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Analytical model for an electrostatically actuated miniature
diaphragm compressor

Abhijit A Sathe, Eckhard A Groll" and Suresh V Garimella

NSF Cooling Technologies Research Center, School of Mechanical Engineering
Purdue University, West Lafayette, Indiana 47907 USA

Abstract. This paper presents a new analytical approach for quasi-static modeling of an
electrostatically actuated diaphragm compressor that could be employed in a miniature scale
refrigeration system. The compressor consists of a flexible circular diaphragm clamped at its
circumference. A conformal chamber encloses the diaphragm completely. The membrane and the
chamber surfaces are coated with metallic electrodes. A potential difference applied between the
diaphragm and the chamber pulls the diaphragm towards the chamber surface progressively from
the outer circumference towards the center. This zipping actuation reduces the volume available to
the refrigerant gas, thereby increasing its pressure. A segmentation technique is proposed for
analysis of the compressor by which the domain is divided into multiple segments for each of which
the forces acting on the diaphragm are estimated. The pull-down voltage to completely zip each
individual segment is thus obtained. The required voltage for obtaining a specific pressure rise in
the chamber can thus be determined. Predictions from the model compare well with other
simulation results from the literature, as well as to experimental measurements of the diaphragm
displacement and chamber pressure rise in a custom-built setup.

PACS classification codes: 07.10.Cm, 41.20.Cv

Submitted to: Journal of Micromechanics and Microengineering

1. INTRODUCTION

The number of transistors on an electronic chip have been doubling approximately every 18-24 months,
according to what is popularly referred to as Moore’s law [1]. It has been predicted that the heat dissipation
from a single chip package will rise to 200 W in 2008 for high-performance systems with local heat fluxes
in the range of 40-60 W/cm® [2]. Traditional electronics cooling approaches such as forced convective air
cooling using conventional heat sinks are soon expected to reach their limits for meeting the dissipation
needs of emerging high-performance electronics systems [3]. Alternative electronics cooling approaches
include heat pipes, liquid immersion, jet impingement and sprays, microchannel heat sinks, thermoelectric
cooling, and refrigeration [4]. The feasibility of using a miniature vapor compression refrigeration system
for cooling microprocessors was demonstrated by Cremaschi et al. [5]. The authors concluded that efficient
and reliable mini- and micro-compressors are essential in order to achieve energy efficiencies that would
render refrigeration systems competitive with other electronics cooling technologies. Trutassanawin et al.
[6] experimentally tested a small-scale refrigeration system consisting of a commercially available
miniature-scale compressor, a microchannel condenser and a cold plate evaporator. The system achieved a
maximum cooling capacity of 226 W while maintaining the maximum CPU temperature at 53°C. The
overall system performance was found to strongly depend on the compressor efficiency and it was
recommended that a new compressor design targeted specifically at electronics cooling applications would
be needed to improve the system performance. The novel compressor would need to fit within a 45 mm
height (1-U rack), be able to support a cooling capacity of 200 W, and be reliable.
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Figure 1. Schematic representation of a diaphragm compressor.

An electrostatically actuated diaphragm compressor offers promise for this application because of its
potential for high efficiency, compactness and scalability. The diaphragm compressor, schematically
represented in Figure 1, consists of a flexible circular diaphragm clamped at its circumference. Two
identical halves of a conformal chamber enclose the diaphragm completely. Gas is admitted into the
chamber through the suction ports while the discharge valves control discharge flow and pressure rise.
Metallic electrode layers are deposited on the diaphragm and on the chamber surfaces and dielectric layers
are deposited on the top of the metallic electrodes to prevent electrical shorting when the diaphragm touches
the chamber surface. The operation of the diaphragm compressor is illustrated in Figure 2. A DC voltage is
applied between the diaphragm and one of the chamber halves that pulls in the diaphragm towards that
chamber half because of an electrostatic attraction force. The magnitude of this force is inversely
proportional to the square of the distance between the two electrodes (the chamber surface and the
diaphragm). The diaphragm motion towards the chamber surface is initiated near its circumference due to
the presence of the highest electrostatic force in this region. As the diaphragm is pulled in, the distance
between the electrodes progressively decreases and more of the diaphragm is pulled towards the chamber
surface. This self-sustaining pulling of the diaphragm is termed “zipping,” which is initiated at the
circumference and continues towards the center. This action reduces the volume available to the refrigerant
gas in the chamber, thereby increasing its pressure. The discharge valve opens when the gas pressure
reaches the design discharge pressure and the pressurized gas flows out of the chamber accompanied by
further zipping of the diaphragm. At the end of the compression stroke, the polarity of the applied voltage
differential is reversed and the compression cycle is continued in the reverse direction.

