
HAL Id: hal-01169352
https://hal.archives-ouvertes.fr/hal-01169352

Preprint submitted on 29 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

A model for divergence insensitive properties of
lambdaY-terms

Sylvain Salvati, Igor Walukiewicz

To cite this version:
Sylvain Salvati, Igor Walukiewicz. A model for divergence insensitive properties of lambdaY-terms.
2015. �hal-01169352�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49509372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01169352
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A model for divergence insensitive properties of

λY -terms.

S. Salvati and I. Walukiewicz

Université de Bordeaux, INRIA, CNRS, LaBRI UMR5800

LaBRI Bât A30, 351 crs Libération, 33405 Talence, France

Abstract

A term of a simply typed λ-calculus with fixpoints can be consid-
ered as an abstraction of a higher-order functional program. The result
of the computation of a term is its Böhm tree. Given a tree automaton
describing a property of Böhm trees, we are interested in constructing
a model recognizing the property, in a sense that the value of a term
determines if its Böhm tree satisfies the property.

We show how to construct models recognizing properties expressed
by parity automata that cannot detect divergence. We call them Ω-
blind parity automata, as the symbol Ω is used in Böhm trees to repre-
sent divergence; an automaton is Ω-blind when it has to accept Ω from
every state. The models we construct resemble standard Scott models
of latices of monotone functions, but application needs to be modi-
fied and the the fixpoint operator should be interpreted as a particular
non-extremal fixpoint in a lattice.

1 Introduction

Programs are usually interpreted in infinite models, which makes it in gen-
eral impossible to calculate their value. Sometimes it is possible to construct
a finite model for a given property: the value of a program in the model
tells us whether the program has the property or not. This is a particularly
pleasant situation as it yields, among others, a modular approach to the
decision problem thanks to the structure of the model.

In our case programs are λY -terms: simply typed terms constructed
with application, abstraction, and the fixpoint operator. The value of a
term is its potentially infinite normal form known as Böhm tree of the term.
Under some assumptions on the signature, the Böhm tree of a term of type
0 is just a ranked tree. So we can use parity automata on infinite trees to
express properties of terms. In a Böhm tree a special symbol Ω is used to
mark places where the computation diverges without producing any visible
output. A parity automaton is Ω-blind if it has to accept at Ω.

1

We present a finite model construction for properties expressed by Ω-
blind automata. For a given automaton we construct a model that recognizes
the property: the value of a term in a model determines if the Böhm tree of
the term is accepted by the automaton.

This model construction can be used to solve the higher-order model
checking problem. The problem has been shown decidable by Ong [Ong06].
The result has then been reproved in a number of different ways. The most
relevant for this paper are typing approach of Kobayashi and Ong [KO09],
and our approach through Krivine machines [SW14]. Both approaches ac-
tually work with Ω-blind automata. If one is interested solely in decidability
then this is sufficient since it is possible to transform a term to a “similar”
term without divergent computations.

The issue of detecting divergence directly was our first example of the
use of model approach. In [SW13] we have considered the case of safety
properties together with divergence detection. Later, we have extended this
approach to weak tree automata [SW15b]. Finally, recently we have given a
model construction for all parity automata [SW15a]. None of these models
can be seen as a special case of the model presented here. Indeed, as it is
made clear in [SW15a], an additional property that we call stratification is
required.

The case of Ω-blind automata studied here is interesting because it
has been considered in a number of papers, and because the model con-
struction is simpler than in the general case. For example Tsukada and
Ong [TO14] give a type system and an infinite model for Ω-blind automata.
Grelois and Meilles derive an infinite model [GM15b, GM15c] from a gen-
eral linear logic constructions. More recently they have obtained also a
finite model [GM15a]. The contribution of this paper is to present an ar-
guably simple model construction for Ω-blind automata. It produces almost
standard Scott models where a type is interpreted as a lattice of monotone
functions: the application operation is modified, and the correct meaning of
fixpoint needs to be found.

Organisation of the paper: The next section introduces λY -calculus,
Böhm trees, and parity automata running on Böhm trees. In particular, it
defines the Ω-blindness condition, and discusses some of its consequences.
The main result is also stated in this section. Section 3 reduces the question
of whether an automaton A accepts a Böhm tree BT (M) to the existence
of a winning strategy in a game K(A,M) that is defined in that section.
Section 4 introduces a finite game G(A,M) and shows its equivalence with
K(A,M). Section 5 proves that Eve can play with monotone functions
in G(A,M); this gives us a variant of the game that we call Gmon(A,M).
Finally, Section 6 defines a finitary model for a fixed automaton A, and
shows a direct correspondence between the value of a term in this model

2

and winning in a game Gmon(A,M).

2 Preliminaries

We start by introducing λY -calculus and Böhm trees as the results of evalu-
ation of λY -terms. Then we introduce parity automata on infinite trees. We
will use them to accept Böhm trees. We formulate the Ω-blind restriction on
transitions of the automata that is central for this paper. Finally, we state
the main result of the paper, and give a detailed outline of the construction.

2.1 λY -calculus and Böhm trees

The set of types is constructed from a unique basic type o using a binary
operation → that associates to the right. Thus o is a type, and if A, B
are types, so is (A → B). We use Types to denote the set of all types.
The order of a type is defined by: order(o) = 0, and order(A → B) =
max(1 + order(A), order(B)). We work with tree signatures that are finite
sets of typed constants of order at most 1. Types of order 1 are of the form
o → · · · → o → o that we abbreviate oi → o when they contain i + 1
occurrences of o. For convenience we assume that o0 → o is just o. If Σ is a
signature, we write Σ(i) for the set of constants of type oi → o.

Simply typed λY -terms are built from the constants in the signature,
and constants Y A for every type A. These stand for the fixpoint combinator
and undefined term, respectively. Apart from constants, for each type A
there is a countable set of variables xA, yA, Terms are built from these
constants and variables using typed application and λ-abstraction. We shall
write sequences of λ-abstractions λx1. . . . λxn. M with only one λ: either as
λx1 . . . xn. M , or even shorter as λ~x. M .

The usual operational semantics of the λ-calculus is given by β-contraction.
To give the meaning to fixpoint constants we use δ-contraction (→δ):

(λx.M)N →β M [N/x] and YM →δ M(YM) .

Remark: The status of Y constant in the calculus is a bit special: it is a
constant, but it is a subject of a reduction rule. In our game formulations
to simplify the presentation we will assume that Y always appears in an
applicative context, i.e., in a form Y N for some N . By replacing Y with
λx. Y x we can transform any term to a term with this property. We will only
consider extensional models in this paper, and in such models the meaning
of Y and λx.Y x is the same. So every term can be transformed to an
equivalent term where Y is appears only in an applicative context.

The Böhm tree of a termM is obtained by first reducing it until obtaining
the head normal form, i.e., a term of a shape λ~x.N0N1 . . . Nk with N0 a
variable or a constant; in this case BT (M) is a tree having its root labelled

3

by λ~x.N0 and having BT (N1), . . . , BT (Nk) as subtrees. If M does not have
a head normal form then BT (M) = ΩA, where ΩA is a special symbol of the
same type as M . Thus Böhm trees are infinite normal forms of λY -terms.
Remark: A Böhm tree of a closed term of type o over a tree signature is
a potentially infinite ranked tree: a node labelled by a constant a of type
oi → o has i successors. Among symbols ΩA, only the symbol Ωo can appear
in the Böhm tree of such a term.

2.2 Parity automata accepting Böhm trees

Automata will work on Σ-labelled trees, where Σ is a tree signature. Trees
are partial functions t : N∗ ·→ Σ∪{Ω} such that the number of successors of
a node is determined by the label of the node. In particular, if t(u) ∈ Σ(0)

then u is a leaf. The nodes of t, are the elements of the domain of t. The
set of nodes should be prefix closed. A label of a node u is t(u).

We will use nondeterministic max-parity automata, that we will call
parity automata for short. Such an automaton accepts trees over a fixed
tree signature Σ. It is a tuple

A = 〈Q,Σ, {δi}i∈N, rk : Q→ [m]〉

where Q is a finite set of states, rk is the rank function with the range [m] =
{0, . . . ,m}, and δi : Q × Σ(i) → P(Qi) is the transition function. Observe
that since the signature Σ is finite, only finitely many δi are nontrivial. From
the definition it follows that, for example, δ2 : Q × Σ(2) → P(Q × Q) and
δ0 : Q × Σ(0) → {∅, {∅}}. We will simply write δ without a subscript when
this causes no ambiguity.

