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Abstract—The goal of the Mobility2.0 project was to provide
full electric vehicles users with a set of tools that reduce
range anxiety and favor a partial modal shift towards public
transportation. As part of this work, we have designed a so-called
global optimization criterion for selecting charging stations where
change of mode can occur. The idea is to minimize the mean
quadratic travel time of all users, in a way that can be used
for on-line allocation with good performance. We show through
simulation that this leads to a sizable improvement with respect
to a “greedy” station selection.

I. INTRODUCTION

The benefits of electric vehicles are well-known today: bet-
ter energy-efficiency, clean air, better utilization of renewable
energy sources, etc. However, the widespread adoption of full
electric vehicles (FEVs) still faces many hurdles, which are
yet to be overcome. We focus herein on the following issues:

• Limited FEV range may lead to range anxiety for
drivers in the absence of a procedure which ensures
that they comfortably reach their destination in any
circumstance;

• Public parking spaces in urban areas are generally a
limited resource and, especially during the initial de-
ployment stages, the electrification of parking spaces
may not keep up with the number of FEVs;

• The scarcity of urban road space leads to general
traffic congestion which can be alleviated by an at
least partial modal shift towards public transport.

The Mobility2.0 project [1]–[5] has been completed in
February, 2015. It has developed and tested an in-vehicle
commuting assistant for FEV mobility, enabling more reliable
and energy-efficient electro-mobility by controlling available
range and proposing as needed a park and ride type of trip. A
suitable traffic management system for FEVs must take each
of the above bottlenecks simultaneously into account in order
to achieve a journey optimization which is acceptable and
favorable for all drivers. Such integrated approach necessitates
the use of co-operative systems to co-ordinate between vehicles
and the infrastructure. The Mobility2.0 server is accessed from
nomadic device applications for iOS and Android. It comprises
3 core components:

• the Range Estimator computes the FEV battery energy
consumption for a given leg of a journey (see [5]);

• the FEV Demand Predictor handles all interactions
related to charging;

• the Multimodal Journey Planner relies on the two
other components to propose possibly multimodal
trips that satisfy range constraints.

The Multimodal Journey Planner (MJP) is a layer over
OpenTripPlanner (OTP), an open source platform for multi-
modal and multi-agency journey planning [6]. Beyond standard
OTP features—finding a route using either the FEV or public
transportation, subject to user preferences—it provides:

• Bi-modal journeys (FEV and public transportation)
through the selection of a charging or parking station;

• Mitigation of range anxiety through selection of routes
that are feasible, with or without leaving the FEV in
a station, given the current battery state;

Since the bulk of automotive transportation consists of
daily commutes to the office and back, Mobility2.0 has focused
on this scenario. The MJP suggests to use a parking station
when it is faster to drive the FEV to a station and then use
public transportation to reach the final destination (typically
when the workplace in city center). When the trip is not
feasible without recharging the battery, the MJP selects a
charging slot and makes sure that the charging period is long
enough to be able to finish the trip. This last case is an
important part of our strategy to mitigate range anxiety. Indeed,
it guarantees the feasibility of the trip in the current conditions.

The possible journeys returned by the algorithm are sorted
by increasing travel time, but the computation of these times
using OTP can be expensive. To limit the computation time to a
reasonable limit like e.g. 10 seconds, the implementation uses
a two-tier computation, first using coarse heuristics based on
historical data to rank the solutions, then a more precise pre-
diction using OTP. The technical description of this algorithm
is out of the scope of this paper. Instead, we discuss another
contribution, which is a new type of journey selection which
goes beyond fastest trip: journeys can be sorted according
to the so-called global optimization criterion, which aims to
minimize globally the travel time of all users. It is believed
that this global approach to resource allocation will help to
both reduce further range anxiety and favor use of public
transportation. This idea is related to the theory developed
by Wardrop [7], where two main types of traffic assignment
equilibria have been identified:

• user optimal: each user non-cooperatively seeks to
minimize his cost of transportation;

• system optimal: each user behaves cooperatively in
choosing his own route to ensure the most efficient



use of the whole system; in general economists rec-
ommend to use pricing to attain this equilibrium.

The paper is organized as follows: The model parameters
are given in Section II. The new optimization criterion is
defined in Section III, and an approximate on-line algorithm is
derived, both with limited and unlimited range; complexity is-
sues are also discussed. Section IV is devoted to the evaluation
of the algorithm via simulation; it shows that this optimization
criterion can lead to a sizable performance improvement.

II. MODEL SETTING

Before proceeding to describe the algorithm, it is necessary
to describe the model at hand in more details.