In the next section, different simulation models for electrostatic actuation and compression in the literature
are reviewed and compared.
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Figure 2. Step-by-step operation of diaphragm compressor.

2. LITERATURE REVIEW

Electrostatically actuated capacitive-type elastic systems are widely used in the design of micro- and nano-
electromechanical systems. The intrinsically unstable inverse square relationship between the applied DC
voltage and the gap between the two electrodes resulting in a “pull-in” has been investigated in several
theoretical and experimental studies, some of which are reviewed by Pelesko and Chen [7]. Analytical and
numerical models for predicting the pull-in voltage for different elastic microstructure configurations



(cantilever beam, clamped diaphragm, etc.) have also been developed [8, 9]. These studies provide good
insight into the electrostatic zipping phenomenon and form a basis for the diaphragm compressor analysis.

The feasibility of using electrostatic actuation for pumping a fluid (liquid or gas) has been studied by several
researchers. Cabuz et al. [10, 11] proposed a valveless dual-diaphragm pump, which consists of a
conformal pumping chamber and two electrostatically actuated structured diaphragms. Pumping of the fluid
was achieved without the need for suction/discharge valves by means of holes in the two diaphragms which
were non-coincident to each other as well as to the suction and discharge ports. The pump provided a
maximum flow rate of 30 ml/min at a pressure rise of 2 kPa, and had a power consumption of 8 mW. An
array of 2x3x2 pumps with dimensions of 4.5x3.5x0.4 cm® was shown to pump 230 ml/min of air at an
actuation voltage of 160 V.

Athavale et al. [12] proposed a bidirectional diaphragm pump based on electrostatic actuation for pumping
gases at large flow rates. The pump consisted of two chambers with one inlet and two outlets, which were
controlled independently. The pump was modeled using coupled transient computational flow simulations
wherein separate solvers were developed for elastic, electrostatic and fluid flow processes and coupled to
each other. A contact model was developed to simulate diaphragm contact with the electrodes. It was
observed that the electrostatic forces were the highest at the outer edges and the contact was initiated at this
location. The model predicted the actuation time and fluid flow rate for a given voltage. Effects of change
in chamber configuration, electrode shape, diaphragm thickness, and material properties were also
considered. An array of pumps that could produce pumping rates of air greater than 10 I/min was proposed.

Zengerle et al. [13] theoretically and experimentally investigated a bidirectional silicon micropump. It
consisted of an electrostatically actuated diaphragm and two passive check valves. The micropump
operated in the forward direction at low actuation frequencies and in the reverse direction at higher
frequencies. The diaphragm pump had outer dimensions of 7x7x2 mm® and achieved a maximum flow rate
of 0.85 ml/min and a maximum hydrostatic back pressure of 31 kPa at a supply voltage of 200 V.

While these researchers [10 - 13] investigated the ability of electrostatic actuation to pump fluids, Shannon
et al. [14] developed an electrostatically actuated diaphragm compressor for pressurizing refrigerant R134a
vapor as part of a miniature cooler circuit designed for cooling of military personnel in hot environments.
Each cooler circuit was designed to provide 3W of cooling. The compressor was modeled using a lumped
capacitance method where a force balance was made on the diaphragm to estimate the required actuation
voltage. A donut-shaped chamber was recommended in which the chamber surface almost touched the
diaphragm at the center. The shape of the chamber was optimized to reduce the pull-down voltage, to
smooth the diaphragm profile during dynamic operation, and to limit the strain in the membrane at full
closure. The required pull-down voltage was said to drop to 40 V from 770 V upon use of the donut-shaped
chamber relative to the dome-shape, but this claim was not substantiated with experimental or modeling
evidence.