In order to accept Böhm trees over Σ we need also to define the behaviour
of A on the special symbol Ωo denoting divergence. In this paper we put an
important restriction on the transition function:

Ω-blind: δ(Ωo, q) = {∅} for all states q.

As we will see this means that the part of the run ending in Ω is always
accepting. We will discuss consequences of this restriction at the end of this
subsection.

A run of A on t from a state q0 is a labelling of nodes of t with the
states of A such that: (i) the root is labelled with q0, (ii) if a node u is
labelled q and its k-successors are labelled by q1, . . . qk, respectively, then
(q1, . . . , qk) ∈ δk(q, t(u)); recall that t(u) is the letter in the node u.

A run is accepting when: (i) for every leaf u of t, if q is the state of the
run in u then δ0(q, t(u)) = {∅}, and moreover (ii) for every infinite path of
t, the labelling of the path given by the run satisfies the parity condition.
This means that if we look at the ranks of states assigned to the nodes of
the path then the maximal rank appearing infinitely often is even. A tree

4

is accepted by A from a state q0 if there is an accepting run from q0 on the
tree.

Remark: Let recall that the automata model can be extended to al-
ternating parity automata without increasing the expressive power. Here,
for simplicity of the presentation, we will work only with nondeterministic
automata but our constructions apply also to alternating automata.

Remark: The Ω-blind restriction has some consequences. The restric-
tion forces automaton to unconditionally accept all diverging computations;
so Ω-blind automata cannot express all MSOL properties of Böhm trees.
The name Ω-blind has been proposed in [SW13] as opposed to insightful au-
tomata that can reject Ω from some states. Actually, the expressive power of
MSOL is captured by insightful automata that accept Ω precisely in states
of an even rank. The type system of Kobayashi and Ong [KO09], as well as
its refinement by Tsukada and Ong [TO14], work for Ω-blind automata.

If one is interested purely in the decidability of MSOL model checking
of Böhm trees of λY -terms then there are several ways of reducing this
problem to the Ω-blind case. On the level of terms, one can transform a
λY -term into a λY -term that generates the same tree but for Ω replaced
by some fresh constant [Had13, SW13]. There is a simpler solution but it
requires a more substantial transformation of the automaton. It is possible
to transform a term to an equivalent one where every recursion is guarded:
YM is transformed to Y λ~x. e(M~x) for e a new constant of type o→ o and
~x a sequence of variables making M~x of type o. From the strong normalisa-
tion property of the simply typed λ-calculus it follows that there are no Ω
symbols in a Böhm tree of terms obtained by this transformation. Then it
remains to transform an automaton to an automaton that “almost ignores”
the fresh e symbols, so that acceptance of the transformed Böhm tree by
the transformed automaton is equivalent to the acceptance of the original
tree by the original automaton.

2.3 Formulation of the problem and overview of the con-
struction

Our aim is to construct a finite model for a given Ω-blind parity automaton.
The model should recognize the set of terms whose Böhm trees are accepted
by the automaton. This means that the value of a term in the model should
determine if the Böhm tree of the term is accepted by the automaton.

Our models will be built on the set of states of the automaton. In
particular, the value of a term of type o will be the set of states from which
the automaton accepts the Böhm tree of the term. The main challenge would
be to find the appropriate meaning for the fixpoint in order to capture the
parity acceptance condition.

5

Theorem 1 For every Ω-blind parity automaton A, there is a finite model
〈{SA}A∈Types , {[[a]]}a∈Σ, {[[Y A]]}A∈Types〉, with {So} = P(Q), such that for
every closed term M of type o: the semantics of M in the model is the set
of states from which A accepts BT (M).

We will start with defining an infinite game K(A,M) characterising ac-
ceptance of the Böhm tree of a term M by automaton A; more precisely
Eve will win in this game if BT (M) ∈ L(A). The game K(A,M) is based
on the evaluation of M with a Krivine machine.

Then we will construct a finite game G(A,M) using a concept of residual.
We show that this game is equivalent to K(A,M) in the sense that the
winners in the two games are the same. This is essentially the construction
from [SW11]. This reduction is sufficient to show the decidability of the
model-checking problem, but not to obtain the model.

The next step is the restriction to monotone residuals. The residuals in
G(A,M) can be arbitrary functions. In order to take fixpoints we need to re-
strict to monotone functions. We show that the resulting game, Gmon(A,M)
is equivalent to G(A,M).

The final step is to define a model whose elements are monotone resid-
uals. The model will capture precisely the notion of winning in Gmon(A,M).
As it will be clear from the constructions, the notion of winning in Gmon(A,M)
is defined for terms of all types. This allows for a simple proof of the sound-
ness and the completeness of the model using an induction on the size of
the term. The only complicated case is to understand the meaning of the
fixpoint in the model.

3 Game K(A,M)

In order to define the game we first need to introduce the Krivine machine
that is a call-by-name evaluation mechanism for λY -terms. Once we explain
how the Krivine machine is used to compute Böhm tree, the definition of
K(A,M) will be obtained as a straightforward reformulation of the accep-
tance by a tree automaton in terms of games. The only new element will
be some bookkeeping for closures that we will use later in the reduction to
a finite game. The main result, stated in Proposition 4, says that Eve wins
in K(A,M) if and only if BT (M) is accepted by A.

In this section we assume that in M the constant Y appears only in
applicative contexts, as discussed in the Remark on page 3.

A Krivine machine [Kri07], is an abstract machine computing the weak
head normal form of a λ-term, using explicit substitutions, called environ-
ments. Environments are functions assigning closures to variables, and clo-
sures themselves are pairs consisting of a term and an environment. This

6

mutually recursive definition is schematically represented by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x 7→ C]

As in this grammar, we will use ∅ for the empty environment. We require
that in a closure (M,ρ), the environment is defined for every free variable
of M . Intuitively such a closure denotes closed λ-term: it is obtained by
substituting for every free variable x of M the λ-term denoted by the closure
ρ(x).

A configuration of the Krivine machine is a triple (M,ρ, S), where M is
a term, ρ is an environment, and S is a stack (a sequence of closures with
the topmost element on the left). The rules of the Krivine machine are as
follows:

(λx.M, ρ, (N, ρ′)S)→(M,ρ[x 7→ (N, ρ′)], S)

(YM, ρ, S)→(M(YM), ρ, S)

(MN, ρ, S)→(M,ρ, (N, ρ)S)

(x, ρ, S)→(M,ρ′, S) where (M,ρ′) = ρ(x)

Note that the machine is deterministic provided that for terms of the form
YM the fixpoint rule rather than the application rule is used.

Since we use the Krivine machine on typed terms we require that the
environment ρ associates to a variable x of type A a closure (N, ρ′) with
a term N of type A; we will say that the closure is of type A too. In a
configuration (M,ρ, S), if M has type A1 → · · · → An → 0, then S =
C1 . . . Cn is a stack of n closures, with Ci of type Ai.

To compute the Böhm tree of a closed term M of type o we start the
Krivine machine in the configuration (M, ∅, ε). The sequence of reductions
from this configuration is either infinite or terminates in a configuration of
a form (b, ρ, C1 . . . Cn), where b is a constant of type on → o (this is because
we have assumed that the types of constants have rank at most 1). In the
former case, the Böhm tree is Ωo. In the latter case, we create a node
labelled b and start reducing in parallel (Ni, ρi, ε) for i = 1, . . . , k; where
(Ni, ρi) = Ci. This process gives at the end a tree labelled with constants
that is precisely BT (M); that is the object of our study. Notice that if
(N, ρ, S) is reachable from (M, ∅, ε) then N , and the terms that occur in ρ
and in S are all subterms of M . One should be careful with a definition
of a subterm though. Since we have a fixpoint operator we consider that
N(Y N) is a subterm of Y N . Of course even with this twist, the number of
subterms of a term remains finite.

The game K(A,M) will be based on the reductions of the Krivine ma-
chine. The positions of the game will be of the form q : (N, ρ, S) where q
is a state of automaton A, and (N, ρ, S) is a configuration of the Krivine
machine with a small modification of the notion of closure. Now, a closure

7

will have one more component; it will have a form (u,N, ρ) where the new
component u is a node of the tree being constructed. Basically, the role of
u is to identify the closure uniquely.

