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A quasi-linear time algorithm for computing modular
polynomials in dimension 2

Enea Milio

Abstract

We propose to generalize the work of Régis Dupont for computing modular polynomials
in dimension 2 to new invariants. We describe an algorithm to compute modular polyno-
mials for invariants derived from theta constants and prove under some heuristics that this
algorithm is quasi-linear in its output size. Some properties of the modular polynomials
defined from quotients of theta constants are analyzed. We report on experiments with our
implementation.

An isogeny is a morphism between two abelian varieties that is surjective and has a finite
kernel. It is an important notion for the theorical study of abelian varieties, but also for
cryptographic applications because it allows one to transfer the discrete logarithm problem
from a variety, where the problem is difficult, to an isogenous variety, where it may be easier.

The computation of an isogeny could mean several things: given a maximal isotropic sub-
group of the `-torsion, to be able to compute the isogenous variety; to calculate the image of
a point by an isogeny; to check if two abelian varieties are isogenous and if so compute an
isogeny. But what interests us here is the computation of all the isogenous varieties (for a fixed
degree) of a given variety and this can be done with modular polynomials.

These polynomials also have other applications. In dimension 1, they are the key (SEA)
for speeding up the algorithm of Schoof for counting the number of points on an elliptic curve
(see [12, 42]), for constructing elliptic curves with a known number of points by complex
multiplication (see [2, 17, 45]) and for the computation of the endomorphism ring of elliptic
curves (see [4]). They can be computed in quasi-linear time (see [6, 13]).

In dimension 2, these polynomials play the same role, but are harder to compute. They
could also speed up the CRT-algorithm (see [11]) to compute class fields of degree 4 CM-
fields, which would lead to faster algorithms to construct cryptographically secure Jacobians
of hyperelliptic curves.

An algorithm to compute the modular polynomials in dimension 2 has been introduced by
Régis Dupont (see [10]) in 2006. Using it, he managed to compute the polynomials parame-
terizing (2, 2)-isogenies, but these polynomials are so big that he could not compute them for
(3, 3)-isogenies. This is due to the fact that he used Igusa invariants (see Definition 13).

In this article, we will present a generalization of his algorithm allowing one to compute
modular polynomials with invariants f1, f2, f3 derived from theta constants, for a congruence
subgroup Γ of the symplectic group Γ2. We present results with Streng invariants (see Defini-
tion 28) and quotients of theta constants. The algorithm proceeds by evaluation/interpolation:
without knowing the polynomials we are still able to evaluate them on any values and if we
do so on sufficiently many values, we can interpolate to recover the polynomials. The most
important difference with the dimension 1 case is that we have to interpolate trivariate rational
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functions rather than univariate polynomials. This adds difficulties in the evaluation step; we
need to choose the arguments in which to evaluate in a specific way. For this, we will see that
we need to be able to find Ω modulo Γ from f1(Ω), f2(Ω) and f3(Ω).

To do that, we deduce from f1(Ω), f2(Ω) and f3(Ω) the Igusa invariants j1(Ω), j2(Ω),
j3(Ω) and then we apply Mestre’s algorithm to obtain a hyperelliptic curve with these Igusa
invariants. Using Thomae’s formula, numerical integration and the Borchardt mean, it is
possible to obtain Ω modulo Γ2, under Conjecture 23. Once we have Ω modulo Γ2, we have to
find Ω modulo Γ. This can be done thanks to the functional equation of the theta constants of
Proposition 8. It remains to compute the products of Definition 27 which ends the evaluation
step.

All the computation are done with multiprecision floating point numbers. Explicit bounds
on the size of the coefficients of the modular polynomials are unknown in dimension 2 (this is
already a hard problem in dimension 1). Thus our algorithm is heuristic. Under the heuristics
and Conjecture 23, we have shown that our algorithm is quasi-linear (Theorem 34). In practice,
we may double the precision until we manage to find a sufficient precision to compute the
polynomials. We underline the fact that the computations have been done at high precision
so that we required a fast algorithm to compute the theta constants. This algorithm uses the
Borchardt mean.

We first applied the algorithm of Dupont with Streng invariants instead of Igusa invariants
to compute modular polynomials. The invariants of Streng are equivalent to the Igusa ones in
the sense that they describe the same moduli space up to birational equivalence (and indeed,
there are formula to switch from ones to the others: see (5)). We managed to compute the
modular polynomials parameterizing (2, 2)- and (3, 3)-isogenies. The reason why this was
possible is that the use of Streng invariants produce much smaller polynomials in terms of
degrees and sizes of the coefficients, and thus the precision of the computation is smaller (as
similarly noticed by Streng in [44] for the computation of class polynomials). For example, the
modular polynomials for p = 2 with Streng invariants fill 2.1 MB compared to 57 MB with
Igusa invariants.

We have then applied our generalized algorithm to b′i(Ω) = θi(Ω/2)
θ0(Ω/2) for i = 1, 2, 3, which

are modular functions for the group Γ(2, 4), and computed the modular polynomials with
these invariants for p = 3, p = 5 and p = 7. As these polynomials fill respectively 175 KB,
200 MB and 29 GB, we have no hope of computing the modular polynomials for larger p.
The polynomials found are much smaller than those with Igusa or Streng invariants. For
comparison, for p = 3 they fill 175 KB while those with Streng invariants fill 890 MB. We
explain this by the fact that these polynomials have symmetries (Theorem 44) and are sparse
(Theorem 45).

The remainder of this article is organised as follows. In the first section, we recall the theory
of abelian varieties, of theta constants and of modular polynomials. In the second section, we
explain how to interpolate multivariate rational functions and we do a complexity analysis.
This section is independent of the others. The algorithm to compute the modular polynomials
is given in the third section and some applications of it are described in the fourth section.
The fifth section is dedicated to a deeper examination of these polynomials (in particular the
symmetries appearing and an interpretation of the denominators of the coefficients of these
polynomials). In Section 6 we discuss our implementation of the algorithm and finally in Section
7 we give some examples of hyperelliptic curves over finite field with isogenous Jacobians that
we managed to compute using our modular polynomials.
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1 Theory of modular polynomials
The Siegel upper half-space Hg for dimension g is the set of g× g symmetric matrices over the
complex numbers with positive definite imaginary part. It is a moduli space for principally
polarized abelian varieties (see [3, Proposition 8.1.2]). Indeed, a principally polarized abelian
variety is a torus Cg/(ΩZ2g + Z2g) for Ω ∈ Hg (which is called a period matrix).

Let Ig denote the identity matrix of size g and J =
(

0 Ig

−Ig 0

)
. We define the symplectic

group of dimension 2g as Sp2g(Z) = {γ ∈ Gl2g(Z) : tγJγ = J}. It can easily be shown that if
γ =

(
A B
C D

)
, then γ ∈ Sp2g(Z) if and only if the following three equalities are verified

tAC = tCA
tBD = tDB

tDA− tBC = Ig

which are equivalent to
A tB = B tA

D tC = C tD

A tD −B tC = Ig

(1)

because Sp2g(Z) is closed under transposition of matrices. Moreover, Sp2g(Z) acts (from the
left) on Hg by

(
A B
C D

)
Ω = (AΩ + B)(CΩ + D)−1, the matrix CΩ + D being invertible for(

A B
C D

)
∈ Sp2g(Z) and Ω ∈ Hg.

The quotient space Sp2g(Z)\Hg is a moduli space for isomorphism classes of principally
polarized abelian varieties of dimension g (see [3, Theorem 8.2.6]).

We define Γg = Sp2g(Z). Note that −I2g acts trivially on Hg, so that some authors prefer
to consider the projective symplectic group.

Proposition 1. The group Γg is generated by J and the g(g+1)
2 matrices

Mi,j =
(
Ig mi,j

0 Ig,

)

where mi,j is the matrix of size g all entries of which are 0 except for those at (i, j) and (j, i),
which are equal to 1.

Proof. This is a direct consequence of [31, Proposition 6, pages 41–42].

Let Fg ⊆ Hg be such that Ω = (Ωu,v)u,v∈[1,g] is in Fg if and only if Ω verifies

1. |<(Ωu,v)| ≤ 1
2 for each u, v ∈ [1, g];

2. the matrix =(Ω) is reduced in the sense of Minkowski (see [31, Chapter I.2] for the
definition);

3. for each
(
A B
C D

)
∈ Γg, |det(CΩ +D)| ≥ 1.

Remark 2. The third point has in principle to be verified for each matrix of Γg. However
for the dimensions 1 and 2 this condition has to be verified only for a well-known finite set (of
cardinality 1 in dimension 1 and 19 in dimension 2, see [31, Proposition 3, p.33] and [22]).

The set Fg is a fundamental domain in the sense that for all Ω ∈ Hg, there exists γ ∈ Γg
such that γΩ ∈ Fg and γ is unique if γΩ is an inner point of Fg.

Definition 3. Let Γ be a subgroup of finite index of Γg and k ∈ Z. A Siegel modular form of
weight k for Γ is a function f : Hg → C such that
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1. f is holomorphic on Hg;

2. ∀γ =
(
A B
C D

)
∈ Γ and Ω ∈ Hg, f(γΩ) = det(CΩ +D)kf(Ω);

3. in the case g = 1, f has to be holomorphic at the cusps (see for example [40, Definition
2.3.1] for the definition).

Definition 4. Let Γ a subgroup of finite index of Γg. A function f : Hg → C is a Siegel
modular function for Γ if and only if there are two Siegel modular forms f1 and f2 for Γ of
the same weight and such that f = f1

f2
.

From another point of view, a complex torus is an abelian variety if and only if it can be
embedded into a projective space. This embedding can be done using theta functions. We
will only focus on the classical theta functions because they provide a projective coordinate
system for the principally polarized abelian varieties and because these functions can easily be
handled computationally.

Definition 5. Let Ω ∈ Hg and let z be a vector of Cg. The Riemann theta function is the
function

θ : Cg ×Hg → C, (z,Ω) 7→
∑
n∈Zg

exp(iπ tnΩn+ 2iπ tnz)

and for a, b ∈ Qg, the (classical) theta function with characteristic (a, b) is

θ [ ab ] (z,Ω) =
∑
n∈Zg exp(iπ t(n+ a)Ω(n+ a) + 2iπ t(n+ a)(z + b))

= exp(iπ taΩa+ 2iπ ta(z + b))θ(z + Ωa+ b,Ω).

These functions converge absolutely and uniformly on every compact subset of Cg × Hg
due to the fact that the imaginary part of Ω is positive definite.

Proposition 6. Let Ω ∈ Hg and n ∈ N. The functions f : Cg → C satisfying for each z ∈ Cg
and each m′,m′′ ∈ Zg,

f(z + Ωm′ +m′′) = f(z) exp(−iπn tm′Ωm′ − 2iπn tzm′)

are said to be functions of level n. They form a vector space of dimension ng denoted by RΩ
n .

Proof. See [37, Section II.1].

Theorem 7 (Lefschetz). For n ≥ 3, any linearly independent set of k ≥ ng functions of level
n provides an embedding of Cg/(ΩZ2g + Z2g) into Pk−1(C). For n = 2, the functions of level
2 map only to

(
Cg/(ΩZ2g + Z2g)

)
/ ∼, where ∼ is the equivalence relation such that z ∼ −z.

Proof. See [36, Page 29].

Several bases for RΩ
n are well-known. We use Fn =

{
θ
[ 0
b

]
(z, Ω

n ), b ∈ 1
nZ

g/Zg
}
, and

F(n,1)n =
{
θ
[ 0
b

]
(z,Ω)n, b ∈ 1

nZ
g/Zg

}
. Theta functions have a lot of properties. The fol-

lowing two are useful for an implementation of these functions. For a matrix X, denote by X0
the vector composed of the diagonal entries of X.
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Proposition 8. Let γ =
(
A B
C D

)
∈ Γg, e′ = 1

2( tAC)0 and e′′ = 1
2( tDB)0. Then for all vectors

a, b in Qg, z in Cg and Ω in Hg we have

θ [ ab ] (γz, γΩ) = ζγ
√

det(CΩ +D) exp
(
iπ tz(CΩ +D)−1Cz

)
θ
[
tγ ( ab ) +

(
e′

e′′

)]
(z,Ω)

· exp(−iπ taA tBa) exp(−iπ tbC tDb) exp(−2iπ taB tCb)
· exp(−2iπ t( tAa+ tCb+ e′)e′′)

where ζγ is an eighth root of unity depending only on γ.

Proof. See [30, Chapter 5, Theorem 2] or [8, Proposition 3.1.24].