Saif et al. [15] proposed an analytical model for an electrostatic membrane actuator for micropumps. The
equilibrium position of the diaphragm was computed by minimizing the total energy of the membrane,
which consisted of electrostatic and elastic internal energy. At equilibrium, the parallel-plate capacitive
energy between the chamber and the membrane is the sum of the strain energy of the membrane and the
pressure energy of the fluid. This energy balance was used for estimating the pull-down voltage. It was
observed that for a given applied voltage, the pressure increased almost inversely with the thickness of the
dielectric between the diaphragm and the chamber surface. Saif et al. also emphasized that dielectric
breakdown may be a limiting factor for the maximum attainable pressure rather than the mechanical
strength of the diaphragm material.

Table 1 summarizes the main details of the studies discussed above. Based on this summary, it is noted that
a comprehensive diaphragm compressor model that calculates both the pressure rise and the volume flow



rate of refrigerant vapor is not yet available. A lumped force balance is first developed in the next section
based on approaches suggested in the literature, and it is shown that this approach is inadequate for
representing all the key physical mechanisms that come into play in the compressor.

Table 1. Summary of different electrostatic pumping devices/models.

Cabuz et al. Athavale et al. Zengerle et al. | Shannon et al. .
[10] [12] [13] [14] Saifetal. [15]
Model type Not specified CFD Theoretical Lumped force Lumped
balance energy balance
Model.detalls No No Yes No Yes
provided?
Working Yes Yes Yes No No
prototype?
Working fluid Air Air Not specified R134a Not specified
Pressure rise
(kPa) 2 0.7 31 750 6
Volume flow . . .
rate (ml/min) 230 Not specified 0.85 Not specified | Not specified
Required
voltage (V) 160 50 200 40 250

3. LUMPED FORCE BALANCE AND NEED FOR SEGMENTATION

The forces acting on the diaphragm are as follows: an electrostatic force imposed by the voltage differential
between the diaphragm and the chamber surface, an elastic force caused by the stretching of the diaphragm,
and a gas force resulting from the increase in differential pressure of the compressed gas (Figure 3). A
maximum chamber depth of vy, is assumed, while the deflection of the diaphragm from the equilibrium

position is y. The elastic force induced in the diaphragm because of this deflection is calculated as [16]:

I:eI:K'A'y

(M

where A is the diaphragm surface area, K is a hypothetical diaphragm elastic stiffness and y is the deflection
at the center of diaphragm. The elastic stiffness is calculated as [17]:
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W, E and v are the diaphragm radius, thickness, elastic modulus and Poisson’s ratio,

respectively. The diaphragm tension parameter ¢ is calculated as:

o, R Y
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where o, is the initial (or residual) stress in the diaphragm.

The pressure rise in the chamber is calculated as:
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where y is the polytropic compression index. The volume of the chamber (Vol ) is a function of the

chamber

chamber profile, maximum chamber depth ( y,,,, ) and chamber radius. The volume of the gas (Vol ) is

gas
calculated as a function of the diaphragm deflection and the chamber volume. The force exerted by the
pressurized gas on the diaphragm is:

Foes = (Pgas - Psuction ) A (5)

gas

The force balance on the diaphragm is given as:
I:es = l:el + Fgas (6)

An electrostatic force on the diaphragm is generated by the application of a voltage differential between the
diaphragm and the chamber surface. For a capacitor whose plates are flat and parallel (in this case, the
diaphragm and chamber surface) the electrostatic force for an applied voltage differential of V can be
estimated [14] as:

_% VEA (7)

Fes - 2
g
kd ymax y

where ¢, is the permittivity of vacuum. The thickness of the dielectric layer on the chamber surface and its

dielectric constant are given by t, and K, , respectively.

Rearranging equation (7) and substituting equations (1) through (6), the required pull-down voltage is given

as:
2 Pas_l:)sucion A+Ky t
W=J—(g un) {ﬁ+wm—wJ ®)
d

& A

= Diaphragm El Compressed gas
— Direction of progressive zipping

------ » Direction of electrostatic force

—> Direction of elastic force
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Figure 3. Forces acting on the diaphragm.