Definition 2 (The run tree RT (A,M)) This is a tree with the root la-
belled q0 : (M, ∅, ε), and constructed according to the following rules. In
rule 2 below we put ranks an edges of the tree. These ranks will be used
later in the definition of a game.

1. q : (a, ρ, C1 . . . Ck) −→ (q1, . . . , qk) : (a, ρ, C1 . . . Ck),
for every (q, a, q1, . . . , qk) ∈ δA;

2. (q1, . . . , qk) : (a, ρ, C1 . . . Ck)
rk(qi)−→ (qi, ui) : (Ni, ρi, ε),

where Ci = (ui, Ni, ρi) for i = 1, . . . , k;

3. q : (λx.N, ρ, C ~C) −→ q : (N, ρ[C/x], ~C);

4. q : (Y N, ρ, ~C) −→ q : (N(Y N), ρ, ~C);

5. q : (NK, ρ, ~C) −→ q : (N, ρ, (u,K, ρ)~C);
where u is the node of the tree where the rule is applied.

6. q : (x, ρ, ~C) −→ (q, u) : (N, ρ′, ~C);
where ρ(x) = (u,N, ρ′);

7. (q, u) : (N, ρ, ~C) −→ q : (N, ρ, ~C)

We can now define a game on the run tree that will characterise the
acceptance of BT (M) by A. The two players, Eve and Adam, will choose a
path in the run tree and the winner will be determined by a parity condition.
Observe that only the positions from the first two rules may have more than
one successor.

Definition 3 (Game K(A,M)) The gameK(A,M) is played onRT (A,M).
Eve chooses a transition given by the first rule, Adam a transition given by
the second rule. The ranks are defined on edges. If an edge has a label then
it is its rank, the edges with no labels have rank 0. A finite play that cannot
be prolonged is winning for Eve if its last node is of the form ∅ : (c, ρ, ε),
otherwise it is winning for Adam. Eve wins an infinite play if the sequence
of ranks on the path satisfies the parity condition.

The condition for finite plays in the above definition says that Eve looses if
she cannot find a suitable transition of the automaton.

Proposition 4 For every automaton A, and closed term M of type o:

A accepts BT (M) from q iff Eve wins in K(A,M) from q : (M, ∅, ε).

8

4 Game G(A,M)

We construct a finite game G(A,M) equivalent to K(A,M). The main result
is that the two games are equivalent, Theorem 9. For this we define a notion
of residual for a node in a strategy in K(A,M) and show how it can be used
to play in G(A,M).

In this section we fix a parity automaton A with the set of states Q, the
rank function rk : Q → [m], and the transition function δ. We also fix a
term M and suppose that Y appears only in applicative contexts in M , as
explained in the Remark on page 3.

Definition 5 (Residuals) For every type A we define the set of residuals
RA of type A:

Ro = P(Q× [m]), RA→B = RA → RB .

Definition 6 (Lifting operation) For a residual R ∈ Ro and r ∈ [m] we
define

R�r = {(q1, r1) ∈ R : r1 > r} ∪ {(q1, r2) : ∃(q1,r1)∈R r2 ≤ r1 = r}

For R ∈ RA→B we define R�r(S) = (R(S))�r.

Lemma 7 For every residual R, and every r, r1, r2 ∈ [m]:

• (R�r1)�r2 = R�max(r1,r2).

• (q, 0) ∈ R�r iff (q, r) ∈ R.

Proof
We prove only the first statement. The second statement follows directly
from the definitions.

Suppose r1 ≥ r2. We show (R�r1)�r2 = R�r1 . Fix a state q and look at
all the pairs with this state. The pairs (q, r) with r > r1 are the same in R
and (R�r1)�r2 . If (q, r1) 6∈ R then there is no pair (q, r) in R�r1 with r ≤ r1,
and �r2 does nothing for pairs with state q. If (q, r1) ∈ R then all the pairs
(q, r) for r ≤ r1 are in R�r1 . The operation �r2 does not add or remove any
pairs with the state q.

When r1 < r2 we show that (R�r1)�r2 = R�r2 . The proof is similar. �

Definition 8 (Game G(A,M)) The positions of the game are of the form
(N, θ)≥ ~R→ q where N is a subterm of M , θ is a function mapping variables
of M to residuals of appropriate types, ~R is a sequence of residuals of types
determined by the type of N , and q is a state of A. The game starts in the
position (M, ∅)≥q, and proceeds according to the following rules:

9

(N, θ[P/x])≥ ~R→ q

(N, θ)≥λx.N : P → ~R→ q

(N(Y N), θ)≥ ~R→ q

(Y N, θ)≥ ~R→ q

(N, θ)≥P → ~R→ q (K, θ)≥P

(NK, θ)≥ ~R→ q

(K, θ) ≥r ~R→ q for all ~R and (q, r) ∈ P (~R)

(K, θ)≥P

(K, θ�r)≥ ~R→ q

(K, θ) ≥r ~R→ q

if (q, 0) ∈ θ(x)(~R)

(x, θ)≥ ~R→ q

if there is (q1 . . . , qk) ∈ δA(q, a) so that (qi, 0) ∈ Ri�rk(qi) for all i = 1, . . . k

(a, θ)≥R1 → · · · → Rk → q

The shape of the position determines the rule to be applied. Moreover,
the rules for λ-abstraction and Y fixpoint are deterministic. In the case of
the application rule, Eve chooses a residual P and Adam chooses one of
the premisses. In the case of the residual rule, Adam chooses one of the
premisses. Positions with rank subscripts of the form (K, θ) ≥r ~R → q
are only used to define ranks of positions; see below. The corresponding
rule tells that the rank acts on the environment. The last two rules are
termination conditions: for the case of a variable, and a constant other
that Y , respectively. Recall that we assume that Y appears always in the
applicative context (cf. Remark on page 3) so we do not need a rule for Y
appearing separately.

Ranks are defined by:

• positions of the form (K, θ) ≥r ~R→ q have rank r;

• other positions have rank 0.

The game G(A,M) is clearly finite. Next theorem states that it is equiv-
alent to the infinite game K(A,M).

Theorem 9 For every closed term M of type o, every automaton A and its
state q:

Eve wins from q : (M, ∅, ε) in K(A,M) iff Eve wins from (M, ∅)≥q in G(A,M)

The rest of this section is devoted to the proof of the theorem. We start
with an important definition of a residual associated to a node of the tree.

We consider subtree T of K(A,M), and define residuals RT (u) and
resT (u, u′) for some nodes u, u′ in T . We will use this definition in cases
when T represents a strategy for Eve or for Adam in K(A,M). We will

10

omit T subscript, as T will be clear from the context. The residual R(u)
will be defined for all application nodes in T , that is nodes u with labels of
the form (NK, θ)≥ ~R→ q.

For a node u and its descendant u′ we write max(u, u′) for the maximum
of the ranks of edges on the path from u to u′.

Definition 10 (Residuals of a node: R(u)) For T a subtree of K(A,M)
we define a residual RT (u) for every application node u of T . The definition
is by induction on the type of the closure created by the application rule.

Consider a closure (u,K, ρ) with K of type o. The residual RT (u) ∈ Ro
is the set of pairs (q,max(u, u′)) such that there is in T a node u′ labelled
with (q, u) : (K, ρ, ∅).

Before giving the definition for other types we will introduce some abbre-
viations. For u′ a descendant of u, we define res(u, u′) to be R(u)�max(u,u′).
Similarly, for a closure (u,K, ρ) we define res((u,K, ρ), u′) = res(u, u′). We
then extend this operation to sequences of closures: res(~C, u′) is the se-
quence of residuals obatined by applying res(·, u′) componentwise to every
element of ~C.

Now, consider a closure (u,K, ρ) of an arbitrary type A ≡ A1 → · · · →
Ak → o. The residual RT (u) ∈ RA is a function such that for every ~S ∈
RA1 × · · · ×RAk

the set RT (u)(~S) contains a pair (q,max(u, u′)) if there is

a node u′ in T labelled by (q, u) : (K, ρ, ~C) with res(~C, u′) = ~S.

We will now show how to transfer Eve’s winning strategy in K(A,M) to
her winning strategy in G(A,M). Then we will do the same for strategies
of Adam.