Remark 9. The eighth root of unity and the square root do not depend on the characteristic.
As we will always consider quotients of theta functions, we do not need to know the root and
the determination of the square root.

Note that a matrix acts on the characteristic. The next proposition ([37, Page 123]) allows
us to speak about permutations.

Proposition 10. For each α, β ∈ Zg and a, b ∈ Qg, θ
[
a+α
b+β

]
(z,Ω) = exp(2iπ taβ)θ [ ab ] (z,Ω).

The theta constants of level n are the theta functions of level n evaluated at z = 0. In the
following, we will focus on the theta constants of genus 2 with characteristic in {0, 1

2}
2.

To simplify the notation we define for all a = ( a0
a1 ) and b =

(
b0
b1

)
in {0, 1}2

θb0+2b1+4a0+8a1(Ω) := θa,b(Ω) := θ
[
a/2
b/2

]
(0,Ω).

We have the property that θa,b(Ω) = (−1)tabθa,b(Ω) so that of the 16 theta constants, 6 are
identically zero (we say that they are odd) and we denote P = {0, 1, 2, 3, 4, 6, 8, 9, 12, 15} the
subscripts of the even theta constants.

The next proposition ([30, Chapter IV, Theorem 1]) establishes a relation between the
θ2
i (Ω) for i = 0, . . . , 15 and the θi(Ω/2) for i = 0, . . . , 3.

Proposition 11 (Duplication formula). For all a, b ∈ {0, 1}2 and Ω ∈ H2, we have

θ2
a,b(Ω) = 1

4
∑

b1+b2≡b mod 2
(−1)tab1θ0,b1(Ω/2)θ0,b2(Ω/2).

Proposition 12. Let Ω ∈ H2 and Ω′ ∈ F2 be in the same class for the action of Γ2. Then
either the matrix Ω′ is diagonal and then exactly one of the even theta constants evaluated in
Ω vanishes and at the same time θ15(Ω′) = 0, or Ω′ is not diagonal and no even theta constant
vanishes in Ω (nor in Ω′).

Proof. See [10, Proposition 6.5 and Corollary 6.1].

Let
h4 =

∑
i∈P

θ8
i , h6 =

∑
60 triples (i,j,k)∈P3

±(θiθjθk)4,

h10 =
∏
i∈P

θ2
i , h12 =

∑
15 tuples (i,j,k,l,m,n)∈P6

(θiθjθkθlθmθn)4,
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and h16 = 1
3(h12h4 − 2h6h10).

(see for example [44, 10, 50] for the exact definition). The functional equation of Proposition 8
shows that hi is a Siegel modular form of weight i for the group Γ2.

Definition 13. We call Igusa invariants or j-invariants the functions j1, j2, j3 defined by

j1 := h5
12
h6

10
, j2 := h4h

3
12

h4
10

, j3 := h16h
2
12

h4
10

.

Theorem 14. The field K of Siegel modular functions in dimension 2 is C(j1, j2, j3).

Proof. See [29].

Generically, by [28], two principally polarized abelian surfaces are isomorphic if and only
if they have the same j-invariants.

Let Γ be a subgroup of Γ2 of index k. Denote by CΓ the field of meromorphic functions of
H2 invariant under the action of Γ (it is the function field of Γ\H2). In particular, CΓ2 = K.
By [20], CΓ is a finite algebraic extension of degree k of CΓ2 .

Let f be a modular function, γ ∈ Γ2 and p a prime number. We define the matrix γp :=(
A pB
C/p D

)
and the functions fγ , fp and fγp from H2 → C by fγ(Ω) = f(γΩ), fp(Ω) = f(pΩ)

and fγp (Ω) = f(pγΩ) respectively. Let Γ0(p) :=
{(

A B
C D

)
∈ Γ2 : C ≡ 0 mod p

}
.

The three functions j`,p := (j`)p are invariant under the group Γ0(p). Indeed, if γ ∈ Γ0(p),
then pγΩ = γp(pΩ) so that jγ`,p(Ω) = j`(pγΩ) = j`(γp(pΩ)) = j`(pΩ) = j`,p(Ω). In other words,
Ω is equivalent to γΩ for γ ∈ Γ2, but that does not mean that pΩ is equivalent to pγΩ: it is
the case only if γ is in Γ0(p).

Let Cp be a set of representatives of the quotient Γ2/Γ0(p). The period matrices of the
(p, p)-isogenous varieties of a variety Ω are the pγΩ for γ ∈ Cp (by Theorem 3.2 of [5]).

Proposition 10.1 of [10] gives Cp for each p and it tells us that [Γ2 : Γ0(p)] = p3 +p2 +p+1.

Lemma 15. For a prime p, CΓ0(p) equals K(j`,p) for ` = 1, 2, 3.

Proof. See [5, Lemma 4.2].

Note that the functions j` have poles at Ω ∈ H2 such that h10(Ω) = 0. This happens when
θi(Ω) = 0 for some i. By Proposition 12, if Ω′ ∈ F2 is equivalent to Ω, then Ω′ is diagonal. We
deduce that Ω corresponds to a product of elliptic curves. So the functions j`,p have poles at
Ω ∈ H2 corresponding to varieties that are (p, p)-isogenous to a product of elliptic curves.

Let Φ1,p(X) =
∏
γ∈Cp

(X − jγ1,p). It is the minimal polynomial of j1,p over K. As the
functions j2,p and j3,p are contained in K(j1,p) = K[j1,p] by Lemma 15, we define Φ2,p(X),
and Φ3,p(X) to be the monic polynomials in K[X] of degree less than deg(Φ1,p(X)) satisfying
j2,p = Φ2,p(j1,p) and j3,p = Φ3,p(j1,p).

Furthermore we have for ` = 2, 3 that Φ`,p(j1,p) = Ψ`,p(j1,p)/Φ′1,p(j1,p) where

Ψ`,p(X) =
∑
γ∈Cp

jγ`,p
∏

γ′∈Cp\{γ}
(X − jγ

′

1,p).

Definition 16. Let p be a prime number. We call Φ1,p(X), Ψ2,p(X) and Ψ3,p(X) the modular
polynomials for j1, j2 and j3.
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For any prime p, the modular polynomials Φ1,p(X), Φ2,p(X), Φ3,p(X) lie in the ring
Q(j1, j2, j3)[X] (see [5, Theorem 5.2]). This is also the case for Ψ`,p(X) for ` = 2, 3 so that we
will focus on Φ1,p(X), Ψ2,p(X) and Ψ3,p(X). The evaluation map C(j1, j2, j3)→ C sending ji
to ji(Ω) maps these polynomials to polynomials in C[X]. The meaning of Φ1,p(X) is that its
roots evaluated at Ω ∈ H2 are the j1-invariants of the principally polarized abelian surfaces that
are (p, p)-isogenous to the variety Ω. Moreover, if x is such a root, then (x,Φ2,p(x),Φ3,p(x))
are the j-invariants of a principally polarized abelian surface (p, p)-isogenous to a variety with
invariants (j1(Ω), j2(Ω), j3(Ω)).

Denote by Lp the locus of all the principally polarized abelian surfaces which are (p, p)-
isogenous to a product of elliptic curves. This locus Lp is a 2-dimensional algebraic subvariety
of the 3-dimensional moduli space Γ2\H2 and can be parameterized by an equation Lp = 0 for
a polynomial Lp in Q[j1, j2, j3].

Lemma 17. The denominators of the coefficients of Φ1,p(X), Ψ2,p(X) and Ψ3,p(X) are all
divisible by the polynomial Lp.

Proof. See [5, Lemma 6.2].

We are particularly interested in the denominators of the modular polynomials because
they are at the cause of many difficulties when compute these poynomials.

2 Interpolation
We explain in this section how to interpolate multivariate polynomials and rational fractions,
which will be needed to compute modular polynomials by evaluation and interpolation. The
problem is the following: we assume that we have an algorithm f such that for any x1, . . . , xn ∈
C it returns the value P (x1, . . . , xn) (or a floating point approximation thereof), where P is an
unknown multivariate polynomial or rational fraction P (X1, . . . , Xn) with complex coefficients.
We want to find P .

We denote M(d) the time to multiply polynomials of degree less than or equal to d with
coefficients having N bits andM′(N) the time complexity to multiply two integers of N bits.
By [48, Corollary 8.19], we have that M(d) ∈ O(d log dM′(N)) if we use the FFT and if we
assume that N ∈ Ω(log d), which is necessary to distinguish between the different roots of
unity used in the FFT. Moreover,M′(N) ∈ O(N logN log logN) (see [43]).

Following the basic idea of [10], we work out all the details and give a complexity analysis.

2.1 Interpolation of a multivariate polynomial

The problem of interpolating a univariate polynomial P is well-known and can be solved by
Lagrange’s or Newton’s method, which need deg(P ) + 1 evaluations. The complexity of fast
interpolation is O(M(deg(P )) log(deg(P ))) (see [48, Section 10, Corollary 10.12]).

In the case of a bivariate polynomial P (X,Y ), we notice that it can be written in the
following way

P (X,Y ) =
dX∑
i=0

 dY∑
j=0

ci,jY
j

Xi =
dX∑
i=0

ci(Y )Xi.
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We can compute P (X, y) for a fixed y by evaluating P (xi, y) for i = 1, . . . , dX + 1 and inter-
polating. The `-th coefficient of this polynomial is c`(y), which is a univariate polynomial. It
can be obtained if one has computed c`(yj) for dY + 1 values yj .

Thus to obtain P (X,Y ) we proceed as follows. For j from 1 to dY + 1, fix yj and choose
dX + 1 values xi (one may choose the same values for different j), then evaluate P (xi, yj) and
interpolate a univariate polynomial to find P (X, yj). Finally, for each ` = 0, . . . , dX , interpolate
c`(Y ). Hence interpolating a bivariate polynomial needs (dY + 1)(dX + 1) evaluations and the
complexity for the interpolation is

(dY + 1)O(M(dX) log(dX)) + (dX + 1)O(M(dY ) log(dY )) ⊆ Õ(dXdYN).

The interpolation of a trivariate polynomial can be done in a similar way. We write it as

P (X,Y, Z) =
dX∑
i=0

 dY∑
j=0

 dZ∑
k=0

ci,j,kZ
k

Y j

Xi =
dX∑
i=0

 dY∑
j=0

ci,j(Z)Y j

Xi =
dX∑
i=0

ci(Y,Z)Xi.

If, for fixed y and z, we evaluate P (xi, y, z), i = 1, . . . , dX + 1, and then interpolate, we obtain
P (X, y, z) and the `-th coefficient is c`(y, z). This gives us a method to evaluate c`(Y, Z) for
different values and we can use what we said about bivariate polynomials to find c`(Y,Z).

Thus we proceed as follows. For j from 1 to dY + 1 and for k from 1 to dZ + 1 we evaluate
P (xi, yj , zk) for dX + 1 values xi and then we do (dY + 1)(dZ + 1) interpolations to obtain
all the P (X, yj , zk). Each of the dX + 1 coefficients c`(Y, Z) is a bivariate polynomial and we
have given above the complexity to obtain it. All in all, we will do (dX + 1)(dY + 1)(dZ + 1)
evaluations and the complexity for the interpolation is

(dY + 1)(dZ + 1)O(M(dX) log(dX)) + (dX + 1)(dZ + 1)O(M(dY ) log(dY ))+

(dX + 1)(dY + 1)O(M(dZ) log(dZ)) ⊆ Õ(dXdY dZN).

We can generalise this improved algorithm recursively to the case of a polynomial in n
variables X1, . . . , Xn. It takes

∏n
i=1(dXi + 1) evaluations. The complexity for the interpolation

of a polynomial in n variables is

n∑
i=1

n∏
j=1
j 6=i

(dXj + 1)O(M(dXi) log dXi) ⊆ Õ
(

n∏
i=1

dXiN

)

Note the symmetry which means that the ordering of the variables does not matter.

2.2 Interpolation of a multivariate rational fraction

We begin with the univariate case: F (X) = A(X)
B(X) , with A(X) =

∑dA
X
i=0AiX

i ∈ C[X] and

B(X) =
∑dB

X
i=0BiX

i ∈ C[X]. We look for the solution with minimal degrees. Each pair (A,B)
is then defined only up to a multiplicative constant.

Let n = dAX + dBX + 1. Writing A(X) − F (X)B(X) = 0 induces us to proceed with linear
algebra: it suffices to evaluate F in n + 1 values xi and to find the coefficients Ai and Bi by
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solving the following linear system


1 x1 . . . x

dA
X

1 −F (x1) −F (x1) · x1 . . . −F (x1) · xd
B
X

1
... . . . ...