The pull-down voltage (V, ) calculated above is valid for a flat plate capacitor. The non-linear chamber

profile is approximated as a parallel-plates capacitor as shown in Figure 4 (a). This approximation,
however, does not consider the zipping actuation of the diaphragm described earlier, initiated from the
circumference of the diaphragm inwards. The inability of the lumped model to simulate the zipping
actuation of the diaphragm results in an inaccurate estimation of the electrostatic force and the pull-down



voltage. Also, the lumped model does not consider the spring hardening effect [18] while calculating the
elastic force on the diaphragm.

To overcome the shortcomings of the lumped capacitance model, a segmentation approach as described in
Figure 4 (b) is proposed. The chamber profile is divided into a number of radial segments. The forces on
the diaphragm and the force balance are calculated for each segment. In addition, the spring hardening
effect of the diaphragm is accounted for in the new model. The electrostatic force is then calculated on a
sufficiently large number of parallel-plate capacitor segments that faithfully represent the chamber
geometry.

Diaphragm 4 Diaphragm 4
v :> v
\/ AN NN\
Chamber Chamber
(@)
Diaphragm 1 Diaphragm 1
Chamber Chamber
(b)

Figure 4. Linearization of the chamber surface (a) as a parallel-plates arrangement, and (b) by the
proposed segmentation method.

4. SEGMENTATION-BASED COMPRESSOR MODEL

Consider a generic chamber shape represented in dimensionless form as:

y 3 R Y
——=>a;>— ©)
ymax ; (Rfﬂ&x]

where y is the depth at radius R with 0<y <y, and 0O<R<R_, . Coefficients for the terms of the
polynomial are given by a..

A schematic representation of the segmentation is shown in Figure 5. The segmentation starts from the

circumference such that the outer radius of the first segment is the same as the maximum radius of the

chamber (R, = R, ) and the inner radius of the last segment is zero (Ry,, =0). The entire chamber radius

is divided into N equal radial segments (Figure 5 (a)) such that the radial width of all segments is equal:
Fori=1to N +1:

10
R =R - @—i/N) (19)
The net area of each segment is calculated as:
Fori=1to N +1: "
AR (an



Following the radial segmentation, the vertical endpoints of the segment radii are calculated as shown in
Figure 5 (a). This involves using the equation for the chamber profile and calculating the depth y (or height)
for any radius » at given R ., and Y, . In the next step, the actual segment heights are calculated by

averaging the vertical segment end points as shown in Figure 5 (b):

Fori=1to N +1:
(12)
yseg,i _%

R'l RQ RS RN—'I RN RN+1

YSeg,Q

YSegﬂi' L L E

YSeg,r\H

YSeg,N (b)

Figure 5. Segmentation of the chamber geometry for generating NV segments in steps (a) and (b).

Thus, Y, is the average height of each segment. By using a large number of segments, the error in this

averaging is asymptotically minimized. The quasi-static segment-wise diaphragm zipping actuation is
illustrated in Figure 6. The calculations start at the circumference (at segment # 1) and proceed towards the
center. The forces on the diaphragm are evaluated at each segment to calculate the required pull-down
voltage for that segment, proceeding from the circumference towards the center.
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Figure 6. Quasi-static simulation of the zipping actuation of diaphragm in steps (a) through (e)

The following simplifications and assumptions are made while modeling the forces:

Only one half of the chamber is considered. The diaphragm is assumed to be in an equilibrium
position at the start of each compression stroke (Figure 6 (a)).

Since the chamber depth is very small compared to its diameter, the forces on the diaphragm are
assumed to always act perpendicular to the diaphragm surface.

The deflection of the diaphragm is assumed to be a quasi-static process. i.e., the diaphragm moves
in infinitesimally small steps and the dynamic effects due to its motion (such as inertia force,
damping force, etc.) are not considered in this analysis.

The discharge valve is assumed to open as soon as the gas pressure equals the discharge pressure.
Once the discharge valve has opened, the pressure inside the chamber is assumed to remain
constant.



e Once the diaphragm touches the chamber surface, it is assumed to stay in contact with the latter for
the rest of the compression cycle (Figure 6 (b) — (¢)). Any gas that may be trapped between the
zipped portion of the diaphragm and the cavity wall is neglected.

e The effect of friction between the zipped portion of the diaphragm and the chamber surface on the
force balance is neglected, i. e., frictionless contact between the chamber surface and the membrane
is assumed.

e A clearance volume of 1% is assumed in the compression chamber; that is, once the volume of the
compressed gas decreases to 1% of the total chamber volume, the force balance calculations are
stopped.

e Heat transfer across the diaphragm and the chamber are neglected. Our calculations indicate that
the temperature rise in the chamber for a 30 kPa pressure rise is approximately 2 K, which would
lead to negligible thermal interactions.

