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ABSTRACT 

Fully-depleted single-gated and dual-gated SO1 MOSFETs are fabricated using 

both Epitaxial Lateral Overgrowth (ELO) and Confined Lateral Selective Epitaxial 

Growth (CLSEG). SO1 MOSFETs and diodes are fabricated in thin (= 190A) CLSEG 

films grown in pre-defined 25008, thick cavities for the first time. In addition to the SO1 

MOSFETs fabricated using selective epitaxial growth, thin-film SO1 MOSFETs were 

also fabricated on SIMOX wafers. The one to one comparison between the two SO1 

technologies proves that the EL0 and CLSEG material is of at least as good if not better 

quality than that of SIMOX. Effective hole mobilities in the excess of 300 cm2IV-sec 

were obtained on thin-film EL0 and pp,eff values of greater than 240 cm2IV-sec were 

extracted from the thin-film CLSEG devices. 

A new linear sweep technique to measure generation lifetimes in thin SO1 films 

has been developed. The measurement technique uses fully-depleted or partially depleted 

MOSFETs as the test structure. A detailed analytical formulation that involves the 

solution of Poisson's equation as applied to a fully-depleted SO1 structure is presented. 

The analytical solutions are used to simulate the behavior of the SO1 devices under the 

proposed linear sweep conditions. Finally, the linear sweep technique is applied to fully- 

depleted devices fabricated on SIMOX material and an average lifetime of 2ps is 

extracted from devices across the waCer. 

The effects of volume inversion in thin-film short-channel SO1 MOSFETs and the 

efficacy of dual-gate operation in enhancing their device performance have been analyzed 

using twodi~nensional device simulations and one-dimensional analytical computations. 

In the strong inversion regime, the analyses suggest that when compared at constant VG- 



VT values, the dual-channel volume inverted devices do not offer significant current- 

enhancement advantges, other than that expected from the second channel, over the 

conventional single-channel devices for silicon film thicknesses in the 0.1pm range. In 

its support however, two-dimensional simulations suggest that dual-gated devices are 

more immune to short channel effects than conventional single-gated devices. In this 

regard, a novel process sequence to fabricate self-aligned dual-gated MOSFETs is 

presented. 
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INTRODUCTION : BICMOS AND SO1 

1.1 Introduction : The Paradigm of High Density and High Speed 

CMOS circuits hold a position of prominence in the semiconductor industry. 

Literally thousands of semiconductor ICs utilize the CMOS technology to achieve a 

myriad of functions and applications. These range from simple logic gates to memory 

cells to complex microprocessors. At the heart of the CMOS technology are of course the 

independent n-channel and pchannel MOSFETs. The simplicity in the design and 

fabrication of the MOSFETs and their easy adaptability to aggressive scaling were 

instrumental in pivoting CMOS circuits to their current position as a technological giant. 

In addition, CMOS circuits maintam very low power dissipation levels which makes 

CMOS the technology of choice in most memory and VLSI applications. However, the 

weak link in CMOS circuits is their speed performance. MOSFETs have low 

transconductances and hence low current driving capabilities. The low drive currents 

limit the speed with which the load capacitance are charged and discharged. Hence the 

maximum allowable switching speeds are limited. It is this niche that the faster ECL 

bipolar circuits completely occupy. The ECL circuits use bipolar junction transistors 

(BJTs) as their core drive element. BJTs have high current handling capabilities and thus 

circuits incorporating them operate at higher speeds compared to CMOS circuits. 

However, ECL circuits require a significant amount of static power arising from the 

necessity to maintain the bipolar transistors in the ON state (Vbe = 0.7V). These power 

dissipation levels cause excessive device heating and demand the presence of sufficient 

heat sinks around the individual devices. Bipolar devices, for the aforementioned reason, 

cannot be integrated too extensively and consequently ECL circuits do not achieve very 

high integration levels. In a simplistic conclusion, whereas CMOS circuits enjoy a wide 

repertoire of applications due to their high integration levels and low power dissipation, 

their poor dynamic performances hamper their use in high speed circuits. ECL circuits fit 

the bill perfectly in so far as speed is concerned but fall palpably short in high integration 

requirements. 



1.2 Rudiments of BiCMOS 

BiCMOS (Bipolar and CMOS) has been an emerging technology in recent years 

[I]. As the name aptly suggests, BiCMOS is an appropriate merger of bipolar and CMOS 

technologies. The aim is to combine the advantages of the two, i.e.. the high integration 

densities and the low power consumption of CMOS and the high speed capabilities of the 

bipolar. The paradigm of high speed or high density thus metamorphoses into an 

opportunity to achieve both speed and density via a BiCMOS process. BiCMOS 

technologies attempt to fill the void left at the high-speed high-integration levels. By 
retaining the benefits of Bipolar and CMOS, BiCMOS is able to achieve VLSl circuits 

with speed-power-density performance previously unattainable with either technology 

individually. 

CMOS technology maintains an advantage over Bipolar in power dissipation, 

noise margins, packing densities and the ability to integrate large complex functions with 

high yields. Bipolar technology has advantages over CMOS in switching speed, current 

drive per unit area, noise performance, analog capability and I10 speed. It follows that 

BiCMOS technology offers the advantages of (1) improved speed over CMOS , (2) lower 

power dissipation than the Bipolar (which simplifies packaging and board requirements) , 

(3) flexible 110's (TTL, CMOS or ECL) - this point is significant given the growing 

importance of ECL 110, historically the exclusive domain of Bipolar technology for high 

speed systems , (4) high performance analog integration and (5) latch-up immunity. 

Figure l.l(a) compares the gate delays for typical CMOS, BiCMOS and bipolar 

(ECL) technologies. It is clear that whereas BiCMOS is a definite improvement over 

CMOS, i t  is still a slower technology compared to ECL. The bipolar ECL market has 

historically pursued speed 'at all cost'. Thus when the power budget is unconstrained, a 

bipolar technology optimized for speed will almost always be faster than a BiCMOS 

technology. However in applications where a finite power budget exists, the ability to 

focus power where it is required usually allows BiCMOS speed performances to surpass 

that of the Bipolar [2]. This aspect of BiCMOS is made clear in fig. l.l(b) which depicts 

the gate delays for the different technologies and their respective power dissipation. The 

compromise achieved by BiCMOS vis 3 vis gate delay and power dissipation is apparcnl. 

CMOS technology has in recent years been aggressively scaled to sub-micron 

dimensions. Reduced gate lengths increase the available drive current which results in 
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improved speed in circuits where the capacitive load is dominated by the extrinsic 

capacitance. However further scaling of CMOS technology is currently too expensive for 

the speed advantages it can offer. For the same increment in cost bipolar devices can be 

introduced into the process providing high capacitive load drive capability that is 

unmatched by state-of-the art scaled CMOS technology. As an example motivating the 

use of BiCMOS, figure 1.2 shows a typical memory access path in a Static Random 

Access Memory (SRAM) implemented using BiCMOS. The row and column decoders 

and the memory cells require high levels of integration in order to achieve the large 

memory requirements. Consequently these units in the SRAM are fabricated using the 

CMOS technology. However the sense circuitry and the inputloutput (110) periphery 

determine to a large extent the access time. (The propagation delay through the array is 

comprised of the word line delay, bit line delay and the sensinglamplification delay). 

Hence the I10 periphery and the sense circuitry are fabricated in ECL for greater speed. 

Bipolar differential pairs provide the high gain and input sensitivity required to quickly 

sense small differences in bit line swings. Such a merger of ECL and CMOS within a 

single chip is typical of BiCMOS designs, and is indicative of the compromise achieved 

between high integration and high speed. 64K SRAMs utilizing novel BiCMOS designs 

and incorporating ECL 110s have been fabricated with access times as low as 3811s with a 

maximum power dissipation of just 750mW. Comparable SRAMs fabricated in ECL 

typically dissipate upto 6.5W of power [3]. 

In addition to improving circuit performance, BiCMOS lends circuit designers an 

additional degree of freedom in designing novel circuits by allowing the presence of both 

bipolar transistors and MOSFETs on the same chip. BiCMOS technology is especially 

well suited for I10 intensive applications. ECL, TTL and CMOS input and output levels 

can be easily generated with no speed or tracking consequences. The rail to rail swings 

and unterminated environment used in CMOS makes output switching above 33 MHz 

difficult. BiCMOS's inherent compatibility with ECL or ?TL levels provides an ideal 

solution to these problems. 

1.3 BiCMOS Process Technology 

Although the true power of BiCMOS rests with the circuit designer, the 

emergence of BiCMOS has caused a proliferation of fabrication processes of varying 



TYPICAL BICMOS MEMORY ACCESS PATH 

PREDECODED PREDECODED 
ADDRESS 

Row Decoder 
ECL CMOS 

ROW 

ECL 

Figure 1.2 An Example of BiCMOS - a typical implementation of a B iCMOS 
SRAM 

complexities. BiCMOS technology can be broadly classified into three groups : 1) high 

performance 2) low cost and 3) analog compatible. In the low cost approach, the focus is 

on CMOS process optimization. Bipolar devices added to the process typically don't 

have a buried collector and are relatively low performance devices. The idea is to 

compromise the NPN performance for the sake of minimizing manufacltunng costs and 

maintaining compatibility with existing CMOS processes. The added number of process 

steps is kept to a minimum. One of the key aspects in a manufacturing environment is to 

maintain exactly the same performance for the CMOS devices so that the CMOS process 

files do not have to be altered. The third category of analog compatible devices differ in 

their requirements from the first two categories. Design rules typically do not have to be 

scaled as aggressively - 1.5pm-2.Opm rules suffice for most applications. High 

performance analog technology requirements include higher voltages (10-15V), 

additional components such as precision capacitors and resistors and hi,gh performance 



PNPs. This implies using thicker gate oxides which reduces the digital CMOS 

performance. The first category is the high performance and high speed category and is 

by far the most complex technology. Both CMOS and bipolar device performances are 

typically optimized for applications in large gate arrays, memories and microprocessors. 

The rest of this section covers the synthesis of a high performance BiCMOS process. 

There are two distinct ways to approach BiCMOS prcxess design. One is to start 

with a standard CMOS process and modify it to incorporate a bipolar transistor (CMOS- 

based process). The other complimentary technique is to start with a set bipolar process 

(bipolar-based process). There is no 'correct' approach as long as the two techniques 

yield high-performance MOSFETs and BJTs commensurate with high performance 

digital circuits. However for high performance LSI and VLSI digital circuit applications, 

BiCMOS technology is predominantly driven from a CMOS processing base. LSI and 

VLSI digital BiCMOS circuits tend to be CMOS-intensive because of power dissipation 

limitations (for example, high density ECL I10 SRAMs). The CMOS-intensive nature of 

these circuits requires a process technology that results in the highest possible CMOS 

performance. Consequently, the BiCMOS process fabrication tends to be CMOS-based, 

and the process steps required to fabricate a high-performance bipolar transistor are 

merged with a core CMOS process flow [4-61. 

A number of factors aid the integration of high-speed bipolar devices into a 

CMOS flow. One of the major factors is that structural requirements for realizing high- 

performance CMOS and bipolar transistors have tended to converge. For example, 

silicidation is a common requirement for CMOS and bipolar to reduce sourceldrain 

resistances and emitterlbase resistances. Similarly, both CMOS and bipolar require 

heavily doped N+ buried layers, albeit for different reasons. N+ buried layers are 

common features in bipolar processes and aye introduced to minimize collector resistance. 

The buried layer when placed under the n-wells in CMOS circuits help reduce latch-up 

susceptibility. In the following paragraphs, we shall metamorphose a high-performance 

BiCMOS process from a base CMOS process. 

The development starts with a basic n-well CMOS process as illustrated in fig. 

1.3. The NMOS device is built in a thick P- - epitaxial layer on top of a P+ substrate. 

The PMOS transistor is built in an implanted N-well. The P+ substrate is used to reduce 

latch-up susceptibility. A first order modification to the process involves the introduction 

of a simple triple-diffused emitter bipolar transistor. The process uses the N+ 



sourceldrain (SID) implant to form the bipolar transistor's emitter and shallow collector 

contact. The P+ - SID implant forms the extrinsic base contacts. The process requires 

one additional masking step to introduce the intrinsic base. This process cross-section is 

shown in fig. 1.4. From a bipolar standpoint, this simple approach h,as a number of 

limitations. The most significant of these is the lightly doped PMOS N-well that is used 

to form the bipolar collector. The low doping concentration leads to a large collector 

resistance, which limits the usefulness of the bipolar transistor. The next iteration 

involves the addition of a buried-layer and a deep n+ - sinker; both steps act to reduce the 

collector resistance and hence improve the performance of the bipolar transistor. In 

addition the epitaxial layer is grown n-type instead of p-type, so that the epitaxial layer 

doping now determines the collector doping. The p-channel MOSFET is formed in the n- 

epitaxial layer while the n-channel MOSFET requires a p-well implant. The n+ - buried 

layer is introduced for the p-channel MOSFET to reduce the possibility of latch-up. The 

resulting device structure is shown in fig. 1.5. This process requires twlo more masking 
- 

steps, one each for the buried layer and the deep n+ - implant. The significant aspect of 

this iteration step is the change in the epitaxial layer doping to optimize the collector 

design of the bipolar transistor. The above approach, although producing a bipolar device 

with much improved characteristics, still has a number of drawbacks. In particular, the 

packing density of the bipolar devices is limited by the P- - substrate dloping level that 

must be used to prevent punch-through from one bipolar device collector to another. 

Raising the doping level of the P - substrate, while allowing the bipol,ar devices to be 

more closely spaced, causes increased collector to substrate capacitance. Also the N-type 

epitaxial layer has to be counter-doped to isolate the N-well regions and to form P-wells 

for the NMOS device. Counter doping can cause a reduction in NMlOS performance 

through mobility degradation. . 
An improvement in bipolar packing density can be made by wing self-aligned 

twin buried layers. The process cross-section is illustrated in figure 1.6. This allows the 

collector-collector spacing to be reduced at the cost of increased collector-substrate 

sidewall capacitance. The process also incorporates a twin-well CMOS; process without 

heavily counter-doping the epitaxial layer. A near-intrinsic epi-layer is deposited for this 
reason. A t  the cost of an extra mask level, the bipolar device performance can be further 

improved by using a polysilicon emitter. In such a process, the NMOS and PMOS gates 

and the bipolar emitter share a common polysilicon deposition step. Four additional 
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masking steps are required (buried N+, deep N+, P-base, emitter) to merge this BiCMOS 

process with a baseline CMOS flow. 

Further optimizations of the bipolar transistor and the MOSFETs are dictated by 

speed and reliability issues. The following modifications can be incorporated into the 

process shown in figure 1.6 : 

(i) Silicidation of all extrinsic contacts and pol ysilicon layers. Sel f-al igned 
silicidation (Salicide [7]) is widely used. 

(ii)  Sidewall oxide spacer technology is used to incorporate lightly doped drain 

(LDD) to prevent hot electron degradation in the NMOS transistors. 

(iii) The emitter and base regions of the bipolar transistor is self-aligned to reduce 
device parasi tics and enhance performance. 

(iv) Trench isolation is used to increase the packing density and reduce the collector- 

substrate capacitance. 

(v) SourceJdrain and base junction areas can be reduced through the use of local 

interconnects. Higher packing densities and lower capacitances can be achieved, leading 

to increased chip density. 

A fully optimized high performance BiCMOS process is illustrated in figure 1.7. The 

sketch is one among an anthology of BiCMOS processes. However i t  typifies the 

fabrication processes involved and the final device structures obtained. The design 

considerations involved in such a process is the next topic of discussion. 

1.4 Design Considerations in a BiCMOS Process 

As we have stated above, BiCMOS process complexity can vary from a low-end 

cost-efficient process, to a high-end complex process in which all devices are optimized 

for maximum performance. The question often arises, "How g o d  does an NPN have to 

be for a given set of MOSFET parameters and vice versa?". The answer is primarily 

determined by circuit requirements. Consider MOSFETs for example. For FETs speed 

depends on device parameters such as saturation current (Idsat) and intrinsic (Cint) and 

extrinsic (CeXt) capacitances. These parameters in turn depend on oxide thickness, 

channel length and bulk doping. However in FET circuits scaling the oxide thickness 

does not increase speed for circuits dominated by Cint because both Idsat and Cint increase 

at approximately the same rate. For CeXt dominated circuits on the other hand, scaling the 
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oxide thickness and channel length will improve the circuit speed. Thus in a BiCMOS 

circuit, if relatively low performance NPNs are used for primarily driving I/Os, then high- 

performance FETs will be required to drive the large extrinsic capacitances associated 

with the NPNs. This can be achieved by scaling the oxide thickness to increase Idsal 

Conversely, if high-performance self-aligned bipolar transistors are used, then the 

requirements on the MOSFETs can be relaxed [8]. 

To a large extent process design in BiCMOS is dictated by device design which in 

turn is dictated by circuit requirements. The impact of various process parameters on key 

device parameters for MOSFETs and BJTs are summarized in Tables 1 .1  and 1.2 [I]. 

Tang and Soloman 191 have proposed a method for NPN device and process design which 

is depicted in figure 1.8. Circuit requirements determine the current density of the 

device. This sets the minimum collector doping and the maximum epi-thickness based 

on Kirk effect considerations. The current density also sets the maximum doping allowed 

due to the required current gain. Optimization of the base profile is driven by RB, f3 and 

base transit time considerations. In general, a similar scheme can be followed for 

MOSFETs. However the criteria listed in Tables 1.1 and 1.2 highlight impacts of process 

parameters on device requirements for good CMOS and bipolar transistors taken 

individually. When the two processes are merged into a single BiCMOS process, a 

number of compromises are involved. Performance compromises can be minimized but 

at the expense of increased process complexity. Most of the compromises in performance 

are determined by choices made in the front-end development of the process, where the 

strongest coupling between device characteristics occurs. 

1.4.1 Front-end Design Issues 

As discussed briefly in section 1.3, there are a number of front-end design options 

available in designing a BiCMOS process. Front-end design involves choice of well 

doping concentrations, choice of N-epi or P-epi, choice of N-well or P-well processes, 

triple diffused process and the twin-well process with intrinsic epi. When epitaxy is 

chosen as a possible option, the front-end design also determines the epi-doping, buried 

layer considerations such as autodoping and the choice of epi-layer thickness. Table 1.3 

summarizes the front-end design options and ranks the performance of the NPNs and 

MOS transistors as well as the ease of implementation and latch-up susceptibility [lo]. 



Table 1 . 1  Primary Process Parameters and the Resulting Impact (Increase or Decrease) 
on the Key Electrical Characteristics of a MOSFET 

* depends on the Nbc profile 



Table 1.2 First Order Effects on NPN Parameters for Increasing Qb, Wb and Qc 
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Table 1.3 Ranking for Different BiCMOS Front-end Options 
(1 is the best [lo]) 

The triple-diffused option as seen earlier in figure 1.3 offers ease of 

implementation and compatibility with CMOS technology. This is obtained at the 

expense of NPN performance. By and large, the use of an epitaxial layer based process is 

essential for high-performance BiCMOS. For CMOS, the epi improves latch-up 

immunity, decreases the impact of substrate current and improves alpha-particle 

immunity in memories [lo]. The bipolar transistors benefit from reduced collector 

resistance and suppressed Kirk effect. Thicker lightly doped epi is preferred for CMOS 

while optimal NPNs are obtained with a thinner more heavily doped epitaxial layer. 

Moreover parameters chosen for the epitaxial layer are strongly dependent on well doses, 

buried layer doses and well drive time for the process. Thus the optimization of epi- 

parameters becomes a formidable task. 

Fron t-End 

Triple-diffused 

P-epi/N-well 

N-epi/P-well 

N-epi/Retro P-well 

x-epimwin well 

Most of the front-end design constraints and compromises arise from the fact that 

the bipolar transistor and the MOSFETs share the same epitaxial layer. 

(a) Epitaxial layer thickness : Optimal epi-thickness becomes a strong function of the 

particular circuit performance requirement. Depending on these requirements, the epi- 

thickness can be chosen to either optimize the NPN performance or the FET performance. 
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The bipolar transistor will set a minimum allowed thickness determin~ed by BVCEO 

constraints. Because of the P+ - buried layer that is used underneath the NMOS to 

electrically isolate adjacent N-well tubs and reduce latch-up, the epi must lx thick enough 

to prevent the out-diffusion of the P+ - buried layer from excessively increasing NMOS 

junction capacitances and the body-effect of the NMOS transistors. On the other hand, a 

thick epitaxial layer degrades f~ and increases the collector resistance which would 

increase propagation delay. In addition, the knee current of the bipolar transistor ( I d  

also decreases. This is reflected in figure 1.9 which depicts the gate delay as a function 

of epi-layer thickness. 

(b) N-well doping profile and dose : The n-well diffused either into P-epi or n-epi 

forms both the collector of the bipolar transistor as well as the background doping for the 

p-channel MOSFET. Clearly the n-well dose and the profile constitute critical process 

parameters. The required n-well dose is tightly constrained by a number of conflicting 

needs. To control the PMOS short-channel effects, the well dose must be sufficient to 

prevent DIBL. A well doping of le16 lcm3 or more underneath the base: is necessary to 

suppress base push-out and minimize the collector resistance of the NPN. If the N-well is 

used to set the PMOS field threshold then an additional constraint occurs based on the 

lowest doping that is acceptable at the surface. However excessive N-well dose is 

detrimental to PMOS body-effect considerations and to junction capacitances as we1 l as 

to the collector-base capacitance of the NPN. 

In figure 1.10 the general BiCMOS device design methodology is illustrated [ll].  

The complex procedure involved due to the conflicting needs of the CMOS and bipolar is 

immediately obvious. 

1.4.2 Latchup in BiCMOS Processes 

Latchup in CMOS circuits is a well known and well understood reliability 

concern. :ntchup propensities in CMOS circuits fabricated in a BiChlOS process are 

severely reduced due to the incorporation of twin buried layers under thle twin wells. In 

addition, the n-well resistance is significantly lowered in a BiCMOS process because of 

the requirements of the bipolar. Reduced beta of vertical PNP transistors because of the 

presence of the buried layer and the lower N-well resistance are the two major reasons for 

the significantly superior latch-up immunity of a BiCMOS process. 
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Certain merged CMOSIbipolar structures in a BiCMOS circuit tend to be 

susceptible to latchup and this reduces the design flexibility by requiring more design 

rules. Illustrated in figures l . l l (a)  and l . l l (b)  are two typical merged bipolarICMOS 

structures that are susceptible to latchup. In fig. 1.1 l(a) at high collector currents the 

NPN collector could potentially enter quasi-saturation. This results in the C-B junction 

being forward biased which in turn injects holes in the substrate. The holes form the base 

current for the parasitic NPN in the SCR latch and turn on the NPNP path. In fig. 1.1 l(b) 

a very common merged device is depicted. The drain of a PMOS transistor is merged to 

the base of a bipolar device. Such devices have been shown to yield superior 

performances in BiCMOS circuits [12]. Once the PMOS transistor is turned on, the high 

voltage at its source appears at the base of the NPN device and establishes a current flow 

through it. The SCR action in this case is between the vertical NPN and lateral PNP. 

The collector current then continues to flow even after the PMOS is turned off. 

Therefore even in conventional BiCMOS circuits reliability concerns place further 

restrictions on process parameters and accentuate the already existing compromises 

discussed in the earlier section. 

1.5 Silicon-on-Insulator for BiCMOS Applications 

In section 1.4 the complexities in the design and implementation of a conventional 

BiCMOS process were discussed in some detail. A host of compromises and process 

parameter restrictions were seen to be a direct consequence of the fact that the CMOS 

devices and the bipolar devices were fabricated in the same epitaxial layer. If it were 

possible to fabricate the MOSFETs and bipolar transistors in separate individual epitaxial 

layers, then each of the design constraints and compromises highlighted in the previous 

section would be substantially relaxed. The BiCMOS device design methodology of 

figure 1.10 would also be dramatically simplified. I t  would then become possible to 

independently control and tune the CMOS and bipolar devices in order to attain the best 

performances for the combined BiCMOS technology. 

Silicon-on-Insulator (SOI) processes allow MOSFETs and bipolar transistors to 

be fabricated in separate epitaxial islands. A simplified process sequence demonstrating 

the integration of SO1 MOSFETs into a BiCMOS process is shown in figure 1.12. A 
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significant feature of the process is its 'quasi-SOI' nature. That is, the MOSFETs are 

fabricated on SO1 material, while the bipolar transistor is fabricated in the buIk substrate. 

Such a merger of bulk and SO1 is indispensable because of the difficulty in 

fabricating high performance bipolar transistors in thin-film SO1 material. The process 

highlights the advantages of combining SO1 MOSFETs with conventional bipolar 

transistors. 

SO1 device islands for MOSFETs significantly simplifies the isolation between 

devices in the proposed quasi-SO1 BiCMOS process. Due to the ultra-thin nature of the 

SO1 films, LOCOS isolation is extremely easy to implement and birds t ~ a k  effects are 

reduced to a minimum. Epitaxial growth can be optimized for the bipolar transistor in 

terms of both the epi-layer doping and thickness. The SO1 layer thickness can be 

independently achieved by chemical-mechanical planarization. The SO1 CMOS process 

has no wells to be concerned about and therefore the  compromise.^ made in the 

conventional BiCMOS process flow vis B vis well dose and well drive times are avoided. 

The presence of the buried oxide layer and the thin nature of the SO1 film provides a 

natural protection against latch-up. There are no buried layers required for the 

MOSFETs. This again simplifies the epitaxy process because boron out-diffusion does 

not have to be accounted for when analyzing process options. The twin buried layers 

inherent to a conventional BiCMOS structure complicate the epitaxy process, since 

vertical and lateral autodoping effects must be considered for both N and P well regions. 

Autodoping is a very severe concern especially for near intrinsic epi-growth, more so for 

thinner epitaxial layers. In addition to the conventional CMOS latchup immunity, the 

SO1 devices also prevent the latchup susceptive SCR paths discussed in  figures 1.1 1. 

Merged bipolar / CMOS circuits can be designed without any specific design rules. This 

would increase packing densities. One of the most common design rulles for reducing 

latchup is providing body ties, which take up a lot of silicon area. 

The SO1 MOSFETs fabricated in the quasi-SO1 BiCMOS process have reduced 

peripheral junction capacitances. They promise faster operating speeds as compared to 

bulk MOSFETs. Moreover recent studies on thin-film SO1 MOSFETs indicate improved 

immunity to short-channel effects and enhanced device performance for SO1 MOSFETs 

as compared to conventional bulk MOSFETs. The properties of SO1 NIOSFETs will be 

considered in greater detail in the next chapter. 



In thin-film SO1 MOSFETs the threshold voltage is typically controlled by the 

gate work function. The CMOS threshold implant schemes are also simplified as the thin 

films result in uniform doping profiles. Since SO1 MOSFETs show great short-channel 

immunity, retrograde doping to prevent bulk punch through can be avoided. A common 

processing factor between the SO1 MOSFETs and conventional FETs is the LDD 

requirement to reduce hot-camer generation and improve device reliability. All bipolar 

process steps can be optimized for the bipolar without compromising the CMOS devices, 

following the design procedure shown in figure 1.8. 

Finally, there are a large number of applications for BiCMOS technology which 

will result in a single chip straddling the analog-digital boundary. In such circuits the 

greater part of the silicon area, utilizing CMOS, will be used for the digital signal 

processing of signals. A much smaller portion will be devoted to the essential analog 

processing needed to interface with the outside world. Both analog and digital circuits 

fabricated on the same chip results in the most efficient use of silicon. In mixed-mode 

analog-digital circuits BiCMOS provides the high gain of bipolars, the low input offset 

voltages of differential pairs and also high input impedance FETs. A major concern in 

such a mixed mode process is the probability of crosstalk between the analog and digital 

circuitry through the substrate. Analog circuits tend to be extremely sensitive to noise. 

Digital circuits on the other hand are extremely noisy. When they are fabricated on the 

same substrate, the digital noise affects the performance of the analog circuitry. I t  has 

been shown that mixed mode circuits fabricated with SO1 substrates show a lesser degree 

of crosstalk [13]. Thus for optimum performance the digital CMOS circuitry could be 

fabricated on SO1 material and the lower performance but more precise analog devices 

can be fabricated in the substrate. Such a design again points to a quasi-SO1 BiCMOS 

process. 

1.6 A 3-D BiCMOS Process : A Combination of SO1 and Bulk Silicon Processing 

With the material presented in the previous sections as the prime motivation, in 

this section we describe the process design of a novel 3-dimensional BiCMOS process 

which uses selective epitaxial growth to form the bipolar epi-layer and epitaxial lateral 

overgrowth to form the 'quasi-SOI' layer. Unlike the quasi-SO1 BiCMOS process 

illustrated in figure 1.12, the 3-D BiCMOS process includes an NMOS device fabricated 



in the substrate with a PMOS load device fabricated directly over i t  on SO1 material. 

This arrangement lends the process a 3-D configurntion. The proposed BiCMOS process 

shows promise due to its 3-dimensional nature, novel improvements and compatibility 

with existing technology. The entire fabrication process uses 12 masks to first 

metallization. This is in comparison to the 20-30 masks in a conventional high 

performance BiCMOS process [14,15]. The vast reduction in lithography steps are due to 

the simplifications in the process brought about by the use of the SO1 load device. 

Similar 3-D circuits have been proposed with the SO1 load devicle fabricated in 

polysilicon deposited by LPCVD. The polysilicon active load TFT is limited in its 

performance by the poor mobility of the SO1 material. 'The current drive is small and the 

discharging of capacitive nodes charged by unwanted radiation effects such as alpha- 

particles are consequently slow. 