...
...

... . . . ...
1 xn . . . x

dA
X
n −F (xn) −F (xn) · xn . . . −F (xn) · xd

B
X
n

 ·



A0
...

AdA
X

B0
...

BdB
X


=


0

...

0



This method is easy to implement, but its complexity is bad. Another solution consists
in using Cauchy interpolation (see [48, Section 5.8]) with the fast Euclidean algorithm ([48,
Section 11]), which produces an algorithm of complexity O(M(n) log(n)). The number of
evaluations is n.

We explain it briefly. Let k and m be such that degA < k and degB ≤ m − k. Take
x1, . . . , xm ∈ C and yi = F (xi) for 1 ≤ i ≤ m. Let f be an interpolating polynomial.
We look at polynomials r(X) and t(X) such that for any i, r(xi) = t(xi)F (xi); this implies
(r(xi) = t(xi)yi = t(xi)f(xi) if and only if r ≡ tf mod (X − xi) for all i) and by the Chinese
remainder theorem, it is equivalent to ask that r ≡ tf mod g, where g =

∏m
i=1(X − xi).

We use then the extended euclidean algorithm on g and f . Let rj , sj , tj be the j-th row
of the algorithm, where j is minimal such that deg rj < k (namely r1 = g, r2 = f, s1 = 1, s2 =
0, t1 = 0, t2 = 1 and r` = gs` + ft` for each row `). By Corollary 5.18 of [48, Section 5.8], rj
and tj verify rj(xi) = tj(xi)yi and tj(xi) 6= 0 for all i.

Thus, it suffices to compute this row to interpolate the fraction F . It is possible to compute
a single row with the fast Euclidean algorithm.

We study now the bivariate case F (X,Y ) = A(X,Y )
B(X,Y ) , with

A(X,Y ) =
dA

X∑
i=0

dA
Y∑

j=0
cAi,jX

iY j =
dA

X∑
i=0

cAi (Y )Xi ∈ C[X,Y ]

and similarly for B(X,Y ). One could use linear algebra, but the complexity would be very
bad. Thus we would like to proceed as in the bivariate case for polynomials, namely by fixing
values yj and computing the fractions F (X, yj) and then by interpolating the coefficients as
polynomials in Y .

If F (X,Y ) ∈ Q[X,Y ], then for each rational fraction found, one can force the numerator
and the denominator to have content 1, but because of the multiplicative constant, this will
not work, as shown by the next example.

Example 18. Assume that we are searching F (X,Y ) = 3X2Y 2+Y+2
3XY+3 and that we find F (X, 1) =

X2+1
X+1 , F (X, 2) = 12X2+4

6X+3 , F (X, 3) = 27X2+5
9X+3 and also F (X, 5) = 75X2+7

15X+3 . For the greater co-
efficient of the numerator cA2 (Y ): if we interpolate with yi = 2, 3, 5, which gives us cA2 (yi) =
12, 27, 75, we find 3Y 2 which is correct; on the other side, with yi = 1, 2, 3 giving c2(yi) =
1, 12, 27, we obtain the polynomial 2Y 2 + 5Y − 6, which is completely wrong, because of the
simplification between the numerator and the denominator in the case Y = 1.

Remark 19. For some values of Y , there is a simplification by a polynomial; for example
F (X,−5) = −5X − 1. This is something that is immediately noticed because the degrees in
X are smaller. We assume that every time it happens, we drop the instance.
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In the example, if we had fixed the coefficient of degree 0 of the denominator of the uni-
variate rational fractions computed at some value (3 for instance), the simplification would not
have been a problem. This is not true in general.

Example 20. This time write F (X, 1) = X2+1
X+1 , F (X, 2) = 3X2+1

3
2X+ 3

4
, F (X, 3) =

27
5 X

2+1
9
5X+ 3

5
, . . . ,

where we always fix the coefficient of degree 0 of the numerator at 1. Then we deduce by
interpolation that cA0 (Y ) = 1, which is wrong. Indeed, when we divide by a constant to obtain
the coefficient 1, it is as if we had divided by Y + 2.

Thus the difficulty is that we have to normalize while being sure that the i-th coefficient
of the numerator and the denominator of each fraction in X comes from the evaluation of the
same polynomial in Y .

This normalization is easy to obtain in the very particuliar case where we already know
one of the cAi (Y ) or cBi (Y ) ∈ C[Y ] (different from 0): we only have to multiply the solution
found by the constant which gives us the good evaluation for the known ci. We can then obtain
(using Cauchy interpolation) the fraction with n(dY +1) evaluations and the complexity of the
interpolation is

(dY + 1)O(M(n) log(n)) + (n+ 1)O(M(dY ) log(dY )) ⊆ Õ(dXdYN)

where dX = max(dAX , dBX), dY = max(dAY , dBY ) and n = dAX + dBX + 1 ≤ 2dX + 1.

Example 21. We continue the preceding example. Assume we know cA0 (Y ) = Y +2. We have
cA0 (1) = 3 and instead of the fraction X2+1

X+1 we take 3X2+3
3X+3 . We also have cA0 (2) = 4 and we

write F (X, 2) = 12X2+4
6X+3 and so on.

In general, an idea to avoid this difficulty is to consider the fraction F ′(X,Y ) = F (X,Y X) =
A′(X,Y )
B′(X,Y ) because in this case, cB′

0 (Y ) is a constant. If it is not 0, we can choose to fix it to be 1
and then the previous argument (one cB′

i (Y ) known) holds. Thus we have F (X,Y X) and we
substitute Y by Y/X to obtain F (X,Y ). Since dA′

X = dAT and dB′
X = dBT , where the subscript

T stands for the total degree, the complexity is Õ(dTdYN) (and dT = max(dAT , dBT )).
Note also that in the particular case where the coefficient of degree zero of cB0 (Y ) is 0, this

method does not work. To overcome this difficulty we can consider F (X + r, Y + s) instead of
F (X,Y ) for some values r and s such that this coefficient will not be zero.

We study now the trivariate case. We want to interpolate F (X,Y, Z) = A(X,Y,Z)
B(X,Y,Z) with

A(X,Y, Z), B(X,Y, Z) in C[X,Y, Z]. Denote dT = max(dAT , dBT ) (and similarly for dX , dY
and dZ) and n = dAT + dBT + 1. As in the bivariate case, we compute F (X,XY,XZ) and
then substitute Y by Y/X and Z by Z/X to obtain F (X,Y, Z). We explain how to compute
F (X,XY,XZ) recursively:

1. Suppose we are able to compute F (X,XY, zX) for a fixed z ∈ C. Then we only need
dZ + 1 evaluations in zi to interpolate (as polynomials) each coefficient in Z and find
F (X,XY,XZ). The number of coefficients is bounded above by (n+ 1)(dY + 1) so that
the interpolation complexity for this step is (n+ 1)(dY + 1)O(M(dZ) log(dZ)).

2. To obtain F (X,XY, zX) for a fixed z, it suffices to apply the interpolation algorithm in
the bivariate case. We will do this step dZ + 1 times so that the complexity is
(dZ + 1)((dY + 1)O(M(n) log(n)) + (n+ 1)O(M(dY ) log(dY ))).

10



In doing this, the number of evaluations will be n(dY +1)(dZ+1) and the final interpolation
complexity is Õ(dTdY dZN). (In the special case where we already know one of the cAi (Y,Z)
or cBi (Y, Z), the complexity will be Õ(dXdY dZN)).

An improvement of this algorithm is obtained in noting that there is the possibility to
substitute Y by Y/X in the second step to find F (X,Y, zX) and to compute F (X,Y,XZ)
in the first one. Thus, the number of coefficients in the first step will be bounded above by
(n′+ 1)(dY + 1) where n′ is degAX(F (X,Y, zX)) + degBX(F (X,Y, zX)) + 1, which is ≤ n, which
allows one to reduce the number of interpolations. The complexity is then

(dY + 1)(dZ + 1)O(M(n) log(n)) + (n+ 1)(dZ + 1)O(M(dY ) log(dY ))+

(n′ + 1)(dY + 1)O(M(dZ) log(dZ)) ⊆ Õ(dTdY dZN).
We can generalize this recursively to the case of a rational fraction F with m variables

X1, . . . , Xm. We find
m∏
i=2

(dXi + 1)O(M(n) log(n)) +
m∑
j=2

m∏
i=2
i 6=j

(dXi + 1)n(j)O(M(dXj ) log(dXj )) ⊆ Õ(dT
m∏
i=2

dXiN)

where n = dAT + dBT + 1 and n(j) is one plus the degree in X1 of the numerator plus the degree
in X1 of the denominator of F (X1, X2, . . . , Xj−1, XjX1, . . . , XmX1).

Note that all these formulae for the complexity in the case of rational fractions are asym-
metric so that the choice of the order of the variables is important. The formulae suggest that
it is preferable to take X1 as the variable with the largest degree. In that case, n ≤ 6dX1 + 1
and the complexity of the interpolation is then Õ(

∏m
i=1 dXiN).

3 Evaluation
We have seen that the modular polynomials lie in the ring Q(j1, j2, j3)[X] so that we have to
interpolate trivariate rational fractions to compute them. Using the method of interpolation of
a rational fraction F exposed in the preceding section requires one to evaluate it at the points
F (xi, xiyj , xizk), where there exists Ω ∈ H2 such that (j1(Ω), j2(Ω), j3(Ω)) = (xi, xiyj , xizk).
We present here the method presented in [10] to deduce a matrix Ω ∈ H2 from its j-invariants
and then we present a way to extend this algorithm for other invariants.

3.1 Computing modular polynomials with the j-invariants

In practice, the modular polynomials have large coefficients and degrees. We use floating point
multiprecision to compute them and the letter N will designate this precision in bits. We have
an input (x, y, z) ∈ C3 and we are looking for Ω ∈ H2 such that (j1(Ω), j2(Ω), j3(Ω)) = (x, y, z).

The key to do this is to look at the Borchardt mean. Let (zk)k∈{1,2,3} ∈ C3. We define the
Borchardt sequence for k ∈ {1, 2, 3} by

u
(0)
0 = 1 and u

(0)
k = zk

and recursively for all n ≥ 0

u
(n+1)
0 = 1

4

3∑
k=0

u
(n)
k and u

(n+1)
k = 1

4
∑

k1+k2≡k mod 4
v

(n)
k1
v

(n)
k2
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where v(n)
0 is any square root of u(n)

0 and v(n)
k = 0 if v(n)

0 = 0 or u(n)
k = 0, otherwise v(n)

k is the
square root of u(n)

k such that
∣∣∣v(n)

0 − v(n)
k

∣∣∣ ≤ ∣∣∣v(n)
0 + v

(n)
k

∣∣∣ and with =
(
v

(n)
k /v

(n)
0

)
> 0 if there is

equality.
This sequence converges to a unique complex number called the Borchardt mean and de-

noted by B2((zk)k∈{1,2,3}). Let bi(Ω) := θ2
i (Ω)/θ2

0(Ω) for 1 ≤ i ≤ 15. We have

Proposition 22 ([10], Proposition 9.1). For all τ ∈ F2, B2(b1(τ), b2(τ), b3(τ)) = 1
θ2

0(τ) .

Note that from this proposition and the ten even bi(Ω), we can deduce all the θ2
i (Ω) =

bi(Ω)θ2
0(Ω) at the working precision (with some loss of precision).

Conjecture 23 ([10], Conjecture 9.1). With the notation of Proposition 1 we have, for all
τ ∈ F2 and for all γ ∈ {(JM1,1)2, (JM1,2)2, (JM2,2)2}: B2(b1(γτ), b2(γτ), b3(γτ)) = 1

θ2
0(γτ) .

If this conjecture is true, it can easily be shown that for τ = ( τ1 τ3
τ3 τ2 )

τ1 = ı

θ2
4(τ)B2

(
θ2

0(τ)
θ2

4(τ) ,
θ2

6(τ)
θ2

4(τ) ,
θ2

2(τ)
θ2

4(τ)

) , (2)

τ2 = ı

θ2
8(τ)B2

(
θ2

9(τ)
θ2

8(τ) ,
θ2

0(τ)
θ2

8(τ) ,
θ2

1(τ)
θ2

8(τ)

) , (3)

and
τ2

3 − τ1τ2 = 1
θ2

0(τ)B2
(
θ2

8(τ)
θ2

0(τ) ,
θ2

4(τ)
θ2

0(τ) ,
θ2

12(τ)
θ2

0(τ)

) . (4)

If τ is in the fundamental domain, the Minkowski reduction implies that =(τ3) ≥ 0 which
allows us to extract the good square root and obtain τ . Thus, it remains to show how to deduce
from (x, y, z) ∈ C3, the ten bi(Ω) where Ω ∈ F2 is such that (j1(Ω), j2(Ω), j3(Ω)) = (x, y, z).
This can be done in four steps.

