of multi-threaded w...
	[3] P.�Barford and M.�Crovella. Generating representative web workloads for network and server pe...
	[4] A.�M. Caulfield, L.�M. Grupp, and S.�Swanson. Gordon: using flash memory to build fast, power...
	[5] D. Nobunaga et al. A 50nm 8Gb NAND flash memory with 100MB/s program throughput and 200MB/s D...
	[6] F. Bedeschi et al. An 8Mb demonstrator for high-density 1.8v phase-change memories. In VLSI C...
	[7] F. Bedeschi et al. A multi-level-cell bipolar-selected phase-change memory. In Solid-State Ci...
	[8] H-r. Oh et al. Enhanced write performance of a 64-mb phase-change random access memory. Solid...
	[9] E.�Ipek, J.�Condit, E.�B. Nightingale, D.�Burger, and T.�Moscibroda. Dynamically replicated m...
	[10] J. Condit et al. Better I/O through byte-addressable, persistent memory. In Proceedings of t...
	[11] K-J. Lee et al. A 90 nm 1.8 v 512 mb diode-switch pram with 266 mb/s read throughput. Solid-...
	[12] T.�Kgil, D.�Roberts, and T.�Mudge. Improving nand flash based disk caches. In ISCA ’08: Proc...
	[13] B.�C. Lee, E.�Ipek, O.�Mutlu, and D.�Burger. Architecting phase change memory as a scalable ...
	[14] M. M. K. Martin et al. Multifacet’s general execution-driven multiprocessor simulator (gems)...
	[15] Micron. Micron System Power Calculator. http://www.micron.com/support/part info/powercalc, 2...
	[16] J.�C. Mogul, E.�Argollo, M.�Shah, and P.�Faraboschi. Operating system support for nvm+dram h...
	[17] M.�K. Qureshi, M.�M. Franceschini, L.�A. Lastras-Monta, no, and J.�P. Karidis. Morphable mem...
	[18] M.�K. Qureshi, M.�M. Franceschini, and L.�A. Lastras-montaÒo. Improving read performance of ...
	[19] M.�K. Qureshi, J.�Karidis, M.�Franceschini, V.�Srinivasan, L.�Lastras, and B.�Abali. Enhanci...
	[20] M.�K. Qureshi, V.�Srinivasan, and J.�A. Rivers. Scalable high performance main memory system...
	[21] S. Kang et al. A 0.1-?m 1.8-v 256-mb phase-change random access memory (pram) with 66-mhz sy...
	[22] S.�Schechter, G.�H. Loh, K.�Straus, and D.�Burger. Use ecp, not ecc, for hard failures in re...
	[23] Semiconductor Industry Association. International technology roadmap for semiconductors, 2007.
	[24] N.�H. Seong, D.�H. Woo, and H.-H.�S. Lee. Security refresh: prevent malicious wear-out and i...
	[25] S.�Thoziyoor, J.�H. Ahn, M.�Monchiero, J.�B. Brockman, and N.�P. Jouppi. A comprehensive mem...
	[26] W. Cho et al. A 0.18-nm 3.0-v 64-mb nonvolatile phase-transition random access memory (pram)...
	[27] M.�Wu and W.�Zwaenepoel. envy: a nonvolatile main memory storage system. In Workstation Oper...
	[28] X. Dong et al. Circuit and microarchitecture evaluation of 3d stacking magnetic ram (mram) a...
	[29] W.�Zhang and T.�Li. Exploring phase change memory and 3d die-stacking for power/thermal frie...
	[30] P.�Zhou, B.�Zhao, J.�Yang, and Y.�Zhang. A durable and energy efficient main memory using ph...
	[31 M. Klamkin and D. Newman. Extensions of the birthday surprise. Journal of Combinatorial Theor...
	[32] Ian B. MacNeill et al., Applied Probability, Stochastic Processes, and Sampling Theory, 1986.
	[33] A. Seznec. A Phase Change Memory as a Secure Main Memory. IEEE Computer Architecture Letters...
	[34] S. Cho and H. Lee. Flip-N-Write: A Simple Deterministic Technique to Improve PRAM Write Perf...