4.1 Transferring Eve’s strategy from K(A,M) to G(A,M)

We will use a winning strategy σEve for Eve in K(A,M) to show how Eve can
win in G(A,M). When in a position v in G(A,M) we will keep an associated
position u in K(A,M). Then looking at u we will find a successor v′ of v
and associate to it a node u′ of K(A,M) that is reachable when playing σEve
from u. The pairs of nodes will satisfy the following invariant:

u is labelled by q : (N, ρ, ~C), and v is labelled by (N, θ) ≥ ~R→ q
with θ = res(ρ, u), and ~R = res(~C, u).

Above, and in the rest of this subsection, all residuals R(u), res(u, u′), are
calculated with respect to σEve, i.e., we take σEve as T in definitions above.

We will now show how Eve can play in order to preserve the above
invariant. For this we will examine the rules one, by one depending on the
shape of the term N .

11

The case of a variable Suppose the play reaches a node v with a variable
in the label. The invariant says that we have a companion node u with the
following situation:

u is q : (x, ρ, ~C) v is (x, θ) : ~R→ q

θ = res(ρ, u) and ~R = res(~C, u) .

We need to show that v is a winning position for Eve, namely that (q, 0) ∈
θ(x)(~R). The value ρ(x) is some closure of the form (ux, N, ρ

′). So the
successor u′ of the position u in σEve is labelled by (q, ux) : (N, ρ′, ~C).
Using the definition of R(ux) we obtain (q,max(ux, u

′)) ∈ R(ux)(~R), as
induction assumption gives us ~R = res(~C, u), and res(~C, u) = res(~C, u′)
since the rank of the transition from u to u′ is 0. By Lemma 7, (q, 0) ∈
(R(ux)(~R))�max(ux,u′). Since max(ux, u

′) = max(ux, u) we obtain

(q, 0) ∈ (R(ux)(~R))�max(ux,u) = (R(ux)�max(ux,u))(~R) = θ(x)(~S) .

The case of a constant Suppose the play reaches a node v with a con-
stant in the label. The invariant tells us that we have an associated node u
with the following situation:

u is q : (a, ρ, C1 . . . Ck) v is (a, θ) : R1 → · · · → Rk → q

θ = res(ρ, u) and Ri = res(Ci, u) for i = 1, . . . k

We show that v is a winning position for Eve. For this we need to find
(q1, . . . , qk) ∈ δA(q, a) such that (qi, rk(qi)) ∈ Ri�rk(qi) for all i = 1, . . . , k.

Since u is a part of the winning strategy σEve for Eve, it has a successor
u′ in σEve labelled (q1, . . . , qk) : (a, ρ, C1 . . . Ck) where (q1, . . . , qk) ∈ δA(q, a).
This is the transition we take. If k = 0 this tells us that ∅ ∈ δA(q, a) so Eve
wins. In the remaining we will suppose k > 0.

Let us see what we can deduce about Ri. By the invariant Ri =
res(Ci, u). Now Ci is a closure of the form (ui, Ni, ρi), and by definition
res(Ci, u) = R(ui)�max(ui,u). So we need to examine R(ui).

For every i = 1, . . . , k, position u′ has a successor u′i labelled with (qi, ui) :
(Ni, ρi, ε). The transition from u′ to u′i has rank rk(qi). By definition
of R(ui), we have that the node u′i contributes (qi,max(ui, u

′
i)) to R(ui).

Observe that max(ui, u
′
i) = max(rk(qi),max(ui, u)).

From these observations we get (qi,max(rk(qi),max(ui, u
′
i))) ∈ R(ui)

and Ri = R(ui)�max(ui,u). Then Ri�rk(qi) is R(ui)�max(rk(qi),max(ui,u) by
Lemma 7. So directly from the definition of �r operation (qi, 0) ∈ Ri�rk(qi).
This shows that v is a winning position for Eve.

12

The case of application Suppose that v is an application node. The
invariant gives us a companion node u so that:

u is q : (NK, ρ, ~C) v is (NK, θ) : ~R→ q

θ = res(ρ, u) and ~R = res(~C, u)

Node u has the unique successor u′ labelled by q : (NK, ρ, (u,K, ρ)~C). In
order to proceed from the node v, Eve should use the application rule with
P = R(u). After this Adam can choose between two positions:

(NK, θ)≥R(u)→ ~R→ q and (K, θ)≥R(u) .

If Adam chooses the first one, call it v′, then we can take u′ as a companion
node satisfying the invariant. Indeed, since the rank of the transition from
u to u′ is 0 we get: res(R(u), u′) = R(u)�0 = R(u), θ = res(ρ, u′), and
~R = res(~C, u′).

If Adam chooses (K, θ)≥R(u) then in the next step he can choose some
~S and some (q′, r′) ∈ R(u)(~S). In this case the new position in the game is
(K, θ) ≥r′ ~S → q′, and the position after it is (K, θ�r′)≥ ~S → q′. Call this
position v2.

We need to find a descendant u2 of u that we can take as a companion
for v2. Since (q′, r′) ∈ R(u)(~S), there is a descendant u1 of u labelled by
(q, u) : (K, ρ, ~C1) and moreover ~S = res(~C, u1), and r′ is the maximal rank
on the path from u to u1. Node u1 has the unique successor labelled by
q : (K, ρ, ~C1). This is the node u2 that we take as a companion of v2. To see
that the invariant is verified we note that the rank of the transition form u1

to u2 is 0 giving us: θ�r′ = res(ρ, u)�r′ = res(ρ, u2), and ~S = res(~C1, u1) =
res(~C1, u2).

Abstraction and fixpoint These rules are deterministic and it is direct
to verify that the invariant is preserved.

Every infinite play is winning The cases of a variable and a constant
treated above covered all possibilities of terminating plays. If a play fol-
lowing the strategy described above is infinite then we obtain a sequence
of pairs of positions (u1, v1)(u2, v2) . . . , such that v1, v2, . . . is the play in
G(A,M), and u1, u2, . . . is a sequence of nodes on a path of σEve. We also
obtain that the rank of a node vi is the same as the maximal rank on the
path from ui−1 to ui. So since the σEve is a winning strategy, the maximal
ranks appearing on the play v1, v2, . . . is even.

4.2 Transferring Adam’s strategy from K(A,M) to G(A,M)

We will proceed in the same way with strategies of Adam. We take a win-
ning strategy σAdam of Adam in K(A,M). To every position v in G(A,M)

13

reached during a play we will associate a position u in K(A,M). The two
positions will satisfy a similar invariant, but to formulate it we need one
more definition.

Definition 11 (Complementarity predicate) For two residualsR1, R2 ∈
RA of the same type we define when they are complementary by induction
on the rank of the type:

• for A = o, we put Comp(R1, R2) if R1 ∩R2 = ∅,

• for A = B → C, we put Comp(R1, R2) if for all S1, S2 ∈ RB such that
Comp(S1, S2) we have Comp(R1(S1), R2(S2)).

Lemma 12 If Comp(R1, R2) then Comp(R1�r, R2�r) for every rank r.

Proof
Given two sequences S1 and S2 of the correct type with respect to R1 and
R2 and such that Comp(S1, S2), since Comp(R1, R2), we have R1(S1) ∩
R2(S2) = ∅. Let’s suppose that (q1, r1) is in R1�r(S1), then either r1 > r
and (q1, r1) is in R1(S1) so that (q1, r1) is neither in R2(S2) nor in R2�r(S2);
or r1 ≤ r and (q1, r) is in R1(S1) so that (q1, r) is not in R2(S2) and (q1, r1)
is not in R2�r(S2). Similarly we get that whenever (q2, r2) is in R2�r(S2) it
is not in R1�r(S1). Therefore, we finally have that R1�r(S1)∩R2�r(S2) = ∅.
Since S1, S2 were arbitrary, we get Comp(R1�r, R2�r). �

The invariant can be now formulated as

u is q : (x, ρ, ~C) v is (x, θ) : ~R→ q

Comp(θ, res(ρ, u)) and Comp(~R, res(~C, u)) .

Above, and in the following, the residuals R(u), res(u, u′) are calculated
with respect to the tree σAdam.

Examining rules one by one, we will show how Adam can play in order
to preserve this invariant, and win.

