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ABSTRACT 
Semantic web applications often access distributed triple stores 

relying on different ontologies and maintaining bases of RDF 

annotations about different domains. Use cases often involve 

queries which results combine pieces of annotations distributed 

over several bases maintained on different servers. In this context, 

one key issue is to characterize the content of RDF bases to be 

able to identify their potential contributions to the processing of a 

query. In this paper we propose an algorithm to extract a compact 

representation of the content of an RDF repository. We first 

improve the canonical representation of RDF graphs based on 

DFS code proposed in the literature. We then provide a join 

operator to significantly reduce the number of frequent graph 

patterns generated from the analysis of the content of the base, 

and we reduce the index size by keeping only the graph patterns 

with maximal coverage. Our algorithm has been tested on 

different data sets as discussed in conclusion. 
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INTRODUCTION 
More and more often semantic web applications face the problem 

of integrating distributed and autonomous RDF repositories. 

Several methods, more or less optimized, provide a solution for 

distributed query processing. Some of these methods rely on the 

integration of semantic web with distributed query or data 

interoperability technology. For instance in [2] a Web 2.0 

application provides a semantic web API using REST 

(Representational State Transfer). Other methods like [13] rely on 

SparQL extensions to support distributed query. One central issue 

in distributed semantic web servers is to select as quickly and as 

precisely as possible the repositories which contain relevant data 

to answer a query.  An index structure, which provides a complete 

and compact description of an RDF repository, is a classical 

solution to address this problem. A general representation of index 

structure is a hierarchy organized into different levels according to 

the length of the indexed items. In literature, approaches differ 

with regards to the structure of the indexed items.  By extending 

the join index structure studied in relational and spatial databases 

[7] propose, as basic indexing structure, the pairs of identifiers of 

objects of two classes that are connected via direct or indirect 

logical relationships. Afterwards [14] extended this approach to 

propose an index hierarchy of paths. [5], [6] proposed a 

hierarchical index structure relying both on path-patterns, and 

star-patterns (where one resource is the subject or the object of a 

set of triples). [18] show some disadvantages of path-based 

approaches, in particular part of the structural information is lost 

and the set of paths in a dataset is usually huge. To overcome 

these difficulties [18] propose to use frequent subgraph patterns as 

basic structures of index items since a graph-based index can 

significantly improve query performance over a path-based one. 

In this article we propose to use frequent subgraph patterns as 

basic structures of index items like [18] but in the context of 

directed labeled graph and with DFS code as the canonical 

representation of RDF graphs.  

The paper is structured as follows: In section 1 we survey related 

works in graph mining. In section 2 we explain the DFS coding 

we propose and the main principles of our algorithm. Then we 

present our algorithm. Finally, in section 3 we discuss the results 

of an experiment.  

1. FREQUENT GRAPH PATTERNS DIS-

COVERY 
Graph mining is a special case of structured data mining. Its goal 

is to provide efficient algorithms to mine topological substructures 

embedded in graph data and several studies in graph mining deal 

with frequent graph patterns discovery. The different approaches 

to find frequent sub-graphs iterate mainly on two phases: the 

generation of candidate patterns and the evaluation of candidate 

patterns. 

Candidate generation phase: Given a graph G and a graph size s 

(i.e. number of vertices), candidate generation consists in 

generating frequent patterns of subgraphs of G having a size s. 

The key computational issues are (i) the management and 

processing of redundancies, this problem is particularly 

challenging due to the NP-hard subgraph isomorphism test, (ii) 

reducing the size of the index structure and (iii) the proposition of 

join operator to compute efficiently a graph pattern of size n from 

two graphs pattern of size n-1 . 

Among the different algorithms we distinguish mainly two 

approaches to deal with redundancies: 

a) Several algorithms use a canonical form to efficiently 

compare two graph representations and rapidly prune the 

redundancies in the set of generated candidates. [10] use an 
 



adjacency matrix to represent a subgraph, define a canonical form 

for normal forms of adjacency and propose an efficient method to 

index each normal form with its canonical form. [16], [18], [8] 