Let us first consider the demand. It is common to define
users through an Origin/Destination (O/D) matrix: the city
is split into several zones, and the number of trips between
these zones is counted. This is usually done through the
so-called Trip Distribution, the second component (after trip
generation, but before mode choice and route assignment) in
the traditional four-step transportation forecasting model [8].
We will only characterize a user by his type t, that is his origin
and destination. As mentioned in previous section, we chose
to restrict the demand to the simplest type of daily travels of
the form origin/destination/origin. The data can be collected by
using the Mobility2.0 system in a given city for a long enough
period. Each user of type t (for a given O/D/O scheme) has
a probability of occurrence and a travel time for the different
journeys that is estimated using OpenTripPlanner.

We turn now to the problem of FEV range. The probability
P(R ≤ r) that the initial battery range for a user is less than
some value r is supposed to be independent from the user type.
The empirical distribution can be estimated together with the
computation of the O/D matrices above. The energy necessary
for a given trip is obtained through the Range Estimator service
of the Mobility2.0 server. Note that no energy is needed for a
direct trip using public transportation; this implies that every
user will get at least one feasible route, and also provides an
upper bound on travel times.

The expected travel times are supposed to be known. In
practice, they will be estimated using the results of previous
similar OTP requests done by users, since no better data is
easily available. The charging or parking stations contain a
number of slots; slots are assumed to be allocated for the
duration of the period, i.e. it is not possible to have one slot
used successively by two users. Currently the algorithm does
not make a difference between a charging station and a mere
parking area. Handling this would be trivial, but make the
description of the algorithm more involved.

To sum up, the parameters of our model are the number of
stations S, the number of types T and, for each user type t:

• nt: number of users expected during the session;

• τts: expected travel time for a trip via station s;

• τtd (resp. τtp): expected travel time for a direct trip
using a FEV (resp. public transportation);

• P(R ≤ r): cumulative distribution function of the FEV
initial range;

• rts (resp. rtd): energy required for a trip via station s
(resp. for a direct FEV trip).

III. THE GLOBAL OPTIMIZATION CRITERION

The aim of the global optimization algorithm is to provide
a cost function that measures the performance experienced by
the whole community of users. The cost is defined as the mean
squared travel time, which is more sensitive to large values;
using the mean travel time would have the inconvenience of
“sacrificing” some users by giving them very long travel times.

Our setting can be seen as a resource allocation problem,
known as the Transportation Problem in Operations Research
literature [9]. It is solvable using several algorithms, among
which the simplex algorithm or the Hungarian algorithm [10],
[11]. Unfortunately, these algorithms are not well-adapted here
for two reasons:

• The allocation of slots to users is done on-line, when
the user does a request. It is not possible to wait until
all the users are known before doing the allocation;

• The complexity of these algorithms is very high,
especially since, due to the effect of range limitations,
each request has different characteristics, which is
equivalent to having TS types of customers.

Another way to present the problem is in terms of Markov
Decision Process [12], which leads to linear programming
approaches, presumably too expensive here.

We therefore present a simple heuristic approach, where the
allocation cost for one customer scales as TS (Section III-C).
This is fast enough for systems with thousands of stations.
Its principle is to penalize the cost for the user with an
approximation of the extra cost incurred to future users who
compete for the same resource (a charging or parking slot).
Since the implications can be intricate, we only consider a
first order effect.

A. The Case of Unlimited Range

Let us explain first the principle when the range of the
FEV is unlimited. In this case, all journeys are feasible and
the only task is to select the best one. The simple case is when
user A considers a direct journey using either a FEV or public
transportation. This choice will not affect the possibilities
offered to future users and the penalized cost is therefore equal
to the normal cost.

Assume now that user A considers using a station s. This
choice will only cause a problem if, at some time in the
future, s minimizes the travel time for some other user B,
but B finds it already full at arrival. To compute the effect
of this conflict, we have to compute (1) its probability and
(2) how it influences the travel time of user B. Of course, the
modification of behavior of B will have consequences itself.
We chose to ignore these second order effects, which makes
our computation a bit optimistic.

To compute the probability of a conflict between two users,
we use the model of the demand. The probability that the
number of potential users of a given station is larger than the
number of available slots is obtained using a binomial formula.



To compute the effect of a conflict, one has to compare
the cost of station s for user B with the second best choice
he can do. Unfortunately, this second choice is not known yet,
since the situation will be different at this point of time. It is
though possible to propose two simple bounds. A lower bound
is given by the station (or direct trip) that is the second-best
choice at the time when we make the decision for user A. This
value is optimistic, since the situation will worsen with time.
Conversely, an upper bound is given by a direct trip using
FEV or public transportation. This value is pessimistic, but it
compensates the optimistic nature of our algorithm remarked
before. This is the bound we are going to use thereafter.

