
HAL Id: hal-01169275
https://hal.archives-ouvertes.fr/hal-01169275

Submitted on 29 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Andromeda: A System for Processing Queries and
Updates on Big XML Documents

Nicole Bidoit, Dario Colazzo, Carlo Sartiani, Alessandro Solimando, Federico
Ulliana

To cite this version:
Nicole Bidoit, Dario Colazzo, Carlo Sartiani, Alessandro Solimando, Federico Ulliana. Andromeda:
A System for Processing Queries and Updates on Big XML Documents. BigDa: Big Data Ap-
plications and Principles, Sep 2015, Poitiers, France. pp.218-228, �10.1007/978-3-319-23201-0_24�.
�hal-01169275�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49509444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01169275
https://hal.archives-ouvertes.fr

Andromeda: A System for Processing Queries and
Updates on Big XML Documents

Nicole Bidoit1, Dario Colazzo2, Carlo Sartiani3, Alessandro Solimando4, and
Federico Ulliana5

1 BD&OAK Team - Université Paris Sud - INRIA
2 LAMSADE - Université Paris Dauphine

3 DIMIE - Università della Basilicata
4 DIBRIS - Università di Genova

5 LIRMM - Université Montpellier 2

Abstract. In this paper we present Andromeda, a system for processing queries
and updates on large XML documents. The system is based on the idea of stati-
cally and dynamically partitioning the input document, so to distribute the com-
puting load among the machines of a Map/Reduce cluster.

1 Introduction

In the last few years cloud computing has attracted much attention from the database
community. Indeed, cloud computing architectures like Google Map/Reduce [1] and
Amazon EC2 proved to be very scalable and elastic, while allowing the programmer
to write her own data analytics applications without worrying about interprocess com-
munication, recovery from machine failures, and load balancing. Therefore, it is not
surprising that cloud platforms are used by large companies like Yahoo!, Facebook, and
Google to process and analyze huge amounts of data on a daily basis.

The advent of this novel paradigm is posing new challenges to the database commu-
nity. Indeed, cloud computing applications might also be built upon parallel databases,
that were introduced nearly two decades ago to manage huge amounts of data in a very
scalable way. These systems are very robust and very efficient, but for the following rea-
sons their adoption is still very limited: (i) they are very expensive; (ii) their installation,
set up, and maintenance are very complex; and, (iii) they require clusters of high-end
servers, which are more expensive than cloud computing clusters.

Our Contribution In this paper we present Andromeda, a system that is able to pro-
cess both queries and updates on very large XML documents, usually generated and
processed in contexts involving scientific data and logs [2].

Our system supports a large fragment of XQuery [3] and XUF (XQuery Update
Facility) [4]. The system exploits dynamic and static partitioning to distribute the pro-
cessing load among the machines of a Map/Reduce cluster. The proposed technique
applies when queries and updates are iterative, i.e., they iterate the same query/update
operations on a sequence of subtrees of the input document. From our experience many
real world queries and updates actually meet this property.

Static Analyzer

Partition Manager

Projector Projector Projector

Query/Update
Engine

Query/Update
Engine

Query/Update
Engine

Intermediate
Result Combiner

Intermediate
Result Combiner

 Result Combiner

Part Cache

MASTER

MAPPERS

REDUCERS

MASTER

... ...

... ...

...

Fig. 1. System architecture.

Paper Outline The rest of the paper is structured as follows. Section 2 introduces the
general architecture of Andromeda, while Section 3 details the query and update pro-
cessing technique used by the system. In Section 4, then, we present an experimental
evaluation validating the scalability properties of the system. Finally, in Sections 5 and
6, we discuss some related work and draw our conclusions.

2 System Architecture

The basic idea of our system is to dynamically and/or statically partition the input data
to leverage on the parallelism of a Map/Reduce cluster and to increase the scalability.
The architecture of our system is shown in Figure 1.