and [12] rely on a tree representation which is more compact than 

an adjacency matrix and maps each graph to a unique minimum 

DFS (Depth-First Search) code as its canonical label. To discover 

frequent graph-patterns [15] build candidates using frequent paths 

using a matrix that represents the graph with nodes as rows and 

paths as columns. [15] use a canonical representation of paths and 

path sequences and define a lexicographical ordering over path 

pairs, using node labels and degrees of nodes within paths 

b) Other algorithms propose a join operator such that every 

distinct graph pattern is generated only once. Indeed the major 

concerns with the join operation are that a single join may 

produce multiple candidates and that a candidate may be 

redundantly proposed by many join operations [11]. [9] introduce 

a join operation such that at most two graphs are generated from a 

single join operation. The FFSM-Join of [9] completely removes 

the redundancy after sorting the subgraphs by their canonical 

forms that are a sequence of lower triangular entries of an 

adjacency matrix representing the subgraph. 

To eliminate the redundancies in producing the frequent subgraph 

patterns of an RDF base, the algorithm we propose in this paper 

combines the two above-cited alternative solutions. First we use 

trees to represent RDF graph patterns and DFS coding to 

efficiently compare two graph patterns and eliminate 

redundancies. Then we propose a join operator on two DFS codes 

to generate at most two different subgraph patterns. To do so we 

extended the DFS coding already improved by [12] to identify 

exactly where an edge must be linked during the join operation. 

Because a DFS code representing an RDF graph may be proposed 

by many join operations in our case, the pruning process 

presented previously is used to eliminate redundancies.   

To reduce the databases accesses some approaches like [11] use 

the monotony of the frequency condition to eliminate some 

candidates. In fact when a graph is frequent all its subgraphs are 

frequent too. So if a subgraph of a candidate is not frequent [11] 

eliminate this candidate. This pruning step is not necessary in our 

case because our join operator generates only graph patterns which 

already respect the monotony of the frequency.    

As several approaches ([9], [10] and [11] for instance) of frequent 

subgraph discovery we generate graphs of size s by joining two 

frequents subgraphs of size s-1. To avoid joining each pair of 

frequent subgraphs we add information in each DFS code to know 

exactly which pair of subgraphs shares a same kernel and thus can 

be merged.      

Candidate evaluation phases:  In this phase, the most of 

algorithms  compute the frequencies of candidates  with respect to 

the database content and all frequent subgraphs are kept in the 

index structure. In our case we check only if  candidate has at 

least one instance in the database content. In fact, to extract a 

compact representation of the content of an RDF repository, we 

need to keep all the graph patterns not only the most frequent. 

Also, a query allowing to check the presence of a graph (Ask 

Sparql clause)  is more efficient than a query computing the 

frequencies (Select Sparql clause). Note that the number of graph 

patterns kept in the index structure grows in our case. We reduce 

this size by keeping only the graph patterns with maximal 

coverage. 

 

2. CHARACTERIZING RDF BASE CON-

TENT 
In this section we start by introducing a running example. Then, in 

section 2.2 we present the DFS coding adopted in this work. 

Section 2.3 discusses the main principles of our algorithm which 

is then detailed in section 2.4 

2.1 Running example 
Figure 1 shows an RDF dataset describing peoples (Fabien, Ingrid, 

Isabelle) with some properties (name, shoesize) and the relation 

between them (hasParent, hasSister). For the sake of readability 

we omit namespaces. 

 

2.2 DFS coding 
[16] introduced the mapping of graph into DFS code. For 

simplicity, an edge (vi,vj) of a undirected labeled graph can be 

presented by a 5-tuple, (i,j,li,l(i,j),lj), where i and j denote the DFS 

discovery times of nodes vi and vj following a depth-first search, li 

and lj are respectively the labels of vi and vj and l(i,j) is the label of 

the edge between them. i<j means vi is discovered before vj during 

the Depth-First Search. When performing a Depth-First Search in 

a graph, [16] construct a DFS tree and define an order. The 

forward edge set contains all the edges in the DFS tree while the 

backward edge set contains the remaining edges. The forward 

edges are arranged in DFS order with their discoveries times 

during the Depth-First Search. Two backward edges linked to a 

same node are arranged in lexicographic order. Given a node vi, 

all of its backward edges should appear after the forward edge 

pointing to vi. The sequence of 5-tuple based on this order is a 

DFS code. A graph may have many DFS codes and a DFS 

lexicographic order allows us to determine a canonical label; it is 

called Minimum DFS code. [8], [16], [17], [18], discuss DFS 

coding in the context of undirected labeled graphs. For directed 

labeled graphs [12] suggest to ignore edge directions during the 

DFS traversal and to keep it implicit in the 5-tuple. So, in the 5-

tuple (i,j,li,l(i,j),lj) if i>j it means that the vertice (li,l(i,j),lj) is a 

backward edge We adopt the same process. 