Assume that users of types t ∈ TA are in concurrence
with user A at station s and that their weight (probability of
occurrence) is wt. Using the upper bound above, the respective
cost increases they can experience are

∆Cts = min (τ2td, τ
2
tp)− τ2ts.

Note that ∆Cts ≥ 0, since s is the available station that
minimizes travel time for users of type t and is therefore better
than a direct trip. If w =

∑
t∈TA wt is their total weight, then

the expected extra cost in case of conflict is

∆Cs = P(Bw,nrem ≥ ns − 1)× 1

w

∑
t∈TA

wt∆Cts, (1)

where nrem is the remaining number of customers to come,
ns the number of remaining slots in station s, and Bw,n a
binomial random variable counting events of probability w
after n draws.

B. Introducing Range Effects

When the range is limited, the formula has to be modified
to take into account the accessibility of station s for user A
given his FEV range, which is trivial. However, it is also
necessary to assess the possibility for future users to reach
stations for their journeys. In order to do that, one has to
modify the above algorithm as follows.

• Each user B that can potentially be in conflict with A
is weighted by the probability that its range is large
enough to use station s: wr

ts = wtP(R > rts);

• The direct journey used as an upper bound for user
B is a weighted mean of the FEV-only journey cost
and of the public transportation trip, since the journey
could be too long for the FEV range of user B:

∆Cr
ts = P(R ≤ rtd|R > rts)τ

2
tp

+ P(R > rtd|R > rts) min (τ2td, τ
2
tp)− τ2ts.

As a consequence, equation (1) is still valid, except that
the values of wt and ∆Cts have to be replaced:

∆Cr
s = P(Bw′,nrem ≥ ns − 1)× 1

wr

∑
t∈TA

wr
ts∆C

r
ts

C. Implementation Issues

One important concern about the algorithm is scalability.
Using the usual big-O notation1, the complexity of a greedy

1u = O(v) as v →∞ if, for v > v0 there exists M such that |u| ≤M |v|.

allocation is O(S) (a single loop over all the stations). A global
allocation requires in theory O(TS2) steps: a loop over the
stations and, for each type of user B, a greedy allocation to
search for conflicts.

The dependency on the number of types is a problem
because, as will be shown in next section, a precise model
improves the quality of global allocation. There is not much
that can be done to alleviate this, though. The dependency in
S2 is more worrying at first sight. The problem is mitigated
in the implementation by the fact that the stations are sorted
by expected travel times for each user type. The code then
maintains a pointer to the best available station for type t
users, which avoids to walk through the whole list of stations
at each allocation. The complexity of greedy search for a total
of N users thus becomes O(N +S), so that the complexity of
doing each global allocation is O

(
TS(1 + S/N)

)
. Moreover,

only stations more convenient than a direct trip need to be
considered. In a plausible city model (but not in our Gaussian
toy model unfortunately), this caps the effect of the S term.

IV. EVALUATION BY SIMULATION

Evaluation should ideally be done using the data from
the on-site validation periods of Mobility2.0 (in Barcelona
and Reggio Emilia). However, they have been neither long
enough nor large enough to provide enough data for our
statistical model. Creation of synthetic data to feed the MJP
with simulated requests would have been possible, but it would
have required scalability properties for the server well beyond
the scope of the project.

For these reasons, it has been decided that it is better
to focus on a preliminary evaluation to get a sense of what
global optimization can bring. To this end, we designed a
streamlined simulator, distinct from the Multimodal Journey
Planner, that is set in a simplified setting but uses the same
station selection algorithms as the MJP and that can scale
to thousands of stations. One advantage of going towards a
synthetic benchmark is that the parameters of our models can
vary more freely.

As described before, two main schemes can be used to
select a charging station: the user chooses either the fastest
possible journey (greedy) or the best journey with respect to
the extended cost defined in Section III (global). While users
use in general a mix of these two policies, we will evaluate
them separately and compare their performance under a large-
scale deployment. The case where only a fraction of users are
using the global policy is addressed at the end of Section IV-B.

A few shortcuts are taken for the sake of simplicity. They
are not expected to modify the validity of our evaluation and
could be replaced by something more elaborate without any
notable problem:

• All stations have 10 slots;

• All the types of users have the same weight w = 1/T ;

• The initial range of a FEV is either unlimited or
uniform in some range [R−, R+];

• The required energy rts or rtd is directly related
to travel time; while this is not true in general, the



TABLE I. MEAN TRAVEL TIMES (IN MINUTES) FOR THE GAUSSIAN
TOY MODEL.