The case of a variable The play reaches a node v and we have an asso-
ciated node u satisfying:

u is q : (x, ρ, ~C) v is (x, θ) : ~R→ q

Comp(θ, res(ρ, u)) and Comp(~R, res(~C, u))

Let ρ(x) = (ux, N, ρ
′). By the same argument as in the case for the Eve

we have (q, 0) ∈ R(ux)�max(ux,u)(~S) where ~S = res(~C, u). The invariant tells

us that Comp(θ(x), R(ux)�max(ux,u)) and Comp(~R, ~S) hold. In this case by

the definition of Comp we have θ(x)(~R)∩R(u)�max(ux,u)(~S) = ∅. This gives

required (q, 0) 6∈ θ(x)(~R) showing that Adam wins in v.

14

The case of a constant The situation is

u is q : (a, ρ, C1 . . . Ck) v is (a, θ) : R1 → · · · → Rk → q

Comp(θ, res(ρ, u)) and Comp(~R, ~C) .

We need to show that node v is loosing for Eve. For this we take a
transition (q1, . . . , qk) ∈ δα(q, a) and show that there is i = 1, . . . , k with
(qi, 0) 6∈ Ri�rk(qi). Observe that if there is no such transition then Adam
wins. This happens in particular when c is of type o, so also k = 0. In
this case we cannot have ∅ ∈ δ(q, a), since otherwise u would be loosing for
Adam, and the invariant tells that u is a part of his winning strategy.

In the winning strategy of Adam, σAdam, node u has a successor u′

labelled (q1, . . . , qk) : (a, ρ, C1 . . . Ck). Then u′ has exactly one successor u′i
labelled (qi, ui) : (Ni, ρi, ε), where Ci = (ui, Ni, ρi). We claim that (qi, 0) 6∈
Ri�rk(qi).

By definition of R(ui) we have (qi,max(ui, u
′
i)) ∈ R(ui). So (q, 0) ∈

R(ui)�max(ui,u′i)
= (R(ui)�max(ui,u))�rk(qi). Then Comp(R(ui)�max(ui,u), Ri)

holds by the invariant, and Comp((R(ui)�max(ui,u))�rk(qi), Ri�rk(qi)) follows
by Lemma 12. So (qi, 0) 6∈ Ri�rk(qi). This means that Eve cannot conclude
by taking the transition (q, a, q1, . . . , qk). As the choice of the transition was
arbitrary, position v is loosing for Eve.

The case of application The situation is

u is q : (NK, ρ, ~C) v is (NK, θ) : ~R→ q

Comp(θ, res(ρ, u)) and Comp(~R, res(~C, u)) .

Then u has the unique successor u′ labelled by q : (N, ρ, (u,K, ρ)~C). We
need to define the strategy for Adam for every possible choice of P in the
application rule applied to v. We have two cases

If Comp(P,R(u)) holds then Adam can move to v′ labelled (N, θ) ≥
P → ~R → q, and take u′ as the companion node. The invariant will be
satisfied as the transition from u to u′ has rank 0 so res(ρ, u) = res(ρ, u′),
res(~C, u) = res(~C, u′), and R(u) = res((u,K, ρ), u′).

If Comp(P,R(u)) does not hold then there are ~S1, ~S2 with Comp(~S1, ~S2)
and R(u)(~S1) ∩ P (~S2) 6= ∅. Let (q′, r′) be an element from this intersec-
tion. From (q′, r′) ∈ R(u)(~S1) we know that there is a descendant u1 of
u labelled (q′, u) : (K, ρ, ~C1) with res(~C1, u1) = ~S1, and r′ = max(u, u1).
Adam then should take (K, θ) ≥ P , followed by (K, θ) ≥r′ ~S2 → q′, and
later by (K, θ�r′)≥ ~S2 → q′. Call this last node v2. We claim that we can
take the unique descendant u2 of u1 as the companion of v2. Indeed u2 is la-
belled by q′ : (K, ρ, ~C1). We already know that Comp(~S2, res(~C1, u2)) holds.
Lemma 12 gives Comp(θ�r′ , res(ρ, u2)), since res(ρ, u2) = res(ρ, u)�r′ .

15

The case of abstraction and fixpoint In these cases the rules are de-
terministic, and it is straightforward to check that the invariant is preserved.

Every infinite play is winning As in the case of transferring strategies
of Eve, the above construction reflects the ranks, hence if every play in σAdam
is winning for Adam, so is every play in the strategy constructed above.

5 Monotone games

In this section we show that monotone residuals are enough to play in
G(A,M). By definition (cf. Definition 5) a residual of type A → B can be
any function from RA to RB. Here we show that we can restrict residuals to
be monotone functions. The resulting game, that we will call Gmon(A,M),
is in principle more difficult for Eve. Yet, Proposition 16 says that it is in
fact equivalent to G(A,M).

The set of monotone residuals is defined by:

Do = P(Q× [m]) DA→B = DA
mon−→ DB

where Do is ordered by inclusion, and DA
mon−→ DB denotes the set of mono-

tone functions from A to B. The set DA→B is ordered pointwise. We will
use f, g, h to range over elements {DA}A∈Types , υ for a valuation assigning

elements of {DA}A∈Types to variables, and ~g,~h for sequences of elements of
{DA}A∈Types .

Clearly every monotone residual is a residual: DA ⊆ RA for every type
A. We first observe that �r operation preserves monotonicity:

Lemma 13 For every monotone residual R ∈ DA, and every r ∈ [m], we
have R�r ∈ DA.

We define an operation mapping a residual to a monotone one.

Definition 14 For type A and every R ∈ RA we define mon(R) ∈ DA:

mon(R) =R for A = o

mon(R)(h) =
∨
{mon(R(S)) : mon(S) ≤ h} for A = B → C and h ∈ DB

We will need some simple properties of mon(R) operation

Lemma 15 For every type A and residual R ∈ RA:

mon(R) ∈ DA, and for every r ∈ [m], mon(R�r) = mon(R)�r.

16

Proof
It is clear from the definition that mon(R) is a monotone function. The
second statement is proved by the following calculation:

mon(R�r)(~h) =
⋃
{R�r(~S) : mon(~S) ≤ ~h}

=
⋃
{(R(~S))�r : mon(~S) ≤ ~h}

=
(⋃
{R(~S) : mon(~S) ≤ ~h}

)
�r = mon(R)�r(~h)

The second equality is direct from the definition of the operation (·)�r. The
third from the observation that (R1 ∪R2)�r = R1�r ∪R2�r. �

The game Gmon(A,M) is defined by the same rules as G(A,M) but
with the requirement that positions should use only monotone residuals. In
particular in the application rule Eve can choose only a monotone residual.
In consequence, it is more difficult for Eve to win in Gmon(A,M) since she
has less choice than in G(A,M). The next proposition says that despite this
the two games are equivalent.

Proposition 16 Suppose (N, θ)≥ ~R → q is a winning position for Eve in
G(A,M). For every υ ≥ mon(θ) and ~f ≥ mon(~R) the position (N, υ)≥ ~f →
q is winning for Eve in Gmon(A,M).

Proof
From a winning strategy for Eve in G(A,M) we construct a winning strategy
for Eve in Gmon(A,M). This construction is done rule by rule. The only non-
trivial case is that of the application rule. Suppose a position in Gmon(A,M)
is (NK, υ)≥ ~f → q and we have a position in G(A,M) of the form (NK, θ)≥
~R→ q with the properties assumed in the statement. Since the later position
is winning for Eve, her winning strategy gives her a residual P , and then
Adam can decide to move either to (NK, θ)≥P → ~R→ q or to (K, θ)≥P .

We claim that a good strategy for Eve in the game Gmon(A,M) is to
choose mon(P). Then Adam can choose to move to (N, υ)≥mon(P)→ ~f →
q or to (N, υ)≥mon(P). In the first case we can take (NK, θ)≥P → ~R→ q
as the associated position and the invariant required in the statement is
satisfied.

In the second case, we need to find a position to associate for every
position (K, υ�r1)≥ ~f1 → q1 for every ~f1 and (q1, r1) ∈ mon(P)(~f1). Looking

at the definition of mon(P) we have ~S such that mon(~S) ≤ ~f1 and (q1, r1) ∈
P (~S). Since (K, θ) ≥ P is winning for Eve in G(A,M) we know that the
position (K, θ�r1)≥ ~S → q1 is winning. Since υ ≥ mon(θ) we have υ�r1 ≥
mon(θ�r1) by Lemma 15. So the invariant from the statement is satisfied.