In our approach we focus on mapping an RDF graph pattern to a 

unique DFS code. First we replace each type of property, subject 

and object in the RDF repository by an integer according to the 

lexicographic order. Table 1 shows the result obtained from the 

RDF dataset of figure 1. At first the properties are ordered.  Note 

that we give zero for literal type. Next, we map an RDF graph 

pattern to a DFS code. The graph patterns of size 1 are obtained 

by computing a Sparql query from repositories. Figure 2 shows a 

RDF graph pattern and its mapping to DFS code. 
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Figure 1: Running example 



Table 1: Mapping of classes and properties into integer. 

Properties 

hasParent 1 

hasSister 2 

name 3 

shoesize 4 

Types of subjects 

or Objects 

Person 5 

Woman 6 

Literal 0 

 

Its discovery time during the Deep-First Search is associated to 

each type.  Person in edge (Person, hasParent, Woman) has the 

discovery time 1 because (i) hasParent is the minimum property 

according to the lexicographic order and (ii) Person is the top of 

this edge. From Person with its discovery time 1, we begin a 

Deep-First Search, using lexicographic order at first on property, 

to obtain the other discovery times. So, Person in edge (Person, 

hasSister, Woman) has the discovery time 3 because the property 

hasSister is smaller than the property name in lexicographic order. 

Next, we use the table 1 to replace each property, subject and 

object by its corresponding integer to construct the DFS code. For 

instance the edge (Person, hasParent, Woman) becomes at first 

(1,2, Person, hasParent, Woman) because 1 (resp. 2) is the 

discovery time of Person (resp. Woman). Next, we replace Person 

by 5, hasParent by 1, Woman by 6 according to table 1 to obtain 

(1,2,5,1,6). The direction of an edge is implicit in the 5-tuple. For 

instance the edge (Person, hasSister, Woman) which is a backward 

edge in the DFS correspond to the 5-tuple (3,2, 5,2,6). 

 
To choose the first edge of the Minimum DFS code we also use a 

lexicographic order on the label of properties as [12] and if equal 

we use a lexicographic order on the label of subject at first. If it is 

necessary we use a lexicographic order on the label of object. 

When a subgraph pattern has more than one minimum edge we 

compute different DFS codes and the lexicographic order allows 

us to get the minimum DFS code. The choice to add a 

lexicographic test between subjects and between objects allows us 

to reduce the cases where we have more than one minimum edge 

and so to reduce the number of DFS code computing during the 

search of the minimum DFS code. 

In our index structure building process, a DFS code is associated 

to each candidate graph pattern. And a graph pattern with n edges 

is generated by joining 2 graph patterns with n-1 edges and n-2 

common edges. We call n the level of the graph. A graph pattern 

with n edges (n>1), is the result of a join operation between two 

DFS codes of level n-1. At each level, we add to each DFS code a 

unique identifier and to each edge of a DFS code its kernel. The 

kernel of an edge is the set of graph's identifier (at most two) that 

participates to the join operation and contains the edge. A DFS 

code of length n (n>1)  consist of n-2 edges that belong at once to 

the two graph patterns joined to obtain the DFS code, and two 

edges that belong, each one of them, to only one of the two graph 

patterns joined. So, we give as kernel of the n-2 edges the 

concatenation of two graph’s identifier. The two remaining edges 

has as kernel an unique graph’s identifier. The kernel allows us to 

know which DFS codes of length n share n-1 edges and so can be 

joined to obtain a DFS code of length n+1. The kernel allows us to 

efficiently identify which edge is added during the join operation. 

During the candidate evaluation phase, DFS codes are translated 

into RDF to search if the candidate graph pattern (i.e. DFS code) 

has at least one instance in the RDF repository. Our algorithm 

automatically constructs from a DFS code a Sparql query to 

search for graph pattern instances in the RDF repository. Our 

index structure is a hierarchy of DFS codes.  Each DFS code 

represents a unique RDF pattern graph. Figure 3 shows a mapping 

of a DFS code into RDF and the Sparql query generated to check 

if the graph pattern exists in the repository.   