For each segment i (I <i <N), the elastic force on the diaphragm is calculated by modifying Equations (1)
through (3) for the segmented structure as:

Fori=1toN:
2, :0.817-(1—V2).M.(&J2
3 - " (13)
iZ%-%-(l+ai) (R #0)
Fai = A Ki Yo

The stiffness coefficient of the diaphragm K is calculated for each segment. It takes into account the spring
hardening effect by using an additional stress term ( o, ) for calculating the tension parameter ¢ for each

segment that reflects the strain on the diaphragm.

The gas pressure force on the diaphragm for each segment is calculated by modifying Equation (4) for the
segmented domain as:
Fori=1toN:

VOIseg,i = A%eg,i : yseg,i

v

P =P . . VOIchamber (14)
seg,i suction VOIchamber _V0|seg,i

Fgas,i = &eg,i : (Pseg,i - Psuction)

The force balance for each segment can now be written as:
Fori=1toN:

15
I:es,i = I:el,i + Fgas,i ( )

Based on this force balance, the electrostatic force on the diaphragm is calculated for each segment.
Rewriting Equation (8) for the segmented domain gives the required segment pull-down voltage as:
Fori=1toN:

V _ 2 I:el,i + Fgas,i 16
I &y i (Aj _Aj+l) ( )

j=i (td /kd + yseg,j - yse\g,i—l)2

10



Equation (16) provides the required pull-down voltage for each segment. The areas and heights of the
segments are estimated based on the segmentation described using Equations (9) through (12). The elastic
and gas forces for each segment are calculated using Equations (13) and (14), respectively. The segment
pull-down voltage reflects the resistance of that diaphragm segment to pull-down. The operating voltage for
the diaphragm compressor (the voltage that must be applied between the compressor electrodes), however,
is the maximum pull-down voltage over all of the segments:

Fori=1toN: .
V., =max(V,) (17

oper

The segmentation-based simulation procedure is summarized as:
Fori=1toN:
1. Segmentation
2. Elastic and gas forces
3. Force balance F; =F,; +F;

4. Segment pull-down voltage V,
5. Operating voltage V., = max(V;)

The force balance calculations start at the circumference and proceed towards the center, corresponding to
the zipping of the diaphragm being initiated at the circumference and propagating towards the center. This
is a generic, physics-based, and quasi-static model that can be applied to any chamber profile.

5. MODEL PREDICTIONS AND VALIDATION

The capabilities of the segmentation-based diaphragm compressor model are demonstrated and predictions
from the model validated against published results using the following parameters and with refrigerant
R134a as the working fluid:

e Radius of diaphragm and chamber R ,, = 10 mm
e Maximum depth of chamber Yy, ,, =100 um
e Thickness of dielectric layer on chamber surface t;, =1 pum

Dielectric strength of dielectric layer k, = 3.5

Diaphragm material: Metallized polyimide Kapton [19]

Thickness # =25 um

Elastic modulus £ =3.02 GPa

Poisson’s ratio v =0.3

Suction pressure = 572.1 kPa

Pressure rise = 30 kPa (chosen based on the maximum pressure that the diaphragm can support for
the given geometry and material before undergoing plastic deformation, as calculated in the
Appendix)

The chamber shape is represented by the following 6™-order equation [10] to ensure a smooth profile and a
small slope at the circumference, factors that are important to ensure initiation and progressive zipping:

R Y R Y R Y
Y| B o ] 0]
ymax Rmax Rmax Rmax
R Y R Y
04 | 401
Rmax Rmax

11

(18)



The domain is divided into N segments and the segmented diaphragm compressor model is computed using
MATLAB [20]. The pressure rise in the chamber as a function of non-dimensional radius is shown in
Figure 7. The non-dimensional radius of the diaphragm is defined as the ratio of the segment radius to the
maximum chamber radius as shown below:

Fori=1toN:
R = d (9
" R

A non-dimensional radius (R ;) of 1 indicates the 1** segment (at the circumference) while a value of 0

indicates the last segment (at the center). The calculations are not continued until the last segment, but
instead, are stopped when the gas volume decreases to a clearance volume (dead volume) in the amount of
1% of the chamber volume; this corresponds to a non-dimensional radius of 0.3. From Figure 7 it is seen
that the gas pressure continues to rise as long as it is below the pre-set discharge pressure for which the
discharge valve is designed. As this pressure is reached, the discharge valve opens and beyond this point,
the pressure in the chamber remains constant for the remaining stroke of the diaphragm.