It remains to check that with the so-defined strategy Eve indeed wins
in Gmon(A,M). If a play is infinite then this is indeed the case as the
corresponding play in G(A,M) is winning and the two plays use the same

17

moves. It remains to check what happens if the play ends in a variable or
constant axiom

For the variable case the play reaches (x, υ) ≥ ~f → q and we know
that there is a position (x, θ) ≥ ~R → q that is winning for Eve, and such
that ~f ≥ mon(~R) and υ ≥ mon(θ). Since the position is winning for Eve,
we have (q, 0) ∈ ρ(x)(~R). By definition of mon(ρ(x)) this gives: (q, 0) ∈
mon(ρ(x)(~f). Then by monotonicity we get the required (q, 0) ∈ υ(x)(~f).

For the constant case the play reaches (a, υ)≥ f1 → · · · → fk → q and
we know that there is a position (a, υ)≥R1 → · · · → Rk → q that is winning
for Eve, and such that υ ≥ mon(θ), and fi ≥ mon(Ri) for i = 1, . . . , k. This
gives us a transition (q, a, q1, . . . , qk) ∈ δA such that (qi, 0) ∈ Ri�rk(qi), for
i = 1, . . . , k. But then by Lemma 15 fi�rk(qi) ≥ mon(Ri�rk(qi), so we get
desired (qi, 0) ∈ fi�rk(qi). �

Corollary 17 Eve wins from (M, ∅)≥ q in G(A,M) iff she wins from this
position in Gmon(A,M).

6 Model

The monotone game from the last section can be directly translated into a
model. We will use two semantical domains for every type: one with ranks
and one without ranks. The results about games make the definition of the
model rather direct. The main challenge is to define the interpretation of
the fixpoint.

Let us fix a parity automaton A with Q the set of states, and m the
highest rank in its acceptance conditions.

We will work with two semantical domains for every type: domain DA
as defined in the previous section and another domain:

So = P(Q) SA→B = DA
mon−→ SB

where So is ordered by inclusion, and SA→B is ordered pointwise. Observe
that SA1→···→An→o is DA1 → · · · → DAn → So. For every type A, the
domain SA is a finite complete lattice.

Our goal is Theorem 19 below, stating a direct correspondence between
the value of a term M in the model and winning in Gmon(A,M).

We define the semantics, [[M,υ]] of a term M with respect to a valuation
υ assigning elements of {DA}A∈Types to variables. Semantics [[M,υ]] will be
in {SA}A∈Types . At the same time we define auxiliary semantics 〈〈M,v〉〉 that
will be in {DA}A∈Types . The two notions are closely related:

〈〈M,υ〉〉(~f)(q) ={(q, r) : q ∈ [[M,υ�r]](~f)}

[[M,υ]](~f) ={q : (q, 0) ∈ 〈〈M,υ〉〉(~f)} .

18

The first of these equations should be considered as the definition of 〈〈M,υ〉〉,
while the second is an immediate consequence of the definition.

It will be useful to define some operations reflecting the above equiva-
lences. For every type A, we define an operation g · r for every g ∈ SA and
r ∈ [m], as well as an operation f (0) for every f ∈ DA:

(g · r)(~h) ={(q, r) : q ∈ g(~h)}

f (0)(~h) ={q : (q, 0) ∈ f(~h)} .

So g · r is an element of DA, and f (0) is an element of SA. In particular we
have:

[[M,υ]] = (〈〈M,υ〉〉)(0) and 〈〈M,υ〉〉 =

m∨
r=0

[[M,v�r]] · r

With these definitions we are ready to write the semantical clauses:

[[x, υ]]~f ={q : (q, 0) ∈ υ(x)(~f)}
[[a, υ]]f1 . . . fk ={q : ∃(q1,...,qk)∈δA(q,a). ∀i=1,...,k. (qi, 0) ∈ fi�rk(qi)}

[[λx.M, υ]]f =[[M,υ[f/x]]]

[[MN,υ]] =[[M,υ]]〈〈N, υ〉〉
[[Y, υ]]f =fix(f, 0) where for l = 0, . . . ,m we have

fix(f, l) =σgl . . . µg1.νg0. (f�l)
(0)(

l∨
r=0

gr · r ∨
m∨

r=l+1

fix(f, r) · r)

Observe that the clause for the variable can be written in a shorter way as
[[x, υ]] = (υ(x))(0). The internal formula in the definition of fix also resembles
the relations between [[M,υ]] and 〈〈M,υ〉〉.

Proposition 18 For every termM and valuation υ both [[M,υ]] and 〈〈M,υ〉〉
are monotone functions. If M =βδ N then [[M,υ]] = [[N, υ]] and 〈〈M,υ〉〉 =
〈〈N, υ〉〉.

Proof
The first statement follows easily by induction on the structure of the term.
In particular the semantics of Y is a monotone function since it is defined
as a composition of monotone operations.

In order to prove that the model is sound with respect to β and δ reduc-
tions, we will need first to spell out some properties of the semantics. The
first, explains the role of �r operation.

〈〈K, υ�r〉〉 = 〈〈K, υ〉〉�r. (1)

19

This property follows from a short calculation, where the equation in the
middle uses the Lemma 7 saying that (f�r)�i = f�max(r,i):

〈〈K, υ�r〉〉 =

m∨
i=1

[[K, (υ�r)�i]] · i =

=

r∨
i=0

[[K, υ�r]] ·i ∨
m∨

i=r+1

[[K, υ�i]] · i = 〈〈K, υ〉〉�r

The next observation is that substitution is well behaved:

[[M [K/x], υ]] = [[M,υ[〈〈K, υ〉〉/x]]] and 〈〈M [K/x], υ〉〉 = 〈〈M,υ[〈〈K, υ〉〉/x]〉〉
(2)

The proof of these two statements is done by mutual induction on the struc-
ture of M . The statetement for [[M [K/x], υ]] follows directly from induction
assumption, while the statement for 〈〈M [K/x], υ〉〉 follows from the state-
ment for [[M [K/x], υ]] as the following calculation shows

〈〈M [K/x], υ〉〉 =
m∨
r=0

[[M [K/x], υ�r]] · r

=

m∨
r=0

[[M,υ�r[[[K, υ�r]]/x]]] · r

=
m∨
r=0

[[M,υ�r[[[K, υ]]�r/x]]] · r

=

m∨
r=0

[[M, (υ[[[K, υ]]/x])�r]] · r = 〈〈M, (υ[[[K, υ]]/x])�r〉〉

The second equality above follows from the hypothesis; the third from equa-
tion (1) we have just proved; the others follow from definitions.

Equations (2) allow us to prove the soundness of the model with respect
to β-reduction. Consider [[(λx.M)N, υ]]. By the semantics this it is equal
to [[M,υ[〈〈N, υ〉〉/x]]] and then equation (2) tells us that it is the same as
[[M [N/x], υ]].

In order to prove soundness with respect to δ-reduction we will need one
more observation:

fix(f�k, 0) = fix(f, k) (3)

For this we show that fix(f�r, r − 1) = fix(f, r) using the following calcula-

20

tion:

fix(f, r) = σgr . . . µg1.νg0. (f�r)
(0)
(r∨
i=1

gi · i ∨
m∨

i=r+1

fix(f, i) · i
)

= σ′gr−1 · · ·µg1.νg0. (f�r)
(0)
(r−1∨
i=1

gi · i ∨
m∨
i=r

fix(f, i) · i
)

= σ′gr−1 · · ·µg1.νg0. ((f�r)�r−1)(0)
(r−1∨
i=1

gi · i ∨
m∨
i=r

fix(f, i) · i
)

= fix(f�r, r − 1)

Now using this observation we have for k > 0: fix(f�k, 0) = fix((f�k)�1, 0) =
fix(f�k, 1). Applying this argument k−1 times we get fix(f�k, 0) = fix(f�k, k−
1), and then we can once again use the observed equality to obtain (3).