In this example, for each node except the literal ones (i) its 

discovery time is with the index of a variable n (ii) a single triple 

pattern is added in the Sparql query to specify its type. For each 

literal node, its discovery time is concatenated with l.  For 

instance, ?n1 represents the first Person in edge (Person, 

hasParent, Person) and ?l1 represents the literal node in the 

schema.  For ?n1  there is the triple pattern ?n1 rdf:type Person. 

Next, for each edge a triple pattern is added in the Sparql query to 

link its two nodes with the corresponding property. For 

instance ?n1 and ?n2 are linked with the property hasParent, so 

the triple pattern ?n1 hasParent ?n2 is added in the Sparql query. 

 

2.3 Main principles of our algorithm 
To construct our index structure we rely on the following 

principles. 

If a graph pattern is frequent all of its subgraph patterns are 

frequent too. Level-wise, this gives rise to an efficient 

construction of DFS code hierarchy with the following recursive 

algorithm: 

Level 1: The graph patterns of size 1 are the result of a Sparql 

query in the RDF repository and a mapping to DFS code. We give 

to each DFS code a unique identifier that is also the kernel of the 

edge. 

 Level 2: Two graph patterns of size 1 that share one identical 

node are joined to obtain a candidate graph pattern of size 2 (DFS 

code are joined). If the resulting candidate graph pattern has at 

least one instance in the repository then it is added with an 

identifier to the index structure. 

Level n (n>2): Two graph patterns of size (n-1) that share n-2 

edges are joined to obtain a candidate of size n. If the candidate 

has at least one instance in the repository and it is not already in 

the index structure then the candidate is added to the index 

structure. 
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Figure 3: Checking the frequency of a graph-pattern (DFS code) 

in the dataset  
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Figure 2: A graph pattern and its corresponding DFS code. 



The algorithm stops in level n (n>1) if there is no candidate graph 

pattern of size n+1 found with at least one instance in the 

repository. Graph patterns with n edges included in graph patterns 

with n+1 edges and kept during the evaluation phase are marked 

to be deleted from the index structure (they become redundant 

with the graph patterns with n+1 edges). 

Figure 2 shows a part of the hierarchy obtained from the RDF 

graph presented in figure 1. For more readability in this figure we 

replace Person by P, Woman by W,  hasParent  by hP, name by n, 

shoesize by s, hasSister by hS, Literal by L. 

 
Figure 4: Part of the corresponding index structure. 

 

The first level of the index structure is built directly from the RDF 

graph. For instance the pattern 1 (id=1) representing (Person, 

hasParent, Person) belongs to the index structure because (Fabien, 

hasParent, Isabelle) in the dataset and Fabien and Isabelle are 

persons. A candidate pattern of the second level is built from two 

patterns of level 1 that share an identical node except Literal. For 

instance the pattern 1 and 2 share the node P and generate the 

candidate patterns 6 and 7 (two results because the pattern 1 has 

two nodes Person). We keep in the index structure the candidate 

patterns which frequency is not null. For instance the pattern 9 is 

deleted. A candidate pattern of level n (n>2) is built by joining 

two patterns of level n-1 that share n-2 edges. For instance the 

pattern 6 and 7 are joined to generate the pattern 10 (pattern 6 and 

7 share the edge (P,hP,P)) and the pattern 11 (pattern 6 and 7 share 

the edge (P,n,L)). 

2.4 Detailed Algorithm 
In this section we detail our algorithm to extract a compact 

representation of the content of an RDF repository.  It consists in 

four phases: (1) initialization phase, (2) enumerate graph patterns 

with 1 edge, (3) discovery of graph patterns with 2 edges (4) 

discovery of graph patterns with n (n>2) edges. 

 

Phase 1: Initialization phase. 

The initialization phase builds a mapping between each type of 

property, subject and object with an integer according to the 

lexicographic order. For instance, Person in figure 1 is mapped to 

5 (cf table 1). To implement this task we use a bidiMap1(a map 

that allows bidirectional lookup between key and values) to 

                                                 
1http://commons.apache.org/collections/api-

3.1/org/apache/commons/collections/BidiMap.html 

retrieve quickly a type from an integer but also an integer from a 

type. 

