
HAL Id: hal-01073877
https://hal.archives-ouvertes.fr/hal-01073877v3

Submitted on 30 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficiently Summarizing Distributed Data Streams over
Sliding Windows

Nicolò Rivetti, Yann Busnel, Achour Mostefaoui

To cite this version:
Nicolò Rivetti, Yann Busnel, Achour Mostefaoui. Efficiently Summarizing Distributed Data Streams
over Sliding Windows. [Research Report] LINA-University of Nantes; Centre de Recherche en
Économie et Statistique; Inria Rennes Bretagne Atlantique. 2015, 19 p. �hal-01073877v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49508843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01073877v3
https://hal.archives-ouvertes.fr

Efficiently Summarizing Distributed Data Streams
over Sliding Windows

Nicoló Rivetti
LINA / Université de Nantes,

Nantes, France
Nicolo.Rivetti@univ-nantes.fr

Yann Busnel
Crest (Ensai) / Inria,

Rennes, France
Yann.Busnel@ensai.fr

Achour Mostefaoui
LINA / Université de Nantes,

Nantes, France
Achour.Mostefaoui@univ-nantes.fr

Abstract—Estimating the frequency of any piece of informa-
tion in large-scale distributed data streams became of utmost
importance in the last decade (e.g., in the context of network
monitoring, big data, etc.). If some elegant solutions have been
proposed recently, their approximation is computed from the
inception of the stream. In a runtime distributed context, one
would prefer to gather information only about the recent past.
This may be led by the need to save resources or by the fact that
recent information is more relevant.

In this paper, we consider the sliding window model and
propose two different (on-line) algorithms that approximate
the items frequency in the active window. More precisely, we
determine a (ε, δ)-additive-approximation meaning that the error
is greater than ε only with probability δ. These solutions use a
very small amount of memory with respect to the size N of
the window and the number n of distinct items of the stream,
namely, O(1

ε
log 1

δ
(logN+logn)) and O(1

τε
log 1

δ
(logN+logn))

bits of space, where τ is a parameter limiting memory usage. We
also provide their distributed variant, i.e., considering the sliding
window functional monitoring model. We compared the proposed
algorithms to each other and also to the state of the art through
extensive experiments on synthetic traces and real data sets that
validate the robustness and accuracy of our algorithms.

Keywords—Data stream, windowing model, frequency estima-
tion, randomized approximation algorithm.

I. INTRODUCTION AND RELATED WORK

In large distributed systems, it is most likely critical to gather
various aggregates over data spread across the large number of
nodes. This can be modelled by a set of nodes, each observing a
stream of items. These nodes have to collaborate to continuously
evaluate a given function over the global distributed stream.
For instance, current network management tools analyze the
input streams of a set of routers to detect malicious sources or
to extract user behaviors [1], [2]. The main goal is to evaluate
such functions at the lowest cost in terms of the space used
at each node, as well as minimizing the update and query
time. The solutions proposed so far are focused on computing
functions or statistics using ε or (ε, δ)-approximations in poly-
logarithmic space over the size m of the stream and the number
n of its distinct items.

In the data streaming model, many functions have been
studied such as the estimation of the number of distinct data
items in a stream [3], [4], the frequency moments [5], the most

This work was partially funded by the French ANR project SocioPlug (ANR-
13-INFR-0003), and by the DeSceNt project granted by the Labex CominLabs
excellence laboratory (ANR-10-LABX-07-01).

frequent data items [6], the frequency estimation [7], [8] or
information divergence over streams [1]. Cormode et al. [9]
propose solutions for frequency moments estimation in the
functional monitoring model. In most applications, computing
such a function from the inception of a distributed stream is
useless [10]. Only the most recent past may be relevant meaning
that the function has to be evaluated on part of the stream
captured by a window of a given size (say N) that will slide over
time. Datar et al. [10] introduced the sliding window concept in
the data streaming model presenting the exponential histogram
algorithm that provides an ε-approximation for basic counting.
Gibbons and Tirthapura [11] presented an algorithm matching
the results of [10] based on the wave data structures requiring
constant processing time and providing some extensions for
distributed streams. Arasu and Manku [12] studied the problem
of ε-approximating counts over sliding windows, presenting
both deterministic and randomized solutions achieving respec-
tively O(1

ε log2 1
ε) and O(1

ε log ε
δ) space complexity. In this

model there are also works on variance [13], quantiles [12]
and frequent items [14]. Merging both models, [15] provides
an optimal solution for the heavy hitters problem in the sliding
window functional monitoring model.

In this paper, we tackle the frequency estimation problem
in the sliding window model. Whatever is the model, this
problem cannot be reduced to the heavy hitters (frequent items)
problem and approximate counts. Indeed, having the frequency
estimation of items allows to determine frequent element but
the converse does not hold. Moreover, using little memory (low
space complexity) implies some kind of data aggregation. If
the number of counters is less than the number of different
items then necessarily each counter encodes the occurrences
of more than one item. The problem is then how to slide the
window to no more keep track of the items that exited the
window and how to introduce new items. As a consequence,
our work cannot be compared to [14], [16]. To our knowledge
the only work that tackles a similar problem is [17]. Their
proposal, named ECM-sketches, consists in a compact structure
combining some state-of-the-art sketching techniques for data
stream summarization, with sliding window synopses.

We extend the well-known algorithm for frequency esti-
mation, namely the COUNT-MIN sketch [8], in a windowed
version. We propose our approach in two steps, two first naive
and straightforward algorithms called PERFECT and SIMPLE
followed by two more sophisticated ones called PROPORTIONAL
windowed and SPLITTER windowed algorithms. Then, we

compare their respective performances together with the ECM-
sketches solution, proposed in [17].

This paper is composed of 5 Sections. Section II describes
the computational model and some necessary background. In
Section III, after two naive first step algorithms, we propose
two novel (ε, δ)-additive-approximations, achieving respectively
O(1

ε log 1
δ (logN+log n)) and O(1

τε log 1
δ (logN+log n)) bits1

of space, where τ is an additional parameter limiting memory
usage (see Section III-D). Section III-E and Section III-F
present respectively the distributed variant and the time-
based sliding windows extention. The efficiency of the three
algorithms and the algorithm proposed in [17] are analyzed
and Section IV presents an extended performance evaluation of
the estimation accuracy of our algorithms, with both synthetic
traces and real data sets, inspired by [18].

II. PRELIMINARIES AND BACKGROUND

A. Data Streaming Model

We present the computation model under which we an-
alyze our algorithms and derive bounds: the data streaming
model [19]. We consider a massively long input stream σ, that
is, a sequence of elements 〈a1, a2, . . . , am, . . . 〉 called samples.
Samples are drawn from a universe [n] = {1, 2, . . . , n} of
items. The size of the universe (or number of distinct items)
of the stream is n. This sequence can only be accessed in its
given order (no random access). The problem to solve can be
seen as a function φ evaluated on a sequence of items prefix of
size m of a stream σ under memory constraints. For example
if the function φ represents the most frequent item then the
function φ applied to the first m items of the stream returns
the most frequent item among these m first samples.

