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Abstract

A ten-band sp3s∗ second-nearest-neighbor tight-binding model has been used to model the
electronic structure of various AlxGa1−xAs quantum cascade laser gain media. The results of the
calculations have been compared with experimental emission wavelength data, and it has been shown
that the model predicts the photon energies at the peaks in the gain coefficient spectra agreeing, on
average, to within 4 meV of the experimental values. Comparison of the results of the calculations
with results from a two-band�k · �p model shows that the tight-binding model is able to find theX-like
states simultaneously with theΓ -like states. TheseX-like states were found to be strongly localized
within the barriers. Finally, the model has also been applied to InAs/AlSb and InAs/AlSb/GaSb
QCLs.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The quantum cascade laser (QCL) is an electrically pumped semiconductor laser
that emits in the mid-infrared region of the electromagnetic spectrum. Unlike most
semiconductor injection lasers, which use electron–hole recombination to generate gain,
the QCL is unipolar and light emission takes place when electrons undergo transitions
between confinement-induced energy levels in just one band. The first demonstration of
the successful operation of a QCL was presented in [1], and was based on a design for an
electrically pumped intersubband optical amplifier [2,3].

The main application of QCLs is for gas sensing since they have been made to emit
at wavelengths in the range of at least∼3.5 µm [4] to 106 µm [5], which overlaps
the region of the electromagnetic spectrum containing molecular absorption bands.
Optimization of the maximum operating temperature, threshold current, output power
and careful control of the emission wavelength range are required to exploit fully the
capabilities of QCLs. However, the large space available for QCL gain medium design
means that an accurate tool is required to select those designs that should be carried
forward for expensive and time-consuming growth, fabrication, testing and, ultimately,
production.

This paper presents the results of calculations performed using the NanoElectronic
MOdeling 3.0.2 software package (NEMO) [6], which is a candidate for such a tool.
NEMO was developed by the Applied Research Laboratory of Raytheon TI Systems
and others as a comprehensive quantumdevice modeling package, and is based on
the non-equilibrium Green’s function formalism. Previously, NEMO has been used
for the modeling of resonant tunneling diodes [7–9]. Here, one of itssp3s∗ tight-
binding models has been used to make predictions of the photon energies,Epeak,
at which the gain coefficients of several three-well GaAs/Alx Ga1−xAs QCL gain
media are maximized. These predictions are compared to experimental results, before
the first tight-binding calculations of the electronic structure of Sb-based QCLs are
made.

With a few caveats [10,11], sp3s∗ tight-binding models [12] offer the possibility of
modeling the electronic structure of a III–V heterostructure where transport can take place
via any valley. They are also able to modelaccurately the conduction band nonparabolicity
for Γ -like states. Both of these capabilities are potentially important in a QCL, where
quantum confinement pushes the resonant states far above the bulk conduction band edge
of the well material. The atomic-like basis states used in a tight-binding model should be
better suited to modeling the electronic structure of a QCL than the bulk basis states used
in a �k · �p model. The latter set of states should be reserved for modeling heterostructures
with layer thicknesses much greater than a monolayer, where the bulk electronic structures
are only weakly perturbed.
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Fig. 1. Resonant states found for the AlAs/GaAs design of Becker et al. [13] using a second-nearest-neighbor
sp3s∗ tight-binding model. The moduli squared of the sums of the tight-binding expansion coefficients are shown
for each lattice plane. They are represented for all the resonant states using gray-scale bars and, in addition, for
the labeled pairs of states forming levels 1, 2 and 3, with curves. The electric field minimizes the splitting of the
two states forming level 3. The bulk conduction band edge energy is also plotted: for the AlAs barriers, this is the
bulk X-valley energy.

2. Nomenclature

Before discussing the calculations, it is necessary to clarify the nomenclature used to
describe the electronic resonant states in a QCL. The terms level 1, level 2 and level 3 are
often used to describe the lowest, second-lowest and third-lowest energy resonant states
in a biased three-well active region sandwiched not between the injector superlattices of a
periodically repeated structure, but barriers that are thick compared with the wave function
decay lengths. (The terminology used to describe the various layers in a three-well QCL
gain medium is indicated inFig. 1.) The introduction of the proper injection and exit
barriers and the injector superlattices on both sides of the active region introduces extra
states mostly localized in the injectors, but with some overlap with the active region states.
As the electric field applied to the device is altered, these states anti-cross with the states
in the active region, causing them to split. The most useful labeling scheme in this more
realistic picture, and theone used in this work (seeFig. 1), is to assign the terms level 1, 2
and 3 to the anti-crossedpairs of states in each active region.