Equation (3) allows us to prove soundness with respect to δ reduction
as follows:

[[M(YM), υ]] = [[M,υ]](〈〈YM, υ〉〉)

= [[M,υ]]

(
m∨
i=0

[[YM, υ�i]] · i

)

= [[M,υ]]

(
m∨
i=0

fix(〈〈M,υ�i〉〉, 0) · i

)

= [[M,υ]]

(
m∨
i=0

fix(〈〈M,υ〉〉�i, 0) · i

)
by equation (1)

= [[M,υ]]

(
m∨
i=0

fix(〈〈M,υ〉〉, i) · i

)
by equation (3)

= (〈〈M,υ〉〉)(0)

(
m∨
i=0

fix(〈〈M,υ〉〉, i) · i

)
by definition

= fix(〈〈M,υ〉〉, 0) = [[Y, υ]](〈〈M,υ〉〉) = [[YM, υ]]

�

Theorem 19 For a given automaton A the model constructed above is such
that for every term M , state q, valuation υ, and a sequence of residuals ~f :

q ∈ [[M,υ]](~f) iff (M,υ)≥ ~f → q is winning for Eve in Gmon(A,M).

Before proving the theorem let us see how it implies our main result,
i.e., Theorem 1. Let M be a closed term of type o. Without a loss of
generality we can assume that Y appears only in applicative contexts in M

21

as discussed in the remark on Page 3. If it is not the case then we replace
Y with λx.Y x. Clearly this operation does not change the semantic value
of the term. Now suppose q ∈ [[M, ∅]]. The above theorem says that this
happens if and only if (M, ∅) ≥ q is winning for Eve in Gmon(A,M). By
Corollary 17 the later is equivalent to (M, ∅)≥ q being winning for Eve in
G(A,M). Then Theorem 9 gives equivalence with winning from q : (M, ∅, ε)
in the game K(A,M). Finally, Proposition 4, says that this is the same as
BT (M) being accepted by the automaton A from the state q.

The rest of this section is devoted to the proof of Theorem 19. The proof
is by induction on the structure of M . The cases of a variable, a constant,
and λ-abstraction are direct from the definitions. We first consider the
application case leaving, the most difficult, fixpoint case for the end.

To prove the left to right implication of the application case take q ∈
[[MN,υ]](~f) = [[M,υ]]〈〈N, υ〉〉~f . Then the position (M,υ)≥〈〈N, υ〉〉 → ~f → q
is winning by the induction hypotheis. We need to show that (N, υ)≥〈〈N, υ〉〉
is winning. For this we take arbitrary ~h1 and (q1, r1) ∈ 〈〈N, υ〉〉(~h1). By
definition q1 ∈ [[N, υ�r1]](h1). So (N, υ�r1) ≥ ~h1 → q1 is winning by the
induction hypothesis.

For the right to left implication of the application case take a winning
position (MN,υ)≥ ~f → q. The winning strategy in the game gives us the
following situation for some monotone residual g:

(MN,υ)≥ ~f → q

(M,υ)≥g → ~f → q (N, υ�r1)≥~h1 → q1

for all ~h1 and (q1, r1) ∈ g(~h1)

The induction hypothesis tells us q ∈ [[M,υ]](g, ~f). We will show g ≤ 〈〈N, υ〉〉,
that by monotonicity will imply: q ∈ [[M,υ]](〈〈N, υ〉〉, ~f) = [[MN,υ]](~f).

To show g ≤ 〈〈N, υ〉〉 we take arbitrary ~h1 and (q1, r1) ∈ g(~h1). By the
assumption (N, υ�r1))≥~h1 → q1 is winning. So (q1, r1) ∈ 〈〈N, υ〉〉(~h1) by the
induction hypothesis.

For the fixpoint case we will need some preparations. Let A = ~B → o
be some type. We want to show the theorem for the fixpoint operator
Y : (A→ A)→ A.

Consider game Gmon(A,M) from a position (Y z, [f/z])≥~h→ q.

22

(Y z, [f/z])≥~h→ q

(z(Y z), [f/z])≥~h→ q

(z, [f/z])≥g → ~h→ q

(q, 0) ∈ f�r(g,~h)

(Y z, [f/z])≥g

(Y z, [f/z]) ≥r1 ~h1 → q1

(Y z, [f�r1/z]) ≥ ~h1 → q1

for all ~h and (q1, r1) ∈ g(~h1)

In the above game first Eve chooses a monotone residual g, and then Adam
chooses a sequence of monotone residuals ~h1 and (q1, r1) ∈ g(h1). The left
branch ends with a test giving a restriction on what residual g Eve can
choose. From the right branch the game continues, so in the course of
the game f will accumulate �r operations resulting in: (. . . (f�r1) . . . �rk) =
f�max(r1,...,rk).

In order to make the notation lighter we introduce another game that
behaves exactly in the same way as the one above. We call it GY fA :

• Eve’s positions (q, l,~h) with ~h ∈ D ~B;

• Adam’s positions [g, l] with g ∈ DA, and l ∈ [m].

The transitions of GY fA are

• (q, l,~h) → [g, l] for g ∈ DA such that (q, 0) ∈ f�l(g,~h), this transition
has rank 0;

• [g, l]→ (q,max(l, r),~h) for (q, r) ∈ g(~h), this transition has rank r.

Eve chooses in positions of the form (q, l,~h) and Adam in positions of the
form [g, l].

The next lemma describes the relation between two games.

Lemma 20 Eve wins form a position (q, l,~h) in GY fA iff she wins from the

position (Y z, [f�l/z])≥~h→ q in Gmon(A,M).

Thanks to the lemma, we can focus on the relation between the semantics
and the game GY fA .

We can consider the game GY fA as a transition system with positions as
states and moves as transitions. Every transition has a label that is its rank.
We will use a notation borrowed from modal logic. For a set of positions V
we write 〈0〉V for the set of positions having a transition of rank 0 leading
to V . Dually, [i]V is the set of positions from which every transition of

23

rank i leads to a position from V . With this notation the set of winning
positions for Eve in the game GY fA in given by the following fixpoint formula
(we suppose that m is odd to simplify the notation).

θwin = µXm.νXm−1 . . . µX1.νX0. 〈0〉

(
m∧
i=0

[i]Xi

)
(4)

In the argument below we will use step functions. For ~h ∈ D ~B and

q ∈ S0, we write (~h 7→ b) for the function in D ~B→o defined by:

(~h 7→ q)(~x) =

{
q when ~h ≤ ~x
⊥ otherwise

These preparations show that in order to prove the theorem for the case
of the fixpoint operator it is enough to show:

Lemma 21 For every l: fix(f, l) ≥ ~h 7→ q iff (q, l,~h) ∈ θwin.

The proof of this lemma is by induction on l, but first we need some prepa-
rations.

Definition 22 For every set of positions V of Eve in the game GY fA and
every r ∈ [m] we define a function:

[V, r] =
∨
{~h 7→ {q} : (q, r,~h) ∈ V } .

The next lemma shows a relation between internal part of the for-
mula (4), and the internal part of the formula defining the fixpoint.

Lemma 23 Let V0, . . . , Vm be sets of positions of Eve in the game GY fA .

For every state q, every l ∈ [m], and every vector of monotone residuals ~h
of appropriate types:

(f�l)
(0)
(l∨
r=0

[Vr, l] · r ∨
m∨

r=l+1

[Vr, r] · r
)
≥ ~h 7→ {q}

iff

(q, l,~h) ∈ 〈0〉
(m∧
r=0

[r]Vr
)

Proof
Let g =

∨l
r=0[Vr, l] · r ∨

∨m
r=l+1[Vr, r] · r. We first consider left to right

direction.
Suppose (f�l)

(0)(g) ≥ ~h → q. This means that (q, 0) ∈ f�l(g,~h). So
from (q, l,~h) Eve can take a transition to [g, l]. We need to show that
[g, l] ∈

∧m
r=0[r]Vr.

24

Suppose Adam takes a transition of rank r1 to (q1,max(l, r1),~h1). From
the definition of the game we get (q1, r1) ∈ g(~h1). Let us look at the defini-
tion of g. If r1 ≤ l then (q1, r1) ∈ [Vr1 , l] · r1, so (q1, l,~h1) ∈ Vr1 . If r1 > l
then (q1, r1) ∈ [Vr1 , r1] · r1 so (q1, r1,~h1) ∈ Vr1 . In both cases we end up in
Vr1 as required.

For the other direction suppose (q, l,~h) ∈ 〈0〉
(∧m

r=0[r]Vr
)
. Then there is

[g1, l1] ∈
∧m
r=0[r]Vr with (q, 0) ∈ f�l(g1,~h). It remains to show g1 ≤ g.