 

Phase 2: Discovery of graph pattern with 1 edge. 
To build the first level of the index structure, our algorithm 

performs a Sparql query to retrieve all the distinct graph patterns 

of size 1 in the repository. From the list of graph patterns and the 

bidiMap created in the initialization phase the DFS-code of size 1 

are built, as explained in section 2.1. 

Because we don’t use the kernel notion between the level 1 and 2, 

kernels of each DFS code of size 1 are null. 

The bidiMap is used to compute the integers corresponding to the 

subject, property and object of the graph pattern. These integers 

are the last three component of the 7-tuple representing the DFS 

code (the first element of the tuple is the identifier of the DFS 

code, the second one stores the kernel and the third and fourth 

elements are the discovery times of subject and object). 

Since we have a graph of size 1, the discovery time of the subject 

is 1 and the object one is 2. 

At end, in each DFS code we store a unique identifier.   

The algorithm of phase 1 is shown in the following: 

procedure DfSOneEdge () 

P: set of graph patterns of size 1 

var  level1  {}  

identifier  0, subject, object,                     

property: integer 

begin 

 for all edges e in P do subject  bidi(e.subject) 

     object  bidi(e.object)  

     property  bidi(e.property) 

     identifier  identifier +1 

     d dfs(identifier,1,2,subject,property,object) 

     level1  level1 U {d} 

end. 

Algorithm 1. Building of level 1 of index Structure 

To store the DFS codes we use an ArrayList of ArrayList. The 

main ArrayList represents the index structure. Each item stores the 

graph patterns of the same size. Each item of the main ArrayList 

contains an ArrayList of instances of our GraphDFS Class (DFS 

code of a graph pattern). During this phase 1 of our algorithm, we 

fill in the first item of the main ArrayList. 

 

Phase 3: Discovery of graph pattern with 2 edges. 
During this phase 2 of our algorithm, we fill in the second item of 

the main ArrayList storing the index structure under construction. 

This second item contains graph patterns with 2 edges. DFS 

codes of size 2 are built from DFS codes of size 1. Our algorithm 

searches for couples of DFS codes of size 1 which share a same 

node.  We distinguish three cases:  

a) Two DFS codes share an identical subject (case 1 of the 

algorithm 2): the discovery times of the minimum DFS codes are   

(1,2) (1 for its subject and 2 for its object). The discovery times of 

the other DFS codes are (1, 3). After building DFS codes of size 2 

we check if their frequencies are not null. For each graph pattern 

which frequency is not null, our algorithm computes its DFS code 

as follows: 

i. the kernel is the concatenation of the DFS code's identifiers of 

the 2 graph patterns from which the current one has been built. An 

identifier is associated to the new DFS code. 
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ii. the two DFS codes of  size 1 are marked to be deleted, as they 

are included in the newly generated graph pattern. Only graph 

patterns with not null frequency are kept in the index structure. 

Figure 5 shows an instance of DFS code generated from 2 DFS 

codes of size1 that share an identical subject. In this example, the 

two DFS codes share the same subject (node 5). The minimum 

DFS code is (1,2,5,1,6) because the property 1 (hasParent) is 

smaller than the property 2 (name). So (1,2,5,1,6) keeps its 

discovery time and (1,2,5,2,0) has (1,3) as new discovery time. 

 
b) The subject of one DFS code is identical to the object of the 

other DFS code (case 2 and 3 of the algorithm 2). The   discovery 

times of the minimum DFS code are (1, 2). If the minimum DFS 

code is the one that shares its subject, the other one has for 

discovery times (3, 1). Otherwise the maximum DFS code has for 

discovery times (2,3). The remaining process is similar to the one 

detailed in a).  Figure 6 shows an example of couple of graphs in 

case b). 

In this example, the subject of each DFS is the object of the other 

one. In the two case the DFS code (1,2,6,1,5) keeps its discovery 

times because it has the minimum property. In the first case (join 

operation on Person), the discovery times of (1,2,5,2,6) become 

(3,1). In the second case, the discovery times become (2,3).   

 
 

The object of the first DFS code is identical to the subject of 

c) The objects of two DFS codes are identical (case 4 of the 

algorithm 2).  The discovery times of the minimum DFS code are 

(1, 2) and the others are (3,2).  The process of building, checking 

and initializing the DFS code of size 2 is similar to the one 

presented in a). 