When a user submits a query or an update to the system, the STATIC ANALYZER
parses the input query or update, and extracts relevant information for partitioning the
input document D. This information is passed to the PARTITION MANAGER, which
verifies if D has already been partitioned; in that case, as a single document can be par-
titioned in multiple ways, the PARTITION MANAGER checks if there exists a partition
that is still valid (i.e., D has not been updated or externally modified after partitioning),
and that it is compatible with the submitted query or update. Parts are stored in the
distributed file system, so to be globally available.

If no existing partition can be reused, D is dynamically partitioned according to
the scheme described in Section 3. During this process, parts are encoded as EXI (Ef-
ficient XML Interchange) files6 through the streaming encoder of EXIficient [5]; this

6 EXI is a binary format, proposed by the W3C, for compressing and storing XML documents.

allows the system to significantly reduce the storage space required for parts and, most
importantly, to cut network costs.

If, instead, an existing partition can be reused, which is the most common case, the
PARTITION MANAGER assigns parts to each mapper and launches a Map/Reduce job.

Each mapper works independently on each assigned part. In the case of a query,
each part is also projected, in order to eliminate all unnecessary elements or attributes
from the part; projection is performed according to the path-based projection scheme
described in [6] and returns an EXI file. Projected parts reside in the local file system
of the mapper and do not survive query execution. In the case of updates, the system
ignores projection for the sake of simplifying the global result reconstruction from the
updated parts. After optional projection, the mapper executes the query or the update on
each assigned part by invoking Qizx-open [7], a main-memory query engine. Results
returned by Qizx-open are stored in the distributed file system.

Query/update results produced by mappers are combined into a single file in two
phases. In the first phase, reducers perform a preliminary result combination, which is
then refined by the RESULT COMBINER.

3 Processing Queries and Updates

3.1 Iterative Queries and Updates

Our system supports the execution of iterative XQuery queries and updates, i.e., queries
and updates that i) use forward XPath axes, and ii) first select a sequence of subtrees of
the input document, and then iterate some operation on each of the subtrees. Iterative
queries and updates are widely used in practice, and a static analysis technique has been
proposed to recognize them [6].

As an example of iterative query, consider the following query on XMark documents
[8] (assume $auction is bound to the document node doc(“xmark.xml′′)).

for $i in $auction/site//description
where contains(string(exactly-one($i)), “gold”)
return $i/node()

The query iterates the same operation on each subtree selected by $auction/site
//description and, hence, is iterative.

This property is enjoyed by many real world queries: for instance, in the XMark
benchmark 11 out of the 20 predefined queries are iterative7. Non iterative queries are
typically those performing join operations on two independent sequences of nodes of
the input documents. Notice that, however, iterative queries may perform join opera-
tions, as in the following case:

for $i in $auction/site//description
for $x in $i//keyword
for $y in $i//listitem
where $x = $y
return $x

7 Queries from Q1 to Q5, Q14, and Q16 to Q20 are iterative.

Iterative updates include the wide class of updates that modify a sequence of sub-
trees, and such that each delete/rename/insert/replace operation does not need
data outside the current subtree. As an example of iterative update, consider the follow-
ing one:

for $x in $auction/site/regions//item/location
where $x/text() = “United States”
return (replace value of node $x with “USA”)

This update iterates over location elements and replaces each occurrence of “United
States” with “USA”. As no information outside the subtrees rooted by location ele-
ments is required for processing the replace operation, the update is iterative.

3.2 Data Partitioning

As described in Section 2, the STATIC ANALYZER parses the input query/update to ex-
tract the information required for checking the property of Section 3.1 and for partition-
ing the input data. This information, which is passed to the PARTITION MANAGER, is
essentially the set of paths used in the query/update, enriched with details about bound
variables, and it guides the partitioning process.