1. The first one is to use Mestre’s algorithm (see for example [34]) at precision N to find
a genus 2 curve Y 2 = f(X) over C with f having degree 6 whose Igusa invariants are
(x, y, z).

2. Once we have f , it is easy to deduce the set E of roots of f at precision N and from this
set we use Thomae’s formula (see [46]). Recall that this formula allows one to obtain the
fourth power of the theta constants from an ordering of the roots of f (which corresponds
to a choice of the basis of the homology group of the Riemann surface of the hyperelliptic
curve).
The problem here is that the functions bi are not invariant under the symplectic group
Γ2 (but for a subgroup as we will see later). This means that for two matrices equivalent
under the action of Γ2 (namely they have the same j-invariants), the evaluation of the
bi in these matrices produces differents results. Hence the theta constants found with
Thomae’s formula gives us b2i (γΩ) for some unknown γ ∈ Γ2.

3. Now use a numerical integration technique (see for example [9, 47, 35]) at low precision
N ′ with the same choice of the basis of the homology group to find the period matrix
γΩ that we reduce into the fundamental domain to obtain Ω at precision N ′ and γ.
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Compute bi(Ω) at precision N ′ (with some algorithm to compute theta constants). We
do not use a numerical integration technique at precision N because it is too slow and it
would increase the complexity of the algorithm.

4. Using the functional equation of Proposition 8 on b2i (γΩ) with the matrix γ−1 allows
one to obtain the b2i (Ω) at precision N and knowing bi(Ω) at precision N ′ is enough to
deduce the good square root and obtain bi(Ω) at precision N .

Assumption 24. Note that we make the assumption that the numerical integration technique
provides some γΩ with γ small enough such that it can be correctly reduced in the fundamental
domain at the precision N ′.

We thus obtain the following algorithm.

Algorithm 25: Ω from (j1(Ω), j2(Ω), j3(Ω))
Data: (x, y, z) = (j1(Ω), j2(Ω), j3(Ω)) for some unknown Ω ∈ F2, the working precision

N and a smaller precision N ′
Result: Ω

1 Use Mestre’s algorithm to obtain a hyperelliptic curve Y 2 = f(X) at precision N ;
2 Deduce the ten bi(Ω) at precision N using some numerical integration technique at
precision N ′;

3 Use Proposition 22 to obtain the square of the theta constants at the working precision;
4 Use (2), (3), (4) to compute Ω at precision N (with some loss).

The second step is Algorithm 12 of [10] and the third and fourth are Algorithm 13. They
have complexity O(M′(N)) and O(M′(N) log(N)) (where M′(N) is the time complexity to
multiply two integers of N bits) so that the algorithm is in Õ(N).

Remark 26. Starting from (1, b1(γτ), b2(γτ), b3(γτ)) and an approximation or τ , it is possible
to compute a Borchardt sequence where the squares roots are choosen to be the θi(2nγτ)

θ0(γτ) at
each step. Using the duplication formula (Proposition 11), it can easily be proved that this will
converge to 1

θ2
0(γτ) . Thus it should be possible to not rely on the conjecture while maintenaing

the same complexity, as already stated in the first variant page 200 of [10] and in the remark
after Theorem 12 of [18].

The conjecture has been tested and verified numerically by Dupont for many millions of
random matrices. We underline that it is easy to test if the matrix Ω found at the end has the
good j-invariants or not.

3.2 New invariants for the modular polynomials

We begin in giving a generalization of the modular polynomials in order to have the possibility
to use other invariants. In genus 1, this goes back to the works of Schläfli and Weber (see [41]
and [13, Section 4.2 and 4.3]).

We consider only the congruence subgroups Γ ⊆ Γ2, namely the groups with Γ(n) = {M ∈
Γ2 : M ≡ ±Id4 mod n} ⊆ Γ for some n. If n is minimal with this property, we say that n
is the level of Γ. Let Γ be a congruence subgroup and f1, f2, f3 be three modular functions
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which are generators for the function field of Γ\H2. Let p be a prime number such that the
level of Γ is prime to p. Let Cp be a set or representatives of Γ/(Γ ∩ Γ0(p)).

Definition 27. The modular polynomials for these data are, for ` = 2, 3,

Φ1,p(X) =
∏
γ∈Cp

(X − fγ1,p) and Ψ`,p(X) =
∑
γ∈Cp

fγ`,p
∏

γ′∈Cp\{γ}
(X − fγ

′

1,p).

We will sometimes write Φ1,p(X, f1, f2, f3) instead of Φ1,p(X) and similarly for Ψ`,p(X).
While the interpolation phase is still the same, the evaluation is slightly different: this time we
have to find Ω ∈ H2 from a triple (x1, x2, x3) ∈ C such that fi(Ω) = xi. Of course, this step
depends on the three functions, but we will still give a general algorithm. On the other side,
the computation of Φ1,p(X, f1(Ω), f2(Ω), f3(Ω)) and of Ψ`,p(X, f1(Ω), f2(Ω), f3(Ω)) for some Ω
does not change. We can apply the same algorithm and they have the same complexity (except
of course for the evaluation of the fi(pγΩ)).

As in the dimension 1 case, we have tried to look at modular functions that would produce
smaller modular polynomials than those with the j-invariants.

The first we tried are the invariants used by Streng in his thesis [44] to obtain smaller
class polynomials. These invariants for Γ2 are defined to have the minimal power of h10 in the
denominators.

Definition 28. We call Streng invariants the functions i1, i2, i3 defined by

i1 := h4h6
h10

, i2 := h2
4h12
h2

10
, i3 := h5

4
h2

10
.

We will also say that these are j-invariants. The context will make it clear if we are speaking
of Streng invariants or of Igusa invariants. This is justified by the next theorem. Note that it
is easy to deduce from the Igusa invariants the Streng ones and vice versa. Indeed, we have

i1 = j2(j2 − 3j3)
2j1

, i2 = j2
2
j1
, i3 = j5

2
j3
1

and j1 = i52
i23
, j2 = i32

i3
, j3 = i22(i2 − 2i1)

3i3
. (5)

Theorem 29. The field K of Siegel modular functions in dimension 2 is K = C(j1, j2, j3) =
C(i1, i2, i3).

Moreover, we also have the properties for ` = 1, 2, 3 and a prime p that the three i`,p are
invariants under the group Γ0(p) and that CΓ0(p) = K(i`,p) (the proof is similar to the one for
the invariants of Igusa).

Thus to compute the modular polynomials, the difference with the invariants of Igusa is
small: from (i1(Ω), i2(Ω), i3(Ω)) to obtain Ω, it is sufficient to use (5) to deduce the triple
(j1(Ω), j2(Ω), j3(Ω)) and then to use Algorithm 25. The computation of the i`(pγΩ) (for a
prime p, ` = 1, 2, 3 and γ ∈ Cp) is equivalent by (5) to the computation of the j`(pγΩ).

The modular polynomials with Streng invariants are much smaller in terms of degrees and
precision of the coefficients than those with Igusa invariants so that the interpolation step can
be done more rapidly and the number of times we use Algorithm 25 is also much smaller (see
the next section).

Other invariants can be obtained by using the theta constants. This is motivated by the
fact that the j-invariants are defined in terms of the theta constants.
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Let Γ(2, 4) =
{(

A B
C D

)
∈ Γ2 :

(
A B
C D

)
≡ I4 mod 2 and B0 ≡ C0 ≡ 0 mod 4

}
, which is a normal

subgroup of Γ2. It is well-known that the bi(Ω) := θ2
i (Ω)/θ2

0(Ω) are modular functions for the
group Γ(2, 4). Actually, Theorem 1 of [33] states that the field CΓ(2,4) of modular functions
belonging to Γ(2, 4) is C(b1, ..., b15).

Define for i = 1, 2, 3 the functions b′i(Ω) := θi(Ω/2)
θ0(Ω/2) . From these three functions, it is easy

to deduce the ten bi using the duplication formula (Proposition 11). The converse is also true
because we have

b′1 = (b1 + b9)(1 + b4 + b8 + b12)−1,

b′2 = (b2 + b6)(1 + b4 + b8 + b12)−1,

b′3 = (b3 + b15)(1 + b4 + b8 + b12)−1.

(6)

Thus we consider the b′i which allows us to handle three generators instead of ten.

Proposition 30. Let p > 2 be a prime number. The classes of Γ(2, 4)/(Γ0(p)∩Γ(2, 4)) are in
bijection with the classes of Γ2/Γ0(p).

Proof. Consider the map φ : Γ(2, 4) → Γ2/Γ0(p) with kernel Γ0(p) ∩ Γ(2, 4). The surjectivity
comes from the Chinese remainder theorem and the fact that Sp(4,Z) → Sp(4,Z/4pZ) is
surjective (the proof of which is analogous to [32, Section 6.1]).

Proposition 31. For a prime p > 2, CΓ(2,4)∩Γ0(p) equals CΓ(2,4)(b′i,p) for every i = 1, 2, 3.

Proof. The proof is similar to that of Theorem 4.2 of [5]. One has to use the isomorphism
between Γ(2, 4)/(Γ(2, 4)∩Γ(p)) and Γ2/Γ(p) which comes from the Chinese remainder theorem
and the surjectivity of Sp(4,Z)→ Sp(4,Z/4pZ).

Proposition 32. The modular polynomials for b′1, b′2 and b′3 lie in the ring Q(b′1, b′2, b′3)[X].
More generally, it is also the case for any functions derived from the theta constants.

Proof. This comes from the fact that, for any Ω =
(

Ω1 Ω2
Ω2 Ω3

)
, the functions b′1, b′2 and b′3 have

a Laurent series expansion in qi = exp (2ıπΩi) with rational coefficients. We conclude with a
similar proof of Theorem 5.2 of [5].

We want to deduce Ω from (b′1(Ω), b′2(Ω), b′3(Ω)) = (x1, x2, x3). The first thing to do is to
deduce from (x1, x2, x3) the Igusa invariants of Ω. This can be done easily by calculating the
ten bi(Ω) from the three xi with the duplication formula and then by using the definition of
the j-invariants (see Definition 13). We then execute Algorithm 25 to deduce a period matrix
Ω′ ∈ H2 from the j-invariants. Unfortunately, this Ω′ is equivalent to Ω in the sense that they
have the same j-invariants, but this does not imply that b′i(Ω′) = xi because the functions bi
are invariants for the group Γ(2, 4) (and not Γ2).

To overcome this difficulty, we have to consider the cosets of Γ2/Γ(2, 4). To find the good
Ω modulo Γ(2, 4), we can take all the representatives γ of this quotient and evaluate the three
b′i(γΩ′) at low precision. The triple nearest to (x1, x2, x3) gives a matrix γ′ and then we use
the functional equation of Proposition 8 to obtain b′i(γ′Ω′) = b′i(Ω) at the working precision N .
But this index is large so that this method is slow. Indeed, [Γ2 : Γ(2, 4)] = 11520. The next
method we propose is faster.

Another solution consists of precomputing the action (permutations and constants) of the
representatives of Γ2/Γ(2, 4) using the functional equation and then comparing the three b′i(Ω)
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with the three b′i(Ω′) to deduce the action and finally to find a representative γ in the precal-
culation which gives us γΩ′ = Ω. The time spent for each γ is thereby negligible.

More precisely, we know the three b′i(Ω) and thus the ten even bi(Ω) (recall that it is
equivalent by (6) to have the three b′i) and Ω′ (at the working precision). We compute the
ten bi(Ω′) and we are looking for γ such that γΩ′ = Ω. Use the functional equation to obtain
θ2
k(γΩ′) = ζ2

γ det(...)ıε(γ,k)θ2
` (Ω′) with ε(γ, k) ∈ {0, 1, 2, 3}. As the bi are quotients of theta

constants, we can already forget about ζ2
γ and det(...). We will say in this case that k is sent

to ` by the action of γ. If 0 is sent to 0, then the sets A of the ten bi(Ω) = bi(γΩ′) and B of
the ten bi(Ω′) are equal up to permutation and fourth roots of unity. It is easy to compare
these two sets to deduce the action of the matrix γ. But the difficulty is that 0 is not always
sent to 0 and thus bi(γΩ′) can not be written as a root of unity times bj(Ω′) (if i is sent to
j), but as a root times a quotient of squares of theta constants evaluated at Ω′. However
note that there is a c such that c is sent to 0 and a d such that 0 is sent to d. Thus we
have bc(γΩ′) = ıε(γ,c)−ε(γ,0) bd(Ω′)−1 and comparing A with B up to a fourth root of unity it is
possible to find bd(Ω′). Then we have bk(γΩ′) = ıε(γ,k)−ε(γ,0) θ2

` (Ω′)
θ2

d
(Ω′) = ıε(γ,k)−ε(γ,0)b`(Ω′)bd(Ω′)−1

and it is enough to multiply the set A by bd(Ω′)−1 and compare it to B to deduce the action
of γ.