Figure 7 shows a DFS code of size 2 built from 2 DFS code of 

size 1 that share an identical object. The resulting DFS code (1) in 

figure 7 is built following case a). 

The resulting DFS code (2) in Figure 7 is the result of the join 

operation on node 6 (Woman). In this case the minimum DFS 

code is (1,2,5,1,6) because 1<2 (hasParent < hasSister). The 

discovery times of the other DFS codes become (3,2). 

 

The algorithm of phase 3 is shown in the following. 

procedure DfSTwoEdges () 

P: set of DFS code of size 1 

var  level2 = {}  

begin 

 for all DFS codes e1 in P do 

  For all DFS codes e2 in P do 

    Case 1: e1.subject = e2.subject  

            d=dfs(e1,e2,1,3)  

            if(d is frequent) then 

d.kernel = concatenate(e1.identifier,e2.identifier)

  level2 = level2 U d  

 marked(e1) 

  marked(e2) 

          Case 2: e1.subject = e2.object 

             if(e1<e2) then  

                e2.setDiscoveries(3,1) 

             else 

                e1.setDiscoveries(2,3) 

             d=dfs(e1,e2) 

             if(d is frequent) then { 

d.kernel = concatenate(e1.identifier,e2.identifier) 

               level2 = leve2 U d 

               marked(e1) 

               marked(e2) } 

         Case 3: e1.object = e2.subject 

           Goto case 2 after permuting e1 and e2 

         Case 4: e1.object = e2.object 

           d=dfs(e1,e2,3,2)  

           if(d is frequent) then { 

d.kernel = concatenate(e1.identifier,e2.identifier) 

             level2 = level2 U d 

             marked(e1) 

             marked(e2) } 

   end. 

Algorithm 2. Building  level 2 index Structure 

The three previous cases are not disjoint. It is possible for a same 

join operation to match 0, 1 or 2 cases. For example the join 

operation in Figure 7 matches two cases: the case 1 (the two DFS 

code share the same subject Person (5)) and the case 4 (the two 

DFS code share the same object Woman (6) of our algorithm. The 

Figure 6 matchs one case (case 2) but twice. So the result of a join 

operation may be zero, one or two DFS codes.  Figure 6 and 7 

show two examples of result for a same join operation. 

 

Phase 4: Discovery of graph pattern with n (n>2) edges. 

At this step, the join operator is applied on two DFS codes of size 

n-1 (n>2) to obtain a DFS code of size n. Our algorithm searches 

for couples of DFS codes that share at least one kernel. Before 

keeping the DFS code resulting from the join operation, the 

algorithm checks (i) if the newly generated graph pattern is not 

redundant with the graph patterns already generated and kept in 

the current level and (ii) if its frequency in the RDF repository is 

not null. Identifiers are computed for the kept DFS codes. DFS 

codes of graph patterns with n-1 edges which participate in a kept 

graph pattern with n edges or in redundant graph patterns are 

marked to be deleted. . For example if the join operation in Figure 

5 is successful (meaning we have an instance of Person with a 

name and a Woman Parent in the repository) the edges (Person, 

name, Lit.) and (Person, hasParent, Woman) are marked to be 

deleted. The algorithm of phase 4 is shown in the following. 

 

 

 
Woman Person 

Literal 

hasParent 

name 
Person 

DFS code: (1,2,5,2,0) 
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Figure 5: Example of join on two DFS codes with identical 

subject. 
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Figure 7: Instance of joining two DFS codes with same object 
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Figure 6: Instance of joining two DFS codes. The subject of 

one is the object of the second 



procedure DfSNEdges () 

P: set of DFS code of previous level 

  var  levelN  {} identifier  0 

begin  

   for all DFS codes e1 in P do   

      for all DFS codes e2 in P do  

    

           if(kernel(e1,e2)) then {  

 d  join(e1,e2,kernel) 

  if(d not in levelN)  { 

   if(d is frequent) then { 

     d.kernel            

concatenate(e1.identifier,e2.identifier) 

     d.identifier identifier+1

    identifier identifier+1 

    levelN  levelN U d 

    marked(e1)  

    marked(e2) } } 

              else { //d in levelN  

    marked(e1)  

   marked(e2) } } 

end. 