Mid-infrared gain is produced by setting up a population inversion between levels 2 and
3 by engineering the device structure to maximize the non-radiative lifetime of level 3, the
stimulated emission rate from level 3 to level 2 and the polar optical phonon scattering rate
from level 2 to level 1.
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3. Method

3.1. Choice of calculation domain

A QCL gain medium contains typically 25–35 repeated stages, each comprising an
injector, an injection barrier, an active region and an exitbarrier. It is not feasible or useful
to model such a large structure directly. Instead, the electronic structure of a single period
from an infinitely repeated set of QCL stages was approximated using a biased injector
superlattice/injection barrier/active region/exit barrier/injector superlattice/injection barrier
structure, i.e. about one and a half stages. This structure was chosen to model accurately
the energies and tight-binding model expansion coefficients of the six states (three pairs)
labeled 1, 2 and 3 inFig. 1. Note that, for states localized close to the edge of the domain
(for example, the lowest-energy state shown inFig. 1), the states will only approximate
poorly to those in an infinite set of stages. This domain was chosen since, for the structures
investigated, level 3 of the active region is split by an interaction with a state mostly
localized in just the last two wells of the preceding injector. It is therefore not necessary
to include an injection barrier on the upstream side. An injection barrier is required on the
downstream side of the domain since the states in the right-hand injector superlattice that
split levels 1 and 2 generally have a significant penetration into the downstream injection
barrier. For the unperturbed A1737 design mentioned inSection 4.2, the effect of varying
the number of layers included in the calculation domain was investigated, and the above
choice found to predict the real parts of the eigenenergies satisfactorily.

3.2. Electronic structure model

A second-nearest-neighbor tight-binding model [10] with spin–orbit coupling and
explicit inclusion of up and down spin states was used to model the electronic structure
of the lasers. For GaAs and AlAs, model parameters were taken from [10]. The conduction
band offset between GaAs and AlAs was taken to be 1.05244 eV. For Al0.3Ga0.7As, a
conduction band offset of 0.22661 eV with respect to GaAs and the parameters given in
Table 1were used. These parameters, which have not been published previously, were
manually optimized to fit various characteristics of the bulk band structure to room-
temperature experimental values. The manual optimization was greatly simplified by using
the analytic band-edge energy and effective-mass formulae presented in [10]. It is worth
drawing attention here to the automatic method presented in [11] for optimizing such
parameters, which would greatly reduce the work involved in finding further sets. For
other Al contents, tight-binding parameter sets and conduction band offsets were linearly
interpolated between the values for GaAs, Al0.3Ga0.7As and AlAs. A monolayer thickness
of 0.2833 nm was used for all Al contents.

The charge on the free carriers and ionized dopant ions in a QCL will affect the energies
and wave functions of the resonant states. Forthese calculations, these effects have been
ignored and the electrostatic potential has been assumed to drop linearly across the active
region. No scattering self-energies were used and the electronic states were all found for
zero in-plane momentum.
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Table 1
Second-nearest-neighborsp3s∗ tight-binding model parameters (given in eV) for Al0.3Ga0.7As using the notation
of [10], which is based on that of [14]

E(000)
sa,sa −8.204 079 4E(110)

s∗a,xa 0.020 000

E(000)
pa,pa 0.366 741 4E(011)

s∗a,xa 0.058 000

E(000)
s∗a,s∗a 8.093 021 4E(110)

xa,xa 0.404 660

E(000)
sc,sc −2.549 169 4E(011)

xa,xa −0.221 180

E(000)
pc,pc 3.331 271 4E(110)

xa,ya 1.066 000

E(000)
s∗c,s∗c 6.341 051 4E(011)

xa,ya −1.060 000

4E
( 1

2
1
2

1
2 )

sa,sc −6.640 000 4E(110)
sc,sc −0.017 000

4E
( 1

2
1
2

1
2 )