In order to reach these goals, we rely on randomized
algorithms that implement approximations of the desired
function φ. Namely, such an algorithm A evaluates the stream
in a single pass (on-line) and continuously. It is said to be
an (ε, δ)-additive-approximation of the function φ on a stream
σ if, for any prefix of size m of items of the input stream
σ, the output φ̂ of A is such that P{| φ̂ − φ |> εC} < δ,
where ε, δ > 0 are given as precision parameters and C is an
arbitrary constant. The parameter ε represents the precision
of the estimation of the approximation. For instance ε = 0.1
means that the additive error is less than 10% and δ = 0.01
means that this approximation will not be satisfied with a
probability less than 1%.

On the other hand, as explained in the Introduction, we are
only interested in the recent past. This is expressed by the fact
that when the function φ is evaluated, it will be only on the N
more recent items among the m items already observed, that
is, the sliding window model formalized by Datar et al. [10].
In this model, samples arrive continuously and expire after
exactly N steps. A step corresponds to a sample arrival, i.e., we
consider count-based sliding windows. The challenge consists
in achieving this computation in sub-linear space. When N is
set to the maximal value of m, the sliding window model boils
down to the classical model. The supplemental problem brought
by a sliding window resides in the fact that when a prefix of a

1For the sake of clarity, we will use the notation log to denote the logarithm
in base 2 for the rest of this paper.

Listing II.1: COUNT-MIN Sketch
1: init do
2: count[1 . . . c1, 1 . . . c2]← #»

0
3: Choose c1 independent hash functions h1 . . . hc1 :

[n]→ [c2] from a 2-universal family.
4: end init
5: upon 〈Sample | j〉 do
6: for i = 1 to c1 do
7: count[i, hi(j)]← count[i, hi(j)] + 1
8: end for
9: end upon

10: function GETFREQ(j) . returns f̂j
11: return min{count[i, hi(j)] | 1 ≤ i ≤ c1}
12: end function

stream is summarized we lose the temporal information related
to the different items making the exclusion of the most ancient
items non trivial with little memory.

B. Vanilla Count-Min Sketch

The problem we tackle in this paper is the frequency esti-
mation problem. In a stream, each item appears a given number
of times that allows to define its frequency. The function that
defines this problem returns a frequency vector f = (f1, . . . , fn)
where fj represents the number of occurrences of item j in
the portion of the input stream σ evaluated so far. The goal is
to provide an estimate f̂j of fj for each item j ∈ [n].

Cormode and Muthukrishnan have introduced in [8] the
COUNT-MIN sketch that provides, for each item j an (ε, δ)-
additive-approximation f̂j of the frequency fj . This algorithm
leverages collections of 2-universal hash functions. Recall that
a collection H of hash functions h : [M] → [M ′] is said
to be 2-universal if for every 2 distinct items x, y ∈ [M],
Ph∈H{h(x) = h(y)} ≤ 1

M ′ , that is, the collision probability
is as if the hash function assigns truly random values to any
x ∈ [M]. Carter and Wegman [20] provide an efficient method
to build large families of hash functions approximating the
2-universality property.

The VANILLA COUNT-MIN sketch consists of a two dimen-
sional count matrix of size c1 × c2, where c1 =

⌈
log 1

δ

⌉
and

c2 =
⌈
e
ε

⌉
. Each row is associated with a different 2-universal

hash function hi : [n]→ [c2]. When it reads sample j, it updates
each row: ∀i ∈ [c1], count[i, hi(j)]← count[i, hi(j)]+1. That
is, the cell value is the sum of the frequencies of all the items
mapped to that cell. Since each row has a different collision
pattern, upon request of f̂j′ we want to return the cell associated
with j′ minimising the collisions impact. In other words, the
algorithm returns, as fj′ estimation, the cell associated with
j′ with the lowest value: f̂j′ = min1≤i≤c1{count[i, hi(j′)]}.
For self-containment reasons, Listing II.1 presents the global
behavior of the VANILLA COUNT-MIN algorithm.

Fed with a stream of m items, the space complexity of
this algorithm is O(1

ε log 1
δ (logm+ log n)) bits, while update

and query time complexities are O(log 1/δ). Concerning its
accuracy, the following bound holds: P{| f̂j − fj |≥ ε(m −
fj)} ≤ δ, while fj ≤ f̂j is always true.

Listing III.1: PERFECT WINDOWED COUNT-MIN

1: init do
2: count[1 . . . c1, 1 . . . c2]← #»

0
3: Choose c1 independent hash functions h1 . . . hc1 :

[n]→ [c2] from a 2-universal family.
4: samples← ∅ queue of samples
5: end init
6: upon 〈Sample | j〉 do
7: for i = 1 to c1 do
8: count[i, hi(j)]← count[i, hi(j)] + 1
9: end for

10: enqueue j in samples
11: if | samples |> N then
12: j′ ← dequeue from samples
13: for i = 1 to c1 do
14: count[i, hi(j

′)]← count[i, hi(j
′)]− 1

15: end for
16: end if
17: end upon
18: function GETFREQ(j) . returns f̂j
19: return min{count[i, hi(j)] | 1 ≤ i ≤ c1}
20: end function

III. WINDOWED COUNT-MIN

The COUNT-MIN algorithm solves brilliantly the frequency
estimation problem. We propose two extensions in order to meet
the sliding window model: PROPORTIONAL and SPLITTER.
Nevertheless, we first introduce two naive algorithms that enjoy
optimal bounds with respect to accuracy (algorithm PERFECT)
and space complexity (algorithm SIMPLE). Note that in the
following fj is redefined as the frequency of item j in the last
N samples among the m items of the portion of the stream
evaluated so far.

A. Perfect Windowed Count-Min

PERFECT provides the best accuracy by dropping the
complexity space requirements: it trivially stores the whole
active window in a queue. When it reads sample j, it enqueues
j and increases all the count matrix cells associated with
j. Once the queue reaches size N , it dequeues the expired
sample j′ and decreases all the cells associated with j′. The
frequency estimation is retrieved as in the VANILLA COUNT-
MIN (cf. Section II-B). Listing III.1 presents the global behavior
of PERFECT.

Theorem 3.1: PERFECT is an (ε, δ)-additive-approximation
of the frequency estimation problem in the count-based sliding
window model where P{| f̂j − fj |≥ ε(N − fj)} ≤ δ, while
fj ≤ f̂j is always true.

Proof: Since the algorithm stores the whole previous
window, it knows exactly which sample expires in the current
step and can decrease the associated counters in the count
matrix. Then PERFECT provides an estimation with the same
error bounds of a VANILLA COUNT-MIN executed on the last
N samples of the stream.