This method can also be used to modify Step 3 of Algorithm 25. Indeed, in the case that
we cannot choose the basis of the homology group for the numerical integration, we obtain
the period matrix Ω at low precision, but we do not know the matrix γ such that γΩ is the
period matrix coming from Thomae’s formula. As explained above by comparing bi(Ω) at
low precision and bi(γΩ) at the working precision, we can still deduce bi(Ω) at the working
precision.

This is what we did in practice. We used the code of Pascal Molin (see [35]) for the
numerical integration technique and we noticed that, given the roots of a polynomial of degree
6, it returns a period matrix of the form γ′′Ω′′, where Ω′′ ∈ F2 and γ′′ always seems to have
−1, 0, 1 as coefficients. Thus we never had any problem with the reduction in the fundamental
domain of γ′′Ω′′ (recall Assumption 24).

3.3 Complexity analysis

Let f1, f2, f3 be three modular functions for a congruence subgroup Γ of Γ2 generating the
function field of Γ. Let p be a prime number which is prime to the level of Γ and Cp be a
set of representatives of Γ/(Γ ∩ Γ0(p)). We have explained in the preceding section how to
find Ω from (f1(Ω), f2(Ω), f3(Ω)) and we have then to evaluate the modular polynomials (see
Definition 27) for a prime p at Ω, which means we have to compute for ` = 2, 3:

Φ1,p(X, f1(Ω), f2(Ω), f3(Ω)) and Ψ`,p(X, f1(Ω), f2(Ω), f3(Ω))

(and each coefficient of these polynomials is the evaluation at Ω of a trivariate rational fraction
in f1, f2, f3 that we have to interpolate). To do that, we compute first fγ`,p(Ω) for all γ ∈ Cp
and ` = 1, 2, 3. Let q = p3 + p2 + p + 1 the degree of Φ1,p(X). The evaluation of Φ1,p(X) at
Ω can be obtained in O(M(q) log q) using a subproduct tree (see [48, Section 10.1]). The two
other polynomials can be obtained with the same complexity using fast interpolation (see [48,
Section 10.2]).

We summarize what we have explained through the following algorithm.
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Algorithm 33: Evaluation of the modular polynomials
Data: f1(Ω), f2(Ω), f3(Ω), a subgroup Γ of Γ2 such that CΓ = C(f1, f2, f3), a prime p

prime to the level of Γ, a set Cp of representatives of Γ/(Γ ∩ Γ0(p)) and the
precalculation of the action of Γ2/Γ and precisions N and N ′.

Result: Φ1,p(X, f1(Ω), f2(Ω), f3(Ω)) and Ψ`,p(X, f1(Ω), f2(Ω), f3(Ω)) at precision N
(with some loss) for ` = 2, 3.

1 Deduce the j-invariants ji(Ω) from fi(Ω);
2 Use Mestre’s algorithm to obtain a hyperelliptic curve Y 2 = f(X) at precision N ;
3 Deduce the ten bi(Ω) at precision N using numerical integration at precision N ′;
4 Invert the functions to find Ω′ with the good j-invariants at precicision N ;
5 Compare (permutations and signs) the three fi(Ω) with the three fi(Ω′);
6 Deduce a representative γ of this action using the precalculation;
7 Compute Ω = γΩ′;
8 Compute the fγi,p(Ω) at precision N for all γ ∈ Cp;
9 Compute Φ1,p(X, f1(Ω), f2(Ω), f3(Ω)) at precision N using a subproduct tree;

10 Using fast interpolation, compute Ψ`,p(X, f1(Ω), f2(Ω), f3(Ω));

The complexity of the algorithm depends on the complexity of the evaluation of the fi at
some Ω. Let q = p3 + p2 + p+ 1. In the case of the theta constants and functions derived from
them (as the j-invariants), Steps 1 to 7 are of complexity O(M′(N) log(N)) (by [10, Theorem
9.3]), Step 8 is of complexity O(qM′(N) log(N)) (by [18, Theorem 12] under Conjecture 23),
Step 9 O(M(q) log(q)) and Step 10 O(M(q) log(q)) so that the complexity of this algorithm
with functions derived from the theta constants isO(qM′(N) log(N) +M(q) log(q)) ⊆ Õ(p3N).
In practice, the limiting step is Step 8 (see Section 6).

Suppose f1 is the variable which has the largest degree among all the numerators and
denominators of the coefficients of the modular polynomials. Denote by dAT (resp. dBT ) the
maximum of the total degrees of the numerators (resp. denominators) of the coefficients of
the three modular polynomials and by df1 (resp. df2 , df3) the maximum exponent of the
variable f1 (resp. f2, f3) appearing in one of the coefficients of these three polynomials. Let
n = dAT + dBT ≤ 6df1 . To obtain the modular polynomials, Algorithm 33 will be executed
(n + 1)(df2 + 1)(df3 + 1) times and we will interpolate 3q rational fractions. The complexity
to compute the modular polynomials is then

(n+ 1)(df2 + 1)(df3 + 1)Õ(p3N) + Õ(np3df2df3N) ⊆ Õ(df1df2df3p
3N).

Note that we suppose we know the degrees of all the trivariate rational fractions to use the
Cauchy interpolation with the extended Euclidean algorithm. We discuss in Section 6 how to
find these degrees.

As we do not have any explicit bounds on the size of the coefficients of the modular
polynomials, we assume that it is sufficient to use a floating point precision of O(N), where N
is the size of the largest coefficient, to do all the computations so that after the interpolation
step it is possible to correctly round the coefficients. We also assume Assumption 24.

Theorem 34 (under Conjecture 23 and the heuristics of the preceding paragraph). Let
f1, f2, f3 be three modular functions derived from the theta constants for a congruence sub-
group Γ of Γ2 generating the function field CΓ. Let p be a prime number prime to the level
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of Γ. Then, under the previous assumptions, the modular polynomials for these data can be
computed in Õ(df1df2df3p

3N) time, if the degrees in the fi of all the coefficients (numerators
and denominators) of the three modular polynomials are known and if df1 = max(df1 , df2 , df3)
and where N is the size of the largest coefficient of these modular polynomials.

Remark 35. • The conjecture is used for the complexity, but it does not affect the cor-
rectness of the algorithm because it is easy to check whether the period matrix found is
the good one or not at each evaluation step.

• For the complexity Õ(df1df2df3p
3N) to be quasi-linear in the output size, we must assume

that the average size of the coefficients of the modular polynomials is in Ω(N).

4 Computational results
We present in this section the modular polynomials we have computed with Streng invariants
and with the b′i. The experimental findings given in this section and proved in the next one
are used to optimize the implementation of the computation of the modular polynomials (see
Section 6).

4.1 Modular polynomials with the invariants of Streng

With the algorithm we have presented in Section 3.1, Régis Dupont [10] has calculated the
modular polynomials with Igusa invariants for p = 2 but because of the large size of the
coefficients and the large degrees of the rational fractions in j1, j2 and j3, he has calculated
only the denominators for p = 3 and the degrees of the rational fractions.

We begin with some notations to compare the results found between the Igusa and the
Streng invariants (see Definitions 13 and 28). For p = 2, the number of isogenies is p3 + p2 +
p+ 1 = 15. Denote for ` = 2, 3

Φ1,2(X) = X15 +
14∑
i=0

A1,i(i1, i2, i3)
B1,i(i1, i2, i3)X

i and Ψ`,2(X) =
14∑
i=0

A`,i(i1, i2, i3)
B`,i(i1, i2, i3)X

i.

We consider the quotient Aj,i/Bj,i as the i-th coefficient of the j-th modular polynomial. The
numerator and the denominator of each coefficient are polynomials in Z[i1, i2, i3].

We recall that Dupont found that the denominators of the three polynomials were of the
form 1428jα1D2(j1, j2, j3)6 for some integer α ranging between 5 and 21 and D2 of degrees 5,
7 and 5 in respectively j1, j2, and j3 (see [10, Pages 225–226] for these results and for the
definition of D2). With Streng invariants, we have found that the denominators are of the
form ciα3D

′
2(i1, i2, i3) for Φ1,2 and of the form ciα3 (D′2(i1, i2, i3))2 for the others, where c is a

constant in Z, α varies from 0 to 3, and

D′2 = (24576i3i51 + (96i32− 4608i3i2)i41 + (−6220800i3i2− 12288i23)i31 + (−23328i42− 48i3i32 +
1088640i3i22 + 2304i23i2 + 24883200i23)i21 + (93312i3i32 + 419904000i3i22− 5909760i23i2 + (1536i33−
8398080000i23))i1 + (1417176i52 − 5832i3i42 + (6i23 − 94478400i3)i32 + 287712i23i22 + (−288i33 +
1154736000i23)i2 + (−248832i33 + 755827200000i23)))

is irreducible. It is clearl that the exponents of D2 and D′2 are related to the exponent of h10 in
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the definition of the different j-invariants. Denote by di,j,` the degree of the numerator of the
`-th coefficient of the i-th modular polynomial in ij (see Definition 27) and αi,` the exponent
of j3 appearing in the denominator of the `-th coefficient of the i-th polynomial. The degrees
found are written in Table 1.

` d1,1,` d1,2,` d1,3,` α1,` d2,1,` d2,2,` d2,3,` α2,` d3,1,` d3,2,` d3,3,` α3,`
0 25 11 11 3 30 17 15 3 33 17 16 3
1 23 11 11 3 28 17 15 3 31 17 16 3
2 23 11 11 3 28 17 15 3 31 17 16 3
3 21 11 11 3 26 17 15 3 29 17 16 3
4 21 11 11 3 26 17 15 3 29 17 16 3
5 20 11 10 3 25 17 14 3 28 17 15 3
6 20 11 10 3 25 17 14 3 28 17 15 3
7 18 10 9 2 23 17 14 3 26 17 15 3
8 18 10 9 2 23 16 13 2 26 16 14 2
9 16 10 8 2 21 15 12 2 24 15 13 2
10 16 8 7 1 21 15 12 2 24 15 13 2
11 15 8 7 1 20 13 11 1 23 13 12 1
12 15 7 7 1 20 13 11 1 23 13 12 1
13 11 6 5 0 16 12 10 1 20 12 11 1
14 8 5 4 0 13 11 8 0 16 11 9 0

Table 1: Degrees of the numerators of the modular polynomials with Streng invariants for
p = 2

The degrees of the numerators of the coefficients of the modular polynomials found by
Dupont for the Igusa invariants vary from 37 to 60 in j1, from 50 to 75 in j2 and from 33 to 50
in j3 for Φ1,2(X) while they do not exceed 25 with Streng invariants. The size of the integers
in the former case is bounded by 210 decimal digits and by 105 in the latter case. Moreover,
the three polynomials computed by Dupont (and accessible at his website) fill 57 MB and the
others 2.1 MB. Thus the Streng invariants provide smaller modular polynomials in terms of
degree, precision and total space.

We also managed to compute the three modular polynomials with Streng invariants for
p = 3. The number of isogenies is 40. The denominators have the same properties as described
before: they are of the form ciα3 (D′3(i1, i2, i3))2 for Φ1,3 and of the form ciα3 (D′3(i1, i2, i3))4 for
the others. The common part D′3 is an irreducible polynomial which occurs with degrees 13,
10 and 8 in respectively i1, i2 and i3. Dupont has found that the denominators with the Igusa
invariants are of the form cjα1D3(j1, j2, j3)18, where D3 has degrees 14, 20 and 13 in respectively
j1, j2 and j3. We present some degrees of the numerators in Table 2.

The degrees are far smaller than those with the Igusa invariants which range from 243 to
420. We do not know the size of the integers of the polynomial with Igusa invariants, but in
the case of Streng invariants we have found that they can reach 550 decimal digits. The three
polynomials fill 890 MB.