610 -

600

Discharge valve opens

o
w
o

o
0
o

Gas pressure (kPa)

570 -

| I | I | | I | I | I | I | I
5601 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Non-dimensional radius (-)

Figure 7. Gas pressure as a function of chamber non-dimensional radius.
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The forces on the diaphragm are shown in Figure 8 as a function of non-dimensional radius. The elastic
force increases linearly as the diaphragm zips from the circumference to the center. This can be attributed
to the spring-hardening effect of the diaphragm discussed earlier. As a greater portion of the diaphragm is
zipped, the unzipped portion stiffens and needs a stronger force to deflect. The gas force increases
corresponding to the increase in gas pressure. Once the discharge valve opens (and the gas pressure reaches
a constant value), the gas force decreases due to the decrease in the area of the segments from the
circumference to the center. The electrostatic force is the sum of the two forces for each segment.

10
: Gas force
gl — — — — Elasticforce
= — - Electrostatic force
z °
h
m -
g i
w 4H
2__
O_IJ_I_J_I=+—Iﬂ'I__IT-I-T__II | ] IIIIIIIII

I | | I | | I |
1 09 o08 07 06 05 04 03
Non-dimensional radius (-)

Figure 8. Variation of different forces on the diaphragm as a function of chamber non-dimensional
radius.

The variation of the pull-down voltage with non-dimensional radius is shown in Figure 9. This curve
follows a similar trend to that of the electrostatic force. Hence as the gas is pressurized inside the chamber,
the required pull-down voltage for zipping the diaphragm from the circumference to the center first
increases and then decreases once the discharge valve is opened. The maximum pull-down voltage for the
chosen parameters is 402 V. Thus, for pressurizing R134a vapor by 30 kPa inside the given chamber, a DC
voltage differential of 402 V is required across the diaphragm and the chamber.

13
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Figure 9. Variation of the pull-down voltage as a function of chamber non-dimensional radius.

Results from the segment-wise diaphragm compressor model developed here are compared with the energy
balance-based simulation results of Saif et al. [15] for a dome-shaped diaphragm compressor with the
parameters specified in (given in Table 2). Figure 10 presents the equilibrium pressure rise in the chamber
as predicted by Saif et al. as well as predictions from the present model as a function of applied voltage.
Predictions from the current model compare well with those of Saif et al. with a somewhat lower pressure
rise predicted at higher voltages by the segmentation-based model. The present work calculates the changes
in diaphragm strain, chamber pressure and electrostatic field progressively in a simulation of the advance of
the contact front from the circumference to the center. Saif et al.’s energy-based model, on the other hand,
used closed-form lumped integral equations for the estimation of these parameters. They are calculated at
an equilibrium position, which does not take zipping of the diaphragm into account. Hence, the authors
believe that the electrostatic force calculated by the current model is more accurate than that calculated
using a lumped capacitance method.

14



Table 2. Parameters from the model of Saif et al. [15].

Chamber radius R, 5 mm
Maximum chamber depth y, . 100 pm
Dielectric thickness on chamber surface t, 0.2 um
Dielectric constant K, 3.0

Diaphragm thickness 4 5 um
Diaphragm elastic modulus £ 2.714 GPa
Poisson’s ratio v 0.3
Compression index n 1.0 (Isothermal)
Suction pressure P, 8 bars

30—

i v/ Saifetal. [15]
- —— Present work

[
o
|

Pressure rise (kPa)
o o
| |

| I l | l l l l l
0 50 100 150 200 250 300

Applied voltage (V)

Figure 10. Comparison of the segmentation model results from the present work to those from the
lumped energy model of Saif et al. [15].
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6. EXPERIMENTAL ANALYSIS