To illustrate, consider the following iterative query:

for $x in /a,
$y in $x/b

where $y/c/d
return < res > $y/c/e < /res >

For this query the STATIC ANALYZER extracts the following set of paths:

{ /a{for x}, /a{for x}/b{for y},
/a{for x}/b{for y}/c/d, /a{for x}/b{for y}/c/e}

By analyzing this set of paths, the STATIC ANALYZER derives that /a/b is the path
on which the query iterates; this path is called partitioning path and is used during the
partitioning process to identify indivisible subtrees, i.e., subtrees that cannot be split
among multiple parts. In particular, if a node matches this path, then the whole subtree
is kept in the current part; subtrees rooted at nodes outside subtrees selected by the
partitioning path can be split across consecutive parts. This indivisibility property is
necessary to ensure that query result on the input document is equal to the ordered
concatenation of query results on each part.

In the case of updates, the system must distinguish between simple updates, i.e., up-
dates consisting of a single delete/rename/insert/replace operation without for-
iterations, and update containing iterations. In the first case, the STATIC ANALYZER ex-
tracts paths selecting target nodes of the update operations, and considers these paths as
partitioning paths. In the second case, the partitioning path is computed as for queries.
Composite updates are treated by summing the partitioning paths of each update. As
happens for queries, partitioning paths are used to recognise subtrees that should not

be split. Again, this indivisibility property is necessary in order to ensure semantics
preservation once the update is distributed over the partition.

When a document is partitioned for the first time, the PARTITION MANAGER uses
the partitioning paths to perform the actual partitioning. The PARTITION MANAGER
also computes a DataGuide [9] for an input document D. The DataGuide is later used
to verify the compatibility of a newly issued query/update with an existing partition,
by verifying that the indivisible subtrees identified by the partition paths of the new
query/update are already indivisible in an existing partition.

For both queries and updates, the PARTITION MANAGER ensures that each part in
the partition does not exceed the memory capacity of the main-memory query engine by
ending the current part and creating a new one when the size of the current part exceeds
a given threshold (if this happens during the visit of an indivisible subtree, then the part
is terminated only after the subtree has been totally parsed). Also, for both queries and
updates, artificial tags are added during partitioning to ensure each generated part is
well-formed and rooted (so that the query/update engine can process it).

3.3 Query/Update Processing

Once the STATIC ANALYZER has extracted path information from the input query/update,
and the PARTITION MANAGER has found an existing partition or created a new one for
processing the query/update, parts are assigned to mappers for query/update processing.

When processing a query, each mapper receives not only the address on the dis-
tributed file system of each assigned part, but also the path set extracted by the STATIC
ANALYZER. This set is used to project the parts, i.e., to remove elements and attributes
not necessary for the query. While original parts are stored in the distributed file sys-
tem, projected parts are stored in the local file system of the mapper and do not survive
query execution. The input query is executed on each projected part by a local instance
of Qizx-open, which exports the results, encoded in XML format, to the distributed file
system.

When processing an update, instead, projection cannot be applied, as each fragment
of a given input part is necessary. As a consequence, the local instance of Qizx-open
just executes the update on the original part, and stores its updated version, encoded in
EXI format, in the distributed file system.

3.4 Result Combination

Result combination works a bit differently for queries and updates. Indeed, partial re-
sults of a query can be simply concatenated together, while partial results of an update
must be merged.

The combination of partial query results is performed in two steps. In the first step,
each reducer receives a set of consecutive part results, which are then combined through
high-speed Java NIO channels; the RESULT COMBINER, finally, links together the com-
bined part results produced by the reducers. In the case of updates, untouched parts must
be merged with updated parts; this process requires the system to read all parts and drop
artificial tags introduced by the data partitioning technique.

4 Experimental Evaluation

Our experiments aim at i) proving the efficiency of the system in processing queries and
updates on large documents, and ii) showing how the system scales with the document
size and the number of nodes in the cluster.

4.1 Experimental Setup

We performed our experiments on a multitenant cluster running Hadoop 2.2 on RHEL
Linux and Java 1.7. The cluster comprises 1 master node and 100 slave nodes connected
through an InfiniBand network. To reduce issues related to independent system activ-
ities and other jobs in the cluster, we ran each experiment five times, discarded both
the highest (worst) and the lowest (best) processing times, and reported the average
processing time of the remaining runs.