4.2 Modular polynomials with the b′i

We have computed the modular polynomials for b′i for p = 3, 5 and 7 (see (6) for their defini-
tion). Note that for p = 2, these polynomials do not exist because Γ(2, 4) ∩ Γ0(2) = Γ(2, 4).
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` d1,1,` d1,2,` d1,3,` α1,` d2,1,` d2,2,` d2,3,` α2,` d3,1,` d3,2,` d3,3,` α3,`
0 61 32 32 4 87 52 48 4 92 52 49 4
1 61 32 31 4 87 52 47 4 92 52 48 4
2 61 32 31 4 87 52 47 4 92 52 48 4
...

...
...

...
...

...
...

37 41 22 21 1 67 43 37 1 72 43 39 1
38 36 21 19 0 62 42 36 1 67 42 37 1
39 31 20 17 0 57 41 33 0 62 41 35 0

Table 2: Degrees of the numerators of the modular polynomials with Streng invariants for
p = 3

This time there is only one common denominator Dp for all the coefficients of the three poly-
nomials (there are no constants and no powers of one of the b′i). For example, we have

D3 = 1024b′63 b′62 b′10
1 − ((768b′83 + 1536b′43 − 256)b′82 + 1536b′83 b′42 − 256b′83 )b′81 + (1024b′63 b′10

2 +
(1024b′10

3 +2560b′63 −512b′23 )b′62 −(512b′63 −64b′23 )b′22 )b′61 −(1536b′83 b′82 +(−416b′43 +32)b′42 +32b′43 )b′41 −
((512b′63 − 64b′23 )b′62 − 64b′63 b′22 )b′21 + 256b′83 b′82 − 32b′43 b′42 + 1.

For p = 5 (resp. p = 7), the denominator occurs with exponents 70 (resp. 226) in the
three b′i. These three denominators have interesting properties. They are symmetric, the
exponents of the b′i are always even and there are relations modulo 2 and 4 between the
exponents of each monomial. We have also noted similar properties for the numerators. In
particular, we have noted that for p = 3 and 5, Ψ2,p(X, b′1, b′2, b′3) = Ψ3,p(X, b′1, b′3, b′2) and
Φ1,p(X, b′1, b′2, b′3) = Φ1,p(X, b′1, b′3, b′2). Moreover, the total degrees for the denominators are
24, 120 and 226, which always seems to be p3 − p. We will prove all this in the next section.

Table 3 shows a few of the degrees for p = 3. This table can be compared with the results
found with the j-invariants (see Table 2). The notation is similar as before.

` d1,1,` d1,2,` d1,3,` d2,1,` d2,2,` d2,3,`
0 40 10 10 37 13 12
1 37 12 12 36 15 14
2 38 14 14 37 17 16
3 39 16 16 36 19 18
4 36 16 16 35 19 18
...

...
...

35 21 16 16 22 19 18
36 20 16 16 19 19 18
37 17 16 16 16 17 16
38 14 14 14 15 15 14
39 13 12 12 12 13 12

Table 3: Degrees of the numerators of the modular polynomials with the b′i for p = 3

Table 4 indicates the minimal and maximal degrees each of the b′i do take for the differents
modular polynomials for p = 5 and 7.
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min-max of b′1 b′2 b′3
Φ1,5 75-156 70-92 70-92
Ψ2,5 72-155 75-97 72-94
Φ1,7 233-400 226-272 226-272
Ψ2,7 230-397 233-279 230-276

Table 4: Degrees of the numerators of the modular polynomials with the b′i for p = 5, 7

The integers have about 10, 60 and 190 decimal digits for respectively p = 3, 5 and 7. The
three polynomials fill 270 KB for p = 3 (which is 3000 times smaller than the total space of the
modular polynomials with Streng invariants for p = 3), and 305 MB for p = 5 while only the
two first fill 29 GB for p = 7 (we do not have computed the third because it would have taken
too much time and we have assumed that there is the same symmetry as in the cases p = 3
and p = 5, so that the third polynomial can be deduced from the second one). Compared to
the polynomials found with the invariants of Streng for p = 3, these invariants produce smaller
polynomials in terms of degree, precision and total space.

5 Analysis of the results

5.1 Humbert surfaces

In this section we will examine the meaning of the denominators appearing in the different
modular polynomials. The principal tool we use is the notion of Humbert surface, which have
been studied in [24].

Let ∆ ≡ 0, 1 mod 4 and ∆ > 0. We call the Humbert surface H∆ of discriminant ∆ the
irreducible surface of matrices which are equivalent to some Ω =

(
Ω1 Ω2
Ω2 Ω3

)
in Γ2\H2 satisfying

kΩ1 + `Ω2 − Ω3 = 0 where k and ` are determined uniquely by ∆ = 4k + ` and ` ∈ {0, 1}.
These surfaces are of particular interest for us because of the next proposition which states

that Lp = Hp2 .

Proposition 36. Let m be a positive integer. Then the Humbert surface Hm2 is the moduli
space for isomorphism classes of principally polarized abelian surfaces which split as a product
of two elliptic curves via an isogeny of degree m2.

Proof. See [24, Proposition 2.14].

For each discriminant ∆ there is an irreducible polynomial L∆(j1, j2, j3) whose zero set
is the Humbert surface of discriminant ∆. Thus, by Lemma 17, Lp2(j1, j2, j3) divides the
denominators of the modular polynomials with the Igusa invariants. The exponent to which
Lp2(j1, j2, j3) appears in the denominator seems to depend on the exponent of the h10 in the
definition of the j-invariants. A heuristic reason for the factor jα1 in the denominator of a
coefficient of a modular polynomial is to compensate for the case where h12(Ω) = 0 (recall
Definition 13). With Streng invariants, there is a factor iα3 to compensate for the case where
h4(Ω) = 0 (recall Definition 28). Note that j1 (resp. i3) has the greatest exponent of h12 (resp
h4) in its definition among j1, j2, j3 (resp i1, i2, i3).
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Moreover, a formula for the degree of these surfaces exists. Let

ap2 := 24
∑
x∈Z,

4|(p2−x2)

σ1

(
p2 − x2

4

)
+ 12p2 − 2

with σ1(n) =
∑
d|n d the sum of positive divisors function. Then

Theorem 37. The degree of any Humbert surface of discriminant p2 can be obtained by the
formula

v(p2) deg(Hp2) + 5 =
ap2

2 where v(p2) =
{

1/2 if p = 2
1 otherwise.

Proof. See [24, Theorem 3.8].

Applying this formula gives deg(H4) = 60 and deg(H9) = 120. Here, the degree of the
surfaces is the degree of the homogenous form of L∆ with weight (4, 6, 10, 12) for the functions
(h4, h6, h10, h12) (see [27, Pages 170–172]). We have then substituted the j-invariants of the
common denominator for p = 2 and p = 3 by their definition in terms of the hi and multiplied
by a power of h10 to homogenize. The degree we have found for p = 2 is 100 (resp. 300)
with the invariants of Streng (resp. of Igusa), but there is a factor h10

4 (resp. h20
12) and we

have 100 − 40 = 60 (resp. 300 − 240 = 60). This factor can be explained by the fact that
the j-invariants are zero when h4 = 0 (resp. h12 = 0). For p = 3, we have found (for Streng
invariants) that the degree is 200 and there is a factor h20

4 . We have then 200− 80 = 120.
We study now what happens for our modular polynomials with the theta constants. We also

have a formula for the degree due to the work of Runge ([39], see also [24]) who considered finite
covers of Γ2\H2 for the study of Humbert surfaces because of the large degrees and coefficients
of the polynomial with the j-invariants. Define Γ∗(2, 4) to be the largest normal subgroup
of Γ(2, 4) which does not contain the matrix diag(−1, 1,−1, 1). The natural projection π :
Γ∗(2, 4)\H2 → Γ2\H2 is a finite map. We say that each component of π−1(Hp2) in Γ∗(2, 4)\H2
is a Humbert component and it is possible to define an order v′i(p2) for each irreducible Humbert
component Fp2,i. Since Γ∗(2, 4) is normal, these components have the same degree. Moreover
by [39], any irreducible component of the covering of Hp2 is given by the zero set of a single
irreducible polynomial.

Proposition 38. The degree of any Humbert component Fp2,i in Γ∗2,4\H2 is given by the
formula

ap2 = 10(1 + deg(Fp2,i)).

Proof. See [24, Proposition 3.9].

Proposition 39. Let p > 2 be a prime number. The degree of Fp2,i is p3 − p.

Proof. From the degree formula above, we have that ap2 = 10(1 + deg(Fp2,i)) and from the
definition of ap2 it suffices to prove that

∑
x>0 σ1(p

2−x2

4 ) = (5p3 − 6p2 − 5p+ 6)/24. The left-
hand side can be rewritten as 1

2
∑p
k=1 σ1(k)σ1(p − k) and the result comes from the equality

1
2iπG

′
2(Ω) = 5

6G4(Ω) − 2G2(Ω)2 of [51] where Gi is the ith Eisenstein series (in genus 1).
(Moreover, using the fact that σ1 is multiplicative, it can be shown that for all p > 2, the
degree of F4p2,i is also p3 − p, but we do not need this result).
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In our case, we use Γ(2, 4) and not Γ∗(2, 4), but we noted that the total degrees found for
p = 3, 5 and 7 is always p3 − p. The reason for this is that the degree formula depends on the
number of Humbert components and the order of some isotropy subgroup and these numbers
are equal for the groups Γ∗(2, 4) and Γ(2) (see [24]) so that it is the case for Γ(2, 4) because
Γ∗(2, 4) < Γ(2, 4) < Γ(2). Thus the degree formula of a component of discriminant p2 for
the group Γ(2, 4) is the same as those for the group Γ∗(2, 4), namely p3 − p. Note that the
definition of degree here is the total degree of the polynomial because the θi(τ/2) are Siegel
modular forms of weight 1 for Γ(2, 4).

Consider this time the locus L′p of all the principally polarized abelian surfaces modulo
Γ(2, 4) that are (p, p)-isogenous to a principally polarized abelian surface Ω which is isogenous
to a product of two elliptic curves by the (2, 2)-isogeny Ω → Ω/2 and such that θ0(Ω/2) = 0
(recall that b′i(Ω) := θi(Ω/2)/θ0(Ω/2) and Proposition 12).

Proposition 40. The denominators of the modular polynomials for the functions b′1, b′2, b′3 are
divisible by a polynomial L′p in Q[b′1, b′2, b′3] describing the preceding locus.

Proof. We adapt the proof of lemma 6.2 of [5]. Let Ω ∈ Γ(2, 4)\H2 which is (p, p)-isogenous
to Ω′ such that θ0(Ω′/2) = 0. Let c be a coefficient of the polynomial Φ1,p. For some
γ ∈ Γ(2, 4)/(Γ(2, 4) ∩ Γ0(p)), b′1,p(γΩ) is infinite. The evaluation of c at Ω is a symmetric
expression in the b′γ1,p(Ω)’s. Generically, there is no algebraic relation between these values and
the evaluation of c at Ω is therefore infinite. Since the b′i(Ω) are finite, the numerator of c is
finite. We conclude that the denominator of c must vanish at Ω, which means that c is divisible
by a polynomial describing the locus. The proof for Φ`,p, ` = 2, 3 proceeds similarly.

We have noticed that for p = 3, 5 and 7, the coefficients of the three modular polynomials
with the b′i always have L′p has denominator (unlike the case with the j-invariants where there
also is a factor j1 or i3, as explained in Section 4). This justified the following conjecture,
which will be used in the next sections.

Conjecture 41. The polynomial L′p is the denominator of all the coefficient of the three
modular polynomials.

5.2 Symmetries

As mentioned above (Section 4.2), we have noticed for p = 3, 5 that Ψ2,p(X, b′1, b′2, b′3) =
Ψ3,p(X, b′1, b′3, b′2) and for p = 3, 5, 7 that Φ1,p(X, b′1, b′2, b′3) = Φ1,p(X, b′1, b′3, b′2). These sym-
metries have the following meaning. For each variety Ω ∈ Γ(2, 4) and pΩ having invari-
ants (b′1(Ω), b′2(Ω), b′3(Ω)) and (b′1,p(Ω), b′2,p(Ω), b′3,p(Ω)), there exists a variety with invari-
ants (b′1(Ω), b′3(Ω), b′2(Ω)) and such that one of its (p, p)-isogenous varieties has invariants
(b′1(pΩ), b′3(pΩ), b′2(pΩ)).