As described in the previous sections of this chapter, the integratio'n of CMOS and 

bipolar technologies on the same chip allows circuit designers to take advantage of the 

low power dissipation of the CMOS and the high transconductance of the BJT. As a 

result the BiCMOS gate has a better drive capability then CMOS, while maintaining low 

total power consumption. Another issue in process technology design i f ;  the continuous 

escort to increase integration densities. In this regard three dimensional integration 

should provide a viable soIution to improving packing densities. To addr'ess these issues, 

a BiCMOS process was developed which incorporates a 3-D CMOS and a high- 

performance bipolar transistor. The key feature of the process is the use of separate 

thicknesses for the epitaxial silicon layers used in making the bipolar and the CMOS. 

This allows independent control of the bipolar collector to emitter distance and hence the 

colIector to emitter breakdown voltage. 

The process Seatures and the fabrication sequence are described in the next 

section. Results from process simulations and numerical device simulations are 

presentcd in section 1.6.2. 

1.6.1 Design of the BiCMOS Process 

The process uses Epitaxial Lateral Overgrowth (ELO) of silicon for 3-D 

integration and the inherent merging of devices. The final cross-section of the devices is 

shown in figure 1.13. The output of the CMOS inverter is inherently rnerged with the 



base of the bipolar transistor. The bipolar transistor of the BiCMOS cell bears 

similarities to the super-self-aligned (SST) BJT. An important feature oi  the bipolar 

transistor is the independent control of its collector-emitter breakdown voltage which 

allows for the design of BiCMOS circuits for speed or power applications. This is 

especially important for the potential use of BiCMOS in mixed-mode analogldigital 

applications as discussed in section 1.5. The flexible epitaxial layer thickness of' the 

bipolar transistor stems from the fact that the active area is fabricated from a trench. The 

trench depth controls the epi-layer thickness and the bipolar device parameters. This also 

facilitates access to the buried sub-collector via an arsenic doped polysilicon layer. The 

novel collector contact engineering results in a significant reduction in active area and 

collector-substrate capacitance. The extrinsic base contact for the BJT is made of single 

crystal silicon and hence reduces the base resistance [16]. However this is a second order 

effect since after silicidation the sheet resistance of both pol ysilicon and monocrystalline 

silicon layers become comparable. The 3-D CMOS is fabricated with a dual-gated 

PMOS device in SO1 silicon stacked over an existing NMOS device fabricated in the 

substrate. The use of the SOI-layer lends the process most of the advantages discussed in 

section 1.5. The use of local polysilicon interconnects helps reduce active area and 

device parasitics. The NMOS device incorporates a LDD structure which reduces hot- 

electron degradation by lowering the surface electric fields at the drain junction. The 

properties of the dual-gated SO1 device will be discussed in greater detail in the 

forthcoming chapters. In figure 1.13, the bipolar and CMOS devices are merged into a 

'cell'. While the process is described for the merged structure, the CMOS and bipolar 

devices could be isolated if placed farther apart or by the addition of a masking step to 

etch the silicon interconnect off. 

One of the major drawbacks of such a process where the PMOS device is stacked 

directly over the NMOS transistor, is that the junctions of the NMOS device cannot be 

silicided. As BiCMOS is scaled to lpm gate lengths and below, it becomes increasingly 

important to minimize the series source, drain, emitter, base and collector resistance in 

order to realize the full performance advantages of scaled devices [17]. For MOS 

transistors, the channel conductance increases as the gate length decreases, and unless the 

sourceldrain series resistance is reduced, the saturation transconductance will be 

degraded. For an NMOS transistor with an effective channel length of about 0.5pm, the 

total sourceldrain series resistance must be reduced to approximately 1.2KQ-pm, or the 
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saturated transconductance will be degraded by more than 10% 1171. Fortunately the 

impact of the sourceldrain series resistance on the device gain as the gate length is scaled 

is less critical for NMOS devices than for PMOS devices because arsenic can be used to 

make shallow highly doped layers. For high performance applications where all the 

device performances must be maximized, an alternate process structure based on the 

same basic concepts can be used. Such a structure cross-section is shown in figure 1.14. 

All the essential concepts and the fabrication steps are thc same. Thc only difrcrcncc is 

that the PMOS device is moved to the side instead of being directly on top of the NMOS 

device. This makes the NMOS device in the substrate more accessible. 

The cross sections of the process steps are shown in figure 1.15. 

(a) The process begins by using a mask to define the recessed LOCOS isolation on a p- 

type <loo> wafer. This is the first masking step of the process. After recessed 

LOCOS isolation, the cross section is shown in figure 1.15(a). Trench isolation 

could also be used instead of recessed LOCOS. 

(b) The NMOS threshold implant could now be performed without a mask. Mask # 2 is 

then used to cover the CMOS active area and the silicon is etched in the bipolar 

region using RIE or a controlled wet-etch. This forms the bipolar trench and 

determines the collectorlbase junction to buried layer distance. The cross section at 

this stage is shown in figure 1.15(b). 

(c) The photoresist is then removed and the NMOS gate oxide is grown over the 

CMOS region and the buried layer. This step drives in the buried layer and heals 

any RIE damage. 

(d) In the next step a layer of polysilicon is deposited and implanted with arsenic to 

form the gate of the NMOS device. The polysilicon is patterned to form the gate. 

After a light LDD implant, LTO sidewall spacers are then formed following the 

processing steps for conventional LDD process. The heavily doped arsenic 

sourceldrain regions can then be implanted. This implant step is also used to form 

the buried layer in the bipolar process. The structure is shown in figure 1.15(c). 

(d) A second layer of polysilicon is deposited to form the local interconnects and the 

access to the buried sub-collector in the bipolar transistor. The polysilicon layer is 

doped with arsenic using implantation or insitu-doping. This poly layer will form 

the contact to the buried layer. The poly layer is then oxidized which drives i n  the 

sourceldrain regions. 
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(e)The poly is then defined using RIE. The sidewalls of the exposed p l y  layers are then 

oxidized. 

(f) Now the top gate oxide is grown over the polysilicon gate. Then a ;single masking 

step is used to open the seed-holes in both the bipolar and the MOS regions. The 

wafer is now ready for selective growth of silicon as illustrated in figure 1.15(d). 

(g) SEG and EL0 is grown in an RF heated pancake type epitaxial reactor, using DCS 

as the source gas, HCl to prevent nucleation of polysilicon on exposed oxide 

regions and hydrogen as the carrier gas. Silicon grows from the two seed-holes and 

merges in the central region of the structure. The silicon is grown laterally till i t  

completely grows over the gate. EL0 silicon is then planarized using CMP and a 

pre-deposited etch-stop is used to stop the etch at the desired thickness. The device 

structure at this stage of the process is shown in figure l.lS(e). 

(h) The active area is defined by mesa isolation. Gate oxidation for the :PMOS top gate 

is performed. A non-critical mask can be used to etch the gate oxide from the 

bipolar regions and implanting the intrinsic base. 

(1) A polysilicon layer is again deposited for the top gate and it  is oxidized. Another 

lithography then defines the gate stack over the CMOS region and the emitter over 

the bipolar region. LTO spacers are formed on the gate and emitter stacks. These 

spacers define the link-up region in the bipolar base. 

(m) An optional polysilicon layer can then be deposited and implanted with boron. This 

layer can be used to diffuse the heavily doped extrinsic p+ regions. Alternately the 

extrinsic regions of the bipolar and the sourceldrain regions of the: PMOS can be 

implanted directly at this step. 

(n) The poly layer is then defined to form the contacts which could also 'be used as local 

interconnect runners. Plasma oxide is then deposited and contacts are opened for 

subsequent metallization. The final device cross section is again shown in 

fig. 1.15(f). 

The 3-D BiCMOS prcxess has the following features in its structure : 

(i) I t  has an inherently merged BJT and CMOS for reduced active area. 

(ii) The CMOS is stacked in a 3-D configuration and the SO1 load device is controlled 

by two gates. 

(iii) The bipolar transistor has a self-aligned non-overlapping baselemitter. 



(iv) The bipolar device has a novel ply-silicon collector contact to the buried layer. 

(v) There is independent control of the key parameters of the process such as the 

bipolar epi-thickness. 

(vi) The bipolar has mono-crystalline extrinsic base contacts. 

1.6.2 Process and Device Simulations 

The T-SUPREM4 process simulator [20] was extensively used to investigate the 

fabrication process of the proposed 3-D BiCMOS structure. Most of the process steps 

involved in the fabrication were directly simulated through available commands in the 

software. However due to the three-dimensional nature of the structure, often a number 

of deposition steps and etch steps were used to attain the required structure, although in 

practice a single step would suffice. This was especially true when simulating the 

selective epitaxial growth process. TSUPREM-4 does not simulate selective epitaxial 

growth. In order to accurately model the growth and to include such effects as out- 

diffusion of impurities, a number of deposition, etch and diffusion steps were substituted 

for a single deposition step. The final output showing the CMOS and bipolar device 

structures are shown in figures 1.1qa) and (b). Shallow junction depths are obtained for 

the NMOS sourceldrain regions. Lateral out-diffusion of arsenic and boron is also 

minimized. In the bipolar transistor shallow emitter and base junction depths were 

obtained. The TSUPREM-4 simulator did not account for boron channeling effects and 

therefore the base profile obtained was somewhat aggressive and to some extent 

underestimated. Another critical process parameter to be optimized was the thickness of 

the top gate LTO oxide spacer which also determines the base link-up region. In the 

figure the p+ boron extrinsic base provides a satisfactory link-up to the intrinsic base. 

Increasing the oxide spacer too much would result in degraded device performance 

through increased PMOS SourceIDrain resistance and increased base resistance. Once 

the process steps had been fine tuned to optimize booth the bipolar and CMOS doping 

profiles, the process file was transferred to the PISCES-IIB device simulator to model the 

behavior of the dual-gated SO1 PMOSFET. The transfer characteristics of the MOSFET 

and its output characteristics are shown in figure 1.17. The lateral shift in the transfer 

characteristics indicates that the dual-gated device operates at a slightly lower threshold 

voltage than the single gated MOSFET controlled by either the top gate and the bottom 

gate. The steeper slope to the dual-gated device curve is also indicative of a higher 
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transconductance under dual-gate operation. Figure 1.17(b) compares the output 

characteristics of the dual-gated device to the single gated device controlled by either the 

top or bottom gates. A large increase in available current is observed for the dual-gated 

device. This increment is over twice the current of the single-gated device due to the 

lowered threshold voltage in the device under dual-gate operation. Thus, the dual-gate 

SO1 MOSFET provides at least twice the current for the same utilization of area as the 

device operated with only one gate. The area advantage it offers is enhanced when one 

considers that i t  is stacked above the NMOS and hence doesn't take up any silicon real 

estate. 

1.7 Chapter Summary and Thesis Organization 

BiCMOS technology significantly enhances speed performances while incuning a 

negligible power or area penalty. Thus BiCMOS can provide applicatio~ns with CMOS 

power and densities at speeds which were the exclusive domain of bipolar technology. 

The main considerations in designing a BiCMOS process flow was considered in detail. 

The main disadvantages of BiCMOS evidenced in sections 1.3 and 1.4 is the greater 

process complexity. The complex process is a result of design constraints placed by 

conflicting needs of the bipolar and the CMOS devices. Most of the conflicts and 

subsequently most of the compromises and trade-offs occur at the fr'ont end of the 

process, which deals mainly with the choice of epitaxial parameters. 

A majority of the design constraints due to the varying needs of the bipolar and 

CMOS devices disappear if the two devices are fabricated on separate epitaxial layers 

which can be optimized independently. Silicon-on-insulator technology provides us the 

means to be able to integrate MOSFETs and BJTs into a common process flow while 

keeping them in separate epitaxial tubs. Thus the epitaxial layer parameters can be 

chosen to primarily optimize the bipolar device, and the epi-layer thickness for the 

MOSFETs is determined separately by chemical mechanical planarization. The SO1 

MOSFETs thus fabricated show significant short channel immunity andl have a natural 

isolation due to the buried oxide layer. This removes a number of process requirements 

such as retrograde well doping, choice of well doses, and back end well drive times. In 

addition the use of quasi-SO1 techniques provides increased latchup immunity in merged 



bipolar1CMOS structures and minimizes noise related cross-talk in mixed mode 

analogldigital circuits. 

A novel 3-dimensional BiCMOS technology was presented which uses epitaxial 

lateral overgrowth of silicon to form the quasi-SO1 device regions. The technology uses 

only 12 masking steps and provides an inherently merged BJT and CMOS for reduced 

active area. The BJT has a polysilicon accessed sub-collector. The process allows 

independent control over the bipolar and CMOS epi-layer thicknesses. The CMOS 

device is vertically integrated with the PMOS stacked directly on top of the NMOS 

device. The process can be altered to form the PMOS on field oxide away from the 

NMOS increasing the accessibility of the NMOS device with a minor area penalty. The 

concept of a 3-dimensional structure and quasi-SO1 processing is still maintained in the 

altered process. The process steps were designed using the SUPREM4 process simulator. 

The structure files from SUPREM simulations were transferred to PISCES to simulate 

the device characteristics of the SO1 PMOS transistor. The simulations prove the 

feasibility of the proposed BiCMOS technology. It shows promise as a potential solution 

to the problems of increasing integration density and circuit speed. 

Due to the size of the BiCMOS project, the process development was separated 

into (a) the bipolar process development and (b) the SO1 MOSFET development. Details 

of the development and the experimental results obtained from the bipolar process have 

been presented elsewhere [19]. Here we concentrate mainly on the CMOS inverter with 

all the emphasis placed on the development of the dual-gated SO1 MOSFET. In 

particular selective epitaxy techniques to form thin-film fully-depleted SO1 MOSFETs 

are investigated. The material properties of the SO1 film are investigated by comparing 

them with simultaneously processed substrate devices. Devices fabricated in selective 

epitaxy material (CLSEG & ELO) were also compared with the state-of-the-art SIMOX 

material. Finally, a new measurement technique was developed to measure generation 

lifetimes in thin-film (fully depleted and partially depleted) SO1 MOSFETs. 

This chapter provides a motivation to investigate quasi-SO1 techniques for 

BiCMOS applications. The quasi-SO1 process proposed above requires that the SO1 

technology utilized satisfy the following requirements ( i )  the SO1 technology must be 

amenable to quasi-SO1 and (ii) the SO1 technology must be capable of yielding high 

performance SO1 MOSFETs. Selective Epitaxial Growth of silicon (SEG) is one of the 

few prevalent SO1 technologies to satisfy the above two conditions. SEG has been a 



topic of considerable research in recent years. However a thorough investigation of the 

properties of SEG with specific applications to thin-film SO1 MOSFETs is still lacking. 

In the remainder of this document we provide an investigation of thin-film SO1 

MOSFETs fabricated using selective epitaxy techniques from both a fabrication and 

electrical standpoint. We also provide a detailed theoretical understanding of the 

operation and properties of dual-gated SO1 MOSFETs based on numerical simulations 

and analytical modeling. 

In Chapter 2, we briefly review the properties of thin-film SO1 MOSFETs, laying 

emphasis on the behavioral excursions from conventional bulk MOSFETs. The chapter 

also reviews current SO1 technologies and motivates the use of SEG to fabricate SO1 

MOSFETs. A novel mode of operation of thin-film SO1 MOSFETs, na.mely dual-gate 

operation, is critically analyzed in Chapter 3. The use of an alternate gate material is 

motivated and the advantages of dual-gated devices in this regard are presented. The 

chapter also includes a quantum-mechanical analysis of camer distributilons in thin-film 

fully depleted SO1 MOSFETs. In Chapter 4, we detail the process development involved 

in fabricating thin-film SO1 MOSFETs using both epitaxial lateral overgrowth and 

confined lateral selective epitaxial growth. Experimental results based on the 

measurement and analysis of fabricated MOSFETs are presented in Chapter 5. This 

chapter also provides the comparison of MOSFETs fabricated in selective epitaxy 

material with those fabricated in state-of-the-art SIMOX material. 'The theoretical 

development, computer simulations and experimental results from a newly developed 

linear sweep technique to measure generation lifetimes in thin-film SC)I MOSFETs is 

introduced in Chapter 6. Finally Chapter 7 provides a summary of the thesis and makes 

recommendations for future work in the area. 
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CHAFTER 2 

SILICON-ON-I NSULATOR MOSFETS 

2.1 Introduction 

Increasing circuit complexity has consistently been achieved by aggressive scaling 

of semiconductor device dimensions, In fact the most important trend for VLSI is the 

relentless decrease in the minimum feature size, which defines the gate lengths in 

MOSFETs. Minimum feature sizes have decreased from 50 pm in 1%0 to 0.8 pm in 

1990. Considerable research is underway to scale devices to the deep-sub micron region 

(< 0.5 pm). Device scaling, in addition to increasing integration densities, yields faster 

devices and minimizes parasitic elements. However, of late, device scaling has approached 

physical limitations so that any additional scaling requires prohibitively increased process 

complexity. 

Bulk CMOS circuits cannot be scaled too aggressively because of the fear of 

latch-up [I]. Latch-up becomes a severe problem in devices with small dimensions where 

the gain of the parasitic bipolar transistors involved in the parasitic thyristor path becomes 

large. For submicron geometry, sophisticated schemes like the use of epitaxial substrates 

andtor deep trench isolation have to be used to counter latch-up. This impacts both the cost 

and the yield of manufacturing. Miniaturization of bulk MOSFETs proved to be the 

mythical Pandora's box. It brought into focus the numerous difficulties such as short- 

channel effects, narrow-channel effects and hot-electron effects. The reduction in gate 

length of bulk MOSFETs results in charge sharing between the sourcetdrain regions and 

the gate-controlled region. The effective charge controlled by the gate is reduced as a 

consequence of the charge sharing, which in turns reduces the threshold voltage of MOS 

transistors [2-51. Since the percentage charge associated with the sourcetdrain regions is a 

function of the gate length, the effective charge controlled by the gate also depends on L. 

This causes the threshold voltage to depend on the channel length. As the channel length 



decreases the threshold voltage begins to roll-off. The variation in threshold voltage with 

channel length is a measure of the short channel immunity of the device. 

In long-channel devices, there exists a potential barrier between the source and the 

channel. As the gate length becomes smaller, the source and drain diffusions are brought 

closer together. The distance between the source and the drain may t~ insufficient to 

entirely accommodate the depletion regions of each diffusion. This causes the potential 

barrier between the source and the channel to decrease. In other words, the barrier is now 

lower than in the long channel case. The situation is exacerbated when a reverse bias is 

applied to the drain diffusion. There is now an increased possibility of field lines 

penetrating from drain to source, thereby lowering the barrier still mo:re. This effect is 

called Drain-induced-bamer-lowering (DIBL) [6- 101. DIBL results in an unwanted current 

path. Devices operating with DIBL are said to operate in the punch-through mode [11,12]. 

As stated in [ 1 11, the primary method to counter punch through is to incrrzase the channel- 

doping concentration. This results in a severely degraded mobility and hence lower output 

conductance. Typical short channel bulk MOSFETs require channel dopirig concentrations 

around 2 ~ 1 0 ~ ~ l c m ~ .  The majority carrier (electron) mobility at this doping level at room 

temperature is approximately 520 cm21v-sec as compared to 1076 cm21v-sec at a doping 

concentration of 1 x 1 0 ~ ~ 1 c m ~  [13]. The higher channel doping also increases the transverse 

electric fields which contribute to reduce the mobility even further [14]. Furthermore, the 

high channel impurity concentration degrades the sub-threshold slopes and may in some 

cases result in unwanted OFF-state leakage currents [15]. Many current applications of 

MOS circuits such as high density dynamic RAMS, switched capacitor circuits etc. depend 

critically on current flowing in the device in the sub-threshold region of operation. 

Finally, the decreased gate-length and the increased channel doping cause large 

electric fields at the drain junction. The fields are large enough to induce hot-electron 

inject ion i nto the gate. Hot-electron-induced device degradation has become a major 

reliability concern in sub-micron MOSFETs [16-181. The hot-electrons injected into the 

gate, generate interface traps which causes threshold voltage shifts during device operation. 

Moreover, the large longitudinal fields result in mobility degradation due to velocity 

saturation effects [19,20]. One of the most common ways to reduce the electric field has 

been to use a Light1 y-Doped-Drain (LDD) structure [2 1-25]. Hlowever, careful 

optimization of the LDD implants are required to prevent severe device performance 

degradation due to increased SourceIDrain resistance [26]. 



Several difficulties related to device processing and fabrication confront 

aggressively scaled devices. Device isolation, to date, has mainly beer1 achieved by 

advanced LOCOS schemes [27]. However, with reduced dimensions, there is a increased 

possibility of cross-talk between adjacent circuits. Advanced birds beak free LOCOS 

schemes such as Poly-buffered LOCOS (PBL) or Recessed Poly-buffered LOCOS (RPBL) 

have to be embraced which again increases process complexities. Trench-isolation is 

another strong contender but is viable only if the sidewall leakage along the trench walls 

can be minimized. Trench isolation is under active research for isolation in 0.4 pm and 

0.25 pm technologies, primarily to avoid an epilaxial step to provide latch-up imrnuni ly. 

Epitaxy is by far the most expensive and most defect prone step in semiconductor 

manufacturing. 

As device dimensions shrink the capacitance associated with the gates of the 

MOSFET also decrease. In SRAM applications in particular, the load capacitance is 

determined by this gate capacitance and the value of the capacitance in turn determines the 

amount of charge stored on the storage node. If  the amount of charge stored is very small 

then the SRAM cell becomes more susceptible to single-event-upset (SEU) errors due to 

alpha particles. I n  other words, i t  does not take a large amount of charge collection 

resulting from an alpha-particle strike to change the charge state of a storage node. This is 

also true in DRAMS, and has resulted in accelerated research into novel 3-dimensional 

ways to increase the capacity of the storage nodes. Soft-errors in high density memories 

have plagued scaled bulk MOSFETs [28]. 

Soft errors are caused by alpha-particles (emanated by nuclear radiation in the 

environment) which change the charge state of logic gates in a memory cell. The severity 

of soft-errors on the performance of logic circuits was responsible for directed research into 

radiation hard technologies. Silicon-on-Sapphire (SOS) was the first technology suggested 

and has been a topic of considerable research [29,30]. The high cost and low yield of SOS 

devices prompted research into other silicon-on-insulator (SOI) technologies, specifically, 

silicon-on-oxide. Silicon-on-Insulator (SOI) devices circumvent most of the major 

concerns in scaled bulk MOSFET technology. Hence, i t  is considered a very promising 

substitute to bulk MOSFETs. Besides, single layer SO1 devices are the first step towards 

multi-layer three-dimensional integration [3 :I.]. 

In the following sections, we discuss the prevalent SO1 technologies and detail the 

unique properties afforded by SO1 devices which make them attractive for sub-micron 



VLSI. The techniques involved in SO1 fabrication are briefly reviewed in Section 2.2. 

Finally, in section 2.3 we elaborate on the properties of SO1 MOSFETs, laying emphasis 

on the behavioral excursions from bulk MOSFETs. The section also enumerates existing 

analytical models which explain the behavior of thin-fiIm SO1 MOSFETs. 

2.2 Silicon-on-Insulator Technologies 

SO1 materials provide a viable technology for high-density, large-integration and 

high-performance VLSI circuits. The majority of the advantages of SO1 are derived from 

the capability of total electrical isolation of silicon active areas. Figure 2. I. depicts a typical 

SO1 MOSFET, with a fully electrically isolated active area. The elec1:rical isolation is 

provided by the buried oxide (which has since come to be referred to as the back gate 

insulator). The silicon substrate typically forms the "back $ate". The difficulties with SO1 

mainIy arise from defects at the two back interfaces in fig. 2.1. Back-intt:rface 1, which is 

present in the channel region of the device, is the more important of the two. This defect- 

rife region provides easy leakage paths that can degrade device performance. Another 

primary concern is the material quality of the silicon film. Fabrication of quality SO1 films 

is essential to achieving the potentials of SO1 in IC fabrication. 

Advanced SO1 technologies have been under development for the last 25 years. 

There are several techniques that have been proposed and used to form SO1 layers. Some 

hold more promise than others. The SO1 technologies in vogue indude Silicon-on- 

Sapphire [29,30,32-351, Zone Melt RecrystalIization (ZMR) [36-401, Separation by 

implantation of oxygen (SIMOX) [41-441, Full isolation by oxidation (of porous silicon 

(FIPOS), [45-471, wafer bonding and thinning (BESOI) [48] and lateral solid phase 

epitaxy (LPSEG) [49,50]. A complete summary of all of the above techr~ologies is shown 

in Table 2.1. Of the above methods, ZMR and SIMOX have emerged as leading 

contenders, compatible with full-scale IC fabrication. Almost all available data on thin-film 

SO1 MOSFETs have been measured on devices fabricated either in SIMCIX or ZMR films. 

Of late BESOI (bonded etch-back) wafers are becoming extremely competitive and while 

the wafer3 are still not commercially available, the technology has matured at a very rapid 

rate and should sec proliferated growth in the coming years. Silicon-on-Sapphire was the 

starting point of all SO1 technologies. In the following, a more detailed description is 

provided for SOS, SIMOX and BESOI. 
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2.2.1 Silicon-on-Sapphire (SOS) 

Since the work by Manasevit in the late 196OVs, SOS technology has experienced 

considerable evolution. 64K SRAMs with access times in the 12-40 ns range are now 

routinely manufactured by Hughes and Harris semiconductors for space applications. 

Silicon-on-Sapphire (SOS) involves the hetero-epitaxial growth of silicon on single crystal 

sapphire (A1203). Sapphire acts as the substrate as well as the insulator. Epitaxial growth 

is carried out by conventional CVD using the pyrolytic decomposition of silane. Hetero- 

epitaxial growth of a silicon film can never produce a defect free material if the lattice 

parameter of the insulator do not perfectly match those of silicon. If the epitaxial layer is 

very thin then the lattice remains strained and does not relax. The epitaxial layer then 

would be essentially defect free. The major crystallographic defects in the SOS material are 

microtwins, stacking faults and dislocations. Compressive stress is measured in SOS 

devices due to the lattice mismatch and the thermal expansion coefficient mismatch. Thc 

compressive stress causes the kx and ky ellipsoids to become more populated with 

electrons than the kz ellipsoid. As a result, the effective mass of the electrons in the 



Table 2.1 SO1 Technologies [33] 



inversion layer becomes larger than bulk silicon. Consequently, a relatively low channel 

mobility is observed in SOS MOSFETs. In addition microtwin defects in the epitaxial 

silicon lower the canier mobility and cause large values of back channel leakage currents 

[32]. As a result SOS films typically show a large reduction of carrier mobility with 
decreasing epitaxial thickness as the proximity to the back interface increases. However 

sub-micron device design and processing require films thicknesses of 0.2 microns or less. 

Recent advances in SOS technology such as Solid Phase Epitaxy and Regrowth (SPEAR) 

[34] and Double Solid-Phase Epitaxy (DSPE) [35] have improved the physical and 

electronic properties of SOS films. The DSPE technique involves the amorphization of the 

entire silicon film with a silicon implant. Only the top layer is left un-amorphized, where 

the original defect density is lowest. Then a thermal annealing step is used to induce solid- 

phase regrowth of the amorphized silicon using the top layer as seed. A second silicon 

implant is then used to amorphize the top of the silicon layer, which is subsequently 

recrystallized in a solid-phase regrowth step using the bottom of the film as a seed. Due to 

the defects near the interfacial regions, circuit designers have been limited to using films of 

. about 0.5 pm thickness. With the solid-phase regrowth techniques, the crystal quality of 

the interfacial regions have been improved significantly and has allowed the effective use of 

0.1 pm films. The higher mobility in these improved films have also allowed the circuit 

designers to address high speed device markets on SOS. Although SOS devices are still 

the only commercially available products in SO1 technology [33], the high cost associated 

with the use of sapphire has prompted further research into alternate SO1 technologies. 

2.2.2 Zone Melt Recrystallization SO1 (ZMR) 

The grain sizes of polycrystalline silicon films on insulating substrates, are greatly 

increased by the passage of a narrow molten zone. This is the basic principle upon which 

ZMR SO1 films are based. Fig. 2.2 (a) illustrates the commonly used technique to form 

ZMR films. A thin layer of polysilicon is deposited over oxide and is capped by another 

oxide layer. Intense heat in the form of a laser, electron-beam, graphite strip heater or a 

high power halogen lamp is used to melt the polysilicon in narrow strips. As the molten 

silicon cools, i t  recrystallizes back into single-crystal silicon. The molten front is typically 

scanned across the entire wafer. In order to get a ordered crystal with a fixed crystal 

orientation, seeded recrystallization could also be used [36]. 
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Figure 2.2 Sketch illustrating the two principal SO1 technologies (a) zone-melt- 
recrystallization (ZMR) and (b) ion-implanted oxygen (SIMOX) 



The main defects in ZMR films are grain boundaries (GB) and sub-grain 

boundaries (SGB). The GBs and the SGBs usually occur parallel to the scanning front. 

GBs can severely affect MOSFET performance by degrading the mobility. Besides, the 

grain boundaries give rise to enhanced diffusion of impurities, which necessitate low 

temperature processing. SGBs drastically reduce the minority carrier lifetimes in ZMR 

films. This makes the ZMR films relatively inaccessible to BiCMOS. Often, voids result 

from imperfections in the growth front [37]. Moreover, mass transport occurs during the 

zone melting process leading to non-uniformity in the thickness of the SO1 film throughout 

the wafer. Another problem is that of possible wafer warpage due to the high temperatures 

required for recrystallization. 

A number of devices have been reported fabricated in ZMR films [38,39], including 

three-dimensional multiple-layer structures [40]. 