Convenient Normal Only FEV Only public
station station transportation

Travel time 20 40 60 80
Energy 10 20 60 0

purpose of this evaluation is not to model energy con-
sumption and therefore this first-order approximation
is sufficient.

The simulator has been implemented as a command-
line C++ utility, completely separate from the actual MJP.
However, the greedy and the global allocation algorithms
correspond to the real specification. When the range of vehicles
is unlimited, it is also possible to run the streamlined trans-
portation simplex algorithm proposed in Chapter 8 of [9] on
the whole population of users generated for the simulation, in
order to compare the obtained performance2. This is interesting
because this algorithm (which is expensive and cannot be run
on-line) will provide a bound for the attainable performance.

A. Experimental Setup

Since we have made our model abstract enough, the only
thing that is necessary is to provide numbers for the travel
times. We use in this evaluation a Gaussian toy model, which
is defined as follows:

• the travel times are non-negative truncated Gaussian
variables with means given in Table I and standard
deviations equal to 20% of their means;

• for each type of user, there is one station (picked at
random) which is more convenient than the others.
The intent is to increase competition between users;

• When using a station, it is assumed that the second
part of the trip will be done using public transporta-
tion, and therefore the required energy is smaller than
the travel time;

Note that the values given in Table I are somewhat ar-
bitrary. They have not been chosen to estimate how much
time a FEV user can gain in a real situation: the goal is to
observe the behavior of the global algorithm and characterize
its performance. In this setting, using a station to park the car
and take public transportation is time-efficient, as is supposed
to be the case in a peak-hour scenario. Using only public
transportation takes however longer than using only the FEV.

Most of the time, we use a setting where the number of
charging slots is lower than the number of users:

• N = 20000 users;

• S = 1000 stations with 10 slots each, that is a total
of 10000 available slots;

• T = 3000 types of users (equivalent to ≈ 55 origins
and 55 destinations).

These numbers have been chosen as follows: 1000 charging
stations is an ambitious number for a big city. To see better

2We used the code distributed at http://darrentmacdonald.com/emd/

TABLE II. COMPARISON OF THE DIFFERENT ALLOCATION
ALGORITHMS (UNLIMITED RANGE).

Allocation Quadratic mean Improvement
type travel time (min.) w.r.t. greedy

Greedy 43.52 –
Global 39.79 8.6%
Off-line 37.60 13.6%
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Fig. 1. Distribution of the travel times according to the different allocation
schemes (unlimited range).

the effect of competition for parking space, it is reasonable to
pick a number of users that is twice as large as the number of
slots. In terms of performance assessment, we will explore the
users’ travel time in three ways: quadratic mean for all users,
distribution and improvement seen with global optimization.

B. Experimental Results with Unlimited Range

It is convenient to start by evaluating the performance of the
algorithms with unlimited range. Indeed, this is the only case
where it is possible to run the transportation simplex algorithm,
which yields the best possible allocation for a given set of
users: the run time of the algorithm increases with the number
of types of users and, when the range is limited, each user
is different because some do not have a good enough energy
level to attain some stations.

The most synthetic result is shown in Table II. One sees that
global allocation improves the quadratic mean travel time by
8.6%. While this does not seem to be much at first glance, this
number is to be compared to the (theoretic) lower bound of the
transportation simplex algorithm. This maximal expected gain
is 13.6%, with an algorithm that cannot run on-line, contrary
to our operational requirements. The gain obtained with the
global algorithm is thus very encouraging.

The distribution of travel times, depending on the allocation
technique used, is given in Fig. 1. Greedy allocation produces
the highest number of quick trips, but the downside is that it
also leads to the highest number of long travel times. Global
allocation reduces the duration of these long trips, but this is
done at the cost of making short trips more expensive. Finally,
the off-line allocation strikes a balance and somewhat provides
the advantages of both methods at the same time.



TABLE III. CLASSIFICATION OF USERS IN TERMS OF GAIN G DUE TO
GLOBAL ALLOCATION (UNLIMITED RANGE).

Weight Mean gain (min.)

G < −20 (loss) 14% -32
|G| < 20 71% -2
G > 20 (gain) 15% 49
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Fig. 2. Influence of the number of user types on the mean quadratic travel
time for each of the allocation procedures (unlimited range).

Let us turn now to the time that each user gains (or
loses) when everybody follows the global allocation guidelines
instead of being greedy. It is possible to separate the users in
3 classes, as shown in Table III. One can see that, while the
majority of users will not see the difference, the gain of time
experienced by the 15% of lucky users is larger than the time
lost by the 14% that do not benefit from the scheme.