A proof of this can be obtained by looking at the action of some matrices. Indeed, we have
that Φ1,p is the minimal polynomial of b1,p, which means it is the unique polynomial such that
for all Ω ∈ H2, Φ1,p(x, b′1(Ω), b′2(Ω), b′3(Ω)) = 0 if and only if x = b′1,p(Ω); hence Φ1,p(b′1,p(γΩ),
b′1(γΩ), b′2(γΩ), b′3(γΩ)) = 0 for all γ ∈ Γ2. What we are looking for is a matrix that fixes b′1
and b′1,p and interchanges b′2 with b′3 and b′2,p with b′3,p. This action on Φ1,p(X) would provide a
unitary polynomial with the same roots and degree as Φ1,p(X) and since Φ1,p(X) is a minimal
polynomial, they both have to be equal.
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Assume that we have the symmetry for Φ1,p. Then by Definition 27 we have b′`,p =
Ψ`,p(b′1,p)/Φ′1,p(b′1,p) for ` = 2, 3. We use this action on Ψ2,p(X) which gives us

b′3,p = Ψ2,p(b′1,p, b′1, b′3, b′2)/Φ′1,p(b′1,p, b′1, b′2, b′3),

so that
Ψ2,p(b′1,p, b′1, b′3, b′2) = b′3,pΦ′1,p(b′1,p, b′1, b′2, b′3) = Ψ3,p(b′1,p, b′1, b′2, b′3).

Firstly, the search is done among the representatives of Γ2/Γ(2, 4) because Γ(2, 4) fixes the
b′i. A representative of the unique class such that (b′γ1 , b

′γ
2 , b

′γ
3 ) = (b′1, b′3, b′2) is

γ =
(

1 −3 −2 2
0 1 2 0
0 0 1 0
0 −4 −5 1

)
.

Secondly, we look for a matrix γ′ in Γ(2, 4) such that γγ′ ∈ Γ0(p). For p = 3, 5 and 7 we
can take for γ′ respectively(−5 24 −12 12

−2 19 −12 8
0 6 −5 2
−2 4 0 3

)
,

(−7 6 4 2
0 −7 2 0
0 10 −3 0
10 −8 −6 −3

)
and

( 13 12 −16 −6
−10 −3 10 4
56 14 −55 −22
30 −40 −12 −7

)
.

Recall that for a matrix X, we denote by X0 the vector composed of the diagonal entries
of X.

Lemma 42. Let M =
(
A′ B′

C′ D′

)
∈ Γ2/Γ(2, 4) and M ′ ∈ Γ(2, 4) such that MM ′ ∈ Γ0(p), for

some prime p > 2. Then (MM ′)p is in the same equivalence class as M for all p ≡ 1 mod 4.
For p ≡ 3 mod 4, this is the case if we have the additional properties (A′ tB′)0 ≡ 0 mod 2 and
(C ′ tD′)0 ≡ 0 mod 2.

Proof. Let MM ′ =
(
A B
C D

)
. We study under which conditions (MM ′)pM−1 ∈ Γ(2, 4) or,

equivalently, when (MM ′)p(MM ′)−1 is in Γ(2, 4). We have(
A pB
C/p D

) (
tD − tB
− tC tA

)
=
(
A tD−pB tC −A tB+pB tA
C/p tD−D tC −C/p tB+D tA

)
,

where
(

tD − tB
− tC tA

)
is the inverse of M by Equation (1). As p ≡ 1 mod 2, this product is the

identity modulo 2. Now for p ≡ 1 mod 4, we have −A tB + pB tA ≡ C/p tD −D tC ≡ 0 mod 4
(recall that this product is in Γ2) so that (MM ′)p(MM ′)−1 ∈ Γ(2, 4). For p ≡ 3 mod 4, we
have −A tB + pB tA ≡ 2A tB mod 4 and C/p tD −D tC ≡ 2C tD mod 4. Thus to be in Γ(2, 4),
we want (A tB)0 ≡ (C tD)0 ≡ 0 mod 2. Finally note that M ′ ≡ I4 mod 2 and we deduce the
lemma.

By this lemma, we have that (γγ′)p is in the same equivalence class as γ for any prime
p > 2, hence the permutation (b′γγ

′

1,p , b
′γγ′

2,p , b
′γγ′

3,p ) = (b′1,p, b′3,p, b′2,p). Moreover the surjectivity of
Sp4(Z) → Sp4(Z/4pZ) and the Chinese remainder theorem prove that the matrix γ′ always
exists. Thus there are these symmetries for all prime p > 2 (see Theorem 44).

By the above we have also proved that the denominator is always symmetric in b′2 and b′3.
To prove that L′p is also symmetric in b′1 and b′2 (resp. b′1 and b′3), we use the matrices

γ410 =
( 0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0

)
and γ8316 =

(
1 0 0 2
−3 1 2 −2
−4 0 1 −5
0 0 0 1

)
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which fixes b′3 (resp. b′2) and interchanges b′1 with b′2 (resp. with b′3).
The action of γ410 (resp. γ8316) on L′p provides an irreducible polynomial and with the

same roots as L′p, which are still in L′p by the following lemma. Hence this polynomial is L′p
and thus it is symmetric.

Lemma 43. Let Ω ∈ L′p, γ =
(
A B
C D

)
∈ Γ2/Γ(2, 4) and γ′ such that γp is in the same equivalence

class of γ′. Suppose that the action of γ′ on the theta constants sends {0, 4, 8, 12} to itself.
Then γΩ is in L′p.

Proof. For Ω ∈ Γ(2, 4)\H2 to be in L′p means that there exists M ∈ Γ(2, 4)/(Γ(2, 4) ∩ Γ0(p))
satisfying θ0(pMΩ/2) = 0. LetM ′ ∈ Γ(2, 4)/(Γ(2, 4)∩Γ0(p)) be such that (M ′γ)M−1 ∈ Γ0(p).
There exists then γ′′ ∈ Γ0(p) with M ′γ = γ′′M . We have, using the duplication formula
(Proposition 11)

θ0(pM ′γΩ/2) = θ0(pγ′′MΩ/2) = θ0(γ′′p (pMΩ)/2) =
∑

i∈{0,4,8,12}
θ2
i (γ′′p (pMΩ)).

Moreover, γ′′p = (M ′γM−1)p is in the same equivalence class as γp, namely γ′ by hypothesis
(recall that Γ(2, 4) is a normal subgroup). The action of γ′ sends {0, 4, 8, 12} to itself, so that∑

i∈{0,4,8,12}
θ2
i (γ′′p (pMΩ)) = ζ2

γ′′
p

det(...)
∑

i∈{0,4,8,12}
θ2
i (pMΩ) = ζ2

γ′′
p

det(...)θ0(pMΩ/2) = 0.

We have proved

Theorem 44. Let p > 2 be a prime number. The modular polynomials for b′1, b′2 and b′3 satisfy

Φ1,p(X, b′1, b′2, b′3) = Φ1,p(X, b′1, b′3, b′2) and Ψ2,p(X, b′1, b′2, b′3) = Ψ3,p(X, b′1, b′3, b′2).

Morover, the polynomial L′p is symmetric.

5.3 Relations modulo 2 and 4

We study now the different relations modulo 2 and 4 between the exponents of the b′i in each
coefficient. Consider the numerator of the `-th coefficient of the m-th modular polynomial for
m = 1 or 2 (we have seen that the third polynomial can be deduced from the second one),
whose monomials are of the form cijkb

′i
1 b
′j
2 b
′k
3 . We have found that for p = 3, 5 and 7, if cijk 6= 0,

then

i ≡ `+m+ 1 mod 2
i+ j ≡ −p` mod 4
j + k ≡ p(m− 1) mod 4

(7)

and with similar notation, we always have

i ≡ j ≡ k ≡ 0 mod 2 and i+ j ≡ j + k ≡ 0 mod 4 (8)

for the denominators. These equalities are determined by the existence of some matrices γ
with the property that b′i(γΩ) = ıαib′i(Ω) and b′i,p(γΩ) = ıβib′i,p(Ω) with αi and βi in {0, 1, 2, 3}.
We will denote the action of such matrices by the vector (α1, α2, α3, β1, β2, β3).
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With the same arguments as before, we deduce that such an action produces a polynomial
with the same roots and degrees as Φ1,p(X) (resp. Ψ2,p(X)) which is then Φ1,p(X) (resp.
Ψ2,p(X)) up to a constant. As p3 + p2 + p + 1 ≡ 0 mod 4 for any prime p > 2 and as the
leading coefficient of Φ1,p(X) is Xp3+p2+p+1, we conclude that such an action does not change
Φ1,p(X). This is not the case of Ψ2,p(X) which is of degree p3 + p2 + p in X.

The matrix
γ134 =

(−1 0 0 0
0 −1 0 0
2 1 −1 0
1 0 0 −1

)
acts by (−1, 1, 1,−1, 1, 1) for all p by the functional equation of Proposition 8 and Lemma 42.

Using lemma 43 shows that this matrix preserves the Humbert component (and (γ134)p is
in the same equivalence class of γ134 by Lemma 42). Thus we obtain a polynomial with the
same roots and degrees as L′p: it is a multiple of L′p. As the latter is irreducible, it contains at
least one monomial where there is not b′1 so that the matrix does not change this monomial
and the constant is thus 1. As L′p is symmetric, we deduce that it has even exponents in b′1,
b′2 and b′3.

If we assume Conjecture 41, then we just proved that the action of γ134 on the numerators
do not depend on its action on the denominator. Then, on the numerators of Φ1,p, the action
of γ134 shows that i+ ` is always even. For Ψ2,p(X), we have to determine the constant which
appears. The leading coefficient of this polynomial is

∑
γ∈Cp

b′γ2,pX
p3+p2+p. Consider now the

minimal polynomial
∏
γ∈Cp

(X−b′γ2,p) of b′2 and note that it is invariant by the preceding action,
which is thus also the case of

∑
γ∈Cp

b′γ2,p. We deduce that the constant is −1 (because of the
Xp3+p2+p), namely ∑

γ∈Cp

b′γγ134
2,p (b′γ134

1,p )p3+p2+p = −
∑
γ∈Cp

b′γ2,p(b′1,p)p
3+p2+p.

We have thus shown the first of the three equalities of (7).
For the other two, we have to consider the matrices

γ141 =
(−1 0 0 0

0 −1 0 0
1 1 −1 0
1 1 0 −1

)
and γ21 =

(−1 0 0 0
0 −1 0 0
0 0 −1 0
0 1 0 −1

)
.

Their action for p ≡ 1 mod 4 are respectively (ı, ı, 1, ı, ı, 1) and (1, ı, ı, 1, ı, ı) and for p ≡ 3 mod 4
it is (ı, ı, 1,−ı,−ı, 1) and (1, ı, ı, 1,−ı,−ı) because in this case (γ141)p and (γ21)p are equivalent
to

γ1886 =
(−1 0 0 0

0 −1 0 0
−1 1 −1 0
1 −1 0 −1

)
and γ155 =

(−1 0 0 0
0 −1 0 0
0 0 −1 0
0 3 0 −1

)
.

On L′p, the action of γ141 does not change the Humbert component by Lemma 43, so that
L′p(ıb′1, ıb′2, b′3) is a multiple of L′p.

As L′p is irreducible, there is a monomial without b′1, which is then of the form cb′i2 b
′j
3 for

some constant c. We have already shown that i ≡ j ≡ 0 mod 2 so that c(ıb′2)ib′j3 = ±cb′i2 b
′j
3 . If

it is equal, then the action of γ141 fixes L′p. Otherwise i ≡ 2 mod 4 and as L′p is symmetric, we
also have the monomials cb′i1 b

′j
2 and cb′i3 b

′j
2 . Now look at the latter: cb′i3 (ıb′2)j = ±cb′i3 b

′j
2 . If it

is not equal, then j ≡ 2 mod 4 and then c(ıb′1)i(ıb′2)j = cb′i1 b
′j
2 . In all cases, the action of γ141

fixes L′p. We can adapt this proof on γ121 and deduce (8).
We use similar arguments on Φ1,p(X) and Ψ`,p(X) to prove (7). Thus we obtain
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Theorem 45. Let p > 2 be a prime number. Then the polynomial L′p satisfy (8). Moreover,
if we assume the Conjecture 41, the numerators of the two first modular polynomials verifies
(7).

6 Implementation

6.1 External packages

Dupont presented two algorithms to compute theta functions. The first one uses the definition
as sums of exponentials and it computes θi(Ω) for i = 0, 1, 2, 3, Ω ∈ F2 at precision N with a
complexity of O(M′(N)N). The second one uses Newton lifts and the Borchardt mean and
is in O(M′(N) log(N)) under Conjecture 23. It computes θ2

i (Ω)/θ2
0(Ω), i = 1, 2, 3. These

algorithms have been studied and implemented by Enge and Thomé in [18, 19]. Using finite
differences, they proved that the complexity to compute the squares of the theta constants is
in O(M′(N) log(N)) under conjecture 23.