2.2.3 Separation by Implanted Oxygen (SIMOX) 

The acronym SIMOX stands for 'separation by implanted oxygen'. The principle of 

SIMOX material formation is very simple and involves the formation of a buried layer of 

Si@ by implantation of oxygen ions beneath the surface of a silicon wafer. Since the 

implanted oxygen atoms are used to actually synthesize a SiO2 layer, the oxygen dose must 

be very heavy ; typically about 2 x 1018 /cm2. SIMOX has been under active research 

since 1977. A SIMOX wafer is prepared (Fig. 2.2 (b)) by implanting a silicon wafer with 

oxygen ions at 150-200Kev and to an ion dose of typically 1 - 2 x1018 /cm 2. The wafer is 

typically heated to about 400°C or higher during the ion-implantation process. This 

prevents the wafer from turning amorphous during implantation. After the oxygen is 

implanted, the wafer is typically annealed above 1150°C in an inert ambient. Thc high 

temperature anneal repairs the damage introduced during implantation and allows the excess 

oxygen in the surface silicon to out-diffuse. The high temperature step also increases the 

dielectric strength of the buried oxide [41-441. 

The oxygen dose must be higher than the critical dose of 1.4 x 1018 /cm2. Below 

this dose silicon particulates or islands are often present in the buried oxide. This reduces 

the di-electric strength of the oxide and results in larger back oxide leakage currents. The 

optimum wafer temperature during the implant is 600-650°C. An as-implanted SIMOX 

wafer consists of a top layer of predominantly single crystal silicon but which is highly 



disordered and contains a lot of oxygen precipitates. The anneal temperature must be 

chosen such that all the oxygen precipitates are dissolved. The complete dissolution of all 

precipitates occurs at an annealing temperature of around 1300°C. The annealing ambient is 

typically nitrogen with 2% oxygen. The oxygen allows for the growth of some oxide on 

the superficial silicon layer which protects the silicon from pitting which occurs when the 

silicon is annealed at high temperatures in pure nitrogen. The annealing steps usually last 

about 6 hours. The material quality of the wafers has been improved dramlatically by using 

multiple implantlanneal cycles with annealing temperatures in the excess of 1300°C. The 

principal defects in the material are threading dislocations of the order of ld/cm2. Very 

few, if any bipolar devices have been fabricated in SIMOX material and i:t is hard to assess 

its applicability to BiCMOS. Due to the high annealing temperatures, the utility of SIMOX 

to multi-layer three-dimensional integration is cramped. Besides, the thickness of the back 

oxide is difficult to precisely control. The straggle of the implant profile and the dissolution 

of the oxygen precipitates and their subsequent motion towards the silicon-oxygen interface 

causes the buried oxide thickness to be larger than expected. As will be discussed later, the 

thickness of the buried oxide can be exploited to alleviate short channel effects in 

moderately thin-film devices and in deep-sub micron devices. Another severe drawback is 

wafer throughput. Due to the large energies and implant doses involved, even high current 

implanters typically take hours to implant a single wafer. This directl!, leads to higher 

wafer costs. 

Despite the above drawbacks, SIMOX is currently the most widespread of the SO1 

technologies. The conventional IC manufacturing process used (implantation and 

annealing) as well as the full-wafer isolation attained are the primary reasons for its 

popularity. 

2.2.4 Bonded Wafer and Etch-back SO1 (BESOI) 

Thc principal of the bonding and etch-back technique is extremely trivial. I t  is so 

simple that i t  is a wonder the technology has taken so long to blossom. Two oxidized 

wafers are 'glued' or 'bonded' together with the oxidized faces in contact.. One of the 

wafers is subsequently polished or etched down to a thickness suitable for SO1 

applications. This is illustrated in fig. 2.3 (a). The other wafer serves as the mechanical 

substrate and is called the 'handle wafer'. When two hydrophilic surfaces such as oxidized 
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Figure 2.3 (a) Bonding of two oxidized silicon wafers (left), and polishingletching of one 
of the wafers and (b) the double-etchstop technique to achieve SO1 wafers by 
the bonded etch-back method 
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Figure 2.4 Process flow for Selective Epitaxy of silicon (a) Oxidize s i l i t~n substrate 
(b) Etch seed windows in the oxide (c) Grow epitaxial silicor~ selectively 
in the exposed silicon areas. 
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Figure 2.5 (a) Typical Cross-section of Epitaxial Lateral Overgrowth (b) Chemical 
Mechanical Polishing (CMP) Process:nitrideloxide etch-stops. (c) Finished 
structure through CMP 



When epitaxial silicon is allowed to grow beyond the restricting rnasking oxides, 

epitaxial lateral overgrowth (ELO) results. This process is illustrated in Fig 2.5 (a). Since 

EL0 forms epitaxial silicon layers over oxide, it is considered to kte another SO1 

technology. One of the problems associated with EL0 is that the growth in the lateral 

dimension is equal to the vertical growth giving an aspect ratio of unity. Therefore, 

formation of thin SO1 films requires that the epitaxial film be planarized. Chemical 

Mechanical Pol ishing[51] provides an excellent scheme to planarize the epitaxial silicon 

over large areas with excellent uniformity across the wafer. Figs. 2.5 (b) amd (c) illustrate 

the chemical-mechanical planarization process. Etch stops of either silicon nitride or silicon 

dioxide are deposited and patterned prior to epitaxial growth. CMP then planarizes the 

silicon with extremely high selectivity over the etch-stop material. The (etch effectively 

stops when the nitride or oxide is encountered. Thin SO1 films can be formed using a 

combination of EL0 and CMP. In order to be a viable SO1 technology, the epitaxial siliwn 

must be of high quality. Material quality of EL0 has been extensively studied [52] and 

high performance bipolar transistors have been successfully fabricated i~n EL0 silicon. 

Thus EL0 proves to be a very promising SO1 technology for integrating SO1 MOSFETs 

with either bulk or SO1 minority carrier devices such as bipolar transistors. 

A major problem associated with Selective Epitaxial growth is the: degradation of 

the mask oxide during growth [53]. I t  has been shown that the masking oxide must be at 

least 800A thick to obtain complete isolation for a typical deposition temperature of 900°C 

and pressures of 150mTorr. Lower pressures help reduce the growth temperature and 

could possibly reduce the minimum requisite oxide thickness. Three-dimensional stacked 

capacitors [54] and three-dimensional CMOS devices [55] have been fabricated with 

excellent characteristics using ELO. In both cases, polysilicon was used as the gate 

material and poly-oxides were used as the gate dielectric. C-V characterization [56] 

demonstrated excellent characteristics for the back interface with low interface state 

densities, indicating the applicability of poly-oxides for device fabrication. Recently very 

thin-film CMOS devices have been fabricated in epitaxial silicon ovelr oxide using a 

combination of EL0 and CMP [57, demonstrating its viability for thin film applications. 

A complete characterization of the thin-films fabricated by EL0 is sltill lacking. It is 

partially thc purpose or this study to understand the characteristics of thin-films of silicon 

fabricated by ELOICMP. It is also necessary to provide a direct comparison of the interface 

states of the poly-oxidelsiliwn interface to that of a good crystalIine silicori dioxidelsilicon 



interface to further confirm the continued viability of pol ysilicon as the back gate material in 

thin-film SO1 applications. 

Another form of selective epitaxial growth, called Confined Lateral Selective 

Epitaxial Growth (CLSEG), has been developed [58,59]. CLSEG obviates the need for 

planarization after epitaxial growth by confining the growth within a pre-defined cavity. 

The aspect ratio of the cavity then determines the aspect ratio of the final SO1 film. The 

basic growth and fabrication process is illustrated in Fig. 2.6. Fabrication starts w~th an 

oxidized silicon wafer, in which seed holes are patterned. A brief oxidation (10081) is used 

to cover the seed-hole and a layer of amorphous silicon (a-Si) is conformally depsitcd 

over the entire wafer. The thickness of the a-Si determines the thickness of lhc cavity and 

hence the final thickness of the SO1 film. The a-Si film is patterned and defined with a 

photomask and then oxidized. This step converts the a-Si into smooth large grained 

polysilicon and forms a thin oxide on the surface. A layer of silicon nitride or oxide is then 

deposited over the entire wafer for mechanical support. Via holes are etched in the support 

layer down to the p ly .  The polysilicon is then etched out of the cavity using an ethylene 

diamine solution with high selectivity to oxide. Once the cavity is cleared, the seed hole is 

reopened with a brief buffered HF dip. Epitaxial silicon is then grown in the cavity using 

procedures similar to SEG and ELO. Feasibility of the CLSEG process has been 

demonstrated for thick (0.27 to 1 micron) films. The material quality has been shown lo be 

excellent by fabricating diodes, MOSFETs and BJTs [60]. However, detailed 

characterization of CLSEG, especially for thin films, as required to assess the viability of 

the technology for thin-film SO1 is far from complete. It is proposed herein to characterize 

the thin CLSEG films and compare its quality to ELOtCMP films of the same thickness. 

In summary, the prevalent SO1 technologies have been reviewed with emphasis on 

ZMR and SIMOX. The two are currently the most popular technologies to achieve SOI. 

Finally, selective epitaxial growth techniques in the form of epitaxial lateral overgrowth and 

confined lateral selective epitaxial growth were introduced as novel ways to fabricate 

"device island" type SO1 structures. Device island SOI, as opposed to full wafer Sol, 

allows active devices on SO1 only in required areas. The rest of the wafer could if 

necessary be 'bulk-based'. The fabrication processes for EL0 and CLSEG were reviewed. 

This material forms the background for the remainder of the proposal. 
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Figure 2.6 Process sequence for Confined Lateral Selective Epitaxial Growth (CLSEG) 



2.3 Comparison of Bulk and SO1 Processing Technologies 

Complimentary MOS (CMOS) is by and large the technology of choice for the 

realization of integrated circuits on SO1 substrates. In this section, CMOS processing on 

bulk silicon and on SO1 wafers are compared. Processing techniques for the fabrication of 

CMOS circuits in bulk silicon and in SO1 are very similar. Figure 2.7 presents cross- 

sections of CMOS inverters made in bulk (p-well technology) and in thin-film SO1 

substrates. From the cross-sections i t  is obvious that SO1 processing, and more 

specifically thin-film SO1 processing, is simpler that bulk processing. For instance there is 

no need to create diffused wells in SO]. The entire impurity profile in the channel area of 

thin-film SO1 MOSFETs is determined by a single shallow implant. Table 3.2 compares 

simplified CMOS process flows for bulk and thin-film fully depleted (FD) SOI. 

Isolation between SO1 devices is simple due to the presence of the buried insulator. 

Two main isolation techniques are widely used. The first is conventional LOCOS 

isolation. The difference between LOCOS in bulk silicon and in SO1 devices is the 

presence of thin-films in SO1 devices. Hence care must be taken not to over-oxidize during 

isolation lest the silicon film get lifted up along the edges. Ths is particularly true for really 

small active area dimensions. In an SO1 process, the thickness of the oxide which must be 

grown to fully isolate the silicon islands is 2.5-3 times the thickness of the silicon film. 

The LOCOS isolation process is illustrated in figure 2.8. The bottom corners of the silicon 

islands are extremely thin as seen in the figure. An inversion layer can form in these 

regions which could degrade sub-threshold slopes and is also a source of leakage currents 

when the device is turned off. Therefore, a heavy P+ - implant must be used for n-channel 

devices to turn these edge leakage off. 

Mesa isolation is the other techniquc to isolate silicon islands from onc another. 

This technique is attractive because of its simplicity. However, a review of the current 

literature does not reveal a single process that uses mesa-isolation. This may be because 

LOCOS isolation has become extremely standard in CMOS processing. Mesa processing 

is illustrated in figure 2.9. In extremely thin gate oxides grown on mesa-isolated islands, a 

reduction of the gate oxide breakdown has been observed [134]. This is because oxidation 

of silicon comers produces Si02 layers with non-uniform thicknesses. The thickness of 

the oxide grown on the comers of an island can be 30 to 50% thinner than that grown on its 

top surface. Oxidation is also known to sharpen silicon comers. This effect is enhanced if 

more than a single oxidation step is performed (i.e. if a sacrificial oxide is grown and 
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Figure 2.7 (a) Bulk silicon CMOS cross-section. Also illustrated is a parasitic 
bipolar transistor and (b) an SO1 structure. The reverse biased 
depletion regions are indicated in both sketches 



Table 2.2 Comparison of Bulk and Thin-Film Fully Depleted (FD) SO1 
CMOS Process Flows. N+ Polysilicon is used as the Gate Matenal 
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Figure 2.8 LOCOS isolation. The circles at the ed es of the silicon island (left ) 
Indicate where source-to-dram edge le ak ge may w u r  

Figure 2.9 Mesa isolation. The boxed in areas highlight re ons where edge i leakages could occur causing degraded sub-thres old charactenstics 



stripped prior to oxidation) [135]. In a mesa-process, the gate oxide and the gate material 

covers both the top and the edges of the silicon island. Therefore there exist iatcral (edge) 

transistors in parallel to the main (top) device. Furthermore, due to charge sharing between 

the main and the edge devices, the threshold voltage is reduced at the comer of the island 

11361. This can produce a kink in the sub-threshold characteristics as well as leakage 

currents. Both oxide breakdown and the leakage currents can be improved by using pf 

sidewall doping and mesa-edge rounding techniques 11341. 

The optimization of the doping concentration in thin-film, fully-depleted devices is a 

matter of balance between two effects. Firstly, the doping concentration must be low 

enough to ensure full depletion, and secondly, it must be high enough to provide devices 

with a suitably large threshold voltage [137]. Finding such a balance is usually not a 

problem in pchannel devices with N+-poly gates, but as shall be seen in Chapter 3, it 

requires some attention for n-channel transistors. Simulations show that both the doping 

concentration and the silicon film thickness have to be optimized in order to produce useful 

values of the threshold voltage. As far as doping profiles are concerned there is no room in 

thin-film SO1 MOSFETs to create anything but an almost flat doping profile. In thin-film 

SO1 technology, the sourceldrain series resistance can reach very high values which can 

jeopardize the speed performances of the circuits. It becomes imperative just as in the case 

of bulk MOSFETs to form a silicide on the sources and drains to reduce their sheet 

resistance. The specifics of the silicidation process must be altered from the typical bulk 

process to account for the ul tra-thin nature of the SO1 film [138]. 

Finally, SO1 CMOS technology offers a higher integration density than bulk 

CMOS. This is evident from the comparison between the layout of the bulk CMOS 

inverter and that of an SO1 CMOS inverter depicted in figure 2.10. This higher density 

results mainly from the absence of wells in  SOI. A second cause of increased density is the 

possibility of having a direct contact between the P+ and N+ junctions. The number of 

contact holes per gate is also lower. 

2.4 Properties of Silicon-on-insulator MOSFl3s 

The drawbacks and limitations of bulk MOSFETs were detailed in the introduction 

to this Chapter. Silicon-on-insulator (SOI) MOSFETs were introduced as an alternative to 

bulk MOSFETs in the short-channel regime. In the following sub-sections the main 



Figure 3.10 Layout of a (a) bulk CMOS inverter and (b) a SO1 CMOS inverter 



properties of Sol-MOSFETs which make them an altractivc prospect for sub-micron VLSI, 

will be reviewed. SOI-MOSFETs have conventionally been thick-film MOSFETs. Thick- 

film MOSFETs are the devices in which the channel region is = fully depleted by the 

gate during normal operation, i.e. the maximum depletion width prior to inversion is less 

than the film thickness. The silicon film thickness is larger than twice the value 01' W,,. 

In such a case, there is no interaction between the depletion zones arising from the front 

and back interfaces, and there exists a piece of neutral silicon beneath the front depletion 

zone. Device operation in thick-film SO1 MOSFETs is therefore similar to bulk MOSFETs 

and the only significant differences are the floating substrate effects encountered in thick- 

film MOSFETs. Floating substrate effects form a subject of later discussion. Of late, thin- 

film MOSFETs operating in the fully depleted mode have been shown to have 

tremendously improved properties over partially depleted thick-film MOSFETs. In a thin 

film SO1 device, the silicon film thickness is smaller than W-. In  that case, the silicon 

film is fully depleted at threshold, irrespective of the bias applied to the back gate. The 

front and back interfaces interact with each other when the channel is fully depleted. 

Because both front and back interfaces can be either in accumulation, depletion or inversion 

there are 9 modes of operation in the fully depleted SO1 MOSFET. However only the 

regimes of operation where the back surface is depleted are 'useful' operating regions. 

Unless specifically mentioned, the MOSFETs are assumed to be thin-film and fully 

depleted, and in the following sections, these properties are briefly reviewed. 

2.4.1 Conventional Properties of SO1 MOSFETs 

Figure 2.7 sketches a bulk CMOS device cross-section and a typical SO1 structure. 

The reverse-biased p-well forms the isolation between the n-MOSFETs and the p- 

MOSFETs in the bulk CMOS process. More importantly, various parasitic elements exist. 

In the figure, the parasitic bipolar formed by the p-n-p regions in the structure is shown. 

Though the parasitic devices are biased off under normal operation, random electrical 

perturbation can trigger bipolar action resulting in "latch-up" . The junction areas present in 

the structure contribute to the capacitance and reduce circuit speed. The SO1 structure 

inherently overcomes these CMOS deficiencies. The parasitic bipolar elements do not exist 

and the problem of parasitic latch-up is completely avoided. Also, the junction area is 

drastically reduced. The simplicity of the isolation technique allows the minimum device 

separation to be determined only by the lithography. This results in higher paclung density 



and smaller chip size. The reductions in the parasitic capacitance should lead to an increase 

in circuit speed. SO1 devices have a much smaller charge collection volume than bulk 

CMOS devices and are therefore more immune to soft-errors caused by alpha-particles. 

The radiation hardness of SO1 technology should permit greater flexibility in circuit design 

and layout due to simpler processing. 

2.4.2 Threshold Voltage of Fully Depleted MOSFETs 

The threshold voltage of an enhancement mode bulk n-channel M O S m  is given 

by 9 

where VFB is the flat band voltage equal to (%s - Qox/Cod, @F is the Fermi poteptial 

equal to kT/qln(Nd/ni), and WmaX is the maximum depletion width given by 

3/4&0K8@F l q N A .  

In a thick film SO1 device where the film thickness t i  > 2 W-, there can In po interaction 

between the front and back depletion zones. The threshold voltage is the same as in a buIk 

transistor and is given by eqn. ( 1). 

In a thin-film, fully depleted enhancement mode n-channel devices, the interaction 

between the two interfaces forces one to solve Poisson's equation in the ch.anne! in order to 

determine the threshold voltages. Assuming the depletion approximation, the equation is 

When integrated twice this yields the potential distribution as a function of position in the 

film. 

where @,f and @,b are the potentials at the front and back silicon/oxide interfaces, 

respectively. 



Similarly, the field distribution in the film can be expressed as, 

Gauss' Law is then applied to the front and back interfaces. 

Q,, is the fixed charge density, Qnvf is the front inversion charge density (4) and Qsb 

represents the charge state of the back interface (Qsb = 0 under depletion, Qsb > 0 under 

accumulation and Qsb < 0 under inversion). Combining equations (1) - (5) we get the 

desired relationships between the front gate voltage and the back gate voltage. 

Q C8i cai %~dep+Qinv~ v = QMS1 - + (1 + -)ad - -Qab - 
c o x r  co, o+ c o x ,  

where Csi = ~ ~ i / f S i  and Qdep = -qNAtSi. 

If the back surface is accumulated, @,bp0 and at threshold Qn@. Then, 

If the back surface is inverted, @sb~2@F and once again the threshold voltage is obtained 

as, 



Finally, when the back surface is depleted, 

Thus under these conditions the front gate threshold voltage varies linearly with the back 

gate voltage. The dependence of the front gate threshold voltage on the back: gate voltage is 

qualitatively depicted in figure 2.11. The dependence of the front gate threshold voltage on 

the back gate bias decreases with increasing tox,b. When bx,b is very large (back gate 

oxide is very thick) then the front gate voltage is virtually independent or the. back gate bias. 

Figure 2.1 1 Theoretical dependence of V T ~  on V G ~  for a completely depleted SO1 
MOSFET. For reference, the corresponding bulk MOSFET threshold 
voltage V T ~ ~  is indicated [62] 



of a MOSFET, g,, is a measure of the effectiveness of the control of the drain current by 

the gate voltage. The saturation transconductance is given by [65], 

is again the efficiency factor. The substrate capacitance is a 

combination of both the capacitance of the SO1 film and the back oxide capacitance for the 

case when the back surface is depleted. Thus the efficiency factor y is reduced from its 

maximum value of 1.0 for the case when the back oxide thickness is infinite, to 0.94 when 
bx=350081 (tbx is the buried oxide capacitance) and further to 0.77 when &, = 1000A. 

Thus, the transconductance enhancements in SO1 MOSFETs over bulk MOSFETs is 

maximum for thick back gate oxides. For thinner back gate oxides, the drain saturation 

voltages are reduced by the efficiency factor y, and the saturation current and 

transconductance enhancements are also reduced by y. 

Another effect which is expected to increase the current in ultra-thin-film SOI- 

MOSFETs is the effect of vertical field on the surface mobility [63]. In MOS devices in 

general, increasing the vertical field confines the carriers to the surface region where there 

are more scattering sites. Thus increased vertical fields result in degraded effective 

mobility. The surface electric field in a thin-film SO1 device with the back surface depleted 

is lower than the surface electric field in a bulk MOSFET. To first order, the surface fields 
qN t .  

in a FD MOSFET is 2 and that in a bulk MOSFET is q N ~ W  ma . Since thin-film 
2'si & ai 

fully-depleted SOI-MOSFETs have smaller vertical fields, they are expected to have a 

higher effective mobility than corresponding bulk MOSFETs. Moreover, since the field 

remains constant from source to drain, there is no mobility degradation towards the drain. 

This increased effective mobility translates into a higher drain current. Mobility 

enhancement due to decreased vertical electric fields have been observed experimentally 

[66].The maximum of mobility is obtained right above threshold, but is rapidly 

overshadowed by the decrease of mobility caused by the increase of Qinv when the gate 

voltage is significantly larger than Vth. 

For a given gate voltage, SOI-MOSFETs have a larger number of inversion 

electrons than bulk-MOSFETs. Therefore, bulk-MOSFETs have lower saturation drain 

voltages than SOI-MOSFETs for the same gate voltage. This is shown in  Fig. 2.13. 



H~wever  in short-channel device fabricated in the submicron region velocity saturdor) 

effects limit the output current [67]. Velocity saturation acts to reduce the satyration 
voltage; for both the SO1 MOSFETs and the bulk MOSFETs. Fig. 2.13 also illustrates the 

dependence of the saturation voltage on gate length. In l ~ n g  channel1 MOSFETs, the 

saturation v d  tage of SO1 MOSFETs were larger than that of bulk MOSFlETs due to larger 
channel charge. As the channel lengths become shorter, the saturation voltage of both SO1 

and bulk MOSFETs &crease and approach the same value. The saturation1 current densities 

should in principle also approach the same value. Under high fields the saturation current 

density is written as [139], 

0 1 2 3 10 

GATE LENGTH (urn) 

Figure 3.13 Dependence of the saturation voltage on channel length for thin-film SOI 
MOSFETs and bulk MOSFETs [67] 
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where m = p/2LvSat, Thus for short channel lengths, 

The enhancement due to a is thus lost at the short channel lengths. This is clearly 

demonstrated in figure 2.14, where the current densities of similar geometry bulk and thin- 

film SO1 MOSFETs approach each other in the deep submicron regime. 

SO1 MOSFETs are more immune to short-channel effects as will lx discussed later. 

The channel doping of SO1 MOSFETs can therefore be low even in the sub-micron regime 

whereas short-channel bulk MOSFETs require higher doping concentraticms than those for 

long channel devices. Therefore, the SO1 MOSFETs provide higher molbility and higher 

saturation velocities for carriers. This effect is responsible for the larger current drives d 
the SO1 MOSFITs, even in the presence of velocity saturation and is depicted in Fig. 2.15. 
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Figure 2.15 Dependence of the saturation current on channel length for thin-[~lm SO1 
MOSFETs and bulk MOSFETs [67] 



Therefore, in summary, SO1 MOSFETs provide higher saturation currents than 

corresponding bulk MOSFETS in long channel devices due to increased drain saturation 

voltages. In the short channel regime, SO1 MOSFETs allow lower channel doping 

concentrations than bulk MOSFETs. Although the drain saturation voltages are almost 

equal because of velocity saturation, the SO1 MOSFETs provide larger currents because of 

the lower channel doping. 

2.4.4 Short Channel Effects 

Short Channel effects cause a significant change in device behavior. A number of 

effects come into focus as channel lengths are shortened: (1) Channel Length modulation (2) 

Threshold voltage lowering (3) Drain induced barrier lowering and punchthrough (4) hot- 

electron effects and (5) mobility degradation due to large electric fields [68]. The threshold 

voltage variation with channel length and DIBL are predominantIy due to charge sharing 

between the S/D and the gate. A major advantage of SO1 MOSFETs is its greater immunity 

to short-channel effects [69]. 

A first order estimation of the dependence of threshold voltage on the channel 

length can be determined from geometrical considerations [70]. Fig. 2.16 illustrates the 

typical depletion regions existing in short-channel bulk and SO1 MOSFETs. I t  can be seen 

that in thin-film SO1 MOSFETs , only a small fraction of the depletion charge under the 

gate is controlled by the source and drain. On the other hand, in bulk MOSFETs, a larger 

portion of the charge under the gate can be partitioned into the Source and Drain. This 

portion increases relative to the total depletion charge as the channel lengths decrease. 

Since the gate controls less and less substrate charge, the threshold voltage decreases w~th 

channel length. Therefore, in thin-film SO1 MOSFETs, the threshold voltage remains more 

or less constant for gate lengths down to 0.5pm. This is illustrated in figure 2.17. One 

can see that the threshold voltage roll-off starts to occur at significantly smaller gate lengths 

in thin-film SO1 transistors than in bulk devices. 

~lleviateh short-channel effects have been studied analytically [71-731 and have 

been verified experimentally [74]. In [71], Young studied the short-channel effect in fully 

depleted SO1 MOSFETs , using an analytical two-dimensional model and PISCES 
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Figure 2.16 Schematic cross-section of a (a) bulk and (b) thin-film S(3I transistor. 
Qg, Qb, Qs and Qd are the depletion region charges associated with the 
gate, back interface, source and drain respective1 y 



simulations. It was established that the reduction in threshold voltage due to short channel 

effects decreases with decreasing silicon film thickness. Comparison with the analytical 

models for bulk MOSFETs [75] showed the advantages of SO1 MOSFETs over their bulk- 

silicon counterparts. In addition to threshold voltage roll-off with gate length, other short- 

channel effects such as drain-induced-barrier lowering, channel length modulat~on and 

velocity saturation were investigated in detail by Fossurn et a1 [72] based on a charge-based 
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Figure 2.17 Threshold voltage roll-off comparison between bulk MOSFET and thn-fil m 
SO1 MOSFETs 

large signal model for a transistor in strong inversion [73]. It was shown that the presence 

of the back gate significantly affects the behavior short channel devices. In addition to 

thinning the SO1 film, operating the device with the back gate held in accumulation 

ameliorates threshold-voltage reduction, DIBL and channel length modulation. The short 

channel effect is smaller in thin-film devices with accumulation at the back side than in thn- 

film fully depleted devices but both of them show less short-channel effects than their bulk 



counterparts. However, accumulated back surfaces degrade transconductances and drive 

currents [65l and also result in increased drain electric fields which exacerbate hot-electron 

effects as well as reduce the carrier mobility. Hence, design trade-offs would be involved 

in controlling the short-channel effects, through the accumulation of the bigk interface. An 

optimum control of the space charge in the silicon film by the gate (which would further 

minimize the short channel effect) could be obtained by using double-gate devices (one gate 

below the active silicon film and one gate above it). Making such (devices i s  a real 

technological challenge, but some practical schemes will be proposed in later chapters. 

Another short channel effect, called drain-induced conductiui ty enhancement 

(DICE) is also due to charge sharing between the gate and the junctions[73]. DICE i s  
caused by the reduction of the depletion charge controlled by the gate due to a size increase 

of the drain junction-related depletion zone, which itself increases with Vm. In srder to 

model the DICE effect, an analysis involving the solution of the two-dimensional Laplace 

equation (in a fully depleted device) must be carried out. It can be shown that the DICE 

effect is lower in thin-film SO1 devices than in bulk devices [72]. 

2.4.5 Sub-threshold Slope 

Sub-threshold slope is an extremely important MOSFET parameter, as it 

characterizes the region between the off-state and the on-state. The inverse sub-threshold 
slope (S) is defined as 6VG/6(ln Id), when the channel is in the weak inversion regime. 

For bulk MOSFETs, i t  can be shown that S can be approximated by [76], 

where CD , Cit and Cox are the depletion capacitance, the interface trap capacitance and the 

gate capacitance respectively. The depletion capacitance is small i n  the case of SO1 

MOSFETs. Moreover. the depletion charge does not vary with gate bias. Therefore, in 
thin film SO1 MOSFETs, the value of the inverse sub-threshold slope approaches a 

minimum value given by [q, 



Though this expression, derived from bulk MOSFET theory cannot be strictly applied to 

thin-film SO1 M O S m s ,  it explains to a first order the improved sub-threshold slopes for 

SO1 MOSFETs compared to bulk MOSFETs. Physically the inverse sub- threshold slope 

'S' is a measure of the gate voltage swing required to change the drain current by an order 

of magnitude. The value of S then determines the minimum value of the threshold voltage 

for acceptable leakage currents. Typically 9 ratio of 1 6  is required for the ratio of ON-state 

to OFF-state current. If the value for S were 100mVJdecade then '5s' would determine the 

minimum threshold voltage for an ideal device in the absence of fixed charges. Sharp sub 

threshold slopes then allow devices to operate at low threshold voltages, which increases 

the saturation voltage and hence the saturation current and speed of the device. Colinge et 

a1 [78] proposed a capacitance divider model to understand the sub-threshold slopes under 

different substrate bias conditions. The models under different bias conditions are shown 

in Fig. 2.18. 