sa,pc 4.900 000 4E(110)
sc,xc 0.072 300

4E
( 1

2
1
2

1
2 )

s∗a,pc 4.239 000 4E(011)
sc,xc 0.026 000

4E
( 1

2
1
2

1
2 )

pa,sc 8.230 000 4E(110)
s∗c,xc 0.016 000

4E
( 1

2
1
2

1
2 )

pa,s∗c 4.725 000 4E(011)
s∗c,xc 0.074 450

4E
( 1

2
1
2

1
2 )

x,x 2.077 870 4E(110)
xc,xc 0.344 600

4E
( 1

2
1
2

1
2 )

x,y 5.074 000 4E(011)
xc,xc −0.120 080

4E(110)
sa,sa −0.010 000 4E(110)

xc,yc 0.681 000

4E(110)
sa,xa 0.047 000 4E(011)

xc,yc −1.420 000

4E(011)
sa,xa 0.052 600 λa 0.140 000

λc 0.043 000

The 4E(110)
s∗a,s∗a , 4E(110)

s∗c,s∗c, 4E(110)
sa,s∗a and 4E(110)

sc,s∗c parameters were all set to zero.

3.3. Threshold electric field determination

The separations in energy of the states forming levels 2 and 3 depend on the externally
applied electric field. To find the field at laser threshold rigorously, it would be necessary
to evaluate the gain coefficient and currentdensity as a function of electric field, before
finding the field that sets the round-trip modal gain equal to the round-trip loss for a
particular waveguide design. For this work, these calculations were not performed, and
instead, two simplified procedures were usedto set the electric field. The first procedure
involved finding the voltage drop acrosseach structure (to the nearest 0.01 V) that
minimized the splitting in energy of level 3. This procedure maximizes the rate at which
electrons can tunnel through the injection barrier [2], ensuring that this is not the rate-
limiting step for electronic transport. The second procedure minimized the splitting of
level 1. There is evidence that tunneling through the exit barrier constitutes a bottleneck
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Table 2
The designs that were modeled, the references the experimental results were taken from and the temperatures at
which the measurements were made

Gain medium design Experimental data Temperature (K)

Kruck et al. [16] [16] 250
Sirtori et al. [17] [17] 77
A1516 [this paper] [This paper] 236
A1586 [this paper] [This paper] 237
Becker et al. [13] [13] 77

for electronic transport in three-quantum-well QCLs [15], so this procedure may be more
realistic physically.

3.4. Modeled designs

To assess the predictions made by thesp3s∗ model, the designs given inTable 2were
modeled and predictions of the photon energy,Epeak, that maximizes the gain coefficient
were compared to experimental results. Wafers A1516 and A1586 (see [18] and [19]
respectively) were designed and grown at Glasgow University and are based on the design
of Kruck et al. [16]. A stage from the gain medium in wafer A1516 has layer thicknesses
of 51 / 19 / 11 / 56 / 11 / 49 / 28 / 36 / 17 / 32 / 20 / 28 / 22 / 27 / 26 / 27 Å. For A1586,
the thicknesses are51 / 19 / 11 / 60 / 11 / 49 / 28 / 36 / 17 / 32 / 20 / 28 / 22 / 27 / 26 /
27 Å. For both designs, bold type indicates Al0.33Ga0.77As layers;bold italic type indicates
Al0.4Ga0.6As; normal type indicates GaAs and the underlined layers are doped with Si to
give a sheet doping density of 8.23× 1012 cm−2 per stage.