4.2 Test Sets

We performed our experiments on two distinct datasets. The first dataset is dedicated to
query experiments, and comprises five XMark [8] XML documents obtained by running
the XMark data generator with factors 100, 150, 200, 250, and 300, respectively; the
resulting documents have approximate sizes ranging from 10GB to 32GB. The second
dataset is used for update tests and contains ten XMark documents whose size ranges
approximately from 1GB to 10GB.

4.3 Evaluating Queries

In our first battery of experiments we tested the performance and the scalability of our
system when processing queries. In the first test we selected the iterative fragment of
the XMark benchmark query set (i.e., queries Q1, Q2, Q3, Q4, Q5, Q14, Q15, Q17, Q18,
Q19, and Q20) and processed each query individually on the documents of the first data
set; in this experiment we used parts of size 100000000 bytes. The results we obtained
are shown in Figure 2(a). This graph indicates that the evaluation time is only partially
affected by the size of the input document: indeed, given an input query Q, Andromeda
filters out parts that do not structurally match Q, and processes Q only on those parts
that may give a contribution to the result. Hence, even for large documents, the number
of machines actually used by the system is below the cluster size.

Partitioning time for exemplifying queries Q1, Q2, Q5, and Q14 is reported in Table
1, together with the number of generated parts and the percentage of used parts. As
we mentioned before, unused parts are discarded. As it can be easily observed, the
partitioning time grows linearly with the size of the input document and the number of
used parts is only a small fraction of the total number of parts, with the only notable
exception of query Q14, which is not very selective. This explains why the processing
time of queries Q14 and Q19, that uses exactly the same partitioning scheme of query
Q14, is bigger than that of the remaining queries.

Table 1. Partitioning time (sec.), generated parts, and used parts (%).

Size Q1 Q2 Q5 Q14

Time Gen. Used Time Gen. Used Time Gen. Used Time Gen. Used)
10GB 851.686 142 9.1% 706.45 138 22.4% 813.448 144 11.8% 810.014 138 42.7%
15GB 1148 214 8.8% 1060 207 22.7% 1243 217 11.9% 1250 208 42.7%
20GB 1564 285 9.1% 1461 277 22.3% 1666 290 12% 1700 277 42.5%
25GB 2007 357 8.9% 1808 347 22.1% 2215 363 11.8% 2299 347 42.6%
30GB 2391 429 8.8% 2147 417 22.3% 2526 436 11.9% 2534 417 42.4%

10GB 15GB 20GB 25GB 30GB
Document size

0

10

20

30

40

50

60

Ti
m

e
(s

ec
.)

Q1
Q2
Q3
Q4
Q5
Q14
Q15
Q17
Q18
Q19
Q20

(a) Single query experiment.

10GB 15GB 20GB 25GB 30GB
Document size

0

200

400

600

800

Ti
m

e
(s

ec
.)

Workload
Static Analysis
MapReduce
Result Concatenation

(b) Query workload experiment.

10GB-10 15GB-15 20GB-20 25GB-25 30GB-30
Document size - # of machines

0

20

40

60

80

100

Ti
m

e
(s

ec
.)

Q1
Q14

(c) Query horizontal scalability.

1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB
Document size

0

200

400

600

800

Ti
m

e
(s

ec
.)

U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15
U16

(d) Single update experiment: total time.

1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB
Document size

0

10

20

30

40

Ti
m

e
(s

ec
.)

U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15
U16

(e) Single update experiment: MapReduce time.

1GB 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB 10GB
Document size

0

2000

4000

6000

8000

Ti
m

e
(s

ec
.)

Workload

(f) Query/update workload.

Fig. 2. Experiments.

Table 2. Workload: partitioning time (sec.), generated parts, and map input records.