Theorem 3.2: PERFECT space complexity is O(N) bits,
while update and query time complexities are O(log 1/δ).

Proof: The algorithm stores N samples, which leads to a
space complexity of O(N) bits. An update requires to enqueue

Listing III.2: SIMPLE WINDOWED COUNT-MIN

1: init do
2: count[1 . . . c1, 1 . . . c2]← #»

0
3: Choose c1 independent hash functions h1 . . . hc1 :

[n]→ [c2] from a 2-universal family.
4: m′ ← 0
5: end init
6: upon 〈Sample | j〉 do
7: if m′ = 0 then
8: count[1 . . . c1, 1 . . . c2]← #»

0
9: end if

10: for i = 1 to c1 do
11: count[i, hi(j)]← count[i, hi(j)] + 1
12: end for
13: m′ ← m′ + 1 mod N
14: end upon
15: function GETFREQ(j) . returns f̂j
16: return min{count[i, hi(j)] | 1 ≤ i ≤ c1}
17: end function

and dequeue two samples (O(1)), and to manipulate a cell on
each row. Thus the update time complexity is O(log 1/δ). A
query requires to look up a cell for each row of the count
matrix: the query time complexity is O(log 1/δ).

B. Simple Windowed Count-Min

SIMPLE is as straightforward as possible and achieves
optimal space complexity with respect to the vanilla algorithm.
It behaves as the VANILLA COUNT-MIN, except that it resets the
count matrix at the beginning of each new window. Obviously
it provides a really rough estimation since it simply drops all
information about any previous window once a new window
starts. Listing III.2 presents the global behavior of SIMPLE.

Theorem 3.3: SIMPLE space complexity is O(1
ε log 1

δ
(logN+log n)) bits, while update and query time complexities
are O(log 1/δ).

Proof: The algorithm uses a counter of size O(logN) and
a matrix of size c1 × c2 (c1 = dlog 1/δe and c2 = de/εe) of
counters of size O(logN). In addition, for each row it stores a
hash function. Then the space complexity is O(1

ε log 1
δ (logN+

log n)) bits. An update requires to hash a sample, then retrieve
and increase a cell for each row, thus the update time complexity
is O(log 1/δ). We consider the cost of resetting the matrix
(O(1

ε log 1/δ)) negligible since it is done only once per window.
A query requires to hash a sample and retrieve a cell for each
row: the query time complexity is O(log 1/δ).

C. Proportional Windowed Count-Min

We now present the first extension algorithm, denoted
PROPORTIONAL. The intuition behind this algorithm is as
follows. At the end of each window, it stores separately a
snapshot of the count matrix, which represents what happened
during the previous window. Starting from the current count
state, for each new sample, it increments the associated cells
and decreases all the count matrix cells proportionally to the
last snapshot. This smooths the impact of resetting the count
matrix throughout the current window. Listing III.3 presents
the global behavior of PROPORTIONAL.

More formally, after reading N samples, PROPORTIONAL
stores the current count matrix and divides each cell by

Listing III.3: PROPORTIONAL WINDOWED COUNT-MIN

1: init do
2: count[1 . . . c1, 1 . . . c2]← #»

0
3: Choose c1 independent hash functions h1 . . . hc1 :

[n]→ [c2] from a 2-universal family.
4: snapshot[1 . . . c1, 1 . . . c2]← #»

0
5: m′ ← 0
6: end init
7: upon 〈Sample | j〉 do
8: if m′ = 0 then
9: for i1 = 1 to c1 and i2 = 1 to c2 do

10: snapshot[i1, i2]← count[i1,i2]
N

11: end for
12: end if
13: for i1 = 1 to c1 and i2 = 1 to c2 do
14: if hi1(j) = i2 then
15: count[i1, i2]← count[i1, i2] + 1
16: end if
17: count[i1, i2]← count[i1, i2]− snapshot[i1, i2]
18: end for
19: m′ ← m′ + 1 mod N
20: end upon
21: function GETFREQ(j) . returns f̂j
22: return round{min{count[i, hi(j)] | 1 ≤ i ≤ c1}}
23: end function

the window size: ∀i1, i2 ∈ [c1] × [c2], snapshot[i1, i2] ←
count[i1, i2]/N (Lines 8 to 12). This snapshot represents the
average step increment of the count matrix during the previous
window. When PROPORTIONAL reads sample j, it increments
the count cells associated with j (Lines 14 to 16) and subtracts
snapshot from count: ∀i1, i2 ∈ [c1] × [c2], count[i1, i2] ←
count[i1, i2]−snapshot[i1, i2] (Line 17). Finally, the frequency
estimation is retrieved from count as in the vanilla algorithm.

Theorem 3.4: PROPORTIONAL space complexity is O(1
ε

log 1
δ (logN+log n)) bits. Update and query time complexities

are O(1
ε log 1/δ) and O(log 1/δ).

Proof: The algorithm stores a count and a snapshot
matrix, as well as a counter of size O(logN). Then the space
complexity is O(1

ε log 1
δ (logN+log n)) bits. An update require

to look up all the cells of both the count and snapshot, thus
the update time complexity is O(1

ε log 1/δ). A query requires
to hash a sample and retrieve a cell for each row: the query
time complexity is O(log 1/δ).

D. Splitter Windowed Count-Min

PROPORTIONAL removes the average frequency distribution
of the previous window from the current window. Consequently,
PROPORTIONAL does not capture sudden changes in the stream
distribution. To cope with this flaw, one could track these critical
changes through multiple snapshots. However, each row of the
count matrix is associated with a specific 2-universal hash
function, thus changes in the stream distribution will not affect
equally each rows.

Therefore, SPLITTER proposes a finer grained approach
analyzing the update rate of each cell in the count matrix. To
record changes in the cell update rate, we add a (fifo) queue
of sub-cells to each cell. When SPLITTER detects a relevant
variation in the cell update rate, it creates and enqueues a new

lastinit

) m = 101

1 77 20

...

count.

count[1]

count[2]

count[i]
...

0 21 21 59

21 38 42 0

38 21 21 21

� = h0, 1, 2, 3, . . . , 0, 1, 2, 3, 0, 0, . . . , 0i
⇥21 ⇥17

}}c2 = 4; N = 100; ⌧ = 0.4; µ = 1.5

lastinit

81 93 10

count. lastinit

100 101 8

count.

lastinit

4 80 20

count. lastinit

84 84 1

count.

Fig. 1: State of the data structure of SPLITTER after a prefix
of 101 items of σ.

sub-cell. This new sub-cell then tracks the current update rate,
while the former one stores the previous rate.

Each sub-cell has a frequency counter and 2 timestamps:
init, that stores the (logical) time where the sub-cell started
to be active, and last, that tracks the time of the last update.
After a short bootstrap, any cell contains at least two sub-cells:
the current one that depicts what happened in the very recent
history, and a predecessor representing what happened in the
past. Listing III.4 presents the global behavior of SPLITTER,
while Figure 1 illustrates a possible state of the data structure
of SPLITTER, after reading a prefix of 101 items of σ, which is
introduced in the top part of the figure with all the parameters
of SPLITTER.