A simplified diaphragm actuation test setup is designed and fabricated according to the principle illustrated
in Figure 11. A similar setup was used by Shannon et al. [14] for conducting hold-off pressure tests. The
present setup, however, is specifically designed to achieve a pressure rise in the chamber using electrostatic
actuation. The diaphragm is electrostatically attracted to a flat metal electrode that has a hole in the center
through which pressurized gas is supplied. The diaphragm bulges upwards in response to the nitrogen gas
pressure (Figure 11 (a)). The gas in the chamber is then isolated from the supply line using a valve (Figure
11 (b)). A DC voltage differential is applied between the flat electrode and the diaphragm, which pulls the
diaphragm towards the electrode. The resultant rise in the pressure of the gas is measured (Figure 11 (c)).

Diaphragm

Electrode

Diaphragm

Electrode

(b)

Diaphragm

Electrode
Lo
\%
(c)

Figure 11. Principle of operation of the experimental setup: (a) Diaphragm inflated with gas, (b)
chamber isolated using valve, and (¢) DC voltage applied to zip the diaphragm.
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An exploded view of the experimental setup is shown in Figure 12. This setup uses a flat electrode, and
obviates the complexities in machining the curved chamber surface previously discussed. A circular
stainless steel electrode of 30.5 mm diameter serves as the flat electrode; a hole drilled in the center of this
electrode admits gas into the chamber. The steel electrode is connected to the ground or the negative
terminal of the voltage supply. The top surface of the steel electrode is coated with 11 pm of Parylene C
which serves as the dielectric layer. A plastic casing holds the steel electrode and also houses a copper ring
used for supplying positive voltage to the diaphragm. A sealing ring prevents leakage from the chamber. A
25 um thick metallized Kapton sheet is used as the diaphragm. The diaphragm is held under tension using a
plastic ring. The plastic top cover has two grooves for sealing rings. The inner and outer rings serve to
press the diaphragm against the steel electrode and copper ring, respectively.

1 — Support block (Nylon) 8 — Gas tube (Nylon/Copper)

2 — Housing {Nylon) 9 — Negative electrode connector
3 — Positive electrode ring (Copper) (Steel)

4 — Negative electrode (Stainless steel) 10 — Positive electrode connector
5 — Diaphragm and diaphragm sleeve  (Steel)

{Kapton/Nylon) 11 — Sealing ring (Viton)
6 — Top cover (Nylon) 12 — QOuter ring (Viton)
7 — Screws (Nylon) 13 — Inner ring (Viton)

Figure 12. Exploded view of the experimental setup.
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The pressure in the system is measured using a low-range (50 inches of water column), high-accuracy (0.5%
full scale, or +62 Pa) differential pressure transducer. The diaphragm deflection (9 ) is measured from the
top using a laser displacement sensor (Keyence LK-G157) with a measurement uncertainty of 0.1 um. The
deflection reads zero for a flat diaphragm and positive values for a bulged diaphragm. Pure nitrogen gas is
used for the experiments. One of the major differences between the diaphragm compressor described
previously and the existing experimental setup is the chamber volume. For the actual compressor, the total
chamber volume is always fixed (decided by the chamber radius and the maximum depth). In the
experimental setup, on the other hand, the chamber volume is a function of the inlet gas pressure. The
higher the inlet pressure, the greater is the diaphragm deflection (d ) and the larger the chamber volume. As
an example, for an inlet pressure of 0.5 kPa, the diaphragm deflection is 82 pum and the corresponding
chamber volume is 20.3 mm’. If the inlet pressure is increased to 1 kPa, the deflection is now 146 um and
the chamber volume is 36.4 mm’. The system dead volume (defined as the internal volume of the tubing) is
estimated to be 26.3 mm’. This high dead volume limits the pressure rise that can be achieved with the
setup. It is noted that the aim of the experiments is not to simulate a real compressor, but instead to serve as
a tool for validating the segmentation model.

For a known gas pressure in the chamber, different voltages are applied to the system and the pressure rise
and the change in deflection of the diaphragm recorded. A total of 35 data points were taken based on the
test matrix shown in Table 3. Figure 13 shows the pressure rise in the chamber as function of the applied
DC voltage for different inlet pressures. It is clear that as the voltage is increased, the pressure rise
increases. However, at a certain voltage the diaphragm zips completely onto the stainless steel flat electrode
and the pressure does not rise with further increase of voltage.