Size Time Gen. Map input records
10GB 694.342 120 1309
15GB 1070106 181 1980
20GB 1424.379 241 2618
25GB 1876.539 302 3289
30GB 2138.638 362 3938

Processing Workloads In our third experiment we evaluated the performance of our
system when processing a workload comprising all the queries of the iterative fragment
of XMark. The results we collected are shown in Figure 2(b) and Table 2.

In Figure 2(b) we reported the total workload processing time. It is worthy to note
that workload processing time grows linearly with the size of the input document. This
is implied by the fact that, even on smaller documents, the parallel execution of the
queries in the workload involves the use of all the machines in the cluster, as confirmed
by Table 2, which reports the partitioning time, the number of generated parts, and the
number of map input records (parts to process) for each input document: as shown in
this table, even on the 10GB document the cluster is fully exploited.

Horizontal Scalability: Changing Cluster Size In our last experiment on queries we
evaluated the horizontal scalability of the system when processing queries Q1 and Q14:
we chose these queries as they are representative of high selectivity (Q1) and low se-
lectivity (Q14) queries; Q14 also contains a full-text predicate that is quite stressful for
XQuery engines. In particular, we increased the cluster size as the size of the input
document increases, by adding 1 machine per Gigabyte. The results of this experiment
are reported in Figure 2(c). As expected, the system scales beautifully on query Q1, as
this exploits only a modest number of machines. Surprisingly enough, we got a similar
result for query Q14 too. This shows that, even when fully loaded, the system scales
well and can efficiently process complex iterative queries.

4.4 Evaluating Updates

In our second battery of experiments we evaluated the performance of Andromeda when
processing updates in different scenarios. We evaluated each update in a set of iterative
updates against the documents in the second dataset of Section 4.2; in all tests we used
parts of 100 millions of bytes (about 95 MB).

Scalability of Update Processing In our first test we analysed the behaviour of An-
dromeda when individually executing 16 iterative updates. All these updates return a
new document. Figure 2(d) illustrates the total execution time for each update without
partitioning time.

Unlike what happens for queries, update processing is deeply influenced by the
input document size, as execution time grows linearly with it. This is motivated by
the fact that the system must produce an updated document by combining the updated

parts with the parts of the original document that were not touched by the update: this
requires the system to traverse all the document parts; more details on this combination
process can be found in [10]. To validate this claim we reported in Figure 2(e) the update
processing time without part concatenation; as it can be observed, in this case update
processing exposes a behaviour close to that shown on queries (see Figure 2(a)).

Processing Mixed Workloads In our second test we created a random query/update
workload and analyzed the behaviour of the system when processing the workload on
documents of increasing size. The workload comprises 20 expressions randomly chosen
by an initialization script, that also chooses the execution order: queries and updates
are executed according to the reader/writer semantics, hence queries can be evaluated
simultaneously, while updates have to be processed individually. Queries and updates
are selected by respecting a 80:20 ratio, hence the workload contains 16 queries and 4
updates. The composition of the workload we considered is reported below:

W = (U2, U12, [Q18, Q17, Q3, Q1, Q18],

U4, U14, [Q15, Q5, Q2, Q17, Q15, Q15, Q20, Q10, Q1, Q5, Q18])

Figure 2(f) describes the behaviour of the system when processing the workload.
As it can be observed, the workload execution time grows linearly with the input size,
despite the fact that 16 tasks out of 20 are queries. This is caused by the presence
of updates, which not only require result concatenation, but also force the system to
partition the updated document for processing the next task, hence making partition
reuse much less effective.

5 Related Works

There exist only a few systems able to process queries on XML data in distributed and
cloud environments, e.g., ChuQL [11], MRQL [12], HadoopXML [2], PAXQuery [13],
and VXQuery [14]. Among them, HadoopXML is the system that most closely resem-
bles Andromeda as it can transparently process XPath queries on an Hadoop cluster.
HadoopXML requires a preliminary document indexing phase, close to Andromeda
partitioning phase. Despite these similarities, HadoopXML only supports XPath queries,
and, unlike Andromeda, cannot process XQuery queries or XUF updates.