The sub-threshold current of an MOS transistor is a minority carrier diffusion current 

The inversion channel can be approximated by a box carrier profile with a uniform carrier 

concentration n(0) and a thickness 'd' defined as the distance from the Si-SiO;? interface at 

which the potential is lowered by kT/q [70]. 

Using these expressions the current is written as, 

From ( 19) we can write, 



Figure 2.18 Equivalentcapacitormodelsfor (a) bulkMOSFETorthick-film 
MOSFET with film contact (b) Thick-film SO1 MOSFET without film 
contact, Vf is the film potential (c)Thin-film fully depleted .SO1 MOSFET 
with front gate control (fixed back bias) and (d) Thin-film 1Tully depleted SO1 
MOSFET with back gate control (fixed front bias) 



From the I D  expression of eqn. (22), 

The second term in C is a correction term that accounts for the reduction in current increase 

due to the increase of the surface electric field with increasing surface current (bias). So far 

the above expressions derived are general and applicable to both bulk and SO1 MOSFETs. 

Qualitatively since the increase in surface electric field with increasing surface potential is 

lower for SO1 MOSFETs, C in eqn. (24) is larger than in a bulk MOSFET. Generally, ths 

correction term can be ignored and C = q/kT. 

- d V ~  can be determined for all cases using the capacitor divider networks. 
d@a 

Neglecting the presence of interface states, the expression for the sub-threshold slope S can 

be written for both bulk and SO1 MOSFETs as [78], 

where again a = Csub/cox, and the capacitance Csub depends on the device structure as 

detailed in section 2.4.3. Since aFD,SOI < abulk < aACCSO1, the inverse sub-threshold 

slope has the lowest (i.e. best) value in the fully depleted device, it is larger in the bulk 

device and even..larger in the device with the back interface accumulated. Sub-threshold 

slopes are degraded when the back interface is accumulated, because this condition is 

similar to the thick-film case. In fact, it was determined that the slopes under accumulated 

back surface were worse than the bulk case. Depletion at the back surface does not change 

the sub-threshold slope; it  affects only the threshold voltage. However, when the back 



surface is inverted so that there is a channel current in the off-state, the sub-threshold slope 

decreases because of the poor control of the back channel current by the front gate voltage. 
The observed dependence of the sub-threshold slopes on the back surface potential is 

shown in figure 2.19. Thus, so long as the back surface is depleteti, thin-film SOI 

M O S p s  provide superior sub-threshold slopes over corresponding bulk MOSFETs. 

In short-channel devices however, an increase in sub-threshold slope results due to 

back surface leakage and DIBL [139]. Thin-film SO1 MOSFETs then lose some of its 

advantages in the short-channel region. This is illustrated in figure 2.20. The degradation 

in sub-threshold slope is a lot lesser in thinner films. The curves in fig. 2.20 assume a 

back oxide thickness of 4000A. The worsening sub-threshold slopes at short channel 

lengths can be reduced further by using thinner back oxides. Thinner hick oxides would 

result in a slightly larger sub-threshold slope under long channel conditions due to the 

increase in the 'a' factor, but the degradation would be avoided. Once again, dual-gated 

devices would continue to provide extremely low sub-threshold slopes even at short 

channel lengths and would also provide excellent total dose radiation hardness due to the 

thinner back oxide. Balestra and Brini [79] recently proposed analytical expressions for the 

sub-threshold slopes based on the assumption that the potential distribution in the SO1 film 

is linear. Based on their model, they investigated the parametric dependencies of the 

sub-threshold slope on the silicon film thickness, channel doping, and the back oxide 

thickness. In particular, it was shown that the subthreshold slope of the MOSFET 

increases as the back oxide thickness is reduced. This can also be deduced from the 
capacitor divider networks presented earlier. Thinner back oxides increase the back gate 

capacitance. This increases the back gate control over the channel and reduces the front 

gate control over the channel. Hence the sub threshold slope shows a slight degradation. 

In Chapter 3, a method to reduce the short-channel effects in a hot-carrier resistant design is 
presented, which involves thinning the back gate oxide. In light of the above dependence. 

such a design would be accompanied by higher inverse sub-threshold slopes. Thus SO1 

VUI  design implies trade-offs among the different parameters. 

2.4.6 High Field Effects 

The high electric fields near the drain of short-channel SO1 MOSFETs give rise to 
hot-carrier effects just as they do in bulk MOSFETs. However, in addition to hot carrier 



inversion 

Figure 2.19 Measured subthreshold characteristics of a thln-film SO1 n-channel 
MOSFET at different back gate voltages [78] 

Figure 2.20 Simulated (a) subthreshold current versus gate-source bias and channel 
length (with tb=lOOnm) and (b) gate-voltage swing versus channel length 
and film thickness of fully depleted SO1 MOSFETs [I391 



degradation, there are other deleterious effects due to the unique nature of the SO1 device. 

These are the kink-effects and the parasitic bipolar effect. In this section each of these 

effects are discussed briefly, to give an overview of some of the major problems facing 

SO1 technology today. 

2.4.6.1 Hot Carrier Effects 

The utility of short-channel devices is inherently dependent on thc: reliability of the 

devices. Reliability is directly related to the immunity of the devices to hot-carrier effects. 

The horizontal electric field in the transistor, which is roughly proportional to the ratio of 

the supply voltage to the gate length, increases as the device dimensions are reduced, 

When the transistor operates in the saturation mode, a high electric field tlevelops between 

the channel pinch-off point and the drain junction. This electric field gives the electrons 

such a high energy that some of them can be injected into the gate oxide, \thereby damaging 

the oxide-silicon interface [ l a ] .  At very high injection levels tunneling clurrent through the 

gate can actually be measured [141]. The injected electrons cause shifts in the threshold 

voltage and the transconductance through the generation of interface states which begin to 

act as hole traps. Likewise, they also degrade the sub-threshold slopes ;and which results 

in a higher leakage current. Hot-carrier injection at the back interface (which is not as high 

in quality as the front interface to begin with) increases off-state leakage iin SO1 MOSFETs 

[142- 1431. To first order the maximum drain electric field can be written as [q, 

112 

where 1, is defined as the characteristic length given by, 1, - t,i [-j CbB ] and 
2C:,, (I + a) 

a F - " for accumulated back surfaces and a - c.icox, for depieted back 
CoxI (Cai + Coy )Co* 

r' 
surfaces. f3 = I for accumulated back surfaces and fl- 1 + for depleted back 

Cli + C o x b  

surfaces. Therefore, the multiplication factor is lower for thin-film SO1 hdOSFETs because 

of the 'a' term in the expression for the characteristic length. This is illustrated in fig. 

2.21, which presents the multiplication factor in bulk and fully depleted SO1 MOSFETs of 

similar geometry. 



M C V o l k  3 

Figure 2.21 Simulated (M-1) versus VDS for n-channel SO1 MOSFETs [fully depleted, 
with film thicknesses of lOOnm (*) and 30nm (-), and back surface 
accumulated, with film thicknesses of lOOnrn (I)] contrasted with a bulk 
MOSFET (0) [87] 

. 

Figure 2.22 Threshold voltage shift as a function of electric field stess time in (a) bulk 
MOSFETs and part~ally depleted SO1 MOSFETs and (b) partially and fully 
depleted SO1 MOSFETs [69] 
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Short-channel bulk MOSFETs require complex processing and lightly doped drain 

structures to lower the drain electric field and reduce hot-carrier effects. SO1 MOSFETs 

have been shown to have reduced hot-electron related degradation of threshold voltages and 

transconductances compared to their bulk counterparts [80]. In Fig. 2.22, the threshold 

voltage degradation in thin-film fully depleted SO1 MOSFETs, thick-film partially depleted 

SO1 MOSFETs and bulk MOSFETs are compared under similar stressing conditions. 

Thin-film fully depleted MOSFETs showed the least amount of hot-carrier degradation. 
The maximum drain electric field Em is a function of the drain saturatioln voltage Vd sat. 

The lower the Vd sat, the higher the electric field. In section 2.4.3, it was stated that the 

drain saturation voltage of thin-film MOSFETs is greater than that in a bulk MOSFET. due 

to the fully depleted channel from source to drain. Therefore, the maximum drain electric 

field IS lower in thin-film MOSFETs which results in lower hot-canrier-degradation. 

However, it has been observed that the drain electric field in ultra-thin SOI-MOSFETs 

increases considerably due to two-dimensional effects [81-851 resulting in  lower 

breakdown voltages. Design rules for these MOSFETs require the presence of LDD 

regions, similar to the case of bulk MOSFETs [86]. For minimum hot-carrier-induced 

degradation. SO1 MOSFETs with moderately thin (not ultra-thin) films rnust be fabricated 

[87]. fn such cases, i t  has been shown through numerical simillations that the 
multiplication fqctor at the drain of the SO1 device without LDD is in fact less than that in a 
bulk device with LDD. For lower drain electric fields, i t  is required that the back film 

interface be maintained in depletion i.e. the silicon film must be fully depleted. 

Accumulated back interfaces increase the electric field at the drain and result in degraded 

hot-carrier-induced-lifetimes. Thus. SOI-MOSFETs at worst would have the same hot- 
carrier-related problems as bulk MOSFETs and would require similar drain engineering. 

But, because of the ability to vary the silicon film thickness, it may be p s i  ble to design 

the SO1 MOSFET with thicker films and acceptable shortchannel effects [V], resulting in 

enhanced device performance over bulk MOSFETs. 

2.4.6.2 Kink Effect 

floating substrate effects have been observed in bulk MOSFlX!s. [88,89] bul only 

under specific conditions and low temperatures. In general, floating substrate effects are 

unique to SO1 MOSFETs. First evidence of floating substrate effects (also referred to as 
the "Kink Effectw ) were found in thick-film SOS transistors and thick-film partially 



depleted SO1 MOSFETs [90-951. Kink-effects have also been observed i n  thick-film 

partially depleted SO1 MOSFETs. In partially depleted thick-film SO1 MOSFETs (weak) 

impact ionization at the drain produces electron-hole pairs; the electrons are swept into the 

drain whereas the holes are injected into the substrate. 'This situation is similar to thc onc 

observed in bulk MOSFETs. I f  there were a bul Wsubstrate contact, the generated holcs 

would recombine at the contact and constitute the substrate current. However, in the 

absence of a substrate contact, the holes accumulate at the substrate and forward bias the 

source-body junction as depicted in figure 2.23 (a). The substrate develops a positive 
potential VBS in order to lower the barrier at the source junction. The potential VBS 

adjusts itself to maintain equilibrium between the generation rate of holes and the 
recombination at the source. The positive potential VBS of the substrate results in a body- 

effect, similar to bulk MOSFETs, and decreases the threshold voltage of the device. This 

reduction in threshold causes a lank in the output characteristics as shown in Fig. 2.24. 

A Potential 

Source Drain 
b 
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Figure 2.23 (a) Potential in the neutd region from source to drain in the 
Pa~Qally depleted device before and after the onset of the lank effect (lower 
and upper curves, respectively) (b) Potential from source to drain in the 
fully depleted device 



Kink cfl'ects in SO1 und SOS MOSFETs have been modeled both analytically [Xj 

and using two-dimensional numerical simulations 19'71. The kink effect is responsible for 

the observation of anomalous sub-threshold slopes for partially-depleted SO1 MQSFETs 

[98,99]. When the body floats, the (relatively weak) impact ionization t h t  aan occur near 

the drain in the sub-threshold region (in addition to the other carrier generation 
mechanisms) can result in holes being injected into the neutral body. The hole inject~on 

charges the body and produces a forward bias on the body-source junction, which reduces 

the threshold voltage while the device opemtes in the sub-threshold region. As a result. the 

sub threshold current jumps from a high-Vh characteristic to a low-Vth curve and gives rise 

to a very steep sub-threshold slope. The steep sub-threshold slopes dissppear in fully 

depleted MOSFETs, which lends credence to their asswiation to the kink effect 

phenomenon. Moreover, the kink effect causes significant drain current overshoo@ [I001 

in the transient characteristics of the MOSFET. Therefore, in summary, the kink effects a e  
not wholly desirable. One way to avoid the kink effect is to incorporate a substrate contact 
to the device. The holes generated by impact ionization would then recombine at the 

substrate contact rather than accumulate in the bulk. This is akin to the behavior in bulk 
MOSFETs. However, incorporating a substrate contact results in a more complicated 

fabrication process and increases the active device area It has been demonstrated that the 

use of thin-film fully depleted MOSFETs effectively eliminates the kink i~z the output dqin 

charwteristics [101,1Q2]. Thin-film fully depleted MOGFETs have a sigrufimtly lowered 
source to body potential barrier compared to partially depleted MOSFETs as shown in Fig. 

2.23 (b), The majority carrier holes generated at the drain can therefare more easily 

recombine at the source. There is, as a result, a minimal bodyeffect which in turn results 

in the disappearance of the kink. Fig. 2.24 again shows the nullified kink-effect in the 

fully-depleted devices. The devices can be either extremely thin-film anci fully deplefqd at 

all times, or thick-film and fully depleted by applying a back gate voltzlge. If a negative 

back bias is used to induce an accumulation layer at the back interface, tlze device behaves 

as a partially depleted device, and the kink reappears [loll. 

2.4.6.3 Parasitic Bipolar Effects 

There exists a parasitic bipolar transistor in every MOS structure. If wq consider an 

n-channel device, the N+-source, ptype body, and the N+tdrain form the emitter, base and 

collector of an NPN bipdar transistor. In a bulk device, the base of the bipolar transistor i s  



Figure 2.24 Oiltput characteristics el' livo transistors, one made in a 500nm thick SO1 
film and the other made in a lOOnm thick film. Only the device in (iv) is 
fully depleted and does not show the 'lunk' [69] 



usually grounded by means of a substrate contact. In an SO1 device, however the body 

(base) is usually left floating. This parasitic bipolar transistor is the origin of two major 
undesirable effects in SO1 devices : (a) the single transistor latch and (b) the reduction of 

the drain breakdown voltage. 

2.4.6.3.1 Reduced Drain Breakdown Voltage 

The kink-effect is inherently tied in with the drain breakdown phenomena in thin- 

film SO1 MOSFETs. Clearly, the cause for both the effects is the same, namely, impact 

ionization at the drain. Thin-film SO1 MOSFETs while demonstrating eliminated kink- 

effects, also show a significantly reduced drain breakdown voltage [103- 1051. The 

reduced breakdown voltage is due to the parasitic bipolar action in thin-film MOSFETs. 

The parasitic bipolar, an n-p-n transistor for a n-channel MOSFET, is formed by the n+- 

source, the p-body and the n+-drain. The impact ionization generated holes serve as the 

base current for the lateral bipolar transistor, on injection into the source. This causes a 

back injection of electrons from the source which add to the channel inversion electrons. 

These electrons in turn impact ionize at the drain enhancing the base current and thus 

turning the bipolar transistor on. The regenerative action eventually leads to device 

breakdown. The breakdown mechanism is similar to that in bulk MOSFETs but is 

exacerbated by the absence of the bulk-substrate contact. Fig. 2.25 gives a pictorial 

explanation for the breakdown mechanism in bulk and SO1 MOSFETs. Bipolar snapback 

effects in the sub threshold region, due to the activation of the parasitic bipolar transistor 

have also been observed experimentally [106-107. A complete analysis of the floating 

body effects in SO1 MOSFETs and its effect on the breakdown and bipolar latch-up 

phenomena based on two-dimensional, two-carrier numerical simulations has recently been 

published [la]. 

Although thin-film devices do not show any discernible kink effects, the quasi- 

fermi level separation between the source and the body (which determines the forward bias 
potential VBE for the emitter-base junction of the parasitic BJT) is greater for the thin-film 

devices than it  is for the thick-film devices. The reason for this can be qualitatively 

described as follows. The forward bias developed across the source-body junction 

determines the injection and subsequent recombination of holes in the quasi-neutral 
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(a) 

Figure 2.25 Schematic diagram showing current flow in (a) bulk-silicon and (b) SO1 
II-Cha~el MOSFETs operated in the saturation regime. 



sourcel. The thinner films have larger drain electric fields and therefore a greater 

generation of holes. Coupled with the fact that the thinner films provide a smaller volume 

for recombination, the forward bias developed in the thinner films must be greater to 

maintain the equilibrium between carrier generation and recombination. Therefore, to state 

that the substrate potential does not increase in the thin-film MOSFETs would be incorrect. 

The substrate potential does indeed increase as the above argument suggests. However, 

since the thin-film devices are fully depleted, its depletion charge is largely independent of 

the substrate bias and therefore the thin-film devices are less prone to the body effect which 

causes the kink in the partially depleted devices. Furthermore, due to the substantial 

forward bias developed across the body-source junction (base-emitter junction I'or thc 

lateral BJT), the thin-film SO1 MOSFETs show a drastic reduction in breakdown voltages 

due to parasitic bipdar action. The thinner the film, the more pronounced the parasitic 

bipolar and the lower the breakdown voltage. The smaller breakdown voltages in thin- film 

devices versus those with thicker films have also been observed experimentally [109j. 

The breakdown voltage of thin-film SO1 MOSFETs thus depends on both~the 

electric field (and multiplication) at the drain as well as on the emitter injection efficiency 

and current gain of the lateral bipolar transistor. Schemes to increase the breakdown 

voltage by decreasing the drain electric field [I101 and decreasing the current gain [I091 

have been proposed. Decreasing the current gain implies the use of a lightly doped source 

to reduce the injection efficiency. This has its repercussions on the transconductance and 

current drive due to increased source resistance. Intentionally incorporating lifetime lulling 

trap centers in the MOSFET body also reduces the gain of the parasitic transistor, but 

would result in enhanced leakage currents in the drain and source depletion regions. The 

leakage current at the drain is another source for the base current and its increase is 

undesirable. Electric fields at the drain can be reduced by either using thicker films or by 

incorporating LDD regions. A novel way to reduce the drain electric field by using a drain 

thickened structure has been recently proposed [ 1 101. The drain regions of the device are 

made in thicker material while the channel region is made in thinner material. No viable 

technique to fabricate such a device has been presented so far. 

1 The recombination in the SO1 MOSFETs is more dominant in the quasi-neutral source 
than at the junction. The transverse electric field in the channel region physically seperates 
the electrons and the holes at the source-body junction, greatly reducing their probability of 
recombination. 



2.4.6.3.2 Single Transistor Latch 

The single transistor latch phenomena is qualitatively described in figure 2,26 and IS 

again a direct result of the parasitic bipolar transistor in fully depleted SO1 MOSFETs. 

Figure 2.26 Illustration of the single transistor latch [106]. Curve (a) depicts the normal 
sub threshold characteristic at low drain voltage, curve (b) i1:lustrates the 
anomalistically sharp sub threshold slope due to the bipolar action and 
finally curve (c) shows the device in the latched state 

The single transistor latch results due to [he triggering of the parasitic bipdar transistor In 
Lhc sub-threshold region. If the drain voltage is high enough, impact ionization can occur 

in the sub threshold region even though the drain current is very small. In the figure, at 

low drain biases, a normal sub threshold characteristic is obtained under both forward and 

reverse voltage scan conditions (curve a). If the drain voltage is increased (curve b), the 

impact ionization near the drain increases and raises the body potential. 'This reduces the 



threshold voltage under the forward gate voltage scan and leads to an anomalistically sharp 

increase in the drain current. As the drain current increases, so does the impact ionization 

and a positive feedback is maintained. During the descending voltage scan, the 

regenerative impact ionization mechanism under the large drain bias keeps the M y  voltage 

high and the threshold voltage low. A high drain current is observed until the gate voltage 

drop below the value required to maintain positive feedback. Once this point is reached the 

drain current suddenly drops. As a consequence, a hysteresis is observed in the sub 

threshold characteristics in curve b. If the drain bias is large enough the p s i  tive feedback 

loop cannot be turned off once it is triggered and the device cannot be turned off even if the 

gate voltage is reduced (curve c). The device is then said to be latched. Such parasitic latch 

phenomena can directly affect the switching behavior of CMOS circuits fabricated using 

fully-depleted SO1 MOSFETs 11421. Consider for example a simple CMOS inverter. 

During the pull-down transient, the drain is at a high voltage and the gate is low. If the 

input voltage rise time is sharp then there could be a sufficient channel current in the n- 

channel device whlle its drain voltage is high, thus triggering the bipolar latch. T h s  would 

increase the current flowing through the n-channel device and increase the discharging of 

the output node. The latch is not maintained in the steady state, because the drain voltage 

quickly becomes low. During the pull-up transient, the gate voltage is initially high and the 

drain voltage is low. If the fall time is slow or the leakage currents are significant, then the 

device will latch during the pull-up transient and would remain latched even when the gate 

voltage becomes zero. The latch is thus maintained under steady state conditions and 

results in tremendous standby-by power consumption. Therefore, although there may be 

potential advantages of the latch during the pull-down transient, the increased power 

consumption in steady state makes the latch undesirable and steps must be taken to nullify 

or minimize its occurrence. 

2.4.7 General Comments 

A number of devices have been fabricated in both SIMOX and ZMR films and have 

been shown to demonstrate any or all of the aforementioned properties [Ill-1201. Based 

on trade-offs involved in device design and fabrication, various design criteria for s u b  

micron SO1 devices have also been proposed [121]. 



Finally, a number of device models have been proposed to more accurately 

characterize the device behavior in thin-fiIm SOI-MOSFETs. An equilibriilm electrostatic 

model based on the solution of the one-dimensional Poisson's equation was formulated 

[I221 to explain the sub threshold characteristics in thin-film polysilicon MOSFETs. A n  

extension of this model to the strong inversion regime based on the I3ao-Sah single 

integration approach has also been formulated l12.3-1251. The above m~odels however 

assume a bulk-substrate contacted device. The electrostatic analyses are not accurate for 

typical floating-body SO1 MOSFETs. A more accurate model for floating body SO1 

MOSFETs has been proposed by Pierret [126]. Computations based on this model are 

presented in the next chapter to explain volume-inversion in dual-gate controlled 

MOSFETs. Two-dimensional numerical models based on the solution of the two- 

dimensional Poisson formulation and Monte-Carlo techniques have also been used to 

explain the ameliorated short-channel effects in thin-film MOSFETs [127-1:31]. 

2.5 Summary 

The limitations of bulk MOSFETs in the short-channel regime were detailed. The 

properties of thin-film SO1 MOSEETs with regard to circumventing the deleterious 

problems associated with bulk MOSFETs were described in detail. In particular, the hgher 

drain saturation voltage and saturation currents, improved sub-threshold slopes, 

significantly enhanced immunity to short-channel effects, and the reduction of the kink- 

effect were described. A major concern in thin-film SOI-MOSFETs is the low breakdown 

voltage due to the parasitic bipolar action. The breakdown mechanisms were reviewed in 

detail. 

Technologies used to fabricate SO1 devices were enumerated and the two major 

technologies SI MOX and ZMR were discussed. Selective epitaxial growth of silicon was 

introduced as a potentially advantageous means of forming high quality SO1 material. This 

is of particular importance when minority carrier devices are to be integrated into a SO1 

process. 
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CHAPTER 3 

THIN-FILM DUAL-GATED SO1 MOSFETS 

3.1 Introduction 

A number of advantages of thin-film SO1 MOSFETs have been discussed in 

Chapter 2. Historically, research into SO1 devices was carried out with a single application 

in mind, namely, radiation-hard devices for space applications. Of late, the potential 

applications of SO1 devices have extended to the field of power devices due to the blocking 

voltage capabilities of the back oxide which results in reduced surface electric fields 

(RESURF) [I-41. Perhaps of greater importance is the extension of SO1 devices into the 

realm of high-speed digital circuits - until now the sole property of bulk CMOS VLSI [5- 

101. As generations of computer technology evolve there is a concomitant increase in 

speed. Clock speeds in particular (though they do not solely dictate the speed of 

microprocessors) have jumped from 20-MHz in 1988 to 50-MHz today and designs 

involving higher clock speeds are already in progress. Every increase in speed also 

involves a decrease in the minimum feature size of devices. In CMOS technology this 

means shrinlung gate lengths. The deleterious effects of aggressive scaling were discussed 

in detail in Chapter 2. Silicon-on-insulator devices allow the extension of current 

technology to a future generation. This is largely due to the minimized parasitic capacitance 

in a SO1 structure. Thus, largely due to the reduction of load capacitance in a CMOS 

circuit, SO1 devices allow the technology to operate at the same gate length while providing 

speeds compatible with a future generation. Again, research into SO1 devices with reach- 

through junctions was prompted by this potential increase in speed due to minimized 

parasitics. All other advantages of SO1 MOSFETs described in Chapter 2 must be 

considered to be serendipitous windfalls. 

A significant advantage of SO1 MOSFETs stems from the fact that the device 

performances can be altered by the action of a 'back gate'. Conventionally, the silicon 



substrate acts as the back gate as illustrated in Fig. 2.1. The bias applied to the substrate 

modifies the surface potential in the channel at the back interface (back interface 1 in Fig. 

2.1). In a fully-depleted device the front interface and the back interface are electrostatically 

coupled together. When the back surface is accumulated then the device: can no longer be 

considered fully-depleted as the accumulation layer at the back cannot t~ depleted by the 

front gate. In chapter 2 it was noted that the back surface potential can affect the device 

performawe of the MOSFET operated using the top surface gate. This back gate control 

lends designers the option of maintaining the back interface in either accumulation or 

depletion and can be used to optimize device design by controlling either short-channel 

effects or hot-electron effects [ l  11. Long-channel fully-depleted SO1 MOSFETs show 

significantly enhanced saturation drain currents and transconductances over bulk 

MOSFETs. They also exhibit superior sub-threshold slopes. However it was noted in the 

previous chapter that at short channel lengths the advantages of SO1 MQSFETs in terms of 

current, transconductance and sub-threshold slopes were lost. The degradation in current 

is limited by fundamental device physics and velocity saturation. But the degradation in 

sub-threshold slopes, short channel effects and DIBL can be controlled by the back-gate. 

This leads to the concept of the Dual-Gated MOSFET. 

In this chapter, we shall discuss some of the advantages of dual-gated MOSFETs. 

In a dual-gated MOSFET, the top and bottom gates are biased simultaneously. The device 

is then essentially a dual-channel device with surface inversion channels induced at the 

front and back interfaces. The various reported configurations of dual-gated devices are 

illustrated in figure 3.1. In section 3.2, the concept of volume inversion in dual-gated 

devices is discussed and common misconceptions are clarified. Some of the advantages of 

dual-gated MOSFETs are then analyzed in section 3.3. All the results shown in this 

chapter are based on either numerical simulations or analytical computations. The goal is to 

identify definite trends by malung fair comparisons between the different devices. It is noi 

the aim of this chapter to predict the exact device parameters such a current density etc. for 

different processes, or to optimize process parameters to achieve a desired performance 

level. Finally in section 3.4, we outline a novel process to fabricate a fully self-aligned 

dual-gated SO1 MOSFET using the vertically seeded epitaxial lateral overgrowth technique. 

The device has significant advantages over existing dual-gated SO1 M0SI;ET technologies. 

The self-alignement between the top and bottom gates minimizes parasitics and reduces 

active area. 
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Figure 3.1 Various configurations of dual gated devices reported in the literature 



3.2 Volume Inversion 

A novel mode of operation of dual-gated SO1 MOSFETs was proposed by Balestra 

et al [12J, in which the top and bottom gates were biased simultaneously. A significant 
enhancement in device performance was predicted for this mode of operation, due lo 

volume inversion in the channel caused by the action of the two gates. A device in volume 

inversion wntains an electron density that is greater than the channel doping throughout the 

thickness of the semiconducting film. The performance enhancement of such a device was 

theorized to arise from the reduced influence of surface scattering on the "bulk" carriers in 

the film. Recently Zingg et al [I31 and Colinge et al [I41 demonstrated improved 

characteristics in dual-channel SO1 MOSFETs. The performance enbancements in the 

above cases were shown by comparing the output characteristics of' a dual-channel 

MOSFET to the more conventional single-channel MOSFET of Fig 2.1. However, the 

measured drain current was the cumulative sum of that due to volume  inversion and the 

inherent additional current resulting from the lowered threshold voltage of the dud-channel 

MOSFET. Any enhancements due to just volume inversion effects were not clearly 

identified. Drain current enhancements resulting from solely bulk inversion must be 
determined by comparing dual-channel and single-channel MOSFETs at constant VG-VT 

values. In the fallowing section, we investigate the effects of volume inversion in thin-film 

SO1 MQSFETs and the efficacy of dual-gate operation in enhancing their device 

pcrfonnance. 

3.2.1 Numerical Simulations 

In order to detmnine the performance enhancements in dual-channel SO1 devices. 

over 100 different t w ~  dimensional device simulations were performed using the PISCES- 

IIB device simulator [ l q .  The device structures used in the simulations are illustrated as 

insets in Fig 3.3 (a). In addition to field and doping dependent canier molbilities, the effect 

of the perpendicular electric field on carrier mobility was incorporated to account for 

surface mobility degradation associated with increased carrier scattering. The inclusion of' 
the perpendicular elcctric field model is c ~ c i a l  to simulating thin-film SO1 devices where 

there could be substantial sub-surface currents. For the sample simulations described 

herein, interfacial traps were neglected at the two gate oxide-semiconductor interfaces 
10 2 11 2 white fixed interface charges of 10 /cm and 10 Icm were specified at the front and 



back interfaces respective1y.l The gate material was chosen to be degenerately doped n+- 

polysilicon. All devices had a gate length of 1 pm and a gate oxide thickness of ~ ( w ) A  
commensurate with typical 1pm design rules [16]. The single-gated device had a buricd 

oxide thickness of 300nm and for both devices the channel doping was uniform a t  
3 .  7x l0~~1crn  wlth a silicon film thickness of 0. lpm For the assumed film thickness, this 

was the largest value of the film doping concentration that yielded a fully-depleted device at 

threshold. 