The detail of the join operator is shown in the following. 

subProcedure join (e1, e2, k) 

begin   

   d1 edgeNotInKernel(e1,k) 
 d2 edgeNotInKernel(e2,k) 
 e1 e1 – d1 
 e2  e2 – d2  
 l  linkToKernel(e1, d1) 
 t  uniquEdgeThrougth(e1,d1)          

   if t > 0 then     
      d1.setDiscoveries(e2,t) 
      e2.addEdge(d2)       
      e2.addEdge(d1)      
      e2.sort()       
   else         
 times  timesPossible()  
 t1  chooseOne(times, e1, e2) 

d1.setDiscoveries(t1)    
     e2.addEdge(d2)      
     e2.addEdge(d1)      
     e2.sort() 

end. 

Algorithm 4. Building of level n (n>2) of index Structure 

Line 1 and 2 take away from each DFS code the edge specific to 

each DFS code, according to the kernel. Figure 8 shows an 

example of such a computation. 

Next, the main target is to find the discovery time when linking 

the edge specific to the first DFS code e1 under consideration 

with the kernel of the second DFS code e2 under consideration to 

generate a new DFS code with n+1 edges. Line 5 allows to 

retrieve which node of d1 and its discovery time (m) is linked to 

the kernel in e1. In the figure 8 it is 1.   

 
 

To know the discovery time corresponding to m in e2 we 

distinguish two cases: 

a) At first (line 6), the algorithm searches if there is an edge in 

e1, which has a node with the discovery time m and which is 

unique in the kernel. If it is the case, then the corresponding edge 

in e2 is retrieved and so the discovery time corresponding to m (it 

is the discovery time of one node in the corresponding edge). This 

process could be assimilated to the first step of an isomorphism 

test between two DFS codes. In fact, an isomorphism test is done 

only if the algorithm does not find a unique edge. In most cases, 

only this first step is required and the algorithm is more efficient. 

For instance in figure 8 the edge (Person, hasParent, Person) is 

unique. It is used to join d1 to e2 unambiguously. 

b) If the first case fails the sub-procedure timePossibles() returns 

all the candidate discovery times. The sub-procedure timeEqual() 

returns the time corresponding to m in e2. To do that, each 

candidate time m1 is compared to m by listing the path crossing 

m and m1. Figure 9 shows an example of such a join. In this 

example, the two DFS codes share as kernel the edges 

(1,2,5,1,5)(2,3,5,2,6)(1,4,5,2,6). There is only one edge linked to 

(5,6,6,4,0) and it is not unique in the kernel (there is two edges 

(x,y,5,2,6)). The edge (x,y,5,2,6) under consideration is the one 

which node 5 (Person) is linked with another node 5 (Person) by 

the property 1 (hasParent). The edge (2,3,5,2,6) of the first DFS 

code does not have this link. So, the second discovery time of the 

edge (1,5,5,2,6) in the first DFS code is used to join the new edge. 

The edge (5,0,6,4,0) is added in the first DFS code to obtain an 

unsorted DFS code. A sort process allows to give discovery times 

with respect of Deep-First Search. 

Figure 9 shows an example of such a join. 
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Woman 

DFS code: (1,2,5,1,5)(1,3,5,2,6) 
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DFS code: (1,2,5,1,5)(2,3,5,3,0) 

DFS code:  (1,2,5,1,5)( 1,3,5,2,6)(2,0,5,3,0) 

DFS code:  (1,2,5,1,5) (2, 3,5,3,0) (1,4,5,2,6) 

sort process  

 

Person 

Figure 8:  Join operation on two DFS codes of size 2. 



 
In the two cases, after finding the discovery time m1 

corresponding to m we set the discovery times of d1 at m1 and 

zero. Next, the edge d1 is added to the DFS code e2 after setting 

the kernel of each edge according to its presence in a DFS code. 

An ordering of DFS code e2 allows arranging the discovery time. 

After all graph patterns with n edges are generated from graph 

patterns with n-1 edges, if at least 2 of them are kept (they are non 

redundant and at least they have an instance in the repository) 

then the algorithm is recursively applied on the newly found graph 

patterns with n edges in order to generate graph patterns with n+1 

edges and so on. The process stops when less than 2 graph 

patterns with n edges are generated and kept. 

To improve the candidate evaluation we use an ask Sparql clause, 

as we are not interested by the frequency itself but only by the fact 

that at least one instance of the graph pattern exists in the dataset 

under consideration. 