SPLITTER spawns additional sub-cells to capture distribu-
tion changes. The decision whether to create a new sub-cell
is tuned by two parameters, τ and µ, and an error function:
ERROR. Informally, the function ERROR evaluates the potential
amount of information lost by merging two consecutive sub-
cells, while µ represents the amount of affordable information
loss. Performing this check at each sample arrival may lead
to erratic behaviors. To avoid this, we introduced τ , such that
0 < τ ≤ 1, that sets the minimal length ratio of a sub-cell
before taking this sub-cell into account in the decision process.

In more details, when SPLITTER reads sample j, it has
to phase out the expired data from each sub cell. Then, for
each cell of count, it retrieves the oldest sub-cell in the queue,
denoted first (Line 9). If first was active precisely N steps
ago (Line 10), then it computes the rate at which first has
been incremented while it was active (Line 11). This value is
subtracted from the cell counter v (Line 12) and from first
counter (Line 13). Having retracted what happened N steps ago,
first moves forward increasing its init timestamp (Line 14).
Finally, first is removed if it has expired (Lines 15 and 16).

The next part handles the update of the cells associated
with item j. For each of them (Line 19), SPLITTER increases
the cell counter v (Line 20) and retrieves the current sub-cell,
denoted last (Line 21). (a) If last does not exist, it creates and

Listing III.4: SPLITTER WINDOWED COUNT-MIN

1: init do
2: count[1 . . . c1][1 . . . c2]← # »〈∅, 0〉 . the set is a queue
3: Choose c1 independent hash functions h1 . . . hc1 :

[n]→ [c2] from a 2-universal family.
4: m′ ← 0
5: end init
6: upon 〈Sample | j〉 do
7: for i1 = 1 to c1 and i2 = 1 to c2 do
8: 〈queue, v〉 ← count[i1, i2]
9: first← head of queue

10: if ∃first ∧ firstinit = m′ −N then
11: v′ ← firstcounter

firstlast−firstinit+1

12: v ← v − v′
13: firstcounter ← firstcounter − v′
14: firstinit ← firstinit + 1
15: if firstinit > firstlast then
16: removes first from queue
17: end if
18: end if
19: if hi1(j) = i2 then
20: v ← v + 1
21: last← bottom of queue
22: if 6 ∃last then
23: Creates and enqueues a new sub-cell
24: else if lastcounter < τN

c2
then

25: Updates sub-cell last
26: else
27: pred← predecessor of last in queue
28: if ∃pred ∧ ERROR(pred, last) ≤ µ then
29: Merges last into pred and renews last
30: else
31: Creates and enqueues a new sub-cell
32: end if
33: end if
34: end if
35: count[i1, i2]← 〈queue, v〉
36: end for
37: m′ ← m′ + 1
38: end upon
39: function GETFREQ(j) . returns f̂j
40: return round{min{count[i][hi(j)].v | 1 ≤ i ≤ c1}}
41: end function

enqueues a new sub-cell (Line 23). (b) If last has not reached
the minimal size to be evaluated (Line 24), last is updated
(Line 25). (c) If not, SPLITTER retrieves the predecessor of
last: pred (Line 27). (c.i) If pred exists and the amount of
information lost by merging is lower than the threshold µ
(Line 28), SPLITTER merges last into pred and renews last
(Line 29). (c.ii) Otherwise it creates and enqueues a new sub-
cell (Line 31), i.e., it splits the cell.

Lemma 3.5: [Number of Splits Upper-bound] Given 0 <
τ ≤ 1, the maximum number s of splits (number of sub-cells
spawned to track distribution changes) is O(1

ετ log 1
δ).

Proof: A sub-cell is not involved in the decision process of
merging or splitting while its counter is lower than τN

c2
= ετN .

So, no row can own more than 1
ετ splits. Thus, the maximum

numbers of splits among the whole data structure count is
s = O(1

ετ log 1
δ).

Theorem 3.6: SPLITTER space complexity is O(1
τε log 1

δ
(logN+log n)) bits, while update and query time complexities
are O(log 1/δ).

Proof: Each cell of the count matrix is composed of a
counter and a queue of sub-cells made of two timestamps and
a counter, all of size O(logN) bits2. Without any split and
considering that all cells have bootstrapped, the initial space
complexity is O(1

ε log 1
δ (logN + log n)) bits. Each split costs

two timestamps and a counter (size of a sub-cell). Let s be the
number of splits, we have O(1

ε log 1
δ (logN + log n) + s logN)

bits. Lemma 3.5 establishes the following space complexity
bound: O(1

ε log 1
δ (logN + log n) + 1

ετ log 1
δ logN) bits.

Each update requires to access each of the count matrix
cells in order to move the sliding window forward. However,
we can achieve the same result by performing this phase-out
operation (from Line 10 to Line 18) only on the count matrix
cells that are accessed by the update and query procedures
(cf., Appendix A). Given this optimization, update and query
require to lookup one cell by row of the count matrix. Then,
the query and update time complexities are O(log 1/δ).

Notice that the space complexity can be reduced by
removing the cell counter v. However, the query time would
increase since this counter must be reconstructed summing all
the sub-cell counters.

One can argue that sub-cell creations and destructions cause
memory allocations and disposals. However, we believe that it
is possible to avoid wild memory usage leveraging the sub-cell
creation patterns, either through a smart memory allocator or
a memory aware data structure.

Finally, Table I summarizes the space, update and query
complexities of the presented algorithms.

E. DISTRIBUTED COUNT-MIN

The functional monitoring model [9] extends the data
streaming model by considering a set of k nodes, each receiving
an inbound stream σ` (` ∈ [k]). These nodes interact only with
a specific node called coordinator.

Notice that the count matrix is a linear-sketch data structure,
which means that for every two streams σ1 and σ2, we have
COUNT-MIN(σ1∪σ2) = COUNT-MIN(σ1)⊕COUNT-MIN(σ2),
where σ1 ∪σ2 is a stream containing all the samples of σ1 and
σ2 in any order, and ⊕ sums the underlying count matrix term
by term. Considering only the last N samples of σ1 and σ2,
the presented algorithms are also linear-sketches.

The sketch property is suitable for the distributed context.
Each node can run locally the algorithm on its own stream σ`
(` ∈ [k]). The coordinator can retrieve all the count` matrices
(` ∈ [k]), sum them up and obtain the global matrix count =⊕

`∈[k]count`. The coordinator is then able to retrieve the
frequency estimation for each item on the global distributed
stream σ = σ1 ∪ . . . ∪ σk.