3.5. Experimental data for comparison

For thedesign of Kruck et al. [16], the experimentalEpeak was taken from the plot of
the electroluminescence spectrum in figure 2 of [16]. For the design of Sirtori et al. [17],
the value was takenfrom the text of [17], which gives the wavelength for single-mode
lasing for a Fabry–Perot (FP) device. Their device only lased up to 140 K, and they only
quoted an emission wavelength at 77 K, so this value is used here in place of a value for
300 K. The peaks in the gain coefficient for A1516, A1586 and the design of Becker et al.
[13] were assumed to be at the same photon energies as the peaks of the envelopes
of the multi-mode emission intensity spectra of FP lasers. For A1516, a spectrum was
measured for a wet-etched 20µm by 1.5 mm FPdevice using a Bomem DA-3 Fourier-
transform spectrometer. For A1586, the measurements were made with a Fourier-transform
spectrometer at Rutherford–Appleton Laboratories on a facet-coated 21.4 µm by 0.9 mm
FP device [19]. The value for the design of Becker et al. was taken from the caption of
figure 2 of [13]. The results in [20] suggest thatEpeak will decrease by about 4% as the
temperature of the active region is changed from 77 to 300 K, so the lack of near-room-
temperature data for some of the designs should not change the qualitative conclusions of
this paper.
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Fig. 2. Comparison of experimental results with modeling for the designs listed inTable 2. Epeak is the photon
energy that maximizes the gain coefficient and the straight lines show the ideal case of perfect agreement between
the experimental results and the modeling. The methods used to predict the bounds onEpeakare described in the
body of the paper, while the crosses show the predictions made using expression (1). The voltage drop is set to
minimize the level 3 splitting in (a) and the level 1 splitting in (b).

4. Results and discussion

4.1. Emission wavelength predictions

The electronic structure found for the gain medium design of Becker et al. is shown
in Fig. 1 for an electric field that minimizes the splitting of level 3. Explicit calculation
of the gain coefficient from the resonant state energies and the tight-binding model
expansion coefficients was not implemented for this work, so, initially, bounds on the
photon energy,Epeak, that maximizes the gain coefficient were estimated from just the
energies of the states. Different methods were used to find the bounds depending on
whether the voltage drop across the modeled region was set to minimize the splitting
of level 1 or level 3. If the energies of the two states forming leveli are Ei,1 and Ei,2,
where Ei,1 < Ei,2, then, for the voltage drop that minimizes the splitting of level 3,
the upper bound onEpeak was taken as(E3,1 + E3,2)/2 − E2,1 and the lower bound as
(E3,1 + E3,2)/2 − E2,2. This procedure was used since, in a properly designed QCL, the
splitting of level 3 is chosen so that the broadening of the levels merges the local density
of states of the pair of states into a single peak [21]. For the voltage drop that minimizes
the splitting of level 1, the lower bound was taken asE3,1 − E2,2 and the upper bound
asE3,2 − E2,1.

These bounds are compared with the experimental results inFig. 2. The results show
that, for the gain media considered, the two models predictEpeakto within at worst 21% of
the experimental value. The results do not show that one method for choosing the electric
field is any better than the other. These bounds are relatively wide, and do not do justice to
the accuracy of the electronic structure calculations. Ideally, a rate equation model for the
gain coefficient should be adopted, but NEMO is currently unable to calculate intersubband
scattering rates with its multi-band models. Instead, estimates forEpeak were made by
using the overlaps of the probability densities of the states forming levels 2 and 3 to form
a weighted average of the four possible level 3–level 2 energy differences:



J. Green et al. / Superlattices and Microstructures 37 (2005) 410–424 417

Epeak≈

∑
i∈{1,2}

∑
j∈{1,2}

Re(E3, j − E2,i ) fi, j

∑
i∈{1,2}

∑
j∈{1,2}

fi, j
(1)

where:

fi, j =
∑

device region

|ψ(E2,i )|2|ψ(E3, j )|2 (2)

ψ(E) =
∑

n

cn(E) (3)

cn = expansion coefficient fornth orbital. (4)

Fig. 2 shows that the agreement between the predictions made using this empirical
model and experiment is good, especially for the electric field that minimizes the splitting
of level 1. The root-mean-square discrepancy with experiment is 5 meV for the electric
field that minimizes the level 3 splitting, and 4 meV for the electric field minimizing the
level 1 splitting. The latter result is dominated by the relatively large discrepancy for the
design of Kruck et al. [16]: without this value, the RMS discrepancy is 1.58 meV.