At last, note that we combine like [16] the growing and checking 

of subgraphs into one procedure, thus accelerating the mining 

process. 

3. EXPERIMENTS AND PERFORMANCE 

EVALUATION 

 
Our algorithm is implemented in java and relies on the CORESE 

[2][4] semantic search engine for querying and reasoning on RDF 

datasets. CORESE implements the whole SPARQL syntax with 

some minor modifications (OPTIONAL is post processed, 

restriction on nesting OPTIONAL and UNION). It also 

implements RDF and RDFS entailments, datatypes, transitivity, 

symmetry and inverse property entailments from OWL Lite. The 

building of the index of an RDF repository is done after all these 

inferences have been done and the dataset has been enriched with 

the derivation they produced. More details on the formal 

semantics of the underlying graph models and projection operator 

are available in [1]. 

We tested our algorithm on a merge of three datasets: personData 

of DBPedia, a foaf dataset used by Edelweiss Team in course on 

semantic Web and a tag dataset of delicious. The resulting dataset 

contains 149882 triples and includes various graph patterns.  The 

following table shows the result of our experiment. Each line 

summaries the results associated with the discovery of graph 

patterns of given size (shown in the first column). Column 2 

shows the total number of graph patterns generated (GP) by our 

algorithm. Column 3 shows the number of graph patterns not kept 

(NKP) because redundant with other graph patterns of the same 

size.  Column 4 shows the number of graph patterns generated but 

not kept (NFP) in the final index structure because having no 

instance in the dataset. Column 5 shows the number of graph 

patterns removed from the index structure when generating graph 

patterns of size n+1 because included in graph patterns of size n+1 

(DP). Finally, column 6 shows the number of DFS codes kept in 

the final index structure (KP). Column 7 shows the computation 

time in second (CP) and column 8 the number of join operation 

(JO). 

Table 2: Result on merged dataset 

L

e 

GP NKP NF

P 

DP KP CP Jo 

1 22 0 0 21 1 7,124 0 

2 72 0 9 63 0 0,228 57 

3 402 182 83 135 2 1,441 392 

4 642 343 42 250 7 0,953 641 

5 1128 672 12 428 16 1,663 1127 

6 1828 1152 5 639 32 1,889 1828 

7 2374 1519 1 798 56 1,61 2374 

8 2481 1563 0 845 73 1,58 2481 

9 2215 1377 0 755 83 1,67 2215 

10 1626 989 0 556 81 1,28 1626 

11 946 560 0 308 78 0,88 946 

12 408 232 0 119 57 0,33 408 

13 123 67 0 28 28 0,09 123 

14 23 12 0 3 8 0,02 23 

15 2 1 0 0 1 0 2 

 

In this example the algorithm finds a maximum graph pattern of 

size 15.  The number of null frequencies is null from level 8. It 

means that we have a compact database from level 8 and all the 

candidate graph patterns are in the dataset.  The percent of graph 

patterns marked to be deleted is 90,44%. The number of 

redundancies between join operation is high yet and one of our 

perspective is to reduce it. 

Figure 10 shows the biggest RDF graph pattern generated. 

 

4. CONCLUSION 
In this paper we presented an algorithm to extract a compact 

representation of the content of an RDF triple store. This 

algorithm relies on DFS code based on canonical representation of 

graph patterns. We adapted this coding to deal with RDF graphs. 

We also provided a join operator to significantly reduce the 

number of generated graph patterns and we reduced the index size 

by keeping only the graph patterns with maximal coverage. 
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 Figure 10: The biggest graph pattern generated 
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igure 9: Instance of joining two DFS codes of size 4. 



Several perspectives of this contribution are already being 

considered. First, instead of using the sub-procedure timeEqual to  

compute exactly the discovery time corresponding to m we plan to 

add more redundancies and to test   their frequencies to avoid the 

isomorphism test. Moreover, up to now, we do not take into 

account the RDFS schema the indexed dataset relies on. In our 

algorithm we only exploit the types of subject, object and 

properties of the triples. One of our main perspectives is to take 

into account the RDFS schema when building the index, at least 

by exploiting the subsumption relationship. 

And in the long term, we also plan to provide means to support 

query decomposition with regards to index contents in the context 

of distributed datasets. 
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