Taking inspiration from [15], we can define the DIS-
TRIBUTED COUNT-MIN (DCM) algorithm, which sends the
count matrix to the coordinator each εN samples. DCM can

2Note that, for the sake of clarity, timestamps are of size O(logm) bits in
the pseudo-code while counters of size O(logN) bits are sufficient.

TABLE I: Complexities comparison

Algorithm Space (bits) Update time Query time
VANILLA COUNT-MIN [8] O(1

ε
log 1

δ
(logm+ logn)) O(log 1

δ
) O(log 1

δ
)

PERFECT O(N) O(log 1
δ
) O(log 1

δ
)

SIMPLE O(1
ε
log 1

δ
(logN + logn)) O(log 1

δ
) O(log 1

δ
)

PROPORTIONAL O(1
ε
log 1

δ
(logN + logn)) O(1

ε
log 1

δ
) O(log 1

δ
)

SPLITTER O(1
τε

log 1
δ
(logN + logn)) O(log 1

δ
) O(log 1

δ
)

ECM-SKETCH [17] O
(

1
ε2

log 1
δ

(
log2 εN + logn

))
O(log 1

δ
) O(log 1

δ
)

be applied to the four aforementioned windowed extensions
of VANILLA COUNT-MIN, resulting in a distributed frequency
(ε, δ)-additive-approximation in the sliding windowed functional
monitoring model.

Theorem 3.7: DCM communication complexity is
O(kε2 log 1

δ logN) bits per window.

Proof: In each window and for each node u` (` ∈ [k]),
DCM sends the count matrix at most N

εN = 1/ε times. Thus
the communication complexity is O(kε2 log 1

δ logN) bits per
window.

Theorem 3.8: DCM introduces an additive error of at most
kεN , i.e, the skew between any cell (i1, i2) of the global count
matrix at the coordinator and the sum of the cells (i1, i2) of
the count` matrices (` ∈ [k]) on nodes is at most kεN .

Proof: Similarly to [15], the coordinator misses for each
node u` (` ∈ [k]) at most the last εN increments. Then,
the global count cells cannot fall behind by more than kεN
increments. Thus DCM introduces at most an additive error
of kεN .

F. Time-based windows

We have presented the algorithms assuming count-based
sliding windows, however all of them can be easily applied to
time-based sliding windows. Recall that in time-based sliding
windows the steps defining the size of the window are time
ticks instead of sample arrivals.

In each algorithm it is possible to split the update code into
the subroutine increasing the count matrix and the subroutine
phasing out expired data (i.e., decreasing the count matrix).
Let denote the former as UPDATESAMPLE and the latter as
UPDATETICK. At each sample arrival, the algorithm will
perform the UPDATESAMPLE subroutine, while performing
the UPDATETICK subroutine at each time tick. Note that time-
stamps have to be updated using the current time tick count.

This modification affects the complexities of the algorithms,
since N is no longer the number of samples, but the number of
time ticks. Thus, the complexities improve or worsen, depending
if the number of sample arrivals per time tick is greater or
lower than 1.

IV. PERFORMANCE EVALUATION

This section provides the performance evaluation of our
algorithms. We have conducted a series of experiments on
different types of streams and parameter settings. To verify the

robustness of our algorithms, we have fed them with synthetic
traces and real-world datasets. The latter give a representation
of some existing monitoring applications, while synthetic traces
allow to capture phenomena that may be difficult to obtain
otherwise. Each run has been executed a hundred times, and
we provide the mean over the repeated runs, after removing
the 1st and 10th deciles to avoid outliers.

A. Settings

If not specified otherwise, in all experiments, the window
size is N = 50, 000 and streams are of length m = 3N (i.e.
m = 150, 000) with n = 1, 000 distinct items. Note that we
restrict the stream to 3 windows since the behavior of the
algorithms in the following windows does not change, as each
algorithm relies only on the latest past window. We skip the
first window where all algorithms are trivially perfect.

The VANILLA COUNT-MIN uses two parameters: δ that
sets the number of rows c1, and ε, which tunes the number of
columns c2. In all simulations, we have set ε = 0.1, meaning
c2 = d e0.1e = 28 columns. Most of the time, the count matrix
has several rows. However, analyzing results using multiple
rows requires taking into account the interaction between the
hash functions. If not specified, for the sake of clarity, we
present the results for a single row (δ = 0.5).

In order to simulate changes in the distribution over time,
our stream generator considers a period p, a width w and a
number of shifts r as parameters. After every p samples, the
distribution is shifted right (from lower to greater items) by w
positions. Then, after r shifts, the distribution is reset to the
initial unshifted version. If not specified, the default settings
are w = 2c1, p = 10, 000 and r = 4.

We evaluate the performance by generating families of
synthetic streams, following four distributions: (i) Uniform:
uniform distribution; (ii) Normal: truncated standard normal
distribution; (iii) Zipf-1: Zipfian distribution with α = 1.0; and
(iv) Zipf-2: Zipfian distribution with α = 2.0.

We compare SPLITTER with the other presented algorithm,
namely PERFECT SPLITTER and PROPORTIONAL, as well as
with the ECM-SKETCH algorithm proposed by Papapetrou et
al. [17].

The wave-based [11] version of ECM-SKETCH that we
have implemented replaces each counter of the count matrix
with a wave data structure. Each wave is a set of lists, the
number and the size of such lists is set by the parameter εwave.

1

10

100

1e4

1e5

50k 100k 200k 400k 50k 100k 200k 400k 50k 100k 200k 400k

Normal Zipf-1 Zipf-2

er
ro

r

Window Size (N)

Distributions

Simple Proportional ECM-Sketch Splitter

(a) Average estimation error

Normal

Zipf-1
Zipf-2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

sp
lit

s
(s

)

Distributions

50K
100K

200K
400K

(b) Average splits

Fig. 2: Results for different window sizes (N)

Then, setting εwave = ε, the wave-based ECM-SKETCH space
complexity is O(1

ε log 1
δ

(
1
ε log2 εN + log n

)
) bits.

Moreover, recall that SPLITTER has two additional parame-
ters: µ and τ . We provide the results for µ = 1.5 and τ = 0.05.
Their influence is analyzed separately in Section IV-C. Given
these parameters, we have an upper bound of at most s̄ = 560
spawned sub-cells (cf. Lemma 3.5). With the parameters stated
so far and the provided memory usage upper bounds, ECM-
SKETCH uses at least twice the memory required by SPLITTER.
Notice however that the upper bound of s̄ = 560 spawned sub-
cells is never reached in any test. Acording to our experiments,
ECM-SKETCH uses at least 4.5 times the memory required by
SPLITTER in this evaluation.

Finally, the accuracy metric used in our evaluation is the
mean absolute error of the frequency estimation of all n items
returned by the algorithms with respect to PERFECT, that is(∑

j∈[n]

∣∣∣f̂ PERFECT
j − f̂TESTEDALGORITHM

j

∣∣∣) /n. We refer to this
metric as estimation error. We also evaluate the additional space
used by SPLITTER, due to the merge and split mechanisms,
through the exact number of splits s.