Take ~h1 and (q1, r1) ∈ g1(~h1). By the definition of the game we have
(q,max(r1, l),~h1) ∈ Vr1 . If r1 ≤ l then [Vr1 , l] ≥ ~h 7→ {q}, giving (q, r1) ∈
([Vr1 , l] · r1)(~h1), and in consequence (q, r1) ∈ g(~h1). Similarly, if r1 > l then
[Vr1 , r1] ≥ ~h 7→ {q}, giving (q, r1) ∈ ([Vr1 , r1] · r1)(~h1), and in consequence
(q, r1) ∈ g(~h1). This shows that g1 ≤ g.

�

By induction we can extend the correspondence from the previous lemma
to formulas with fixpoints.

Lemma 24 For every k and l verifying −1 ≤ k ≤ l ≤ m, and for all sets
Vk+1, . . . , Vm of positions of Eve in GY fA :

σgk . . . µg1νg0. (f�l)
(0)
(k∨
r=0

gr · r ∪
l∨

r=k+1

[Vr, l] · r ∨
m∨

r=l+1

[Vr, r] · r
)
≥ ~h 7→ {q}

iff

(q, l,~h) ∈ σXk . . . µX1νX0. 〈0〉
(k∧
r=0

[r]Xr ∧
m∧

r=k+1

[r]Vr
)

Proof
We fix l ∈ [m] and we prove the lemma by induction on k. The proof for
k = −1 is the statement of the previous lemma. The induction step uses
the unrolling of the greatest/least fixpoint definitions. �

Taking k = l in the lemma above gives Lemma 21 and finishes the proof
of the theorem.

7 Related work

The objective of this paper is to present a complete proof of the model con-
struction for Ω-blind regular properties. Technically, it is just a simplifica-
tion of our construction from [SW15a] where we treat all regular properties.
Nevertheless, we hope that this exercise is useful as most of the literature
on the subject concentrates on Ω-blind properties.

The present complete exposition allows us also to put this construction
in the context of related research tracing the origins of each of its ingredients.

25

The first step is a very influential paper of Kobayashi and Ong [KO09], and
in particular its type system for calculating maximal ranks that appear on
paths of Böhm trees of simply typed λ-terms without recursion. This idea
influenced the notion of residual essential in our Krivine machine approach to
the higher-order model checking problem [SW11]. All technical development
in Sections 3 and 4 comes from [SW11].

In order to facilitate comparison with another very interesting work,
namely that of Tsukada and Ong [TO14], we have presented the game
G(A,M) from [SW11] in a form of a type system. Tsukada and Ong con-
struct an infinite model and use it to show completeness of a type system
for higher-order model checking. Their type system is essentially the same
as the one defining our game in Section 4. The only difference is in lifting
operations: Tsukada and Ong system uses r\ while we use �r. For the fix-
points, the Tsukada and Ong type system does the same thing as our game:
it delegates them to an external solving procedure.

To finish the comparison with the Tsukada and Ong type system, let us
look closer at the r\ operation from [TO14] and compare it to �r from [SW11].
The operation r\ is defined in a more abstract way but for automata with
parity conditions it has a presentation that makes a direct comparison pos-
sible. Tsukada and Ong consider the following order on ranks:

2n 4 2n− 2 4 . . . 4 2 4 0 4 1 4 . . . 4 2n− 1 4 2n+ 1

Intuitively i 4 j means than from the point of view of the parity condition
it is better to see i than j. The operation r\ is defined so that r\e is the
biggest r′ in the 4 ordering such that max(r, r′) 4 e; where max is taken
in the natural ordering on numbers. In our constructions we work with sets
of ranks, while Tsukada and Ong consider only 4-downward closed ones:
[e] = {r : r 4 e}. The operations �r and r\ are the same on 4-downward
closed sets since:

[e]�r = [r\e]

For algorithmic reasons it may be interesting to work with 4-downward
closed sets. Our model construction preserves downward closures, so we
could have imposed 4-downward closure as an additional condition on resid-
uals; in this case the two type systems would become identical. We have
chosen not to do this since adding 4-order does not seem to simplify our
constructions.

Recently Grellois and Mellies [GM15a] have given another reduction of
the model-checking problem for Ω-blind automata to finite parity games.

Section 5 presents a reduction from arbitrary games to games over mono-
tone residuals. The restriction to monotone residuals is not needed when
the fixpoints are treated via games, so it does not appear in other works,
but it is essential if we want to give a semantics to the fixpoint operators.

26

Section 6 gives the model construction that directly reflects games over
monotone residuals. This is not to say that the model construction did
not require new insights. The most important comes from the work of
Grellois and Mellies. In [GM15c] they have given a categorical account of
the behaviour of ranks in a model. They derive an infinite model via elegant
general constructions. Later Mellies [Mel14] clearly showed the value of
using the morphism composition similar to that in Kleisli categories. This
composition is used in our model.

8 Conclusions

The model construction presented here is largely based on the construction
from [SW11]. The main technical tool is the finite game G(M,A). To obtain
a model it suffices to show that Eve can play with monotone residuals, and
to understand the nature of composition as well as the fixpoint operator
with respect to the game.

The general case, for parity automata that are not necessary Ω-blind, is
more complicated. All the games should be modified, and in consequence
the match between games and the monotone model is lost. The solution
we propose in [SW15a] is to impose one more restriction on residuals that
we call stratification. One can show that in modified games Eve can play
with stratified monotone residuals, and that all operations needed to con-
struct a model preserve the stratification property. This unfortunately adds
additional level of difficulty to the whole construction.

References

[GM15a] Charles Grellois and Paul-André Melliès. Finitary seman-
tics of linear logic and higher-order model-checking. CoRR,
abs/1502.05147, 2015. To appear at CSL’15.

[GM15b] Charles Grellois and Paul-André Melliès. An infinitary model of
linear logic. In FOSSACS 15, volume 9034 of LNCS, pages 41–55,
2015.

[GM15c] Charles Grellois and Paul-André Melliès. Tensorial logic with
colours and higher-order model checking. CoRR, abs/1501.04789,
2015. To appear at MFCS’15.

[Had13] A. Haddad. Model checking and functional program transforma-
tions. In FSTTCS, volume 24 of LIPIcs, pages 115–126, 2013.

[KO09] N. Kobayashi and L. Ong. A type system equivalent to modal mu-
calculus model checking of recursion schemes. In LICS’09, pages
179–188, 2009.

27

[Kri07] Jean-Louis Krivine. A call-by-name lambda-calculus machine.
Higher-Order and Symbolic Computation, 20(3):199–207, 2007.

[Mel14] Paul-André Melliès. Linear logic and higher order model-checking.
Talk at IHP Wokshop, June 2014.

[Ong06] C.-H. Luke Ong. On model-checking trees generated by higher-
order recursion schemes. In LICS’06, pages 81–90, 2006.

[SW11] Sylvain Salvati and Igor Walukiewicz. Krivine machines and
higher-order schemes. In ICALP’11, volume 6756 of LNCS, pages
162–173, 2011.

[SW13] Sylvain Salvati and Igor Walukiewicz. Using models to model-
check recursive schemes. In TLCA, volume 7941 of LNCS, pages
189–204, 2013.

[SW14] Sylvain Salvati and Igor Walukiewicz. Krivine machines and
higher-order schemes. Inf. Comput., 239:340–355, 2014.

[SW15a] Sylvain Salvati and Igor Walukiewicz. A model for behavioural
properties of higher-order programs. HAL-01145494, to appear at
CSL’15, 2015.

[SW15b] Sylvain Salvati and Igor Walukiewicz. Typing weak MSOL prop-
erties. In FOSSACS 15, volume 9034, pages 343–357, 2015.

[TO14] Takeshi Tsukada and C.-H. Luke Ong. Compositional higher-order
model checking via ω-regular games over Böhm trees. In LICS-
CSL, pages 78:1–78:10, 2014.

28

	Introduction
	Preliminaries
	Y-calculus and Böhm trees
	Parity automata accepting Böhm trees
	Formulation of the problem and overview of the construction

	Game K(A,M)
	Game G(A,M)
	Transferring Eve's strategy from K(A,M) to G(A,M)
	Transferring Adam's strategy from K(A,M) to G(A,M)

	Monotone games
	Model
	Related work
	Conclusions