We used the cmh library written in C for the evaluation of the square of the theta functions
(we also recovered from it the implementation of Mestre’s algorithm and some other functions
that were already written in GP) and we used the pari-gnump software [14] for switching
between number types from the GNU multiprecision ecosystem (GMP, MPFR and MPC [23,
25, 16]) and corresponding types in Pari/GP to be able to use the algorithm of cmh with GP.

There are two reasons for which the algorithms to compute the theta constants are defined
for Ω only in the fundamental domain. The first one is for the convergence and the second is
because we can use the functional equation of Proposition 8 to obtain the theta constants at
Ω ∈ H2 from the theta constants at Ω′ ∈ F2. We have implemented an algorithm to compute
the squares of the theta constants for any matrix in H2 with GP [1].

For Algorithm 33, we need a method to reduce some Ω ∈ H2 into the fundamental domain.
We implemented the standard method (see [22, 10]). We also used the code of Pascal Molin
[35] to compute Ω ∈ H2 corresponding to a given hyperelliptic curve equation.

Moreover, we have to know the cosets of Γ(2, 4)/(Γ0(p) ∩ Γ(2, 4)) for some primes p. They
are naturally calculated beforehand. A generalization of Algorithm 2 of [10] to dimension 2
allows one to compute, for subgroups Γ′ ⊂ Γ of Γ2, the representatives of the classes of Γ/Γ′
and a set of generators of Γ′ from a set of generators of Γ and from a function which decides
if a matrix lies in Γ′ or not. We apply it twice: first on Γ = Γ2 and Γ′ = Γ(2, 4), then on
Γ = Γ(2, 4) and Γ′ = Γ0(p) ∩ Γ(2, 4). Another solution consists in using Proposition 10.1 of
[10] which provides a set of representatives of Γ2/Γ0(p) for all p ≥ 2. We have to multiply
each representative by a matrix in Γ0(p) such that the resulting matrix is in Γ(2, 4), which is
possible by the Chinese remainder theorem.

6.2 Evaluation and interpolation

Until now we have presented the algorithm from a theoretical point of view. In practice,
we proceed as follows. Since we want to use fast interpolation, it is necessary to know the
degrees of the coefficients in the three invariants f1, f2 and f3. For example, let F (f1, f2, f3)
be one of the coefficients we want to compute. To obtain the total degree of the numerator
and of the denominator of F , it is enough to compute the matrices Ω in the Siegel space with
Algorithm 33 such that (f1(Ω), f2(Ω), f3(Ω)) = (xi, xiy, xiz) for some xi and fixed y and z,
to evaluate F (xi, xiy, xiz) and then to do the interpolation of a univariate rational fraction.
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This also gives upper bounds for the degrees in f1, f2 and f3. To obtain the degrees in f1
(and similarly in the others), we can compute F (xi, y, z) and interpolate, but this will not give
the a correct answer every time (even if we assume that the precision is correct and that we
have enough xi). Indeed, some simplifications may occur. Thus, to be sure of the result, it is
preferable to evaluate and interpolate for many values of y and z and also for F (X+r, y+s, z+t)
for some values of r, s and t.

Once we have this information, we have two choices for how to proceed. The first consists in
doing sufficiently many evaluations to compute all the coefficients (in X) of the three modular
polynomials with interpolation of rational fractions. An evaluation means the computation of
the modular polynomials at Ω such that (f1(Ω), f2(Ω), f3(Ω)) is of the form (xi, xiyj , xizk).
Otherwise we focus first on only one coefficient (the one with the lowest total degree) to
compute the common denominator and then we do sufficiently many evaluations (here of
the form (xi, yj , zk)) to compute the other coefficients using interpolations of multivariate
polynomials. We can speak about polynomials because we can multiply each evaluation by the
evaluation of the denominator (and in the case of the Streng invariants, also by an exponent
of i3).

In the first case, the number of evaluations will depend on the maximal total degree of
the three polynomials, while in the second case, the total degree will intervene only for the
coefficient with lowest degrees. Moreover, the precision needed to interpolate rational fractions
is greater than those to interpolate polynomials (and the complexity of an evaluation of the
modular polynomials at some matrices of H2 depends on the precision) and it is easier to
interpolate polynomials than rational fractions. For the second choice, the degree tables suggest
focusing on the coefficient of highest degree (in X) of Φ1,p(X).

One can choose to take integer values for the invariants. The matrix Ω with these invari-
ants and also the invariants of the isogenous varieties will not take integer values, but each
coefficient of the evaluated modular polynomials will be a rational number. Thus it could be
possible at each evaluation to find these rational numbers using continued fractions (if the
working precision is good enough). The interpolation phase could then be done using exact
values. However when doing this, the precision needed in practice will increase and the time of
evaluation too. It is preferable to take floating point values for the invariants and reconstruct
the rational numbers once the polynomials have been interpolated at the working precision to
find the exact coefficients.

6.3 Timings

Note that in the evaluation there are two steps: given (f1(Ω), f2(Ω), f3(Ω)) find Ω and then eval-
uate the modular polynomials at Ω. The last one takes most of the time (at large enough preci-
sion). For example for p = 5 and 7 at precision 1000 decimal digits it takes 0.5 seconds to com-
pute Ω from the b′i(Ω) and the computation of the two polynomials Φ1,p(X, b′1(Ω), b′2(Ω), b′3(Ω))
and Ψ2,p(X, b′1(Ω), b′2(Ω), b′3(Ω)) take 12 and 30 seconds for respectively p = 5 and p = 7 (this
difference is due to the number of isogenies: 156 for one and 400 for the other).

We focus now on the computation of the modular polynomials with Streng invariants (re-
call the results of Section 4.1). We proceed with the second method which is not always faster
(because it requires two evaluation steps), but it has the advantage of providing the denom-
inator which is the origin of most of the difficulties when computing modular polynomials.
Moreover, we do the interpolation of univariate rational fraction with linear algebra because
it is fast enough.
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In level 2, the largest total degree, of the numerator of the coefficient of degree 14 of
Φ1,2(X) is 9 and that of the denominator D′2 is 7. To compute the denominator it is enough
to do (9 + 7 + 2)(5 + 1)(4 + 1) = 540 evaluations. Once we have computed them, we do
(33 + 1)(17 + 1)(16 + 1) = 10404 evaluations to compute the numerators (see Table 1). All of
this can be done at a precision of 100 decimal digits. An evaluation takes around 1.33 second
so that the denominator can be computed in around 12 minutes and all the polynomials in 4
hours (on one processor).

In level 3, the total degrees are 35 for both the numerator (of the coefficient of degree 39
of Φ1,3) and the denominator. The denominator can be computed with (35 + 35 + 2)(20 +
1)(17 + 1) = 27216 evaluations in 17 hours at precision 300 and then all the numerators with
(92+1)(52+1)(49+1) = 246450 evaluations (see Table 2) in around 30 days at precision 1000.
(The difference in precision here comes from the fact that the integers of the denominator are
much smaller than the integers of the numerators). The interpolation phase takes around 1
hour.

To compute the modular polynomials with the b′i, we can use the results found in Sections
4.2 and 5. In particular, we only have to compute the first two modular polynomials.

For p = 3, the total degrees are 25 and 24 for the numerator and the denominator of the
39-th coefficient. It takes around (25 + 24 + 2)(12 + 1)(12 + 1)/32 ≈ 270 evaluations to obtain
the denominator and around (40 + 1)(19 + 1)(18 + 1)/32 ≈ 487 for the numerators (see Table
3). We used 100 decimal digits for the precision and then an evaluation takes approximately
0.6 seconds so that the (two and thus the three) modular polynomials can be obtained in less
than 10 minutes (the interpolation phase is negligible).

For p = 5, the total degrees are 121 and 120 for the numerator and the denominator of
the 155-th coefficient. The theoretical numbers of evaluations for the denominator and the
numerators are (121 + 120 + 2)(72 + 1)(72 + 1)/32 < 40500 and (156 + 1)(97 + 1)(94 + 1)/32 <
46000 (see Table 4). They can be done at precision 1000 decimal digits where each evaluation
takes roughly 12 seconds. The polynomials can be calculated in less than 12 days (on one
processor). The interpolation can be done in less than 2 hours.

For p = 7, we have computed at first the common denominator because of memory space
(the two first polynomials fill 29 GB). Moreover we found that the leading coefficient of the
denominators in b′1 is respectively 210b′62 b

′6
3 b
′10
1 and 270b′10

2 b′10
3 b′70

1 , so that we conjectured it
would be of the same kind for p = 7. Through some experimentations, we found that it was
2226b′38

2 b′38
3 b′226

1 . Knowing this monomial allows one to interpolate as explained in the second
paragraph after Remark 19, which reduces the number of evaluations because this number
depends on the degree in b′1 instead of the total degree.

The degrees of the 399-th coefficient are 233 and 226 (and the total degrees are 337 and
336 so that the gain is significant). The number of evaluations for the denominator was around
(233 + 226 + 2)(226 + 1)(226 + 1)/32 < 727000 and for the numerators of the two modular
polynomials around (400+1)(279+1)(276+1)/32 < 972000 (see Table 4). For the denominator,
we managed to compute it in less than 700 days at precision 2000 and for the numerators in
around 2000 days at precision 3000. The interpolation time was around a week. It is negligible
compared to the evaluation time.

Finally note that each evaluation is independent of the others so that the computation of
modular polynomials is highly parallelizable. The interpolation of a coefficient is independent
of the interpolation of the others so that the interpolation step is also parallelizable. Moreover,
it is possible to parallelize the interpolation of a single coefficient.
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7 Examples of isogenous curves
The main purpose of the modular polynomials is to find hyperelliptic curves with isogenous Ja-
cobians, in particular over a finite field. We give some examples with the different polynomials
we have computed. Note that the algorithm we have presented is heuristic because we have no
bounds on the precision loss and we have no proof that the polynomials we found are correct.
We could do interval arithmetic; what we do instead is to heuristically check for correctness
on additional random values not yet used during the evaluation/interpolation algorithm: for
some Ω ∈ H2, we have to verify that

Φ1,p(f1,p(Ω), f1(Ω), f2(Ω), f3(Ω)) = 0

and that for ` = 2, 3

f`,p(Ω) = Ψ`,p(f1,p(Ω), f1(Ω), f2(Ω), f3(Ω))/Φ′1,p(f1,p(Ω), f1(Ω), f2(Ω), f3(Ω)).

With one high precision computation, one can be virtually certain that the result is correct.
The Jacobians of the following curves are (3, 3)-isogenous varieties. We computed the

curves using the modular polynomials with Streng invariants. The first ones over F5261:
Y 2 = 272X5 + 4278X4 + 4297X3 + 4063X2 + 1069X + 2998,
Y 2 = 695X5 + 2322X4 + 3115X3 + 4588X2 + 1453X + 655

and the following ones over F2534267893:
Y 2 = 1774507961X6 + 48872812X5 + 2028583210X4 + 1092030439X3+

671225738X2 + 2233670825X + 608155867,
Y 2 = 1927466494X6 + 2286039407X5 + 1720123333X4 + 87910848X3+

2422852850X2 + 183139891X + 825611194.
We also give two examples of curves with (5, 5)-isogenous Jacobians computed using the mod-
ular polynomials with the b′i. Over F101:

Y 2 = 27X5 + 71X4 + 91X3 + 59X2 + 5X + 14,
Y 2 = 29X5 + 26X4 + 38X3 + 20X2 + 7X + 51

and over F4294967311:
Y 2 = 2420332800X5 + 3653091983X4 + 2536585478X3 + 2805510580X2+

159741347X + 2690010753,
Y 2 = 4076826784X5 + 2616936853X4 + 3748957676X3 + 1209100179X2+

3172892980X + 1266950302.
Finally, we give two pairs of curves with (7, 7)-isogenous Jacobians, computed using the mod-
ular polynomials with the b′i. Over F10009:
Y 2 = 4826X5 + 471X4 + 2876X3 + 5411X2 + 7948X + 1308,
Y 2 = 7218X5 + 7699X4 + 7011X3 + 7103X2 + 1845X + 4087

and over F3452678353:
Y 2 = 393356368X5 + 1698662093X4 + 471351782X3 + 448279016X2+

1342046779X + 3241061457,
Y 2 = 2171506943X5 + 2231412358X4 + 2005208933X3 + 580698082X2+

306153493X + 474327543.
The motivated reader can check the curves we have constructed with the modular polyno-

mials: it is enough to verify that the curves have the same zeta functions.
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The polynomials are accessible at the adress: http://www.math.u-bordeaux1.fr/~emilio/.
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