B. Performance comparison

a) Window sizes: Figure 2(a) presents the estimation
error of the SIMPLE, PROPORTIONAL, SPLITTER and ECM-
SKETCH algorithms considering the Normal, Zipf-1 and Zipf-2
distributions, with N = 50, 000 (and a fortiori m = 150, 000),
N = 100, 000 (with m = 300, 000), N = 200, 000 (with
m = 600, 000) and N = 400, 000 (with m = 1, 200, 000).
Note that the y-axis (error) is in logarithmic scale and error
values are averaged over the whole stream. SIMPLE is always
the worst (with an error equals to 3395 in average), followed
by PROPORTIONAL (451 in average), ECM-SKETCH (262 in
average) and SPLITTER (57 in average). In average, SPLITTER
error is 4 times smaller than ECM-SKETCH, with 4 times
less memory requirement. The error estimation of SIMPLE,
PROPORTIONAL, ECM-SKETCH and SPLITTER increases in
average respectively with a factor 2.0, 1.1, 1.9 and 1.7 for each
2-fold increase of N .

Figure 2(b) gives the number of splits spawned by SPLITTER
in average to keep up with the distribution changes. The number
of splits grows in average with a factor 1.7 for each each 2-fold
increase of N . In fact, as τ is fixed, the minimal size of each
sub-cell grows with N , and so does the error.

1

10

100

1e4

1k 4k 16k 64k 1k 4k 16k 64k 1k 4k 16k 64k

Normal Zipf-1 Zipf-2

er
ro

r

Period (p)

Distributions

Simple Proportional ECM-Sketch Splitter

(a) Average estimation error

Normal

Zipf-1
Zipf-2

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

sp
lit

s
(s

)

Distributions

1K
4K

16K
64K

(b) Average splits

Fig. 3: Results for different periods (p)

0.1

1

10

100

1e4

1 2 4 8 1 2 4 8 1 2 4 8

Normal Zipf-1 Zipf-2

er
ro

r

Rows (c1)

Distributions

Simple Proportional ECM-Sketch Splitter

(a) Average estimation error

Normal

Zipf-1
Zipf-2

 0

 100

 200

 300

 400

 500

 600

sp
lit

s
(s

)

Distributions

1
2

4
8

(b) Average splits

Fig. 4: Results for different number of rows (c1)

b) Periods: Recall that the distribution is shifted each
p samples. The estimation error and the number of splits for
p ∈ {1, 000; 4, 000; 16, 000; 64, 000} are displayed in Figure 3.
Again, SPLITTER (20 at most) is always better than ECM-
SKETCH (26 at best) achieving roughly a 4 fold improvement.
SIMPLE is always the worst (more than 900), followed by
PROPORTIONAL (roughly 140 in average). In more details,
PROPORTIONAL grows from 1, 000 to 16, 000, because slower
shifts cast the error on less items, resulting in a larger mean
absolute error. However, for 64, 000 we have less than a shift per
window, meaning that some window will have a non-changing
distribution and PROPORTIONAL will be almost perfect. In
general SPLITTER estimation error is not heavily affected by
decreasing p since it keeps up by spawning more sub-cells. For
p = 64, 000 we have at most 7 splits, while for p = 1, 000 we
have in average 166 splits. Each 4-fold decrease of p increases
the number of splits by 3.4× in average.

c) Rows: The COUNT-MIN algorithm uses a hash-
function for each row mapping items to cells. Using multiple
rows produces different collisions patterns, increasing the
accuracy. Figure 4 presents the estimation error and splits
for c1 = 1 (meaning that δ = 0.5), c1 = 2 (δ = 0.25),
c1 = 4 (δ = 0.0625) and c1 = 8 rows (δ = 0.004).
Increasing the number of rows do enhance the accuracy of the
algorithms. However, the ordering among the algorithms does
not change: SIMPLE, PROPORTIONAL, ECM-SKETCH and
SPLITTER achieve respectively 331, 126, 11 and 4 in average.
For each distribution shift, 2w items change their occurrence
probability, meaning that (without collisions) most likely 2wc1
cells will change their update rate. Since w = 2c1, we have
4c21 potential splits per shift. Hopefully, experiments illustrate
that the number of splits growth is not quadratic: in average it
increases by 2.4× for each 4-fold increase of c1.

1

10

100

1e4

1e5

50000 100000 150000 200000 250000 300000 350000 400000

Normal Uniform Zipf-1 Uniform Zipf-2 Uniform
er

ro
r

Samples

Distributions

Simple Proportional Splitter ECM-Sketch

Fig. 5: Estimation error with multiple distributions

 0

 2000

 4000

 6000

 8000

 10000

 12000

50000 100000 150000 200000 250000 300000 350000 400000

Normal Uniform Zipf-1 Uniform Zipf-2 Uniform

fr
eq

ue
nc

y

Samples

Distributions

Exact f0 Perfect Proportional Splitter ECM-Sketch

Fig. 6: Estimation of item 0 with multiple distributions

d) Multiple distributions: This test on a synthetic trace
has p = 15, 000 and swaps the distribution each 60, 000
samples in the following order: Uniform, Normal, Uniform,
Zipf-1, Uniform, Zipf-2, Uniform. The streams is of length
m = 400, 000. Note that, in order to avoid side effect, the
distribution shift and swap periods are not synchronised with
the window size (N = 50, 000).

Figure 5 presents the estimation error evolution as the
stream unfolds. SPLITTER error does not exceed 23 (and is
equal to 13 in average). ECM-SKETCH maximum error is 65
(29 in average), as PROPORTIONAL goes up to 740 (207 in
average) and SIMPLE reaches 1877 (1035 in average). Since at
the beginning of each window SIMPLE resets its count matrix,
there is a periodic behavior: the error burst when a window
starts and shrinks towards the end. In the 1-st window period (0
to 50, 000) and in the 6-th windows (250, 000 to 300, 000) the
distribution does not change over time (shifting Uniform has
no effect). This means that SPLITTER does not capture more
information than PROPORTIONAL, thus they provide the same
estimations in the 2-nd and the 7-th windows (respectively
between 50, 000 and 100, 000 samples then between 300, 000
and 350, 000 samples).