4.2. Layer thickness rounding

Since NEMO uses an atomistic tight-binding model, all layer thicknesses must be
specified as a whole number of monolayers (MLs). The layer thicknesses for the structures
listed in Table 2are not multiples of the GaAs ML spacing in general, and so had to
be rounded before being included in the calculations. To investigate the extent to which
this rounding might affect the results, three calculations were performed where the layer
thicknesses of a gain medium (A1737 [22]) were (1) left unchanged, (2) increased by one
ML and (3) decreased by one ML. Gain medium A1737 is based on A1586, and has the
following layer thicknesses:16 / 6 / 4 / 21 / 4 / 16 / 10 / 13 / 6 / 11 / 7 / 10 / 8 / 10
/ 9 / 10 ML. The same notation as used inSection 3to describe the compositions and
doping of A1516 and A1586 has been used here. The sheet doping density per stage was
7.91× 1012 cm−2. The bounds onEpeakfor these calculations are presented inFig. 3and
were found by the same procedure as used to find the bounds inFig. 2(a). Also shown are
predictions made using expression (1). To model this effect properly, the model should also
take into account interface roughness. However, these results show that, for this design at
least, it is more important to include the injector-induced splittings of levels 2 and 3 in a
model that aims to predictEpeakthan correlated thickness variations of±1 ML.

4.3. Comparison with empirical two-band �k · �p model

The two-band empirical�k · �p model [23,24] is used by many groups to predict the state
separations in QCLs with reasonable accuracy: for example, for the design of Becker et al.,
this model has been used [13] to predicta valueof 109 meV forEpeak, which, to three
significant figures, was identical to the experimental value at 77 K. The main advantage
that thesp3s∗ model presented here has over the two-band empirical�k · �p model is its
ability to model theX-like states directly. These states, which are all localized within the
barriers, are present inFig. 1, but are absent inFig. 4, where the calculation for the design
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Fig. 3. Predicted bounds on photon energies,Epeak, that maximize the gain coefficient for gain medium A1737
and structures formed by increasing/decreasing all layer thickness by one monolayer (ML). The voltage drop
across the modeled region was chosen to minimize the separation of the pair of states forming level 3. The
crosses show the values ofEpeakpredicted using expression (1).

of Becker et al. was repeated using NEMO’s two-band�k · �p model. (It can also be seen that
there are some above-barrier resonances inFig. 4 that are not present inFig. 1. This is an
artifact of the numerical method used to resolve the resonant states.)

Table 3 shows the resonant state energies for the electronic structures presented in
Figs. 1and4. While the level splittings, to the nearest meV, predicted by the two models
are almost identical, an estimate forEpeak found using expression (1) and the two-band
�k · �p model results gives an energy of 127 meV. Examination ofFig. 2(a) showsthat this
prediction is significantly lessaccurate than the predictions made using the second-nearest-
neighborsp3s∗ tight-binding model.

Empirically tuning the two-band model’s parameters to model better the electronic
structure further in energy from the bulk band edge could improve this prediction.
However, the empiricaltwo-band model only hasn + 1 adjustable parameters for ann
material heterostructure: for example, for a single material, the bulk imaginary dispersion
relation cannot be set independently of the effective mass and nonparabolicity parameters
and for two materials, the nonparabolicity parameter can only be set for one of the
materials. Thesp3s∗ tight-binding model used in this work has 37 parameters per material,
providing for better modeling of the detailed alignment between the resonant states in each
active region and its neighboring injector superlattices.

4.4. Antimonide system

The InAs/AlSb/GaSb material system offers aΓ -point conduction band offset of over
2 eV, and is therefore an interesting candidate for the production of short-wavelength
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Fig. 4. Resonant states found for the AlAs/GaAs design of Becker et al. [13] using a two-band�k · �p model. The
electric field minimizes the splitting of the states forming level 3. The bulk conduction band edge energy is also
plotted: for the AlAs barriers, this is the bulkX-valley energy.

Table 3
The real parts of the resonant state energies (inmeV) for the electronic structures shown inFigs. 1and4 for the
design of Becker et al. [13] (found, respectively, using second-nearest-neighborsp3s∗ and two-band�k · �p models)