PAXQuery and VXQuery are systems for processing XQuery queries on collections
of (relatively) small XML documents scattered across a cloud computing cluster. While
very efficient even on small clusters, they were not designed to evaluate queries on big
documents. MRQL is a query processing system that supports an SQL-like query lan-
guage that can be used to query XML and JSON data; MRQL directly translates queries
into Java code that can be executed on top of Hadoop or Spark. While more powerful
than PigLatin, MRQL cannot process complex XQuery queries and does not support
updates. ChuQL, finally, is a language embedding XQuery that allows the programmer
to distribute XQuery queries over Map/Reduce clusters. The programmer has the duty
to manage low-level details about query parallelization, while Andromeda completely
hides the underlying processing environment.

To the best of our knowledge, there is no system supporting XUF updates on big
XML documents.

6 Conclusions and Future Work

In this paper we described the architecture of Andromeda, and analyzed its performance
and scalability. This analysis confirms that Andromeda scales with the document size
and the number of nodes in the cluster, and that it can efficiently process queries and
updates on very large XML documents.

In the near future we want to extend Andromeda in several ways. First of all, we
want to improve the partitioning technique, so to obtain new partitions from existing
ones without the need of reading and parsing again the whole input document. Second,
we want to explore new techniques for result fusion in order to lower its cost. Finally,
we want to understand if and how Hadoop can be replaced with Apache Spark.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: OSDI,
USENIX Association (2004) 137–150

2. Choi, H., Lee, K.H., Kim, S.H., Lee, Y.J., Moon, B.: HadoopXML: a suite for parallel pro-
cessing of massive XML data with multiple twig pattern queries. In wen Chen, X., Lebanon,
G., Wang, H., Zaki, M.J., eds.: CIKM, ACM (2012) 2737–2739

3. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.: XQuery 1.0:
An XML Query Language (Second Edition). Technical report, World Wide Web Consortium
(2010) W3C Recommendation.

4. Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Siméon, J.: XQuery Update
Facility 1.0. Technical report, World Wide Web Consortium (2011) W3C Recommendation.

5. : (Exificient) http://exificient.sourceforge.net.
6. Bidoit, N., Colazzo, D., Malla, N., Sartiani, C.: Partitioning XML documents for iterative

queries. In Desai, B.C., Pokorný, J., Bernardino, J., eds.: IDEAS, ACM (2012) 51–60
7. : (Qizx-open) http://www.xmlmind.com/qizxopen/.
8. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: A

Benchmark for XML Data Management. In: VLDB, Morgan Kaufmann (2002) 974–985
9. Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimization in

semistructured databases. In: VLDB. (1997)
10. Malla, N.: Partitioning XML data, towards distributed and parallel management. PhD thesis,

Université Paris Sud (2012)
11. Khatchadourian, S., Consens, M.P., Siméon, J.: Having a ChuQL at XML on the cloud.

In Barceló, P., Tannen, V., eds.: Proceedings of the 5th Alberto Mendelzon International
Workshop on Foundations of Data Management, Santiago, Chile, May 9-12, 2011. Volume
749 of CEUR Workshop Proceedings., CEUR-WS.org (2011)

12. Fegaras, L., Li, C., Gupta, U., Philip, J.: XML Query Optimization in Map-Reduce. In:
WebDB. (2011)

13. Camacho-Rodrı́guez, J., Colazzo, D., Manolescu, I.: PAXQuery: A massively parallel
XQuery processor. In Katsifodimos, A., Tzoumas, K., Babu, S., eds.: Proceedings of the
Third Workshop on Data analytics in the Cloud, DanaC 2014, June 22, 2014, Snowbird,
Utah, USA, In conjunction with ACM SIGMOD/PODS Conference, ACM (2014) 1–4

14. Jr., E.P.C., Westmann, T., Borkar, V.R., Carey, M.J., Tsotras, V.J.: Apache VXQuery: A
scalable XQuery implementation. CoRR abs/1504.00331 (2015)

View publication statsView publication stats

https://www.researchgate.net/publication/279830732