The output drain characteristics of the SG and DG MOSFETs were simulated for a 
constant (VG-VT) to exclude extraneous enhancements related to the lower threshold 

voltage of the DG MOSFET. The threshold voltage was determined by I~nearly 
extrapolating the linear region of the ID-VG curve to zero drain current. The threshold 

voltage of the SG MOSFET is 0.4V and that of the DG MOSFET is O.13V. The output 

characteristics of the SG and DG MOSFETs are shown in figure 3.2. The drain current 

characteristics of the DG MOSFET were seen to be consistently greater than that of the SG 

MOSFET. Figure 3.3 (a) illustrates the output characteristics of the two devices under 

strong inversion conditions at VG-VT=~.~V and figure 3.3 (b) depicts the transconductance 

of the DG and SG MOSFET. As illustrated in Fig. 3.3 (a), the saturation drain current of 

the DG MOSFET was observed to be about twice that of the SG MOSFET. This factor of 

two increase is expected due to the existence of two surface channels inside. the DG 

MOSFET. A non-trivial performance enhancement must be measured by the increment 

over this base 'factor of 2' increase. Unfortunately, only a 510% incremental increasc 

was observed in the drain current. Similarly, the transconductance of the DG MOSFET 

shows about a 10% increase over twice the value of the SG MOSFET only in the weak 

inversion region around the threshold voltage. Once the device reaches strong inversion , 

the enhancement in the transconductance decreases. 

'Although a symmetric device structure was used in the simulations, the different values of 
the fixed charge assumed at the front and the back interfaces resulted in a small asymmetry 
in the computed carrier distributions. Similar results were obtained when the fixed charge 
density at the two interfaces were neglected in the simulations. 
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Figurc 3.2 Output characteristics for (a) a single gated (SG) MOSFET and (b) a dual- 
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Figure 3.3 (a) Output drain characteristics of the SG and DG MOSFETs at VG- 
VT=Z.~V. The simulated MOSFET structures are shown as insets in the 
figure (b) transconductance variation for DG and SG MOSFETs at 
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As noted in reference [14], the inversion layer is more or less evenly distr~butcd 

across the silicon film at threshold. For surface potential increments beyond threshold, the 

inversion electrons are added to the surface while the bulk inversion density does nut 

increase significantly. The surface inversion layer effectively shields the bulk inversion 

charges under large gate biases, causing them to be more or less pinned to their values at 

the onset of inversion. Consequently, only a very small increase in current was observed 

due to the larger mobilities of the bulk electrons. The integrated carrier concentration- 

mobility (k-n integral) at the source of the DG MOSFET is plotted in Fig. 3.4. The reglon 

of slowly varying k-n across the bulk of the SO1 film is indicative of the relatively 

negligible contribution of the bulk inversion electrons to the k-n integd and hence to the 

drain current. A shiup slope in this region would be indicative of a significant current 
contribution in the bulk. At a constant VG-VT the total-film p-n integral in the DG 

MOSFET is almost exactly twice that in the SG-MOSFET, consistent with the two-times 

current difference. Thus, unless the surface mobility is significantly lower than the 

mobility in the bulk or the bulk carrier concentration is comparable to the concentration at 

the surface, volume inversion is not expected to cause a significant enhancement in the 

output drain current 

a h * O O  0.02 0.04 0.06 0.08 0 .  1 
Distance across the channel (pm) 

Figure 3.4 Integrated mobility-electron density product (Jpn dx ) as a function of 
position in the SO1 film 



3.2.2 Analytical Formulation 

In addition to the PISCES simulations, one dimensional equilibrium electrostatic 
computations were carried out by solving Poisson's equation as applied to a fully dcplctcd 

SO1 film. Poisson's equation is written as, 

In a bulk MOSFET, the fieldand thecharge densityare zero, deep in the silicon film. I t  is 
therefore convenient to use this as the reference point. However in a dual-gated MOSFET 

there is no region of the semiconductor with zero charge density. The qualitative potenrlal 

distribution under dual-gate operation in a n-channel MOSFET is shown in figure 3.5. 

Figure 3.5 Energy band diagram for a symmetric dual-gated MOSFET with both 
surfaces under inversion 



In this mode of operation the surface potentials at the front and back interfaces, +SF and 

+SB respectively, are both greater than zero. Moreover, there always exists a point (do in 

the figure) at which the electric field is zero. This point is chosen as the reference for the 

potential. 

Introducing the normalized potentials, 

and by definition, ND - N, - ni[e -UP - e u p ~  (3) 
where UF is the fermi potential. To account for the full-depletion of the film, we also 

define U, such that, 

where &denotes the position of the fermi level. Uo = UF only in the tsi + limit. Then 

by virtue of the choice of the reference point, U(&) = 0. 

In similar fashion n-nie  IU(.)-U,I 

Poisson's equation can then be written as, 

Therefore, 



where L, - q2ni 
I the int rinsic Debye length 

K, E, kT 

Integrating eqn. (9) in the standard manner, 

Since at x = do, E = -dUldx = 0 and U(x) = 0, 

kT dU 
E(x) - - - - 9 

kT F(U,UwUF) 
'SF - for O<x<do 

4 dx 4 L D 

KT dU 
I - - -  

F(U, UwUF)  - osB- for d 0 < x < t a i  
q dx 4 L D 

where F(U, U ,  u,) - [eUo (e-' - ~ ) + e ~ v ~ + e - ~ o ( e ~  - I ) - ~ - U P U T  

Now, 

Separating variables in the above equation and integrating from x=O to x=do and x=do to 

X=tsi respechvely, 



Therefore, by combining the equations (14) we get, 

since OSF = oSB = oS under dual-gate operation. Given the surface pc~tentials USF and 

U s s ,  equation (15) determines the parameter Uo. Once Uo is determined, the potential 

profile and the electron and hole distributions can be easily obtained using, 

USP du '  x 
= oS - O s x s d ,  

U L D 

U¶ dU' fd - X  
and - Os - d p s x s  tli J u F(u',U0,U,) LD 

From Gauss' Law, the terminal relationships can then be written as, 

Under symmetric conditions, do = t,,12 and the above equations simplify immensely. 

Using the above analytical formulation it was found that, for .a given SO1 film 

thickness, the inversion charge density inside the film became independent of doping when 

the doping concentration was reduced below a certain critical value. Moreover, the cited 

limiting case corresponded to the maximum volume inversion. Based on the foregoing 

observations, the maximum bulk inversion charge density for a given silicnn film thickness 

was obtained by simply dropping the bulk terms in the Poisson formulation. Fig. 3.6 

shows the limiting- electron distribution in the SO1 film of a symmetrical dual-channel 
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Figure 3.6 Limited-case plot of the electron density distribution in the chamel for 
different SO1 film thicknesses 
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Figure 3.7 Maximum ratio of the electron density in the middle of the channel (bulk) 
to that at surface. The surface potential in all cases is the same 



MOSFET for a select number of film thicknesses. The surface electroln concentration is 

fixed at the band-edge value in all cases; i.e EC is assumed equal to &at the semiconductor 

surface. The ratio of the electron concentration in the bulk to the electron concentration at 

the surface is plotted as a function of film thickness in figure 3.7. 

Examining Figs. 3.6 and 3.7 note that, for a film thickness of' 100081, the bulk 

electron concentration is roughly three orders of magnitude lower than th~e surface electron 

concentration. Since the surface mobility is the same order of magnitude as the bulk 

mobility, the bulk electrons are expected to make a negligible contribution to the p-n 

integral. Effectively, the drain current flows almost exclusively in the: surface channels 

which extend about 100A into the film on either side. For the effects of volume inversion 

to be significant, the carrier concentration profile in the semiconducting film must be more 

or less uniform. With reference to Fig. 3.7, this would require very thin films (5 200A) 

which are extremely difficult to fabricate. [17]. 

Contrary to previous assertions, it was concluded that the dual-channel SO1 

MOSFET would provide only a small incremental (> 2X) current enhancement over the 
single-channel SO1 MOSFET when compared at equal VG-VT values. This conclusion in 

itself does not detract from the potential use of dual-gated SO1 MOSFETs in CMOS VLSI 

circuits. The presence of an independently controllable second gate gives circuit designers 

a good measure of flexibility in circuit design. Whereas, the use of a single gated 

MOSFET constrains all devices to operate at the same threshold voltage, the use of a dual- 

gated transistor allows the devices to operate at different threshold voltagt:~. 

3.2.3 Quantum Mechanical Analysis 

The analytical results in the previous section were applied to films that were 200 81 
thick. At these dimensions there might be concern as to whether quantuim-effects become 

important or not. To make sure quantum-effects did not change carrier distributions 

significantly, 1-D Quantum-mechanical computations were performed for both the 1000A 

and the 20081 filins. The conduction band profile was provided from the imalytical solution 

and hardwall boundary conditions were applied at the two ends to account for the 

confinement by the oxide interfaces. The computations did not incorpora1:e a self-consistent 

Poisson solver, but provided fairly accurate first order results [18,19]. The forthcoming 



sketch of the quantum-mechanical computations do not fall into the author's expertise and 

he acknowledges the help and support of R. Lake who nn  these simulations. 

The bare and essential outlines of rhe computations are sketched below. The demls 

are provided in references [18,19]. Since the problem essentially involves an equilibrium 

solution, the computations start with the finite difference solution of the equilibrium 

Green's function definition of Schrodinger's equation, 

V (3 includes the electrostatic potential and any conduction band discontinuities. 

t for this problem was chosen to be 0.5 ps. 

h/2T represents the random potential due to the impurities and phonons. 

m* was chosen to be the density of states effective mass given by 1.182 m,. However, for 

calculating energy levels and wave-functions, the conductivity effective mass should be 

used since this is the dynamic part of the solution. Then once the energy levels and wave- 

functions are computed, the electron density should be calculated using the density of states 

effective mass. Unfortunately, the program was only set up to use a single effective mass 

m *. 

To determine the electron density, the following basic equations were used, 

This defines the local position dependent density of states. The usual definition of the 

density of states is then given by the integral, 

D(E) - SdF D( F. E) - B(E - Em) - sdEr  D( E') 6( E - Er) (20) 
m 

P2 Let H, - -7 + V(3. Expanding G(?,-i') in eigenstates of H,, 
2m 

The density of states is then defined as. 



1 
The quantity - 5% is a Lorentzian of full width at half imaximum equal to 

(E-E,)' + (KJ' 
. In the limit % - 0, the Lorentzian - 6(E-E~) .  In this limit eqn. (22) reduces to 

eqn. (19). The finite value of gives a finite width to the energy states of the system. 

The program calculates G(F,Yt, E) from eqn. (1 8). D(F, E) from eqn. (:22), then weights 

D( ?, E) by f(E) and integrates over E to get n (7). 

The results of the computation are shown in figure 3.8. The quantum-mechanical 

simulations were carried out for both the 100081 and the 20081 films. In ithe 100081 film the 

1-D density of states No(z;E) follows the conduction band profile. All the available states 

are determined by the triangle potential wells at either surface and no bound states due to 

the 'particle in a box' type confining potential is found. This is made more clear in figure 

3.9 where the shadow plots of the calculated strictly 1D density of slates (No(z;E) are 

plotted, with the conduction band profile superposed. The dark regions iue regions of high 

density of states. The contribution to the density of states from the bansverse energies 

have been ignored in the plot due to clarity. In the 20081 case, a significant contribution is 

seen to arise from the 'particle in a box' confinement as evidenced by the non-zero DOS 

distributions along the middle of the channel. However, the significant energy levels are 

still determined by the states fixed at the two surfaces by the triangu1a.r potential. Once 

again the shadow plot of figure 3.9 (b) confirm that the dominant energy states occur at the 

two surfaces.   his proves that while there is a quantum effect in the thm 20081 films, the 

electron density distribution is not affected by them. Finally, figure 3.10 that compares the 

electron density distributions between the quantum mechanical picture and the analytical 

picture prove the accuracy of the analyt~c computations. 

- .......- ~ -- I-. 



Figure 3.8 Three-dimensional plots of the strictly 1-D N (z;E) computed using the 
quantum-mechanical approach for (a) a IOOO! film and (b) a 200). film 



Figure 3.9 Shadow plots of the calculated, strictly 1D density of states N,(z;E) with the 
conduction band superposed for (a) a 1000A film and (b) a 2008, film. Dark 
regions are regions of high density of states 
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Figure 3.10 Comparison of the electron density distnbutions obtained from the analytical 
formulation and from the quantum formulation for a 200A thick film 

3.2.4 A Final Note on Current Enhancements 

In dealing with drain current enhancements, it is very important to clearly define the 

term 'enhancement'. In the above sections, the enhancement has been defined as the ratio 

of the current in the dual-channel device to twice the current in the single channel device 

where the drain current is calculated under strong inversion ( V G - V T = ~ . ~ V )  and in  

saturation (VD=~.OV). This definition of enhancement is used because this is the 'useful' 

enhancement in output current. Extreme care must be taken in comparing the output 

currents for single and dual-gate devices especially for short channel lengths. If the device 

design is such that the single-gated devices show significant short-channel effects such as 

channel length modulation, then the compared enhancements depend on the drain and gate 

voltages at which-the currents are measured. 

At the lower gate biases, the single channel devices suffer from severe channel 

length modulation. This is shown by the slope in the output characteristics for the single 

channel devices shown in tig.3.11 (a). The dual-channel devices are immune to channel 
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Figure 3.11 Output characteristics for a single-gated device and a dual-gated device for 
(a) VG-V+.~V and (b) VG-V+.6V. In fig. (a) the single-gated device 
shows evidence of channel length modulation 
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Figure 3.12 Enhancement in the drain current of dual-gated devices over single-gated 
devices as a function of gate voltage for different drain voltages 

length modulation due to the stronger coupling between the gate and the channel. Thus at 

the low gate biases the device (whose gate length is 1.Opm) shows no enhancement. In  

fact the DG device exhibits a lower current than SGx2 in the figure. At the larger gate 

biases, the channel length modulation is reduced due to the stronger coupling between the 

gate and the channel (figure 3.1 1 (b)) and the enhancement consequently increases. This 

dependence of the enhancement on the gate bias is shown in figure 3.12. I f  the 

enhancement were calculated at a lower drain voltage (Vd=O.OSV), then the channel length 

modulation effect is not seen. The enhancement defined at this lower drain voltage is also 

shown in figure 3.12. Again the maximum enhancement is about 10%. 

In order to confirm the channel length modulation effect, the same device structure 

but with a gate length of 4.Opm was used in the simulations. The channel length 

modulation effects disappeared as expected and the enhancement was more or less 

independent of the drain voltage at which they were calculated. The output charactenst~cs 

of the SG and ffi MOSFETs with Zr4.0pm under both weak and strong inversion is 
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Figure 3.13 Output characteristics for a long channel (4 pm) single-gated device and 
dual-gated device for (a) VG-VT=O.~V and (b) VG-V+.~V. No channel 
length modulation is observed even for small gate voltages 



shown in figure 3.13. The flat saturation regions for both the DG and the SG devices in 

both the curves confirms the absence of short-channel effects. The enhancement in current 

is also very similar. 

Thus in conclusion due to severe short channel effects encountered in the SG 

MOSFET, the enhancement in the drain current of the DG MOSFET is dampened at the 

lower gate voltages and the enhancement approaches a maximum value at V G - V , I . = ~ . ~ V .  

The analyses and the conclusions in the previous sections have therefore been restr~cted to 

the strong inversion region of operation. 

3.3 Short Channel Immunity in Dual-Gated SO1 MOSFl3s 

In this section, the advantages of dual-gated thin-film SO1 MOSFETs, are described 

with particular emphasis placed on its short-channel immunity. Short channel effects in n- 

channel silicon-on-insulator (SOI) MOSFETs with P+ polysilicon gates are analyzed using 

two-dimensional device simulations. The analyses suggest that dual-gated MOSFETs with 

P+ plysilicon gates are more immune to short channel effects than conventional single- 

gated devices. Digressing for a moment, the use of P+-polysilicon gates allows the 

threshold voltage of conventional single-gated Silicon-on-Insulator (SOI) MOS Field Effect 

Transistors to be fixed by 'work function engineering' rather than by intrinsic device 

parameters such as channel doping and SO1 film thickness. Consequently, the channel 

doping in these devices can be extremely low which results in superior gains and higher 

channel mobilities. However, simultaneously the devices demonstrate severe short channel 

effects such as drain-induced-banier-lowering (DIBL) and premature punchthrough. Dual- 

gated MOSFETs with P+-plysilicon gates control the short-channel effects while 

simultaneously reaping the benefits of low channel doping concentrations. In addition, the 

dual-gated MOSFET could significantly increase the design window options (in so far as 

the choice of film thickness is concerned) available so that the device could be designed to 

counter both the large drain fields (which lead to hot-electron effects and parasitic bipolar 

action) as well as short channel effects such as punch-through and DIBL. Mahli et a1 [20] 

and Davis et a1 I211 have extensively studied the applications of P-polysilicon gates i n  

thin-film SO1 technology. Aoki et al [22] have also investigated the design considerations 

for thin-film fully-depleted devices and provided useful guidelines for the theoretically 

allowable film thickness, channel doping, and gate work function. It was concluded that 



P+-polysilicon gates provide a larger design window than do N+-poly gates for thin-film 

SO1 device applications. In addition, Pt-gated devices provide higher gain and improved 

breakdown capabilities over similar devices with N+-gates [2 I.]. 

The choice of gate material affects the device performance of thin-film SO1 

MOSFETs. N+-polysilicon gates are the most commonly used gate material in CMOS 

designs for both n-channel and p-channel SO1 MOSFETs. However, in N+-ply gated 

thin-fil m full y-depleted n-channel SO1 MOSFETs, the threshold voltage is a strong 

function of both the channel doping and the SO1 film thickness. As the film thickness is 

reduced the threshold voltage decreases till it finally achieves a negative value 

commensurate with normally-on operation which is obviously undesirable from the point 

of view of static power dissipation. The use of P+-gated buried n-channel devices 

overcomes this drawback. Pt-polysilicon gates allow the threshold voltage to be fixed by 

'work function engineering' rather than by the intrinsic device parameters such as channel 

thickness or doping. Thus, the threshold voltage of devices with P+-ply gates remain 

approximately independent of the channel doping or thickness for a range of values of the 

two parameters. The threshold voltage of n-channel SO1 MOSFETs with both n+- 

plysilicon and p+-plysilicon gates are plotted in figure 3.14 as a function of doping 

concentration and silicon film thickness. These values were obtained for long-channel 

devices from the analytical formulation detailed in Section 3.2.2. The threshold voltage of 

the n+-gated device shows a strong dependence on the channel doping and the SO1 film 

thickness. For normall y-off operation the practical device threshold voltage must be in the 

range from 0.5-0.7 V. With reference to the figure, n-channel thin-film SO1 MOSFETs 

with n+-gates would require extremely high channel doping concentrations in the order of 

1017Icm3 to achieve threshold voltages in the vicinity 0.5V. The heavy doping 

concentration affects several device characteristics. Specifically, the vertical electric field 

increases and degrades mobility due to increased surface scattering. Besides, the low field 

mobility is also drastically reduced by impurity scattering. The low field mobility affects 

both the transconductance and the output drive current capability of the dlevice. In addition 

the gain of the device is also reduced. Moreover, the process variation tolerance is 

extremely poor and small variations in  the channel doping profile or SlOI film thickness 

could cause a large variation in  the threshold voltage. For a p+-gated n-channel MOSFET, 
the threshold voltage shows little or no variation with channel thickness or channel doping 

for doping concentrations in the range from 1 0 ~ ~ - 1 0 ~ ~ / c r n s ~ .  The threshold voltage is 

pinned at around 0.8-0.9V for channel thicknesses around lOOnm and channel doping 
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Figure 3.14 Threshold voltages In (a) N+-polysilicon gated and (b) p+-polysilicon 
gated n-channel SO1 MOSFETs, as a function of channel thickness and 
channel doping 



concentrations from 1 x 1 013-5x 1015/cm$. Thus, normall y-off operatior1 is easily achieved 

for very low doping concentrations which results in increased effective channel mobilities 

and consequently improved device gain and transconductance. Also, the process variation 

tolerance is considerably better. 

The threshold voltage of p+-gated n-channel MOSFETs, which is fixed at around 

0.8V as seen above, is higher than the optimum 0.5V and has been considered a major 

'drawback' of the above device [23]. The higher the threshold vollage the lower the 

saturation current capability of the device. Therefore, it is advantageous to operate the 

device at as low a threshold voltage as possible without suffering from excessive off-state 

leakage. In fig. 3.15 we plot the simulated output drain characteristics of the single-gated 

thin-film n-channel MOSFET with n+ and p+ polysilicon gates. 'Two dimensional 

simulations were canied out over a range of bias conditions and structural dimensions 

using the PISCES-IIB device simulator. In addition to field and doping: dependent carrier 

mobilities, the effect of the perpendicular electric field on camer mobi1it:y was incorporated 

to account for surface mobility degradation associated with increased carrier scattering. 

Variations in structural dimensions included varying the SO1 film thicknesses and the front 

and back oxide thicknesses. The SO1 film doping concentration was also varied in all 

simulations. The results were similar in all cases investigated so long as fair comparisons 

were maintained between n+-gated and p+-gated devices. Only the results from sample 

devices are presented herein. The simulated devices, unless otherwise specified, had a 

drawn gate length of 1 pm and oxide thicknesses (both front and back for the dual-gated 

MOSFET) of 2 9 A .  Interfacial traps were neglected at the two interfacczs. Fixed interface 

charges were specified as 1010/cms3 and 10lllcm$ for the front and back interfaces 

respectively. The single gated devices had a buried oxide thickness of ~~( IoA.  The SO1 film 

thickness was 0. lpm. Abrupt sourceldrain junctions were assumed for all device structures 

simulated. The device with the n+-poly gate has a channel doping of 7'x10161cms3 and a 

threshold voltage of 0.4V (which is slightly lower than the optimally desired value) while 

the p+-ply gated device has a channel doping of l x l 0 ~ ~ / c m s ~  and a threshold voltage of 
0.9V. The drain currents are plotted for the same value of VGS (=5.0\1). I t  is clear that 

although the p+-gated device has twice the threshold voltage of the n+-gated device, the 

output current capabilities of the two devices are more or less identical. In fact, the p+- 

gated device exhibits a higher saturation drain current, due mainly to its larger gain evident 

in fig. 3.15 by its larger slope in the linear region. The larger gain arises from the low 

channel doping in the p+-gated devices which in turn yields higher channel mobilities. 
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Figure 3.15 Comparative output characteristics of n+-pol y single, p+-poly single and 
p+-ply dual gated n-channel SO1 MOSFETs 

Thus the Large threshold voltages of the p+-gated devices cannot entirely be considered a 

disadvantage. In addition, the higher VT should yield better noise margins for the device 

and lower off-state leakage currents. 

A second major disadvantage with the use of p+-polysilicon gates noted i n  

references [21,23] is the poor off-state characteristics of the device. The poor off-state 

characteristics result from the weak gate control of the channel region by p+-gates. The off- 

state characteristics are controlled by the fringing fields at the back interface. The fnnging 

field [24] depends on the channel doping at the back interface, the thickness of the SO1 

film, the charge state of the back interface and the thickness of the buried oxide layel-. 

Increasing the channel doping, accumulating the back interface and reducing the buried 

oxide thickness all contribute to increasing the value of the fringing field. In [21,23] the 

first two methods of increasing the fringing fields were provided as possible soiutions to 



improving the off-state characteristics of the SO1 devices with p+-poly gates. Specifically, 

the two solutions offered were (i) to introduce a heavily doped channel region at the back 

gate and (ii) to accumulate the back interface with an appropriate substrate bias. Both of 

these proposed techniques act to inhibit the penetration of the drain field in the channel 

region at the back interface and increase the front gate control of the channel region. 

However, neither of these solutions are practically realizable. Due to the ultra-thin nature of 

the SO1 film (typically lOOnm or less) it is extremely difficult to control the channel implant 

so as to obtain an extremely sharp profile at the back interface, while rr~aintaining a very 

low uniform doping concentration in the rest of the channel region. Again, accumulating 

the back interface using a substrate bias would require large biases for the thick back oxides 

encountered (voltage values greater than 5 volts are typically unavailable on CMOS chips). 

Moreover, the substrate bias would serve to deplete the back interfaces in complimentary p- 

channel devices unless additional process steps were undertaken to isolate the substrates for 

the individual devices. 

1500 2000 2500 3000 
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Figure 3.16 Variation of the punchthrough voltage for thick and thin back oxide 
thicknesses as a function of the SO1 film thickness for n-chsmnel SO1 
MOSFETs with neutral gates 



Another scheme to increase the fringing fields at the back interface and never before 

exploited explicitly for this reason is to reduce the backlburied oxide thickness. In fig. 3.16 

we plot the variation of the punch-through voltage of p+-poly gated n-channel SO1 devices 

as a funct~on of channel thickness for two different back oxide thicknesses. I t  can be seen 

that a reduction in the buried oxide thlckrless from 3500A to 750A causes a large Increase 

in the punch-through voltage. In the above calculat~ons the punch-through voltage has been 

defined as the drain voltage (with VGS=O.OV) at which the drain current reaches InAIprn. 

However, decreasing the back oxide thickness uniformly across the wafer (as was 

proposed in reference [25]) would significantly increase the sourceldrain to substrate 

capacitance of the devices and result in poor speed performances. Moreover, it was seen in 

Chapter 2 that the inverse sub-threshold slope of the SO1 MOSFET increased as the buried 

oxide was made thinner. Thus thinning the buried oxide and using i t  as a parameter to 

control short-channel effects in conventional single-gated MOSFETs would definitely be 

detrimental to the main advantages offered by the SO1 devices, namely, lower parasitic 

junction capacitance and improved sub-threshold slopes. Taking this argument a step 

further, if the back oxide thickness could indeed be used as a parameter to control short- 

channel effects in p+-gated thin-film SO1 MOSFETs, the buried oxide must be selectively 

thinned down in the channel region alone as shown in fig. 3.17(a). This would take care 

of the problem of increased parasitic sourceldrain capacitance. Operating the device under 

dual-gate control would provide excellent gate control over the channel region and thereby 

maintain extremely sharp subthreshold slopes. A device structure that achieves the above 

constraints is the dual-gated device. The device structure is schematically illustrated in fig. 

3.17(b). The dual-gated device lends the designer the option of either keeping the back gate 

grounded or using the device under dual-gate control. Dual-gate operation would be the 

preferred mode of operation. The device structure of figure 3.17(a) was in fact proposed in 

reference [26] as the ultimate scalable MOSFET. The thinner oxide in the channel region 

and the p+-substrate are proposed to alleviate problems related to punch through in the near 

intrinsic channel. The p+-polysilicon gate replaces the p+-substrate in the dual-gated device 

structure. The need to self-align the top and bottom gates is apparent in figures 3.17(a) and 

(b). Any overlap of the S/D regions and the bottom gate only adds to parasitic capacitance 

which would ultimately slow down the device performance. In the following section a 

process to form a fully self-aligned dual-gated structure will be introduced for the first time. 

Like any self-aligned scheme, the proposed Process aims at reducing device parasitics 

while maintaining a hgh device performance. 
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Figure 3.17 (a) SO1 MOSFET structure with thin back-oxide in the channel region and 
thick back-oxide in the extrinsic region (b) Dual-Gated SO1 MOSFET with 
polysilicon gates. This is structurally similar to (a) above 



In fig. 3.15 we have also plotted the output characteristics of the dual-gated device 

under dual-gate operation. The dual-gated device again has a channel doping of 

1x 10~~Jcms3 and a threshold voltage of 0.9V 2. The current vector plots illustrating current 

flow in the dual-gated device and the single gated device are depicted in figure 3.18. The 

figure indicates the presence of a large sub-surface current due to volume inversion in the 

dual-gated device. The single gated device however shows mainly surface conduction. In 

spite of the additional bulk current flowing in the dual-channel device, a two times 

increment in current is observed over the single gated device corresponding to the two 

surface channels present under dual-gate operation, commensurate with the results 

presented in section 3.2. The two-times current increase is however not the prime 

motivating factor dictating the use of dual-gated devices. The impact of the dual-gate 

device is felt in terms of its short-channel immunity. Figure 3.19 shows the potential 

contours for p+-ply single-gated and dual-gated devices when VDS=5.0V and VGS=O.OV. 

The figure indicates a significankly smaller excursion of the drain field in the channel region 

of the dual-gated MOSFET. The lesser penetration by the drain field results in better 

punch-through capabilities and lower off-state leakage. The DIBL immunity offered by the 

dual-gated MOSFET is clearly illustrated in fig. 3.20, which shows the conduction band 

profile for p+-gated single-gated (SG) and dual-gated (DG) MOSFETs for both low and 

high drain biases. The barrier reduction at the source by the drain field is seen to be lower 

in the DG device than in the SG device. Also shown as insets in  the figure are the 

degradation in the sub-threshold slopes under high drain biases for the SG and DG 

devices. These curves further confirm the DIBL immunity offered by the DG MOSFET. 

Fig. 3.21 shows the threshold voltage roll-off for the SG and DG devices as a function of 

gate length. The threshold voltage roll-off (which is a measure of the short-channel effect) 

is lower for the DG MOSFET than for the SG device. Only at a gate length of 0.4 pm 

does the DG MOSFET begin to suffer from any short-channel effects. Thinner (front and 

back) gate oxides must be used at these channel lengths to ensure good device 

characteristics. 