Level sp3s∗ �k · �p

3
19.9 20.6
14.9 15.6

2
−95.3 −105.5

−107.1 −117.9

1
−124.6 −136.2
−132.9 −145.0

QCLs. NEMO provides parameters sets for this material system for the second-nearest-
neighborsp3s∗ tight-binding model with spin–orbit coupling and explicit spin states
described inSection 3.2. The model includes the marked nonparabolicity of the InAsΓ -
valley and the indirect band-gap in the AlSb barriers, as is evident in the band structures
plotted inFig. 5, and should provide useful insights into the operation of such devices. The
parameters sets have been published by Boykin [10], although for GaSb, the 4E (110)

xa,ya and

4E (110)
xc,yc parameters were taken as 0.569 and 0.445 eV respectively in this paper.
Ohtani et al. have published two designs for Sb-based QCLs. The electronic structure

for the earlier, shorter-wavelength design [25] is shown inFig. 6(a). This design did not
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Fig. 5. Band structures for InAs, GaSband AlSb on an InAs substrate along theΓ X line in �k-space, calculated
by NEMO using a second-nearest-neighborsp3s∗ tight-binding model with spin–orbit coupling and explicit
inclusion of up and down spin states.

result in a functioning laser, with Ohtani et al. concluding that the narrow band-gap in the
InAs system, together with the high electric field, were resulting in Zener breakdown. The
electronic structure for the later, successful, longer wavelength design [26] is shown in
Fig. 6(b).

Ohtani et al. present experimental data on the gain spectra for the two designs in refer-
ences [25] and [26], the peak gain photon energies being 227 and 123 meV respectively.
The corresponding values predicted by NEMO, which are indicated in the caption ofFig. 6,
are both, to two significant figures, 17% lower then these experimental values. This sug-
gests that the parameters used for this system might need further optimization [22] or that
the structures modeled did not exactly match the structures that were grown.

5. Conclusion

NEMO has been shown to be capable of predicting the photon energy,Epeak, at thepeak
in the gain coefficient spectrum of various Alx Ga1−xAs quantum cascade laser gain media
to within, on average, 4 meV of the experimental values. Thesp3s∗ tight-binding model
used by NEMO is not only capable of predicting the resonant state separations, but can
also directly model theX-like states. It has been shown that correlated errors in the layer
thicknesses of±1 ML and the procedure used to set the electric field across the device
are less important when determiningEpeak than the injector-induced splittings of levels
2 and3. Finally, NEMO has also been shown to be capable of modeling the electronic
structure of InAs/AlSb and InAs/AlSb/GaSb QCLs.

The models presented inSection 4.1do not give predictions for the gain coefficient, so,
to carry thiswork forward, and use ansp3s∗ model to produce optimized QCL gain media,
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Fig. 6. Electronic structure for (a) the short-wavelength InAs/AlSb/GaSb design given in figure 1 of Ohtani et al.
[25] and (b) the long-wavelength InAs/AlSb design given in figure 1 of Ohtani et al. [26]. The calculations are
made using a second-nearest-neighborsp3s∗ tight-binding model model at an electric field of (a) 43 kV cm−1

and (b) 29 kV cm−1. The separations in energy between the two states marked with curves are (a) 189 meV and
(b) 102 meV. Both the conduction band and valence band edge energies are plotted, although for (b) only the
conduction band resonant states are plotted. The barrier materials are AlSb in all cases, except for one layer per
stage in (a), where GaSb is used.
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it will be necessary to find this quantity. This could be done using either a rate equation
approach [27] or, if it can be shown to be compatible with multi-band tight-binding models,
the elegant Wannier function, non-equilibrium Green’s function and periodic boundary
condition approach implemented by Lee and Wacker [28]. The calculation would need to
take into account the injector-induced splitting of the levels, to predict single values for
Epeakand the associated gain coefficient. The NEMO software would have to be modified
so that it can calculate the polar optical phonon (POP) and optical stimulated emission
scattering rates between resonant states found using its ten-bandsp3s∗ models. Ideally,
the electron–POP scattering rates should be found using the dielectric continuum model
for phonons in a heterostructure, since modeling the scattering of electrons in QCLs using
bulk phonons has been found to be inadequate [29]. Advantage should also be taken of
NEMO’s abilities to model properly the electronic structure of states withX-like character
[30] and to model InP-system QCLs [22]. Self-consistent inclusion of quantum mechanical
charge via the Hartree approximation would be a useful feature to add [22,28], as would the
ability to include strained layers [4], interface roughness [28] and carrier–carrier scattering
rates [31,28].

Further systematic errors in the model might include: the nonparabolicity-induced
wavelength shift resulting from the neglect of the excitation of charge carriers to finite
in-plane momenta at finite temperature [20] and the choice of the tight-binding model’s
Hamiltonian matrix elements.
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