The influence of the precision of the model—that is, the
number of types of users—on the performance is shown in
Fig. 2. Contrary to the greedy and off-line optimization cases,
the global optimization algorithm improves notably when the
quality of the input data increases. This implies that the
efficiency of a Mobility2.0 service will improve with time, but
also that the number of user types in the model should be large
enough to be efficient. It is important to note that classifying
20000 users into 5000 classes requires several months of
historical data. The fact that the off-line algorithm is better
than our global optimization algorithm comes mostly from the
fact that it has a perfect knowledge of all users in the session;
it is not clear that the non-optimality of our algorithm is a
problem.

Until now, only the case where all users use the global
allocation policy has been considered. In a real situation, part
of the Mobility2.0 users will disregard the global allocation
proposal and pick shortest journeys. Moreover, a number of
users not using the system will compete for charging stations;
for simplicity, we assume that these users are identical to
“greedy” Mobility2.0 users. Fig. 3 show the influence of the
proportion of “good citizens” among the population on the
performance of the system. After increasing a little bit at
10%, the mean quadratic travel time becomes better as soon
as more than 20% of users use the global allocation choice.
Interestingly enough, it is the mean travel time of the whole
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Fig. 3. Influence of the proportion of users using global allocation on the
mean quadratic travel time for each of the allocation procedures (unlimited
range).

TABLE IV. COMPARISON OF THE DIFFERENT ALLOCATION
ALGORITHMS (LIMITED RANGE).

Allocation Quadratic mean Improvement
type travel time (min.) w.r.t. greedy

Greedy 47.97 –
Global 40.54 15.48%

TABLE V. CLASSIFICATION OF USERS IN TERMS OF GAIN G DUE TO
GLOBAL ALLOCATION (LIMITED RANGE).

Weight Mean gain (min.)

G < −20 (loss) 16% -34
|G| < 20 67% -2
G > 20 (gain) 17% 61

population that improves here, not only the Mobility2.0 users
subset.

C. Experimental Results with Limited Range

When the range of FEVs is limited, we expect some
vehicles to be prioritized over others because their range is
too small. In the following evaluation, the range is taken to
be uniform in the range [45, 90], which means that direct trips
using only the FEV may not be doable by some users. In this
new situation, since all users are different, it is not possible
anymore to run the off-line algorithm as a comparison, for
complexity reasons. The rest of the analysis of Section IV-B
can be repeated.

As can be seen in Table IV and Fig. 4, the results are
even better than they were in previous section. Despite the
fact that the range of the vehicles is random, which makes the
prediction of future demand more difficult, a more substantial
gain is obtained by anticipating the arrival of FEVs with low
range. Similarly, the distribution of results in classes is still
good (Table V).

There is another side effect that is more surprising: for each
user, it is possible to compare the travel time knowing his FEV
range, to the one that would be experienced if the range was
unlimited (Fig. 5). For the greedy allocation, the travel time is
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Fig. 5. Distribution of the increase of travel time with limited FEV range.
Only the 3002 users for which the range makes a difference are shown here.

unsurprisingly longer when the range of the FEV is limited.
For the global version however, there are a number of users
for which the travel time improves when the range is limited,
because they get some priority over FEVs with a better range
(this is the red heap at the left of the distribution). It can be
debated whether this is a good feature, since it will be probably
counter-intuitive for many users.

V. CONCLUSION

We have shown in this study how the global allocation
algorithm can provide a good improvement to the travel times
experienced by the users of the Mobility2.0 system. This
scheme allows alleviating the longest users’ travel times with-
out sacrificing other users. Moreover, it acts as a prioritizing
policy that helps users with a low range. However, these results
can only be attained if many users are “good citizens”, and

especially those who would need to sacrifice some of their time
for the benefit of others. Further work is required to understand
what incentives can be proposed to users to make them do
“the right thing”, e.g. financial incentives for drivers to use
the recommended re-charging spots. Most importantly, these
results show that the global allocation policy is an important
tool for achieving the optimal use of an existing public FEV
re-charging infrastructure, maximizing its benefit to drivers.

When it comes to being scalable to a million of users, an
interesting behavior of the algorithm will only be observed
if the number of available parking slots is of the same order
of magnitude as the number of users. Otherwise, the effect
of any allocation algorithm will be marginal at best, since
most users will be constrained to do a FEV-only trip. It is
not clear at this point that one can be in a situation where
a good allocation strategy can improve significantly the travel
times of FEV users. But if this situation can be built, the global
algorithm that is proposed here is a very good candidate.
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