*Since the threshold voltage of p+-poly devices is fixed by the gate work function rather 
than the intrinsic device parameters, the threshold voltage of the p+-poly dual-gate devices 
is the same as that of the single gate devices. When n+-ply gates are used, VT of the 
dual-gated devices are typically a lot smaller than the VT of corresponding single-gated 
devices and they consequently demand a higher channel doping concentration to maintain 
normally-off operation and minimize off-slate leakage currents. 
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Figure 3.18 Current vector contours for (a) single-gated and (b) dual-gated nchannel 

SO1 MOSFETs with p+-pol ysilicon gates 
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Figure 3.19 PISCES simulated equipotential contours in increments of 0.1V at VDS=SV 
and VGS=OV for (a) a single gated NMOSFET and (b) a dual-gated 
NMOSFET. The gate material in both cases is P+-pol ysilicon and the 
channel doping is lx1015tcrn3 
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Figure 3.20 PISCES simulated conduction band profile from Source to Drain for (a) a 
single-gated NMOSFET and (b) a dual-gated NMOSFET. The band 
bending is plotted along the back interface for the single gated MOSFET and 
along the center of the SO1 film for the dual-gated MOSFET. The sub- 
threshold characteristics under low ( V M .  1V) and high (VD=S.OV) are 
shown as insets 
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Figure 3.21 Simulated threshold voltage roll-off versus channel length for a single- 
gated and dual-gated MOSFET 
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Figure 3.22 Subthreshold characteristics for a single-gated NMOS device as a function 
of the channel length. The gate material is n+-polysilicon 
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Figure 3.23 Subthreshold characteristics for a single-gated NMOS device as a function 
of the channel length. The gate material is p+-polysilicon 
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Figure 3.24 Subthreshold characteristics for a dual-gated NMOS device as a function 
of the channel length. The gate material is p+-pdysilicon 



In Chapter 2, the effect of decreasing channel lengths on the sub-threshold characteristics 

was discussed. As the channel length decreases, the sub-threshold slope gradually 

degmdes due to back channel leakage. At short channel lengths, thin-lilm single-gated SO1 

MOSFETs lose their advantage (superior sub-threshold slopes) over bulk MOSFETs. Th~s 

is made clear in figure 3.22 and 3.23, which illustrates the degrading sub-threshold 

characteris tics for both n+-pol ysilicon and p+-pol ysilicon gated n-channel SO1 MOSFETs. 

Finally, in figure 3.24 the improved sub-threshold behavior in dual-gated devices is 

depicted. 

In summary, dual-gated devices with p+-ply gates show improved short-channel 

immunity over corresponding SG devices while simultaneously maintaining the advantages 

of low channel doping, high gain and large process tolerances. In addition, the dual-gated 

device offers the option of operating either under single or dual gate control. 

The increased fringing fields (obvious from fig. 3.19(b)) which lends the dual- 

gated MOSFET its short-channel immunity does not augur well with the device's hot- 

electron immunity. In fact, as shown in reference [26], the multiplication factor increases 

with increasing fringing fields. Therefore, it is imperative that lightly-doped-drain (LDD) 

regions be introduced to the reduce the propensity for hot-electron effects. Lightly doped 

source (LDS) regions should also be incorporated to minimize the likelihood of parasitic 

bipolar effects. Another effective scheme to reduce the field strength and its related hot- 

electron effects is to incorporate elevated sourceldrain structures. (A process flow 

demonstrating the fabrication of a elevated sourceldrain structure in a dual-gated SO1 

MOSFET is shown in the next section). The electric field in the channel of SO1 M O S m s  

decreases as the channel thickness increases. Thus in addition to drain engineering, the 

channel thickness could also be increased to reduce the channel fields. The maximum 

allowable channel thickness would again be determined by DIBL and punchthrough 

requirements. The short-channel immunity offered by the two gates allows the channel 

thickness of DG MOSFETs to be doubled without compromising device performance. 

Thus, the dual gated device provides a larger design window in terms of allowing both a 

range of channel doping concentrations and a range of channel thicknesses. 

Lastly, in fig. 3.25 we plot the avalanche generation rate for the dual-gated device. 

The maximum avalanche generation rate occurs in the middle of the channel away from 

either the front or back interfaces. Hot-electron generation and its consequent injection into 

the front or back oxide interfaces causes both threshold voltage shifts and increased sub- 
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Figure 3.25 PISCES simulated avalanche generation rate contours for a dual-gated 
n-channel MOS field effect transistor 



threshold leakage. By confining the hot-electron generation away from the interfaces these 

effects would be minimized. 

Before concluding this section it is important to reiterate that these simulations were 

made on a number of device structures and the trends established above were observed in 

all cases. Further optimizations to the device structures would change individual device 
parameters such as saturation current density, the onset of threshold voltage rcil -off or the 

amount of sub-threshold degradation. But the superior short-channel immunity in the dual- 
gated device will be maintained under all cases simulated. 

3.4 Process Design for Fully Self-Aligned Dual-Gated SO1 MOSFETs 

In this section we propose a novel process to fabricate a fully self-aligned dual- 

gated SO1 MOSFET incorporating elevated sowddrain regions. The top and bottom gates 

are self-aligned to attain minimum parasitic capacitances. The process flow is detailed in 
figs. 3.26 -3.28. In the first step , a first SO1 region is epitaxial1 y grown over a bottom gate 

either using epitaxial lateral overgrowth (ELO) [27l or confined lateral selective epitaxial 

growth (CLSEG) [28]. The length of the bottom gate is immaterial as long as it is larger 

than the actual gate dimension. The detailed process cross-sections are presented in figure 

3.26 and 3.27. The individual process steps are clearly labeled in the figure. The top gate 

material is then deposited, defined and dry-etched down to the top gate oxide. After oxide 

spacers are formed, etching is continued vertically through the SO1 layer and down to the 

bottom gate oxide to form the stack shown in fig. 3.28(5). Once again the individual 
process steps are described in detail in the figure. Nitride spacers are then formed to inhibit 
oxidation at the exposed SO1 film sidewalls and the bottom gate is defined through 

continued dry-etching (fig. 3.28(7)). The bottom gate is oxidized so that it is completely 

isolated. The nitride spacers are then removed from the stack to expose the sidewalls of the 

SO1 film. These sidewalls are now used as seed holes for selective epitaxial silicon 

deposition to form the source and drain regions. In-situ doping could be used to form the 

lightly doped source and drain regions. The n+- region is then implanted from the top to 

form the elevated SID regions. The advantage of such a structure is the minimized 

sourceldrain resistance even for ultra-thin channel regions. Both the top and bottom gates 

are defined with a single lithography and are thus self-aligned. This reduces all parasitic 

overlap capacitance between either gate and the sourceJdrain regions. The completed 



Process Flow for thc Fully-self-aligned Dual-gated SO1 MOSiFET 

1. Front end processing (ELO) 

substrate substrate 

1, Field Oxidation 4. Oxidize bottom gate - e:ither oxide or 
oxy-ni tride 

substrate substrate 

2, Pattern Gate1 mask, etch oxide 5. Deposit and pattern planarization 
trench etch stops 

3. Deposit Gate1 and planarize to fill 
trench 

substrate I 
6. Open seed holes 

7. Grow epitaxial silicon and planarize to 
the etch stop 

Figure 3.26 Self-aligned dual-gated SO1 MOSFET process depicting front-end 
processing for EL0 



2. Front end processing (CLSEG) 

1. Field Oxidation 5. Open seed holes 

substrate I substmte 
2. Pattern Gate1 mask, etch oxide I 1 

trench 6. Deposit a: Si 

substrate 
3. Deposit Gate 1 and planarize to fill 

trench 7. Pattern a:Si and oxidize 

substrate I substrate 
4. Oxidize bottom gate - either oxide or 

I 
8. Open Via-holes and etch the poly from 

oxy-ni tride the cavity 

substrate 

9. Grow CLSEG 

Figure 3.27 Self-aligned dual-gated SO1 MOSFET process depicting front-end 
processing for CLSEG 



Back End Processing (common to EL0 and CLSEG) 

SO1 film- I 

1.Start with SO1 structure grown by 
either EL0 or CLSffi 

nitride , 
oxide 

top ~ 0 1 ~  ga 

top gate oxide 
2. Oxidize for the top gate oxide 

and then deposit a 
pol yloxidelnitride stack 

3. Using the top gate mask, 
etch through the entire stack 

down to the bare sil.icon 

4. Deposit about lOOOA of LTO 
oxide and RIE to form oxide spacers 

5. Conitnue etching the stack with a 
RIE Etch through the SO1 silicon 
film and stop at the bottom oxide. 

The top nitride acts as an etch mask 
at this stage. 

Figure 3.28 Self-aligned dual-gated SO1 MOSFET process depicting backend 
processing for EL0 & CLSEO 



6. Deposit about 200-300A of nitride and RIE 
to form the nitride spacer on the walls of the 

silicon film. 

7. Continue etching through the bottom 
oxide andthe bottom poly gate 

8. Now oxidize the bottom gate. The 
nitride spacers prevent oxidation on the 

silicon sidewalls. 

9. Remove the nitride and prepare the wafer 
for selective epitaxy. 

10. During epitaxy the n- region can be tailored 
depending on the device design. The n+ region 

can then be implanted from the top. The 
structure is an elevated Source/Drain structure 

and is the only instance of an elecvated S/D 
structure in SO1 material. 

- -- 

Figure 3.28, continued 



device structure is shown in fig. 3.28(10). 

3.5 Conclusions 

The effects of volume inversion in enhancing the properties of' dual-channel 

MOSFETs were investigated using two-dimensional device simulations and one- 

dimensional analytical computations. It was shown that the output characteristics of dual- 

channel devices were not significantly enhanced over those of singlechannel devices when 
the two devices were compared at constant VG-VT. 

The design considerations involved in the fabrication of thin-film SO1 MOSFETs 

were discussed. A new way to control short-channel effects in SO1 MOSBXs by thinning 
the back gate oxide was recognized. Optimum device performance with reduced hor- 

electron-effects and reduced short-channel effects, require the fabrication of moderately thin 

film transistors, with thin back gate oxides. Moreover, the channel doping must be low 

(1 -5x 1016) for enhanced mobility and large transconductances. This precludes the use of 

n+-polysilicon gates which would require very high channel doping concentrations for 

normally off operation. P+ polysilicon could be used as the gate material for n-channel 

MOSFETs. P+ polysilicon exhibits significant advantages as far a s  threshold control, 

breakdown and transconductances are concerned. However, in the off state. p-poly gates 

tend to maintain the interfaces in accumulation and therefore do not exercise sufficient 

control over the gate charge. As a result, p+-poly gated devices are prone to premature 

punchthrough or DIBL effects, especially at the back interface. Thinnirrg the back gate 

oxide again helps in controlling the DIBL and punch-through. But this scheme is 
detrimental to the current drive, sub-threshold slope and the parasitic draidsource to 

substrate capacitance. Simulations indicate that P+-poly gates show improved short 

channel immunity over corresponding single-gated devices while simultaneously 

maintaining the advantages of low channel doping, high gain and large process tolerances. 
In addition, the dual gate device offers the option of operating under either single or dual- 

gate control. 

A novel process sequence for self-aligning the top and bottom gates in a dual-gated 

SO1 MOSFET was presented. The device has significant advantages over existing dual- 
gated SO1 MOSFET technologies. The two gates can be independently biased which is 
essential for flexible design of SO1 VLSI circuits. Furthermore, the top imd bottom gates 



are sel f-aligned. This self-alignment minimizes parasi tics and reduces active area. The 

device is fully scalable and in fact conforms in device structure to the proposed ultimate 
scalable MOSFET. 
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CHAPTER 4 

PROCESS DEVELOPMENT FOR EL0 AND CLSffi 
SO1 MOSFETS 

Dual-gated devices extend device design options over conventional single-gated 

devices. The virtues of dual-gated devices were voiced in Chapter 3. The immunity to 

short channel effects in dual-gated devices comes about because of a more or less one 

dimensional potential distribution across the film. The same one-dimensional potential 

contours can be achieved by using a single-gated SO1 MOSFET fabricated on a 

extremely thin (< 1000A) silicon film. However, in terms of process development and 

technological feasibility, ul tra-thin films are extremely difficult to fabricate. In  

state-of-the-art SIMOX technology for example, high-dose multiple-implants and 

multiple anneals have become standard process steps for achieving high quality buried 

oxides. Thinning the silicon film andlor the buried oxide thickness would require lower 

doses and lower energies, which would degrade the quality of the buried oxide and the 

overlying silicon film. Moreover, as the SO1 films are made thinner, the film thickness 

uniformity conditions become a lot more stringent. From the point of view of device 

performance, the current drive of the individual MOS transistors fabricated on SO1 

material are reduced as the film thickness is decreased, due to severely increascd 

source/drain series resistance. It also becomes extremely difficult to adapt the salicide 

technology (which lowers series resistances in bulk MOSFETs) to such thin films. I t  1s 

therefore clearly advantageous to use a dual-gated device fabricated in thicker SO1 films 

to control short-channel effects, while simultaneously avoiding the deleterious effects of 

ultra-thin films. 

The role played by the buried oxide thickness in dictating the properties of SO1 

MOSFETs were detailed in the previous chapter. In this regard, selective epitaxy 

techniques play a crucial part. Selective epitaxy techniques such as Epitaxial Lateral 

Overgrowth (ELO) and Confined Lateral Selective Epitaxial Growth (CLSEG) can be 



used to form extremely high quality thin-film SO1 regions. The buried oxide design is 

independent of the thickness and material quality of the overlying SO1 region. Therefore, 

if the thickness of the buried oxide were to be changed (to prevent short channel effects, 

for example), it could be easily accomplished using selective epitaxy. :SIMOX on the 

other hand would require an extensive development of new implant prof~iles in terms of 

both the implant energy and implant dose, to achieve the desired buried oxide thickness. 

This change in the SIMOX implant parameters would affect not only the buried insulator 

thickness and quality, but would also affect the quality of the overlyi.ng silicon-on- 

insulator film. The flexibility afforded by the selective epitaxy techniques in this regard 

can be harnessed into the design of novel devices such as the dual-gated SO1 MOS Field 

Effect Transistor. 

A novel process to fabricate a fully self-aligned dual-gated SO1 MOSFET 

utilizing selective epitaxy was presented in Chapter 3. This process can be easily 

modified to yield a variety of related SOI-MOS structures, two of which are shown in 

fig. 4.1. The device in fig. 4.l(a) is exactly similar to a dual-gated structure, with the 

exception of the individually accessible back gate. The thin-oxide uncler the channel 

region is self-aligned to the top gate to minimize the drainlsource-sulbstrate overlap 

capacitance. The purpose of the thin oxide under the channel is of colarse to provide 

adequate short-channel immunity. The device sketched in fig. 4.l(b) is a quasi-SO1 

MOSFET. In this device, the sourceldrain regions are fabricated on SO1 material 

whereas the channel exists in the bulk substrate material. The sourceldnin regions must 

be self-aligned to the channel region to minimize parasitic capacitances. Since the 

channel region is formed in the bulk substrate silicon, unwanted effects i:n thin-film SO1 

transistors such as premature device breakdown and floating body effects are avoided. 

Such a quasi-SO1 design would not only yield high performance MOSFlZTs that can be 

formed in like manner as a conventional MOSFET, but would also yield devices with 

minimum parasitic elements for optimum speed performance. Finally, the process could 

also be used to fabricate quasi-SOI, dual-gated and regular SO1 MOSFEiTs in the same 

process flow, as a majority of the process steps required by the three device structures are 

the same. In this work, the feasibility of using selective epitaxy techniques such as EL0 

and CLSEG to form thin-film fully-depleted dual-gated and single-gated SO1 MOSFETs 

has been investigated. The feasibility study includes fabricating a variety of devices on 
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Figure 4.1 Different SOI-MOS structures that can be fabricated with slight 
modifications to the fully self-aligned dual-gated process 



different starting material' and comparing their dc device parameters. To this end, a 

simplified process flow to fabricate the dual-gated device was pursued. The simplified 

process , while not self-aligned, would yield material similar in quality to that achieved 

by the fully self-aligned process. The only difference between the two processes is the 

additional epitaxy step (that involves growth from a vertical seed hole) in the self-aligned 

process. 

Vertical seeded selective epitaxial growth has been successfully fabricated in 

parallel projects by Siekkinen [l] and Subramanian [2]. Some of these results are 

presented in section 4.1 as satisfactory feasibility indicators. In section 4.2!, the simplified 

process flow is described and the development of some of the key steps in this process are 

detailed. Section 4.3 finally summarizes the important aspects of the chapter. 

4.1 A Structural Study of the Fully Self-Aligned Dual-Gated MOSFET 

The motivation for fabricating dual-gated MOSFETs and the process flow for 

fabricating the self-aligned dual-gated device was presented in Chapter 3. The first step 

in the process involves growth over a recessed polysilicon gate. Growth over the 

recessed gate is similar to growth over a planar oxide surface. This growth is fairly 

routine and consistently yields very good material. SEM cross-sectional micrographs of 

E L 0  and CLSEG grown over a planar oxide surface are illustrated later in this chapter. 

Once the E L 0  andlor CLSEG growth is planarized, the top gate definition over the 

bottom gate is easily accomplished. The most crucial step in the process is the formation 

of silicon nitride sidewall spacers for selective oxidation. Silicon nitride is typically 

deposited by Low Pressure Chemical Vapor Deposition (LPCVD). The capability for the 

LPCVD deposition of silicon nitride was not available at Purdue University and had to be 

developed during the course of this work. Initial depositions were carried out using 

silane (SiH4 ) and ammonia (NH3). Silane was used primarily to avoid the degradation 

of the vacuum pump oil caused by Di-chloro-silane (SiH2C12). However due to 

inappropriate mass transfer effects, all nitride depositions using silane yielded extremely 

'In chapter 5, results from device measurements on substrate bulk silicon, SIMOX, EL0  
and CLSEG will be presented. 



non-uniform nitride layers. The wafers routinely exhibited a 'bulls-eye' effect due to 

varying layer thicknesses in the radial direction. Significantly better results were 

obtained using DCS and the growth uniformity across the 3inch wafer improved to within 

5%. Typical deposition parameters used in this work were - T=800°C, 

Pressure=442mTorr, DCS flow rate=40sccm, NH3 flow rate=160sccm. It is important to 

note that best uniformities for the deposited nitride layers were obtained for depositions 

below SOOmTorr. 

The next step was to detennine a good dry etch profile so as to be able to f.orm a 

sidewall spacer. Fr115 was typically used to etch both oxide and silicon i n  the DRIE 100 

Drytech RlE system. A first attempt at etching Si3N4 was therefore attempted using 

Fr115. The etch rate was extremely low (508ilmin) and the profile was fa:r from vertical. 

SFg, however, yielded an extremely vertical profile and moreover, had an etch rate close 

to 500%i/min. SFg was therefore chosen as the etch gas for all subsequent nitride etches. 

Table 4.1 lists the typical etch rates for the various material in SF6 and Frll5. It is 

Table 4.1 Etch Rates of Silicon, Oxide and Nitride in Frl15 and SF6 

Etch Rate 

350 kmin 

1- 1.5 pnntmin 

90 %i/min 

85 Bilmin 

50 %i/rnin 

Material to be etched 

Silicon 

Oxide 

Silicon Nitride 

Etch Gas 

Fr 115 

SF6 

Fr 115 

SF6 

Fr 115 

SF6 



readily seen that oxide has the slowest etch rate in both gases and is therefore a good 

etch-stop when etching polysilicon or silicon with Fr115 or when etching nitride with 

SF6. In the above process, oxide and polysilicon layers alternate and it consequently 

becomes easy to the control the etch and discriminate between the different layer being 

etched. The nitride spacer formed using SF6 is shown in fig. 4.2(a). 

Finally, in order to mimic the dual-gated structure, a silicon substrate was 

oxidized and alternate layers of poly and oxide were deposited to represent the bottom 

gate, the bottom gate oxide, the SO1 film, the top gate oxide and the top gate, 

respectively. The top gate polysilicon layer was oxidized and finally a 3000A thick 

nitride layer was deposited. The top gate mask pattern was 1ithographicaJly defined and 

the nitride, oxide and top gate polysilicon layers were sequentially etched1 using SF6 and 

Fr115, respectively. Etching was terminated at the top gate oxide. After stripping the 

resist, the poly gate sidewall was oxidized and subsequently etching in Fr115 was 

continued till the bottom gate oxide was reached. Nitride was then deposited and SF6 

was used to form the nitride spacer. The SEM cross-section at this stage is shown in fig. 

4.2(b). Further processing to attain the dual-gated structure would consist of merely 

etching the stack down to the bottom oxide using Fr115, oxidizing the exposed sidewall 

of the bottom gate p l y  and removing the nitride sidewall spacer. Once the nitride is 

removed the exposed SO1 film sidewall would form a vertical seed for elpitaxial growth. 

Both CLSEG and EL0 growth from vertical seeds have been successfully accomplished 

and typical cross-sections of vertical seeded growth are shown in fig. 4.3. Thus, all the 

critical steps in the self-aligned process have been shown to be practicable:. 

4.2 Simplified Process for the Dual-Gated SO1 MOSFET 

A major goal of this work was to fabricate thin-film fully-depleted dual-gated 

MOSFETs using epitaxial lateral overgrowth and confined lateml selective epitaxial 

growth. The structural feasibility study reported in the earlier section antd other projects 

undertaken at Purdue using similar self-alignment principles proved that the proposed 

process would indeed yield the dual-gated device in a self-aligned manner. The main 



Figure 4.2 (a) SEM cross-section of nitride spacers on polysilicon gate sidewalls 
formed with SF6 and (b) SEM cross-section showing feasibility of the 
self-aligned process. The figure shows nitride spacers formed cjn the gate 
stack, which is the essential part of the self-aligned process 



Figure 4.3 Typical cross-sections of vertically seeded epitaxial growth using (a) EL0 
and (b) CLSEG 



issue then was to study the quality of the SO1 film formed during the first epitaxy step 2. 

To this end, a simplified non-self-aligned process was developed. The front end 

processing that involves the formation of the SO1 layer using either epitaxial lateral 

overgrowth(EL0) or confined lateral selective epitaxial growth (CLSEG) was 

schematically illustrated in figs. 3.27(a) and 3.27(b) in the previous chapter. The front 

end process used in the non-self-aligned process is essentially the same as outlined in fig. 

3.27 with the exception that the bottom gate is not recessed. A detailed process 

description of the non-self-aligned process is given below. Process cross-sections for the 

fron t-end and back end process are provided in figs. 4.4(a)-4.4(c). 

After the growth of a 0.2p.m bottom (field) oxide, the bottom gate polysilicon was 

deposited using the LPCVD system. Upon doping the polysilicon layer, the bottom gate 

was defined using MASK#l. Etching the bottom gate was carried out either with a wet 

(HF:HNQ:DI) etch or a dry (Fr115) etch since the length of this gate did not determine 

the gate length of the dual-gated device. The bottom gate oxide was then grown. The 

seed hole was opened using MASK#2 and a wet BHF etch. The wafer is now ready for 

Epitaxial Lateral Overgrowth (ELO). When using Confined Lateral Selective Epitaxial 

Growth (CLSEG), the process continues with a brief oxidation to form a thin (150W) 

oxide over the seed region followed by the cavity amorphous silicon deposition. The 

thickness of the amorphous silicon layer detennines the final thickness of the SO1 layer. 

The a-Si layer is then defined using MASK#3 and a thin 1200A thermal oxide is grown 

over the sacrificial layer. The oxidation step converts the amorphous silicon layer into 

smooth grained polysilicon. A blanket LPCVD nitride is deposited at 8 0 ° C  to a 

thickness of 0.3p.m. Via holes are defined using MASK#4 and the nitride is etched in 

these regions using SF6. The underlying oxide is also removed and the sacrificial layer is 

etched using a ethylenediamine-pyrocatechol-water mixture (EDP) at 90°C. The etch- 

rate is typically 1.5-2.0 pmlmin. Once the polysilicon layer is completely etched away, 

the EDP is thoroughly washed out from inside the cavity. The thin oxide over the seed 

T h e  first epitaxy step forms the channel region of the transistor. The second epitaxy step 
only forms the source/drain regions and could even be made of polysilicon without 
significantly affecting the device properties. 
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region is etched in BHF. An ultra-sonic dip is used to get the BHF into the cavity3. After 

the conventional Piranha clean, both the E L 0  and CLSEG wafers are placed in the 

epitaxial reactor for selective epitaxial growth. Thc top view of as grown E L 0  and 

CLSEG after epi-growth is shown in fig. 4.5. The excess CLSEG growth emerging from 

the via in the CLSEG wafer is removed with chemical mechanical plai~arization and 

subsequently a hot phosphoric etch selectively removes the top cavity nitride layer. The 

E L 0  wafer is processed differently. A thin polysilicon layer is deposited a.nd is oxidized 

to form an etch stop across the wafer. The thickness of the deposited polysilicon and the 

ply-oxide determines the thickness of the etch stop and therefore the thickness of the 

SO1 film. The epitaxially grown silicon is planarized down to the etch st.op. The poly 

oxide is then removed with a BHF dip and an active area mask (this is the same mask that 

defines the cavity layer on the CLSEG wafer) is defined. SF6 is used to etch the excess 

polysilicon from the field and to mesa-isolate the E L 0  islands. At this st.age, the E L 0  

and CLSEG wafers are identical. The top gate oxide is then grown and polysilicon is 

deposited to form the top gate. The polysilicon is patterned using MASK#5 and the 

sourceldrain regions are implanted in a self-aligned manner. After the sourceldrain 

anneal, MASK#6 is defined to etch the contacts and MASK#7 is used to define the metal. 

The SEM cross-section of a finished dual-gated E L 0  MOSFET structure is shown in fig. 

4.6. The details of the individual process steps are discussed below. 

4.2.1 Bottom Gate Deposition and Doping 

There are several key parameters associated with the bottom gate. The first of 

these is associated with the temperature of deposition. When polysilicon ir; deposited at 

the routinely used temperature (580°C-600"C), the grain size of the deposited material is 

large and the surface is consequently extremely rough. There are two reasons to try and 

obtain a smooth surface. Gate oxides grown on the rough poly surface typically have 

very low breakdown fields [3]. Regions with large topographical vat-iations have 

extremely non-uniform local field distributions and field crowding occurs at isolated 

3The ultra-sonic dip at this stage is extremely important. If the ultra-sonic dlip is omitted, 
the seed regions are incompletely etched and this results in poor CLSEG growth. 
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regions causing premature breakdown. Moreover, the EL0 silicon musr. grow over this 

surface and the region above the bottom gate forms the all important ch~annel region of 

the device. The rougher the surface of the bottom oxide, the greater the propensity for 

defect generation in the overlying epitaxial material. In order to obtain a smoother 'as 

deposited' surface, the deposition temperature was dropped to 550°C, so that the 

deposited material consisted of smal.1 grain amorphous silicon. At the low temperatures, 

the deposition was extremely specular with no visible structure even under Nomarski 

contrast microscopy. SEM cross-sectional micrographs of the polysilicon gate material 

are shown in fig. 4.7 for each of the two deposition temperatures. The difference in 

surface roughness is clearly discernible. 

The choice between wet oxidation and dry oxidation to form the bottom gate 

oxide was a second factor related to the bottom plysilicon surface roughness. A dry 

oxidation would require a 1 100°C, 50 min. thermal treatment for approximately a 120081 

thick oxide, whereas wet oxidation would involve a significantly smaller thermal budget 

(1000"C, l0mins.) for about 1500A of oxide growth. Dry oxidation made the plysilicon 

surfaces a lot rougher than the wet oxidation, due to the higher temperature and longer 

times involved. Consequently, wet oxidation was chosen as the preferred mode of 

oxidation (especially since the oxide was thick) although the dry oxide vvould more than 

likely be a better quality oxide. 

The second parameter related to bottom ply-gate deposition is thle gate thickness. 

Initially, the plysilicon gate was deposited to a thickness of 450081, so that upon bottom 

gate oxidation, the EL0 silicon encountered a step height of about 5000.a. It was found 

that a lot of defects were generated in the material when growing over this height. This is 

illustrated in fig. 4.8(a). The triangular shapes observed on the EL0 edges are the edge 

dislocations. The majority of the dislocations are observed on the far edge of the gate. 

Growth from the seed region on the side that does not have the gate step shows a 

perfectly straight growth front with no visible defects even under Nomarski contrast 

microscopy. The edge defects do not propagate to the surface of the grown epitaxial film 

and become visible only after the EL0 has been planarized down to less than a micron 

above the bottom gate surface as shown in the figure. When the polysilicon gate was 

made thinner (as deposited 2500A), such that the total polysilicon thickness is 3000A, the 

overgrowth typically showed no edge defects. A finished device picture in which the 

gate p l y  was thin is shown in fig. 4.8(b). No edge defects were observed in this case. In 

contrast, a similar device fabricated in dislocated material grown over a thicker 



Figure 4.7 SEM cross-section of polysilicon surfaces deposited at (a) W!) "C and (b) 
550 "C 
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plysilicon step is also shown alongside in fig. 4.8(b). In order to prelvenl or at least 
minimize these dislocations, it is imperative that the gate thickness be small. However, 

there is a certain minimum thickness that must be deposited in order to be able to make 

contact to it. This thickness is determined by the number of oxidation st'eps the bottom 

polysilicon gate contact runner sees (bottom gate oxidation, sacrificial top gate oxidation, 

top gate oxidation and finally sourceldrain oxidation). HeuristicaIly, one arrives at 
2500A as the minimum allowable bottom p l y  thickness, so that one can reliable contact 

the p l y  and modulate the back interface. In light of the above discussion,, it is clear that 

if the bottom plysilicon gate were recessed, then this problem and the ensuing constraint 

on the bottom plysilicon gate thickness would not rrrisc. However wc clid not rorcscc 

this problem at the time the masks were made and the bottom plysilicon gate mask 

(MASK#l) was 'light field' in nature. If this mask were used to form a recessed 

structure4 one would have to use negative resist to form the trench. But the negative 

resist available at Purdue during this work, could not be used to define such narrow 

trenches (4.5pm) reliably and consistently, regardless of the combination d spin speed, 

exposure time, intensity or develop time used in the lithography process. The problem 

with not being able to recess the bottom gate is revisited when discussing chemical- 

mechanical-planarization (CMP) associated with CLSEG. 