Figure 6 presents the value of f0 and its estimations
over time (for clarity SIMPLE is omitted). The plain line
represents the exact value of f0 according to time, which

 0

 10

 20

 30

 40

 50

 60

 70

50000 100000 150000 200000 250000 300000 350000 400000

Normal Uniform Zipf-1 Uniform Zipf-2 Uniform

sp
lit

s
(s

)

Samples

Distributions

Split

Fig. 7: Number splits s with multiple distributions

1

10

100

1e4

1e5

50000 100000 150000 200000 250000 300000 350000 400000

er
ro

r

Samples

Simple Proportional Splitter ECM-Sketch

Fig. 8: Results for the DDoS trace

also reflects the distribution changes. The plots for PERFECT,
ECM-SKETCH and SPLITTER are overlapping (exes, nablas
and squares). Except for the error introduced by the COUNT-
MIN approximation, they all follow the f0 shape precisely.
However, even that is not clearly visible on Figure 6, notice
that ECM-SKETCH error is always larger than that of SPLITTER.
More precisely, one should observe that item 0 probability of
occurrence changes significantly in the following intervals:
[60k, 75k], [180k, 195k] and [300k, 315k]. PROPORTIONAL
fails to follow the f0 trend in the windows following those
intervals, namely the 3-rd, 5-th and 8-th, since it is unable to
correctly assess the previous window distribution.

Finally, Figure 7 presents the number of splits s according
to time. There are in average 51 and at most 73 splits (while
the theoretical upper bound s is 560 according to Lemma 3.5).
Interestingly enough, splits decrease when the distribution does
not change (in the Uniform intervals for instance). That means
that, as expected, some sub-cells expire and no new sub-cells
are created. In other words, SPLITTER correctly detects that no
changes occur. Conversely, when a distribution shifts or swaps,
there is a steep growth, i.e, the change is detected. This pattern
is clearly visible in the 2-nd window.

e) DDoS: As illustrated in the Global Iceberg prob-
lem [18], tracking most frequent items in distributed data
streams is not sufficient to detect Distributed Denial of Service
(DDoS). As such, one should be able to estimate the frequency
of any item. To evaluate our algorithm in this use-case, we
have retrieved the CAIDA “DDoS Attack 2007” [21] and
“Anonymized Internet Traces 2008” [22] datasets, interleaved
them and retained the first 400, 000 samples (i.e., the DDoS
attack beginning). The stream is composed by n = 4.9× 104

distinct items. The item representing the DDoS target has a
frequency proportion equal to 0.09, while the second most
frequent item owns a 0.004 frequency proportion. Figure 8
presents the estimation error evolution over time. In order to
avoid drowning the estimation error in the high number of items,
we have restricted the computation to the most frequent 7500
items, which cover 75% of the stream3. Figure 8 illustrates
some trends similar to the previous test, however the estimation
provided by PROPORTIONAL, ECM-SKETCH and SPLITTER
are quite close since the stream changes much less over time.
SIMPLE does not make less error than 178 (that is 1002 in
average), while PROPORTIONAL, ECM-SKETCH and SPLITTER
do not exceed respectively 73 (34 in average), 53 (33 in average)
and 25 (16 in average). On the other hand, for SPLITTER, there
are at most 154 splits with an average of 105 splits.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

1.0 1.5 2.0 2.5

er
ro

r

µ

Normal
Zipf-1
Zipf-2

(a) Average estimation error

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

1.0 1.5 2.0 2.5

sp
lit

s
(s

)

µ

Normal
Zipf-1
Zipf-2

(b) Average number of splits

Fig. 9: Performance comparison with τ = 0.05.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.005 0.05 0.5 0.01 0.1

er
ro

r

τ

Normal
Zipf-1
Zipf-2

(a) Average estimation error

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.005 0.05 0.5 0.01 0.1

sp
lit

s
(s

)

τ

Normal
Zipf-1
Zipf-2

upper bound

(b) Average number of splits

Fig. 10: Performance comparison with µ = 1.5.

C. Impact of the Splitter parameters

Figure 9 presents the estimation error and the number of
splits with several values of µ ∈ {0.9, 2.5} and a fixed τ =
0.05. As expected, the estimation error grows with µ. Zipf-1
goes from 18 (µ = 0.9) to 4, 944 (µ = 2.5), while the other
distributions in average go from 110 (µ = 0.9) to 684 (µ = 2.5).
Conversely, increasing µ decreases the number of splits. Since
ERROR cannot return a value lower than 1.0, going from 1.0
to 0.9 has almost no effect with at most 454 splits, which
represents roughly 19% less than the theoretical upper bound.
From µ = 1.0 to 1.3, the average falls down to 51, reaching
20 at µ = 2.5. There is an obvious tradeoff around µ = 1.5
that should represents a nice parameter choice for a given user.

Figure 10 presents the estimation error and the number of
splits according to the parameter τ ∈ {0.005, 0.5}, with a fixed
µ = 1.5. Note that the x-axis (τ) is logarithmic. As for µ, the
estimation error increases with τ : the average starts at 4 (with
τ = 0.005), reaches 610 at τ = 0.1 and grows up at 12, 198
(for τ = 0.5). Conversely, increasing τ decreases the number
of splits: the average starts at 1, 659 (τ = 0.005), reaches 77
at τ = 0.02 and ends up at 14 (τ = 0.5). In order to illustrate
the accuracy of our splitting heuristic, Figure 10(b) shows also
the theoretical upper bound. Again, there seems to be a nice
tradeoff around τ = 0.05, letting a user having his cake and
eat it too!

To summarize, the trend in all the last four plots (and the
results for different values of p and c1) hints to the existence
of some optimal value of µ and τ that should minimise the
error and the splits. This optimal value seems to either be
independent from the stream distribution or computed based
on the recent behavior of the algorithm and some constraints
provided by the user. Seeking for a extensive analysis of this
optimum represents a challenging open question.

3The remaining items have a frequency proportion lower than 2× 10−5.

V. CONCLUSION AND FUTURE WORK

We have presented two (ε, δ)-additive-approximations for
the frequency estimation problem in the sliding windowed data
streaming model: PROPORTIONAL and SPLITTER. They have
a space complexity of respectively O(1

ε log 1
δ (logN + log n))

and O(1
τε log 1

δ (logN + log n)) bits , while their update and
query time complexities are O(log 1

δ).

Leveraging the sketch property, we have shown how to apply
our proposal to distributed data streams, with a communication
cost of O(kε2 log 1

δ logN) bits per window. However, we believe
that there is still room for improvement.

We have performed an extensive performance evaluation to
compare their respective efficiency and also to compare them
to the only similar work in the related works. This study shows
the accuracy of both algorithms and that they outperform the
only existing solution with real world traces and also with
specifically tailored adversarial synthetic traces. Last but not
least, these results reach better estimation with respect to the
state of the art proposal and required 4 times less memory
usage. We have also studied the impact of the two additional
parameters of the SPLITTER algorithm (τ and µ).

From these results, we are looking forward an extensive
formal analysis of the approximation and space bounds of our
algorithms. In particular, we seek some insight for computing
the optimal values of τ and µ, minimizing the space usage and
maximizing the accuracy of SPLITTER.

REFERENCES

[1] E. Anceaume and Y. Busnel, “A distributed information divergence
estimation over data streams,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, 2014.