Table 3. Experimental test matrix.

Inlet pressure (kPa)
05 075 1 125 15
300 | X X
350 | X X
> 400 | X X X X
& 450 | X X X X X
S s00| X X X X X
2 ss0| X X X X X
§ 600 | X X X X X
650 | X X X X X
700 X X
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Figure 13. Measured pressure rise with applied voltage for different initial pressures. Once the
diaphragm is fully zipped, no further pressure rise is observed.

At voltages above 400 V and for the lower inlet pressures, the phenomenon of dielectric charging was
observed. This effect is caused when the dielectric is electrically charged and the diaphragm continues to
stick to the electrode even after the voltage has been turned off [21].

The segment-wise model developed here is applied for the experimental conditions described here, and the
predictions are compared with the experimental results. A sample comparison of the diaphragm deflection
and pressure rise for an inlet pressure of 1 kPa is shown in Figure 14. The model predictions agree quite
well with the experimental results. Figure 15 and Figure 16 show the difference between the model
predictions and experimental results for all the results obtained in terms of diaphragm deflection and
pressure rise, respectively. The model predicts the diaphragm deflection to within £10% for most of the
data points. The pressure rise predictions deviate from the experimental results at lower pressure rises, but
in general, agree to within +20%. Deviations in this comparison are attributed to uncertainties in the
calculation of the system dead volume, and the dielectric layer thickness (=1 pm).
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7. CONCLUSIONS

A novel modeling approach is developed for analyzing the operation of an electrostatically actuated
diaphragm compressor. The domain is divided into multiple radial segments and a force balance applied to
each segment to estimate a local pull-down voltage. The model simulates the zipping actuation of the
diaphragm by initiating the force balance calculations at the circumference and proceeding towards the
center. The model is quasi-static and assumes infinitesimal progressive zipping of the diaphragm. Dynamic
effects such as inertial forces and damping force of the compressed gas are not considered.

Predictions from the model show reasonable agreement with a lumped force balance model from the
literature. An experimental test set-up was also constructed to experimentally validate the model
predictions. The diaphragm deflection and pressure rise were measured as a function of applied voltage.
The experimental results showed good agreement with model predictions.

The model predicts a required operating voltage of approximately 400 V for compressing refrigerant R134a
gas by 30 kPa. Though the pressure rise is smaller than that required for a practical electronics cooling
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application, it is believed that an array of diaphragm compressors can be constructed to work in series to
meet the requirements. Cost-effective means for fabricating the compressor chambers and coating the
chamber and diaphragm with dielectric would need to be worked out before practical implementation.
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APPENDIX

In principle, the diaphragm compressor can generate an arbitrarily high pressure rise (neglecting any dead
volume in the chamber) so long as a sufficiently high voltage is applied and electric breakdown of the
dielectric layers is prevented. However, in practice, the primary limitation on pressure rise comes from the
elastic deformation limit of the diaphragm material. The metallized Kapton considered in this work has a
yield point strain of 3% [19]. Plastic deformation of the diaphragm beyond its elastic limit is undesirable as
it is irreversible.

For a circular circumferentially clamped diaphragm of radius R, the deflection at any radial location » under

a gas pressure of P is given as [22]:

k-r
T L Y R
= 2 3 : - 2 (AD)
k*-E-w 2-k-1,(K) 4-R

where |, and |, are the modified Bessel’s functions of the first kind and zeroth and first order, respectively.
The tension parameter £ is calculated as:

2
k:B.\/lz'(l_V)'O-res (A2)
w E

Based on the deflected diaphragm shape calculated using Equation (A1), a new diaphragm radius R’ is
calculated. Finally, the strain on the diaphragm is estimated as:
R!
6=— A3
- (A3)

This strain must < 3% to ensure that the deformation is elastic. This places a limit on the maximum gas
pressure the diaphragm can withstand:
APmax = f (R’ W’ E’ V’ O-TES) (A4)

Figure A1 shows the maximum allowable pressure for different diaphragm thicknesses as a function of the
diaphragm radius for a Kapton diaphragm. Clearly, thicker diaphragms of smaller radius can withstand
higher pressure rises.
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