In order to contact the plysilicon it is necessary to dope it. Either n-type or p- 

type doping could be used. The dopant choices are phosphorus, arsenic and boron. The 

diffusion coefficients of phosphorus and boron are very high and these species are 

therefore not used to dope the bottom gate in this work. The bottom plysilicon gate was 

initially doped using an arsenic implant. The polysilicon was first deposited over the 

bottom oxide and a blanket implant was utilized to dope the entire layer. !3ubsequently, 

the polysilicon was lithographically defined to form the bottom gate. The CLSEG 

process requires the deposition of an a-Si layer after gate patterning and seedhole 

definition. It was found that each time the gate was doped using an arsenic implant, the 

subsequent a-Si  layer appeared extremely spotty and rough. The amorphous layer 

appeared rough only in regions where the bottom poly was etched away (:i.e.. over the 

41n order to form a recessed structure, a 40008, deep trench is cut into a thick field oxide 
region. The trench is then filled with approxiamately ~OOOA of polysilicon and the 
excess polysilicon on the field region is planarized using chemical mechanical 
planarization. 



field oxide regions). Regions of deposited a-Si appearing over either the bottom gale or 

over the seedhole were however extremely smooth and showed no rough spots. This 
eliminates the deposition temperature as the probable cause. The same phenomena was 

true even with the subsequently deposited nitride layer which is deposited for cavity 

support. This is shown in fig. 4.9 which depicts a CLSEG wafer with an extremely 

spotted surface. The spotted or rough regions often acted as nucleation sites during 

selective epitaxy growth. It is important to reiterate that this unexplained phenomena 

occurred only in wafer that were implanted with arsenic. Unimplantcd wafers which 

were otherwise identical were introduced into the LPCVD furnace at the same time as the 

implanted wafers, and they had extremely smooth and specular a-Si layers. The bottom 
gate was therefore doped using an arsenic-spin-on-dopant, to avoid any potential 

implantation damage caused by an arsenic implant. We do not understand this behavior 

at all, because Zingg et a1 . [4] in their work also used an arsenic implant and did not 

report any significant problems. But, we encountered this problem only (on depositing an 

a-Si layer after the implant, a situation not encountered in reference [4]. The details of 

the arsenic spin-on-dopant process are presented in the process run-sheet in Appendix A. 

4.2.2 Chemical Mechanical Planarization 

Chemical mechanical planarization (CMP) is an essential part of the E L 0  process 

as it determines the final thickness of the SO1 film. CMP was addecl to the CLSEG 

process to remove the excess growth coming out of the via holes as !seen in fig. 4.6. 

Typically, CMP was performed on a Buehler grinder with a Rode1 type Suba H-1 12" 

pad, with a polish pad speed of 150rpm. The head force was adjusted to 15 Ibs. force and 

the head rotation speed was fixed at 30rpm. The slurry used was a 15: 1 mixture of Dl 
water and colloidal silicon compound (NALCO 2350). The mechanism of chemical- 

mechanical-planarization (CMP) is as follows. Initially, only the epitaxially grown 

silicon is in contact with the pad and is rapidly etched through a combination of 

mechanical grinding and chemical etching. Once the silicon is etched down to the etch- 

slop (either oxide or nitride), the etching essentially stops because the area of silicon 

exposed is very small compared to the area of the etch-stop exposed. 

In the E L 0  process, the chemical mechanical planarization step ;is carried out as 

shown in fig. 4.10. A thin layer of polysilicon is deposited and is subsequently oxidized 
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to form approximately 20008, of ply-oxide. The thickness of the etch stop above the 

field oxide was 500088,. The thickness of the E L 0  above the bottom gate is then 

approximately 20008,. which is sufficient for the fabrication of fully-depleted SO1 

MOSFET. A final 15 mins polish with NALCO 2355 was added to the planarization 

process in order to improve the surface smoothness of the ELO. As will be seen in 
Chapter 5, the subthreshold slopes on MOSFETs plananzed in NALCO :2350 alone were 

never as good as the device planarized with a finishing etch by NALCO 2355. Clearly, a 

vingle-gated device made at the same time as the dual-gated device woultl be a lot thicker 

(50008,) and these device would be -ally depleted. This is another reason for making 

recessed bottom gates - the single-gated devices and the dual-gated devices would have 

the same SO1 film thickness. 

The uniformity achieved by the chemical mechanical planarization process here at 

Purdue, was found to depend heavily on the density of the exposed silicon. Epitaxy runs 

which were completely devoid of any nucleation did not planarize very uniformly, due to 

an  extremely small volume of silicon exposed across the wafer. On the other hand, 

extremely nucleated runs did not planarize at all. There was found to be an optimum 

degree of nucleation for which the planarization would be extremely unriform and yield 

highly uniform SO1 films across the entire 3inch wafer (except possibly at  the center). 

Thus the planarization process seems to depend on the mask design, which is in itself a 

major drawback to the CMP technique. Further work needs to be carried1 out to optimize 

the planarization process and a detailed investigation of other slumes needs to be carried 

out to improve the uniformity of the CMP process. 

In the CLSEG process, chemical mechanical planarization is used to remove 

excess growth emerging from the vias as shown in the SEM cross-section of fig. 4.11. 

Contrary to what we expected prior to fabrication, this turned out to be the most difficult 

stcp ol' the CLSEG process. The chemical-mechanical -planarization step relies on the 

presencc of a good etch-stop to iron out the non-uniformities across the wafer. In the 

dual-gated CLSEG devices (fig. 4.11) the excess growth from the vias often covered the 

bottom gate and had to be completely removed. If the silicon were not completely 

removed, then that region of the device would not receive any sourceidrain implant and in 

effect one could not use the structure to form the MOSFET. But the via holes were lower 

than the roof of the CLSEG cavity, which was raised up due to the presence of the bottom 

gate. Therefore, in the process of removing the excess silicon, the silicon over the bottom 

gate, which forms the channel of the device, was completely etched away. If the bottom 



Figure 4.11 SEM cross-section of a dual-gated device after confined growth. The 
figure shows the epitaxial silicon emerging from the vias 
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Figure 4.12 Top view photograph of a CLSEG island (single-gated devics) after the 
excess growth from the via is planarized and the supprot nitride is 
removed 



gate were recessed the entire cavity would be at the same level and the cavities of the 

single gated and dual-gated devices would also have the same height. It lwould then be 

far easier to remove the excess growth. But since it was not possible to recess the gate, 

trial and error was the only available recourse to be able to obtain a viable dual-gated 

structure. As a result, very few working dual-gated CLSEG devices were found across 

&he wafer. The devices, moreover, had varying silicon film thicknesses even across a 

single device, depending on the extent by which the overgrowth was planarized. These 

processing difficulties associated with the fabrication of the dual-gated C:LSEG devices 

explain the results presented in Chapter 5. Nevertheless, the feasibility of utilizing 

CLSEG to fonn high quality thin film single-gated fully-depleted SO1 lvlOSFETs was 

proven. The CLSEG islands of a single gated device after the excess plsmarization and 

the cavity nitride is removed is shown in fig. 4.12. Since dual-gatecl devices with 

recessed poly-gates would essentially have a planar surface for epi-growth, the results 

obtained on these single-gated devices can be extrapolated to prove the feasibility of thin- 

film dual-gated SO1 MOSFETs with recessed bottom gates. 

4.2.3 CLSEG Cavity Construction 

In the first studies of CLSEG by Schubert et al. [5], silicon nitrideloxide was used 

as the top layer of the cavity for mechanical support and a-Si was used as the sacrificial 

layer material. The thermal oxide was l000A thick and the nitride was 15008, thick. 

However, with this combination, the maximum cavity length that could be reliably 

fabricated was restricted to 8pm. MOSFET designs based on a very stringent alignment 

tolerance of 1.Opm and using a minimum feature size of 2.5pm, required that the 

minimum cavity size for the dual-gated SO1 MOSFET be approximately 17pm. Thus, 

the CLSEG cavity width had to be extended to fabricate the dual-gated axid single-gated 

SO1 MOSFETs. This was done by increasing the top layer nitride thickness to 3000A. 

The maximum thickness of the nitride is determined by the stress cracking of the nitride 

film which occurs around 4000A. As shown in fig. 4.13, a 30008, thick nitride layer 

allowed the formation of cavity widths up to 24pm. No evidence of sagging is visible in 
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Figure 4.13 Top view photograph of CLSEG growth in a 24 pm cavity 

Figure 4.14 SEM cross-section of CLSEG grown in a 22 mm cavity. The figure shows 
no evidence of sagging 



the figurc 5.  Based on the foregoing, Lhe Lop nitride layer thickness was chosen to be 

300081. An SEM cross-section of CLSEG grown in a 22pm long cavity is shown if fig. 

4.14. As can be seen in the figure, there is no evidence of sagging and the film is 

uniformly thick. This is especially important for thin-film SO1 applications. Finally, the 

choice of the thicker nitride understandably raises concerns of stress dislocations being 

formed in the epitaxial material. TEM analysis of the as-grown CLSEG did not detect 

the presence of any defects in the material. A sample TEM picture is shown in fig. 4.15. 

The CLSEG film in this case was approximately SOOOA thick and the nitride layer was 

320081. The figure shows no visible dislocations in the material, even along the top 

surface where we expect maximum thermal stress. It is important to reiterate that the 

sample examined by the TEM was a as-grown film and had its top nitride and oxide 

layers intact. This sample was not annealed after growth which could potentially heal the 

stress related defects. 

A final note on the facets in Epitaxial Lateral Overgrowth and Confined Lateral 

Selective Epitaxial Growth is in order. In the earlier work on CLSEG, low angled end- 

facets were observed in the CLSEG material. The origin and cause of these facets was 

undetermined. A modified seed hole pattern was developed to investigate the end facets 

in CLSEG. The seed hole was extended out of the cavity as seen in fig. 4.lqa). Two 

distinct regions along the end of the cavity are clearly discernible. The finst facet makes a 

45" angle with the seed hole and this is the conventional <110> facet encountered during 

selective epitaxial growth of silicon. The second low angle facet is mere:ly growth from 

the < I  10> facet and forms the 4 1  I> facet. The material quality of the growth from this 

facet is very bad as is visible in the Nomarski picture. However, this is not unique to the 

CLSEG process. A similar picture of EL0 is shown in fig. 4.16(b). Tlhe EL0 sample 

again shows the presence of the same two facets as the CLSEG material. They form 

exactly the same angles with the seed holes. Thus, contrary to what was believed earlier, 

CLSEG is no worse off than EL0 in terms of end facets. The end facets in selective 

SSagging in the CLSEG cavity is made obvious by the occurrence of diffraction rings of 
variolls colors. 



Figure 4.15 XTEM micrograph of CLSEG. Tile film thickness is 5000A.. No vis~bk 
defects are observed anywhere in the CLSEG film 
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Figure 4.16 Top view photograph indicating the 4 11> and < 1 1 b  facets in (a) EL0 
and (b) CLSEG 



epitaxial growth is a major concern to the applications of the technology to SO1 VLSI. In 

its defense however, the facets are an extremely predictable phenomena and rherefore one 

can accurately posi tion devices such that they do not intersect the poor qua,lity material in  

the faceted regions. Alternately, the edges of the SO1 regions grown by either EL0 or 

CLSEG that show the <110> and the <311> facets (and the poor material lxtween them), 

can be etched away using the active area mask as shown in fig. 5.41 in Chapter 5. The 

active area mask is used to isolate devices in any process, and therefore this step would 

not add any lithographic steps to the process. 

In all the devices fabricated in this work, the channel region intersected the 

faceted regions along the ends of the device. No detrimental performarice limitations 

were observed. Since the material along the edges is of extremely poor quality, its 

mobility is expected to be extremely low. Hence, these regions of the device were not 

considered when computing the mobility in the SO1 devices fabricated using EL0 and 

CLSEG. 

4.3 Summary 

Deposition parameters and etch profiles for LPCVD nitride deposition and 

etching were investigated fro use as nitride spacers in the fully self-aligned dual-gated 

SO1 MOSFET process. Structural feasibility of the device and process viability were 

proved upon successful fabrication of the nitride spacer for selective oxid.ation. A non- 

self-aligned process to fabricate the dual-gated MOSFET by EL0 and. CLSEG was 

developed. The process requires only one epitaxy step compared to tnro in the self- 

aligned process. Since the material characteristics of the SO1 film fabricat.ed i n  the non- 

self-aligned manner is essentially the same as that produced by the fully self-aligned 

process, the simplified process was used for material characterization. 

Experimental fabrication required several problems to be solved in order to attain 

dislocation free material. CLSEG cavity widths were extended to facilitate the 

fabrication of minimum geometry (2.5pm) transistors. This was done by increasing the 

top layer support nitride thickness to 3000A. The problem associated with the chemical 

mechanical planarization of the overgrowth from the vias in the dual-gated CLSEG 

process could not be solved reliably. The quick and reliable way around thc: problem is to 



fabricate recessed polysilicon bottom gates so  that CLSEG growth is initiated over a 
planw oxide surfaa. 

Crass-sectional Transmission Electron Microscopy (XTEM) was wed to confirm 
the excellent quality of the as-grown CLSEG materid. A new cavity seed M e  design 
confirmed that the end facets in CLSEG were essentially the same as that in EL0 and is 
not something intrinsic to the confined growth technique. 
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CHAPTER 5 

ELECTRICAL MEASUREMENTS 

5.1 Introduction 

In the previous chapter, the process development for the dual-gated SO1 MOSFET 

was presented. The similarities and differences associated with Epitaxial Lateral 

Overgrowth (ELO) and Confined Lateral Selective Epitaxial Groiuth (CLSEG) 

processing were also highlighted. Some of the difficulties in fabricating dual-gated 

devices with a non-recessed bottom polysilicon gate were discusseld, and it was 

established that a far simpler, reliable and planar process results if the bottom gate were 

recessed to be planar with the field oxide. In this chapter, the electrical characteristics of 

the dual-gated SO1 MOSFET fabricated using both of the above sellective epitaxy 

techniques are presented. This establishes the feasibility of fabricating thin-film fully- 

depleted dual-gated SO1 MOSFETs. In addition to the dual-gated devices, single-gated 

devices (partially depleted and fully depleted) were also fabricated. The characteristics of 

these devices are compared to devices fabricated in  the substrate material and to the 

devices fabricated in commercially available SIMOX wafers. 

The main purpose of this chapter is to establish the feasibility of fa.bricating thin- 

film fully-depleted dual-gated SO1 MOSFETs using Epitaxial Lateral Overgrowth and 

Confined Lateral Selective Epitaxial Growth. A secondary and probably nnore important 

purpose was to determine the properties of the epitaxial material through DC 

measurements on the fabricated devices. To this aim, devices were processed 

simultaneously (in the same process run) on SIMOX and EL0 material and their effective 

mobilities were compared. Such a one is to one comparison is more: valid than a 

comparison of the properties of EL0 and CLSEG devices with the effective mobility 

values of SIMOX reported in literature, because both sets of devices are sr~bjected to the 

same non-optimal processing environment here at Purdue. As a prologue to the chapter, 

we enumerate some of the new and important results presented in the text. Thin-film l'ully 



depleted SO1 MOSFETs were fabricated on EL0 material for the first time at Purdue 

University. Values of electron and hole mobilities obtained agree rather well with typical 

values in bulk silicon. The direct and systematic comparison between the properties of 

SIMOX and EL0 was initiated for the first time. The study indicates that the EL0 

material is at least as good if not better than the commercial SIMOX material. The 

advantages of EL0 and CLSEG over SIMOX is more pronounced due to the superior 
quality of the buried (bottom) oxide in the devices fabricated using selective epitaxy. 

Indeed. the leakage currents across the buried oxide in SIMOX were fourld to be at least 

two orders of magnitude greater than that in EL0 and CLSEG, where the buried oxide is 

in fact a good quality thermal ~xide. Finally, thin-film fully-depleted NMOS and PMOS 

field effect transistors were fabricated in ultra-thin film (2500A) CLSEC; layers for the 

first time. Again. the properties of the CLSEG films agree very well with those of both 

the EL0 and substrate material. The remainder of the chapter is organized as follows. 

Section 5.2 details the fabrication processes utilized for fabricating the different devices. 

The comparison between the properties of EL0 and SIMOX is presented in section 5.3. 
CLSEG results are described in section 5.4 and the conclusions are summarized in 

section 5.3. 

5.2 Device Fabrication 

NMOS and PMOS devices were fabricated on ELO, SIMOX, CLSEG and 

substrate material. All MOSFETs fabricated were self-aligned pol y-silicon gate devices. 

Initial work began with the fabrication of NMOSFETs. SIMOX, EL0 and CLSEG 

material were grown doped to about 1-5 x 1015 /cm3 (n-type). Therefore, in order to 

convert the material to p-type, they all needed to be implanted with a low dose of boron. 

A typical dose of 1 x 1012 / cm2 and an energy of 50 KeV was used to convert the doping 

type. In some cases the devices required a multiple implant comprised of a 5x1011 /cm2, 

25 kev and a lxl0l2/cm2, 100 kev implant. The deep heavier implant was necessary to 

cavpensate the n-type dopant out-diffusion from the back gate. Once the polysilicon gate 

material was deposited and defined, the source, drain and gate regions were implanted 

with As upto a dose of 5x1015/ cm2. The source/drain implants were then annealed at 

1000 O C  for 9 mins. in a wet ambient to grow approximately 1200A of oxide. 



The mask used in  the work was designed to produce both substrate and SO1 

devices on the same die. The process employed a photoresist N+ implant ]mask to ensure 

that the arsenic was introduced only in the n+ regions. However, i t  was found during the 

course of this work (and independently by two other researchers workilng in the same 

area) that the use of a photo-resist mask during the implant caused a.n inexplicable 

increase i n  the leakage current of MOSFETs fabricated in  the SO1 [material. The 

substrate devices fabricated on the same die also showed large amounts of' leakage 

currents. Very few devices were found across the wafer with low leakage currents and 

these devices had poor sub-threshold slopes. The strong inversion characteristics were 

normal however, and therefore values for the effective mobility could be still be obtained 

on all the devices.. Monitor substrate devices fabricated on a different wafer but at 

exactly the same time as the SO1 devices showed excellent device characsteristics. I t  is 

our conjecture that the type-conversion threshold adjust implant (especially the high 

energy l00KeV implant) not only affects the mobility but also degradles the surface 

properties of the material which in turn affects the sub-threshold characteristics. Before 

any further optimization of the NMOS process could be carried out, the arsenlc gas 

source had run dry and consequently all subsequent devices fabricated vvere p-channel 

MOSFETs. It is still unclear as to why the sub threshold characteristics or the fabricated 

NMOS devices (whether it be off-state leakage currents or degraded inverse sub- 

threshold slopes ) were so poor. But since the same behavior was observe:d on the ELO, 

SIMOX and CLSEG devices, the poor sub threshold charactenstics cannot. be considered 

a reflection of the material property. 

The p-channel MOS field effect transistors were also fabricated i n  a self-aligned 

manner. In order to minimize process complexity and 1 i thographic steps ;and in order to 

avoid the photoresist implant mask process, monitor substrate devices werfe fabricated on 

a separate wafer but at exactly the same time as the SO1 devices. Boron sourceldrain 

regions were implanted at a dose of 5x1015 lcm2 and an energy of 25R:eV. The SID 

regions unless otherwise mentioned were annealed in a wet ambient at 900 "C for 40 

mins. This again grows about 1200A of oxide. 

Prior to gate oxidation, the oxidation furnaces were cleaned with TCA for half an 

hour at 1100 "C. The temperature was subsequently dropped to 1000 "C and the gate 

oxidation was carried out for 45 mins in dry 0 2  without TCA. This yielded an average 

gate oxide thickness of 550A on most wafers. The oxide thickness was measured using 

profilometric measurements on different regions of each wafer. Likewise, the SO1 film 



thickness was measured after planarization for the EL0 devices and the C'LSEG devices 
and an average thickness of 1400A was determined for most of the fully depleted EL0 
devices discussed in this chapter. The CLSEG devices were fabricated in slightly thinner 

~ Z W A  SO1 layers. The SIMOX wafers were ~ ~ O O - I W O A  thick prior to processing. 

However, after the sacrificial layer oxidation and gate oxidation, its khickness reduced to 

14oo.A. 

The drawn gate length on the mask was 2.5pm, but the gate length actually 

defined on the wafer was almost always closer to 3.Opm. This is a result of the pre-bake 
temperature and time and the exposure and develop time in the lithographic sequence, 

which was not optimized for the smaller geometries. Although the polysilicon gates were 

defined with a reactive ion etch, the wafers were always postbaked after exposure and 
develop at 120 OC for 20 mins prior to etching. Postbaking could cause the resist to flow, 

thereby increasing the defined gate length. No procedural changes were made on this 

account however, because this was not considered a serious problem. 

Finally, all device measurements were made using a HP 4145B semiconductor 

parameter analyzer and the individual devices were interrogated using a micro- 

manipulator probe station. The devices were placed in the dark and with ;a steady stream 

of nitrogen flowing across it, to prevent anomalous leakage currents due to humidity 

PVrnrns. 

5.3 Epitaxial Lateral Overgrowth, SIMOX and Substrate Devices 

I n  this section, the electrical data obtained on NMOS and PMOS devices 

fabricated jn substrate silicon and those fabricated in SO1 material (EL0 and SIMQX) are 
presented. The NMOS device data are presented primarily to provide the effective 

mobility (hveff) values for the EL0 material and compare them to the values in the 
substraic and SIMQX material. The subthreshold characteristics ~f these devices were by 

and large very poor, due to excessive leakage currents in the devices. The PMOS device 

data are more ideal and a detailed look at the dual-gated device operation is provided only 

for the pchannel MOS field effect transistors. 



5.3.1 N-channel MOS Transistors 

Figures 5.1 to 5.3 show the output characteristics, the sub-threshold characteristics 

and the transconductance curves of a typical substrate NMOS device. Very low values of 

leakage currents were obtained for the source and drain junctions as evidenced by the 

extremely low subthreshold leakage currents. Very good inverse subthreshold slopes of 

around 93mVldec were obtained on most devices. This indicates g c d  gate oxide 

interface properties and emphasizes the low leakage observed in-the devices. Table 5.1 

summarizes the parametric values of the baseline substrate NMOS device where all 

values have been averaged over at least 25 devices across the wafer. The effective 

Table 5.1 Summary of Measured Data from Substrate NMOS Devices. Averages 
are taken over 25 devices. L=2.6pm, bx,+mA 

mobility in the substrate silicon wafer was determined from the rrleasured drain 

conductance (with the device biased in the linear region) to be on an average 574 cm21v- 

sec. Typical values in bulk silicon range from 600-650 cm21~-sec for doping 

concentrations in the 1x1016 lcn? range. This is a reasonable value fior the electron 

mobility in bulk silicon, considering that series resistance effects have not been taken into 

account. A single gate length of 2.5 pm (which is also the minimum feature size) was 

Parameter 
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Figure 5.1 Output characteristics for a typical Substrate NMOS device 

Figure 5.2 Subthreshold characteristics for the Substrate NMOS device 



Figure 5.3 Transconductance curves for the Substrate NMOS device folr 
different drain voltages 



designed for all devices fabricated, in order to minimize the lateral extent of epitaxial 

silicon growth and hence the growth time. Typical series resistance estimation 

techniqqes require devices with a single width but with varying gate lengths - a luxury 

not afforded in the working mask set. As a result, estimation of the series resistance 

became impossible and it was consequently difficult to correct for it when computing the 
effective mobility. Problems associated with the series resistance will be discussed in 

greater detail, later in the chapter. 

Figures 5.4 through 5.6 are illustrations of DC measuremeqts for the output 

characteristics, sub-threshold slope and transconductance of a NMOS device fabricated 

on a SIMOX wafer. The summary of measured data from the SIMOX devices are 

presented in Table 5.2. The average subthreshold slope is rather large (35lmVldec) 

Table 5.2 Summary of Measured Data from SIMOX NMOS Deviceis. Averages are 
taken over 25 devices. L=2.6pm, bxp55081 

compared to the value obtained in the substrate device. Al*ough the device in fig. 5.5 

shows very low subthreshold leakage currents, this was more the exception than the rule. 



Figure 5.4 Output characteristics for the SIMOX NMOS transistor 

Figure 5.5 Subthreshold characteristics for the SIMOX NMOS transistor 
demonstrating low leakage currents 



Figure 5.6 Transconductance curves for the SIMOX NMOS transistor for 
different drain voltages 
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Figure 5.7 Subthreshold characteristics for the SIMOX NMOS transistor 
with excessive subthreshold leakage currents 



Most fabricated devices showed excessive sub-threshold leakage currents as that shown 

in fig. 5.7. As explained in the previous section, the source of this lealkage is still un-  

explained. A more detailed explanation of the apparently poor subthreshold characteristic 

will be provided after the data for the EL0 devices have been presented. The average 

mobility obtained on the SIMOX wafer was 413 cm2IV-sec , which is significantly lower 

than the value obtained in the substrate devices. However, one must realize that the SO1 

NMOS devices (both EL0 and SIMOX) were fabricated on compensated material which 

saw an additional threshold adjust boron implant. Suprem I V  simulations of the NMOS 

channel region are shown in fig. 5.8 for the dual-gated EL0 NMOSFET 1. The average 

channel doping concentration is in the excess of 2x1016 lcm3, whereas the substratc 

doping concentration is 8x1014 lcm3 corresponding to a resistivity of 15-20 Q-cm. Thus, 

one would expect the surface mobility of the substrate devices to be larger than that of the 

SIMOX devices. The second reason for the lower observed mobility values, which is 

again equally applicable to the EL0 devices, is the larger series resistance associated with 

the thinner SO1 layers. The larger series resistance could affect the corn~puted mobility 

values as will be seen later. The output curves of fig. 5.4 show well defined saturation 

chamcteristics with no kinks in the measured drain current. This proves tlhat the SIMOX 

devices fabricated in a 1500A thick SO1 film were fully depleted. One may recall that 

partially depleted NMOS devices suffer from floating body effects that wcould result in a 

kink in their output characteristics. 

Dual-gated MOSFETs fabricated with Epitaxial Lateral Overgrowth were 

fabricated at the same time as the conventional single-gated devices. The only difference 

between the two devices is the absence of the bottom polysilicon gate in the single-gated 

transistor. Since the dual-gated devices were not fabricated with a recessed polysilicon 

gate, the single-gated devices were always thicker than the dual-gated devices. Since 

CMP was used to define the thin SO1 layer, the single-gated devices were typically 

450081-50008, thick as compared to the dual-gated devices which had an average SO1 

film thickness of 150081. Consequently, the EL0 single-gated devices wcrc 

predominantly partially depleted and exhibited a kink in their outpul charac:teristics 

' l n  ordcr lo maintain a valid comparison bctween thc EL0 and SIMOX wal'cr, Ihc 
SIMOX devices were implanted with exactly the same boron energy and dose as the EL0 
wafer. Therefore fig. 5.8 provides a reasonable estimate of the boron profile in  the 
SIMOX wafer as well. 



Figure 5.8 Channel doping profile for a dual-gated NMOS transistor fabricated 
using Epitaxial Lateral Overgrowth. The doping profile was obtained 
from SUPREMIV simulations 
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Figure 5.9 Output characteristics for a partially-depleted single-gated EL0 
NMOS devicc. The curves distinctly demonstrate the kink phenomena 
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Figure 5.10 Subthreshold characteristics for the single-gated partially-de:pleted 
EL0 NMOS device 

Figure 5.11 Transconductance curves for the single-gated, partially-depleted 
EL0 NMOS transistor 



clearly d~sccrn~blc in i ~ g .  5.9. Thc output characteristics, sub-threshold curves and Lhc 

transconductance g, of the ELQ partially depleted dev~ce are shawn in fig. 5.9 through 

5.1 1. Once again, the poor sub-threshold characteristics qre immediately obvious. Just as 

in the case of the SIMOX wgfer, the low leakage currqnts of fig. 5.10 w<as a rarity and 

most devices exhibited the large leakage currents of fig. 5.7. The summay of measured 

data on the single-gated partially depleted NMOS devices fabricated on EL.0 material are 

Iisted in Table 5.3. The poor subthreshoId characteristics observed in the NMOS $01 

devices are in sharp contrast to the excellent characteristics of the substrate devices. 

Table 5.3 Summary of Measured Data on Single-Gated Partially-DIE etqd FLO k NMOS Devices. Averages a v  taken over 25 devices. k2.6pm. t0,p5M , gi=450A 

S~nce thc only difference in  the processing of the SO1 (EL0 and SIMOX)I devices and ihe 
NMOS substrate devices i s  the additional boron implant required by the $01 transistors. 
one i s  apt to blame this extra processing step for the differences in the measured 

subthreshuld charactertstics. I t  would be incorrect to assume tha~t  the degraded 
subthreshold slopes are a result of bad material since later in this chapter p-channel 



MOSFETs demonstrating almost ideal behavior are presented, whose fabrication did not 

require a threshold adjust implant. 