[2] S. Ganguly, M. Garafalakis, R. Rastogi, and K. Sabnani, “Streaming
algorithms for robust, real-time detection of DDoS attacks,” in Proceed-
ings of the 27th International Conference on Distributed Computing
Systems, ser. ICDCS, 2007.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting distinct elements in a data stream,” in Proceedings of the
6th International Workshop on Randomization and Approximation
Techniques, ser. RANDOM, 2002.

[4] D. M. Kane, J. Nelson, and D. P. Woodruff, “An optimal algorithm for the
distinct elements problem,” in Proceedings of the 19th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, ser.
PODS, 2010.

[5] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” in Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, ser. STOC, 1996.

[6] J. Misra and D. Gries, “Finding Repeated Elements,” Science of
Computer Programming, vol. 2, 1982.

[7] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proceedings of the 29th International Colloquium
on Automata, Languages and Programming, ser. ICALP, 2002.

[8] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” Journal of Algorithms,
vol. 55, 2005.

[9] G. Cormode, S. Muthukrishnan, and K. Yi, “Algorithms for distributed
functional monitoring,” ACM Transactions on Algorithms, vol. 7, 2011.

[10] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream
statistics over sliding windows,” SIAM Journal on Computing, vol. 31,
2002.

[11] P. B. Gibbons and S. Tirthapura, “Distributed streams algorithms for
sliding windows,” Theory of Computing Systems, vol. 37, 2004.

[12] A. Arasu and G. S. Manku, “Approximate counts and quantiles over
sliding windows,” in Proceedings of the 23rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, ser. PODS,
2004.

[13] L. Zhang and Y. Guan, “Variance estimation over sliding windows,” in
Proceedings of the 26h ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, ser. PODS, 2007.

[14] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro,
“Identifying frequent items in sliding windows over on-line packet
streams,” in Proceedings of the 3rd ACM SIGCOMM Conference on
Internet Measurement, ser. IMC, 2003.

[15] G. Cormode and K. Yi, “Tracking distributed aggregates over time-based
sliding windows,” in Proceedings of the 24th International Conference
on Scientific and Statistical Database Management, ser. SSDBM, 2012.

[16] G. Cormode and S. Muthukrishnan, “What’s hot and what’s not: tracking
most frequent items dynamically,” ACM Transactions Database Systems,

vol. 30, 2005.
[17] O. Papapetrou, M. N. Garofalakis, and A. Deligiannakis, “Sketch-based

querying of distributed sliding-window data streams,” Proceedings of
the VLDB Endowment, vol. 5, 2012.

[18] E. Anceaume, Y. Busnel, N. Rivetti, and B. Sericola, “Identifying Global
Icebergs in Distributed Streams,” in Proceedings of the 34th International
Symposium on Reliable Distributed Systems, ser. SRDS, 2015.

[19] S. Muthukrishnan, Data streams: algorithms and applications. Now
Publishers Inc, 2005.

[20] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of Computer and System Sciences, vol. 18, 1979.

[21] CAIDA UCSD, “DDoS Attack 2007 dataset,” http://www.caida.org/data/
passive/ddos-20070804 dataset.xml, Feb. 2010.

[22] CAIDA UCSD, “Anonymized Internet Traces 2008 dataset,” http://www.
caida.org/data/passive/passive 2008 dataset.xml, Apr. 2008.

http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/passive_2008_dataset.xml
http://www.caida.org/data/passive/passive_2008_dataset.xml

APPENDIX

A. IMPROVED SPLITTER WINDOWED COUNT-MIN

In this appendix we provide an optimization of SPLITTER,
denoted as IMPROVED SPLITTER WINDOWED COUNT-MIN
(Listing A.2), that reduces the update time complexity from
O
(
1
ε log 1/δ

)
to O (log 1/δ). In the basic version SPLITTER

phases out the expired data of each count matrix cell for each
new item read from the stream. This introduces an additional
1/ε factor the update time complexity with respect to the
VANILLA COUNT-MIN. However, performing the phase out
action in a lazily fashion, we can get rid of this factor. Let
denote as PHASEOUT (Listing A.1) the function that given
the indices of a count matrix cell, removes the data that has
expired from the last function call on that cell. Then, calling
this function on the cell that must be incremented, i.e., when
updating the count matrix (Line 24), and before retrieving a
cell value, i.e., when querying the count matrix (Line 31), still
guarantees the same accuracy, space and query time complexity
while reducing the update time complexity.

Listing A.1: PHASEOUT function
1: function PHASEOUT(i1, i2) . slides the window forward
2: 〈queue, v〉 ← count[i1, i2]
3: first← head of queue
4: while ∃first ∧ firstinit ≤ m′ −N do
5: t← m′ −N − firstinit + 1
6: v′ ← firstcounter

firstlast−firstinit+1

7: v ← v − t× v′
8: firstcounter ← firstcounter − t× v′
9: firstinit ← firstinit + t

10: if firstinit > firstlast then
11: removes first from queue
12: end if
13: first← head of queue
14: end while
15: count[i1, i2]← 〈queue, v〉
16: end function

Listing A.2: Improved SPLITTER WINDOWED COUNT-MIN

1: init do
2: count[1 . . . c1][1 . . . c2]← # »〈∅, 0〉 . the set is a queue
3: Choose c1 independent hash functions h1 . . . hc1 :

[n]→ [c2] from a 2-universal family.
4: m′ ← 0
5: end init
6: upon 〈Sample | j〉 do
7: for i1 = 1 to c1 do
8: 〈queue, v〉 ← count[i1, hi1(j)]
9: v ← v + 1

10: last← bottom of queue
11: if 6 ∃last then
12: Creates and enqueues a new sub-cell
13: else if lastcounter < τN

c2
then

14: Updates sub-cell last
15: else
16: pred← predecessor of last in queue
17: if ∃pred ∧ ERROR(pred, last) ≤ µ then
18: Merges last into pred and renews last
19: else
20: Creates and enqueues a new sub-cell
21: end if
22: end if
23: count[i1, hi1(j)]← 〈queue, v〉
24: PHASEOUT(i1, hi1(j))
25: end for
26: m′ ← m′ + 1
27: end upon
28: function GETFREQ(j) . returns f̂j
29: min← +∞
30: for i1 = 1 to c1 do
31: PHASEOUT(i1, hi1(j))
32: 〈queue, v〉 ← count[i1, hi1(j)]
33: if min > v then
34: min← v
35: end if
36: end for
37: return min
38: end function

	Introduction and Related Work
	Preliminaries and Background
	Data Streaming Model
	Vanilla Count-Min Sketch

	Windowed Count-Min
	Perfect Windowed Count-Min
	Simple Windowed Count-Min
	Proportional Windowed Count-Min
	Splitter Windowed Count-Min
	Distributed Count-Min
	Time-based windows

	Performance Evaluation
	Settings
	Performance comparison
	Impact of the Splitter parameters

	Conclusion and Future Work
	References
	Appendix
	Improved Splitter Windowed Count-Min