Our conjecture is that the non-ideal subthreshold slope is the result of a non- 

uniform boron doping profile in the mesa-isolated SO1 islands. I t  is well-known that i n  
mesa-isolated devices, if  the edges of the mesa have either a thinner gate oxide or a 

slightly lower doping concentration, then these regions along the edge,s of the device 

would have a lower threshold voltage due to charge sharing effects. The edges could 

therefore turn-on prior to the main transistor such as depicted schematically in fig. 5.12. 

This extraneous leakage could significantly degrade the measured sub-threshold slope. It 

is also possible for the single kink of fig. 5.12 to become smeared out over a range of gate 

voltages depending in the boron doping profile. The EL0 device of fig. 5.10 depicts a 

single kink just as qualitatively portrayed in fig. 5.12. The SIMOX device, likewise, 

demonstrates the slightest hint of a kink in its subthreshold curve. Further optimization 

of the implanted boron profile and the mesa-isolation technique may produce more ideal 

devices with sharper turn-on characteristics. The high values of the subthr~eshold leakage 

could only be attributed to some sort of impurity transfer between the photoresist mask 

and the silicon wafer. The substrate devices which were processed using ,an oxide mask 

indicate that extremely low leakage currents are possible in a photoresist free process. 

The thickness of the SO1 layer fabricated by Epitaxial Lateral Overgrowth is 

determined by chemical mechanical planarization. Non-uniformities in the planarization 

often resulted in regions of the wafer where the dual-gated devices were oker-planarized. 

The single-gated devices were consequently thinner in these regions and yielded fully 

depleted devices. Fig. 5.13 depicts the output characteristics of a fully depleted single- 

gated device fabricated in ELO. Table 5.4 summarizes the measured !data on these 

devices. The fully depleted devices again show no kinks in the saturated output 

characteristics. The electron mobility values obtained on the single-gated EL0 devices 

were on an average greater than that obtained in SIMOX but less than the substrate 

devices. I t  must be reiterated however that all the mobility values arc: uncorrected 

numbers and while they indicate that the EL0 quality is definitely as good is SIMOX, in 

terms of absolute numbers, the ELO, SIMOX and sub~trate devices may in  fact 
1 ' 

demonstrate greater mobilities than the values computed above. 
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Figure 5.12 Subthreshold characteristics of a transistor with edge leakage. Depending 
on the amount of leakage, the subthreshold characteristics c i  the main 
transistor could be tembly degraded 
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Figure 5.13 Output characteristics for a single-gated fully-depleted ELC) 
NMOS field effect transistor. The fully depleted device shows no kink in 
its saturated drain current curves 



Table 5.4 Summary of Measured Data on Single-Gated Fully-Depleted EL0 NMOS 
Devices. Averages are taken over 5 devices. LF2.6pm, bx,F55~A, bi=2500A 

Finally, to conclude this section, figs. 5.14 and 5.15 depict the output 

characteristics and subthreshold characteristics of a perfectly operating dual-gate 

transistor with the top and bottom gates biased independently. Table 5.5 presents the 

relevant data for the dual-gate devices. Even though the subthreshold slopes were 

consistently bad, very good values of electron mobilities were obtained in EL0 material. 

The best EL0 dual-gated devices showed mobilities as high as 512 crn2/V-sec even 

though the SO1 film in the dual-gated devices is doped a lot higher that the single-gate 

device doping concentration due to arsenic out-diffusion from the bottom gate. The 

higher n-type doping in the dual-gated transistors is not fully compensa~ted for by the 

boron threshold implant. Therefore, the threshold voltages in these devices are typ~cally 

a lot lower (more negative) than those in the single-gated EL0 devices and the fully 

depleted SIMOX devices. The difference in threshold voltage also partially proves the 

existence of a larger n-type doping in the SO1 film of the dual-gated tramsistor. In the 

next section, a more detailed look at the dual-gated device is presented through p-channel 

transistors fabricated in ELO. Again, the excess out-diffusion of arsenic from the bottom 

gate becomes obvious which in this case causes the bottom gate to have a much largcr 

threshold voltage( a more negative value) than the top gate. Such a non-uniform doping 
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Figure 5.14 Output characteristics for a full ydepleted dual-gated EL0 NMOS 
device under (a) top gate control and (b) bottom gate ctrnh-01 



a 
Figure 5.15 Subthreshold curves for a fully-depleted dual-gated NMOS transistor. 

The subthreshold slope under dual gate operation is sharper than that 
under either top or bottom gate control 



profile due to dopant diffusion from the bottom gate is clearly undesirable. Alternate gatc 

dielectrics such as oxy-nitrides and nitrided oxides must then be used to minimize the 

outdiffusion of the dopant impurities. 

Table 5.5 Summary of Measured Data on Dual-Gated Fully-De leiied EL0 NMOS 
Devices. Averages taken over 20 devices. L2.6pm. t,~=1200 , b x , , = 1 5 d .  

~FlmA 
1 

The above results prove the feasibility of f ie  dual-gated devices fabricated using 

epitaxial lateral overgrowth. The material quality is excellent not withstanding growth 

over a step caused by the bottom polysilicon gate. The output characteristics of the top 

gate and bottom gate devices show no discernible kinks which indicates a fully depleted 

film, The drain conductance of the top and bottom gates with the 'other' gate grounded or 

accumulated is portrayed in fig. 5.16. The threshold voltage of the top gate (bottom gate) 

incnases significantly when the bottom gate (top gate) is accumulated as compared to its 
value when the bottom gate (top gate) is grounded. This is typical of a fully depleted film 

in which the two gates interact with each other through the fully depleteti SO1 layer ; the 



Figure 5.16 Drain Conductance in a dual gated E L 0  NMOS transistor (a) under 
top gate control and (b) under bottom gate control. In each case, the 
'other' gate is either grounded or strongly accumulated 



result of eleclro-statically coupled interfaces. In order to improve the subthreshold 

characteristics of the various devices, we fabricated p-channel MOS field effect 

transistors. These results are presented in the next section. 

5.3.2 P-C hannel MOS Transis tors 

The discussion again begins with substrate devices. The output characteristics, 

the subthreshold slope and the transconductance of a typical device arc: shown in figs. 

5.17, 5.18 and 5.19. The mobility ~lp,=ii obtained on the substrate PMOS devicc is 

approximately 240 cm21V-sec which is a good number for bulk silicon. T'he inverse 

Table 5.6 Summary of Measured Data on Substrate PMOS Devices. Average taken 
over 25 devices.L=2.2pm, ~,-,,~ssoA 

subthreshold slopes and subthreshold leakages both show extremely low values, 
indicative of a good device operation. The measured device parameters are summarized 

in Table 5.6. Figs. 5.20-5.22 are representative curves depicting the output, subthreshold 



Figure 5.17 Output characteristics for a typical Substrate PMOS device 

Figure 5.18 Subthreshold characteristics for the substrate PMOS device 



Figure 5.19 Transconductance curves for the substrate PMOS device fbr 
different drain voltages 

Figure 5.20 Output characteristics for the SIMOX PMOS transistor 



Figure 5.2 1 Subthreshold characteris tics for the SIMOX PMOS transistor 
demonstrating low leakage currents 

Figure 5.22 Transconductance curves for the SIMOX PMOS transistor for 
different drain voltages 



and transconductance characterist~cs of the SIMOX PMOS field effect transistor. The 

PMOS devices do not typically suffer from the kink effect since the ionization rate of 

holes is much less than that of electrons. The absence of the kink is not indicative of a 

fully depleted PMOS FET. However, i f  the SIMOX substrate is used as a 'back gate' and 

biased respective to the source, the front gate characteristics are modified as depicted In 

fig. 2.23 (a). This proves that the film is fully depleted through the mutual coupling of 

the front and back interfaces. There are a few points of interest to note in fig. 2.23 (a). 

The subthreshold slope and the threshold voltage change with the applied back gate bias. 

When the back gate is strongly accumulated, the curves do not shift to the right any more 

as the transistor begins to behave more like a partially depleted device. The subthreshold 

slope remains the same so long as the back gate is depleted, but degrades once the back 

gate begins to get accumulated. Fig. 2.23 (b) is a plot of the back gate subthreshold 

characteristics as the front gate voltage is varied. The back gate subthre.shold slope of a 

SIMOX wafer is exceedingly bad - typically in the excess of 500mVlclec. The buried 

oxide, moreover, is very thick and not readily amenable to changes in tllickness. These 

points highlight the usefulness of dual-gated devices fabricated using selective epitaxy. 

A summary of the measured data on the SIMOX PMOS EET is presented in Table 5.7. 

Table 5.7 Summary of Measured Data on SIMOX PMOS Devices. Averages taken 
over 25 devices. L=0.24pm, bxF550%r 

Parameter L 

I .  Leakage 

Average Value Best Value 



Figure 5.23 (a) Varying front gate subthreshold characteristics as a function of back 
gate bias and (b) varying back gate subthreshold curves for different front 
gate biases, for a SIMOX PMOS transistor 



Fig. 5.24 is an example of the back gate output characteristics of the SIMOX PMOS 

transistor. The extremely low saturation drain currents obtained are due mainly to the 

thick gate oxide (3200A), which is also the primary cause of the premature short channel 

effects visible in the characteristics. The mobility along the back interface of the SIMOX 

device is on an avenge about 142 cm21V-sec, and is comparable to the value along thc 

cop interface quoted in Table 5.7. 

Both fully depleted single-gated and fully-depleted dual-gated PMOS transistors 

were fabricated on EL0 silicon. Tables 5.8 and 5.9 summarize the relevant data on these 

devices. Fig. 5.255.27 present the output, subthreshold and transconductance curves for 

the single-gated fully-depleted ELO-SO1 PMOS transistor. The low value of the sub- 

threshold leakage current and the small inverse subthreshold slope are indicative of a 
superior material and interface. 

Table 5.8 Summary of Measured Data on Single-Gated Fully-Dep1e:ted EL0 PMOS 
Devices. Avenges are taken over 25 devices. M.24pm, b x F 5 ~ A ,  ~~=IK)OA 



Figure 5.24 Back gate output characteristics for the SIMOX SO1 PMOS; device 
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Figure 5.25 Output characteristics of a fullydepleted single-gated ELO-SO1 
PMOS device 
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Figm 5.26 Subthreshold characteristics for the single-gated fully-depleted 
ELO-SO1 PMOS transistor 
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Figure 5.27 Transconductance curves for the single-gated, fullydepleted EL0 
P-channel SO1 MOSFET 
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The top interface of the EL0  silicon is determined by the chemical mechanical 

planarization process. Any surface roughness or impurities left behind by the 

planarization process would affect the mobility and the subthreshold slope of the 

fabricated device. There are two primary slumes available for chem,ical mechanical 

polishing at Purdue University - NALCO 3350 and NALCO 2355. A 1: 15 mixture of 

NALCO 2350:DI water is typically used to planarize the ELO, and yields optlmum 

results when planarizing large overgrowths. Characteristic etch rates arc: about a micron 

per minute. The NALCO 2355 sluny, to be used in a 1:10 ratio by volume of slurry:DI 

water under the same pad pressure and pad rotation conditions, provideis an etch rate of 

only about 10008ilmin. Consequently NALCO 2350 was the preferred etch slurry for 

E L 0  planarization. Microscope observations indicated that a smoother and more 

specular finish was obtained with the NALCO 2355 etch sluny. Therefore we employed 

NALCO 2350 to planarize the down to the etch-stop and then incorporated a 10-15 mins. 

finishing etch with NALCO 2355 to yield the best possible results. A single gate ful,ly- 

depleted E L 0  process was carried out at the same time as the process whose measured 

data was presented above, with the exception of the finishing NALCO 2355 

planarization. The measured subthreshold slopes were consistently great~er on this wafer 

and yielded average values of about 155mVldec. 

Figures 5.28 through 5.35 adequately describe the behavior of the dual-gate 

transistor. Figs. 5.28 and 5.29 present the output characteristics of the thin film fully- 

depleted PMOSFET under top gate control and bottom gate control respectively. The 

output characteristics of the device under dual-gate operation is shown in fig. 5.30, which 

indicates a significantly larger current flowing across the device. A13 seen through 

numerical simulations in Chapter 3, when compared at a constant VG-VT however,' the 

observed enhancement in current of the dual-gated transistor is effectively eliminated and 

the current under dual-gate operation exceeds the sum of the currents of tlhe top gate and 

the bottom gate by approximately 15%. This is shown in figure 5.31 for two different 

dual-gate devices. In  chapter 3, comprehensive numerical simulations using PISCES 

were carried out and it was concluded that the current under dual-gate operation would 

exceed the sum total of the currents of the top and bottom gates by a maximum of 5%, so 

long as all values were compared at constant gate voltage excursions above threshold. 

This conclusion refuted the claims made by other researches of a gre'ater than 50% 

enhancement in the current under dual-gate operation. While the results p.resented above 

definitely do not indicate the preposterous 70-75% enhancements often quoted, it is still 
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Figure 5.28 Output characteristics of the thin-film fullydepleted dual-gated ELO- 
PMOS transistor under top gate control 
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Figure 5.29 Output characteristics of the thin film fully-depleted dual-gated ELO- 
PMOS transistor under bottom gate control 
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Figure 5.30 Output characteristics of the full y-depleted dual-gated ELO-SO1 
pchannel transistor under dual-gate control 
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Figure 5.3 1 Comparison of drain currents under top gate operation, bottom gate 
operation and dual gate operation. The compansons are nlade at a 
constant VG-VT=~.OV 



Table 5.9 Summary of Measured Data on Dual-Gated Fully-Depleted EL0  PMOS 
Devices. Average taken over 10 devices. L=0.24pm, tOx,-=550A, &,x,t,= 150081, 

ki= 1~008, 

Parameter 1 1  
Dual 

1 . 1 ~ 1 0 5  A/pm 5.2x105 Alpm 

1 17 mV1dec 146 mV1dec 95  m Vldec 

larger than the 5% predicted by the numerical simulations. The disc~repancies could 

potentially be due to experimental errors in computing the threshold vdtage. As was 

seen in chapter 2 and earlier in this chapter, the threshold voltage of the top gate depends 

in the back gate voltage and vice versa. The threshold voltage decreases as the back gate 

moves into depletion and it increases when the back gate is accumulated. In the PMOS 

transistor, this can be translated into surface potentials by stating that the more negative 

the back surface potential, the lower (more positive) the threshold voltage of the top gate. 

As the back gate is accumulated ad the surface potential becomes zero or slightly 

positive, the larger (more negative) the threshold voltage of the top gate tecomes. Then, 

the comparison of the curves at a constant VG-VT becomes dependent on what value of 

the back gate (top gate) voltage the threshold voltage of the top gate (back gate) is 

measured. 

Leakage 

Gm @ VD=-0. 1 V 

VT 

PD, eff 145 cm21v-sec 

< 1pA 

0.4 pSIpm 

-0.65V 

< 1pA 

0.3 1 pS/ pm 

- 1.58V 

< 1pA 

0.65 pS/pm 

-0.08V 



In the numerical simulations the back interface of the single-gated device was 

defined by a neutral contact (in contrast to a n+-ply, p+-ply or A1 contacts) and thus 
grounding the back gate ensured that the back interface was under flat-band conditions 

(zero back surface potentia1)z. This is the optimum condition to make a gcmd comparison 

between the dual-gated device and the single-gated device. However, in the experimental 

measurements of fig. 5.31, we had no way of fixing the band bending at the back 

interface, so that it  became difficult to measure the threshold voltage of the top (or 

bottom) gate while maintaining the other gate under flat-band conditions. Therefore, we 

measured the threshold voltage of the two gates by merely grounding the other gate, 

knowing full well that the back interface under these conditions is not in flat-band. I f  the 

threshold voltage were measured under more accumulated conditions by applying a small 
positive voltage to the back gate, the measured threshold voltages of the top and bottom 

gates would be higher and this would reduce the measured enhancement in current under 

dual-gate operation. This discussion merely highlights the importance of exercising 

caution when comparing the characteristics of single-gated and dual-gated devices. 

The subthreshold characteristics of the dual-gated device are shown in fig. 5.32. 

The sub-threshold slope is significantly improved under dual-gate opera~tion as compared 

to the values obtained under either top gate control or bottom gate control. The dual-gate 

transistor in this case is non-optimal due to the large differential in the threshold voltage 

between the top gate and the bottom gate. This is due to the large amount of arsenic out- 

diffusion from the bottom gate polysilicon at the back interface. In situations where the 

threshold voltage of the top gate and bottom gates are equal and khe devi~ce is symmetric, 

a significantly more improved subthreshold slope under dual-gate operatron results. Figs. 

5.33 and 5.34 present the subthreshold curves of the top gate and bottom gate transistors 

with a varying bias applied to the other gate. The changing subthresholld characteristics 

of the top gate with varying back gate bias and vice versa is indicative of a fully depleted 

film. The degraded subthreshold slopes of the top gate when the bottom1 gate is strongly 

accumulated is also clear in fig. 5.33. Finally, the transconductance of the device under 

top gate operation, bottom gate operation and dual gate operation are presented in figs. 

5.35 through 5.37. The transconductance under dual-gate operation is slightly less than 

ZIn reality there is a non-zero back surface potential due to the small band bending forced 
by the fixed charge density specified at the back interface. 
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Figure 5.32 Subthreshold characteristics for the dual-gated EL0 PMOS device under 
top gate control, bottom gate control and dual gate control 

Figure 5.33 Varying front gate subthreshold characteristics as a function of the 
front gate bias for a dual-gated €LO-SO1 M O S K  



Figure 5.34 Varying back gate subthreshold characteristics as a function of the 
back gate bias for a dual-gated ELO-SO1 MOSFET 

Figuxe 5.35 Transconductance curves for a dual-gated ELO-SO1 PMCSFET 
top gate control 

under 



Figure 5.36 Transconductance curves for a dual-gated ELO-SO1 PMOSFET under 
bottom gate control 

Figure 5.37 Transconductance curves for a dual-gated ELO-SO1 PMOSFET under 
dual gate control 



the sum of the transconductances in figs. 5.35 and 5.36. This is again due to the 
asymmetric device under test, which results in a spread out transconductance curve 

rather than a single sharp peak as observed in the other devices. In a symmetric device 

one would expect the transconductance of the dual-gated device to be about 10% largcr 

than the transconductances of the top and bottom gate transistors. 

The advantages of the dual-gated device fabricated with EL0 are immediately 

obvious upon noting the extremely low value for the back gate subthreshold slope 

attainable in the process. The value of approximately 150mV/dec is normal for the 

device structure whose gate oxide is 1500A thick and whose channel d'oping is about 2- 

4x1016 1 c d .  The advantages of EL0 are even more enhanced if one observes the back 

gate to source leakage of the SIMOX device as compared to the oxide leidcage of the EL0 

device. The back oxide leakage currents for the SIMOX device and the EL0 device are 

shown in fig. 5.38. It is obvious that although the SIMOX back gate is twice as thick as 

the EL0 back gate, the leakage current through the SIMOX buried oxide is about 2-3 

orders of magnitude greater than that through the ELOts buried ply-oxide. This suggests 

a stronger integrity for the buried oxide when using epitaxial lateral overgrowth. Another 

advantage of EL0 towards making dual-gated devices involves the choice of the buried 

insulator. Since EL0 involves epitaxial growth over an insulator, advanced dielectrics 

such as nitrided oxides can be easily used in the selective epitaxy process. This should 

further improve the dielectric integrity of the buried insulator in ELO. SIMOX 

technology falls palpably short in this regard. 

5.3.3 Series Resistance Concerns 

The mobility values ~ ~ p , = f f  reported in Tables 5.7-5.9 are smaller than the values 

obtained in the substrate devices, except in special cases as revealed by the best values 

listed in the tables. The same is true of the NMOS devices presented in section 5.3.1. It 

is our conjecture that the lower mobility values computed throughout this chapter are a 

result of high source-drain series resistances, more so in the thin-film SO1 devices. In 
Table 5.10. we list the measured resistance values of P+ resistors on the substrate, EL0 

and SIMOX wafers. As can be seen, the resistance values are rather large given that the 

distance between the two contacts in only 20pm. The resistance is largest for the SIMOX 

wafers and is smallest in the substrate. This is also consistent with the fact that the 
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Figure 5.38 Gate to source leakages for the buried oxides in the (a) ELO-SO1 
and (b) SIMOX-SO1 p-channel transistors 



223 

Table 5.10 Summary of Measured P+-region Resistances on Substrate, EL0 and 
SIMOX Wafexs. L20p.m, W= 14p.m 

SIMOX wafer has the thinnest film (1500A) whereas the EL0 films ranged in thickness 

from 4000.k to 5000.k. We couldn't measure the series resistance in the dual-gated 

structures but we expect their resistance to be larger since the films are thinner than the 

EL0 resistance structures. The larger resistance in itself would not cause: large reductions 

in the mobility because the distance between the contact edge and the top channel is only 

2.5 p.m. The problems associated with the series resistance are inherently tied to the 

layout of the mask used in this work. 

Wafer 

Substrate 

SIMOX 

EL0 

The mask layout of the SO1 MOSFET is shown in fig. 5.39. The defined active 

area width on the mask in this case is 75pm, but there are only two contacts across the 

middle of the SO1 mesa that are 1Op.m long and 2.5p.m wide. With the resistances across 

thc P+ sourccldrain regions being as large as those listed in table 5.10, there is a 

substantial spreading resistance associated with the current flow along the width of the 

device. If the contacts were defined across the entire width of the device, then the current 

flow across the transistor would be uni-directional from source to drain, not withstanding 

the series resistance. The actual width of the current flow would then be truly represented 

by drawn mask width. But in the fabricated devices, the spreading resistance forces a 

more two-dimensional current flow as schematically illustrated in fig. 5.40. The effective 

width of the device would then be less than the actual drawn width of the: device, and it  is 

this effective width that must be used in the mobility computations. It  therefore stands to 

reason that under these conditions, applying the drawn mask width to the mobility 

SID anneal temp. 

loo0 OC 

900 OC 

90 "C 

Thickness 
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4000.4 

:Resistance 
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Figure 5.39 The mask layout for the dual-gated (or single-gated) SO1 MOSFET 
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8- + I portion +, portion I 
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Figure 5.40 Qualitative sketch of the source to drain current contours. The current 
flow paths are two-dimensional due to the large spreading-resistance 
encountered in the devices 



computations would result in an underestimated mobility value as observed in the 

previous two sections. 

Extremely simplistic PISCES simulations of the two structures, one with the 

contacts as designed on the mask and the other with contacts across the entire width of 

the structure were carried out. The simulations suggest that the structure with the 

contacts defined across the width of the device, have an average resistance that is at least 

a factor of 3 lower than that of the structure with the smaller contacts. Alternately, the 

effective width of current flow in the structure with the smaller contacts is three times 

smaller than in the structure with the larger contacts. Therefore, in order to determine the 

true effective mobility, a conservative estimate for the EL0 and SIMOX devices can be 

obtained by multiplying the mobilities listed in the tables above by a factor of 2. The 

mobility values of the substrate devices should also be corrected for, but the degree to 

which the different mobility values are corrected would depend on the resistance values 

measured in table 5.10. Likewise, the mobility values pn,eff of electror~s determined in 

section 5.3.1 would also be larger than the measured values due to the two-dimensional 
nature of current flow in the ill-designed devices. 

In order to confirm or at least lend credence to the above argument, we fabricated 

a simple single-gated fully-depleted EL0 SO1 MOSFET but reduced the active area 

wyidth to 21pm. A top view of the device is shown in  fig. 5.41. The contacts on this 

device cover a significantly larger portion of the width of the device. The output 

characteristics and subthreshold characteristics of the device are shown in figs. 5.42 and 

5.43. The measured data are summarized in table 5.1 1. As can be seen in the table, the 

computed values of the effective mobility b,eff devices exceed 250 cm*/V-sec on an 
average and the best value obtained is almost 310 cm2/V-sec. This confilms the excellent 

quality of the epitaxial lateral overgrowth SO1 film. 

5.4 Confined Lateral Selective Epitaxial Growth 

Confined Lateral Selective Epitaxial Growth (CLSEG) is an another form of 

selective epitaxy in which crystal growth is confined in a pre-determined cavity defined 

on the wafer. In this section, the material quality of CLSEG is  investigated for 

applications to thin-film, fully-depleted SO1 MOSFETs. So far the CLSEG material has 

been grown to heights of 1 . 0 ~  and its material qualityhas been shown to be very good. 



Figure 5.41 Top view of the narrow width ELO-SO1 single-gated MOSF'ET. The 
narrow width structure facilitates computation of the effective mobility 
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Figure 5.42 Output characteristics of a narrow width full y-depleted single-gated 
€LO-SO1 pchannel transistor 

Figure 5.43 Subthreshold characteristics of the narrow-width fully-depleted single- 
gated ELO-SO1 pchannel transistor 

-lE-Os. v d a . l V  

d m c o d e  
/ d l v  

. 

. 

- 
- 
- 

-lE-14 
2 . 7  0 -. BOO0 

VGF .4000/div C V> 



Table 5.11 Summary of Measured Data on Small Width Single-Gated Fully-Depleted 
EL0 PMOS Devices. Average taken over 25 devices. Lr2.4mm. toxf=~;mA, tsi= 1300A 

G, @ Vp-0.1 v 

Pv, eff 264 cm2/v-sec 3 10 cm21~-sec 

In this section, results from CLSEG grown in 250081 cavities are presented for the first 

time. Devices fabricated in the CLSEG material include diodes, N-channel FETs and p- 

channel FETs. All the three devices were fabricated on three separate wafers to maintain 

low process complexity and to maintain a photo-resist free implant step. (Once again, the 

NMOS process demonstrated extremely low subthreshold leakage currents but poor 

subthreshold slopes. However, because the subthreshold leakage is minimal, the 

characteristics are indicative of a good quality material. Novel dual-gated devices were 

also fabricated using CLSEG. As in the case of the EL0 devices, CLSEG dual-gate 

devices also involve growth over a polysilicon gate. The CLSEG growth over a step 

defined inside a cavity was attempted for the first time. While the growth was successful, 

logistics of processing and a non-optimal mask design kept us from olbtaining high- 

performance devices. Nevertheless, the feasibility of the concept was demonstrated. 



In the following sub-sections, results from CLSEG diodes, single-gated NMOS 
and PMOS devices and dual-gated NMOS devices are presented. The CILSEG silicon in 

which these devices were fabricated was only about 1 m  thick because they were 

thinned down after growth by a short 1-2 min CMP step using NALCO 2355 (to ensure a 
smooth top surface) and a post growth oxidation and strip. The CMP step did not 

produce any non-uniformities in  the as-grown CLSEG layers, because of the short 

duration of the planarization process. The excellent uniformity of CLSEG was 

maintained across the wafer. This is a major advantage of CLSEG, as i t  avoids the non- 

uniformity concerns of chemical mechanical planarization through the definition of a pre- 

determined cavity with excellent uniformity (5%) across the wafer. 

5.4.1 Diodes 

The diodes were fabricated using a photoresist free implant process in which 

thermal oxide was used as a mask during the arsenic implant. Typical diode 

characteristics are shown in fig. 5.44. The diodes demonstrated extremely low leakage 

currents which were below the measurement sensitivity (< IpA) of the HP 4145B. The 

best ideality factor obtained was 1.16 and an average value of 1.28 was measured across 

25 diodes. The high ideality factors are possibly the artifact of the large series resistance 

that exists in the device, which is inherent to the nature of the thin-film SO1 structure. 

The large series resistance is also evident by the low voltage (0.5V) at which the curve 

begins to bend over and saturate. The low junction leakage currents, however, prove the 

excellent quality of the CLSEG material. Table 5.12 summarizes the measured device 

parame ten. 

Table 5.12 Summary of Measured Data on Thin-Film CLSEG Diodes 
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Figure 5.44 Forward characteristics of a thin-film CLSEG diode (a) thc: best device 
and (b) the average device 



5.4.2 Single-Gated NMOS and PMOS Devices 

The output characteristics and the subthreshold curves for the representative 

NMOS and PMOS devices are depicted in figs. 5.45 and 5.46 respectively. The 

transconductance of the NMOS and PMOS device are shown in fig. 5.47. Tables 5.13 

and 5.14 summarize the measured data on the CLSEG MOSFETs. As is evident from the 
tables and the figures, excellent device characteristics were obtained for the CLSEG 

MOSFETs. The NMOS device again demonstrates poor subthreshold slc~pes although the 

subthreshold leakages were consistently very low. The subthreshold cha~acteristics of the 

NMOS device show a discernible kink just like the single gated EL0 NMOSFI3s of 

section 5.3.1. This could again be indicative of some sort of an edge leakage problem, 

either due to the nature of the mesa-isolated structures or simply an inadequate boron 

threshold adjust profile. Isolated devices were however found across; the wafer with 

significantly better subthreshold slopes such as shown in fig. 5.48. This proves that the 
bad subthreshold chamcteri stics are not due to poor material or surface properties, but due 

to a non-optimum process design for the NMOS devices. Moreover the PMOS devices 

showed very good subthreshold slopes that are comparable to those obtained in the EL0 

Table 5.13 Summary of Measured Data on Thin-Film Full y-Depleted CLSEG PMOS 
Devices. Average taken over 20 devices. k 2 . 2 ~  , b x F 5 a  

G, @ VD=-O. 1 V 

CLO. eff 

0.65 pS1p.m 

238 cm21v-sec 

0.69 p S / p  

250 cm2/V-sec 
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Figure 5.45 Output characteristics of a thin-film fully depleted (a) pchannel MOSFET 
and (b) n-channel MOSFJ3 fabricated in CLSEG 
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Figure 5.46 Subthreshold characteristics of a thin-film fully depleted (a) pchannel 
MOSFET and (b) n-channel MOSFET fabricated in CLSEG 
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Figure 5.47 Transconductance curves for a thin-film fully depleted (a) p-channel 
MOSFET and (b) n-channel MOSFET fabricated in CLSEG 



Figure 5.48 Subthreshold characteristics of a thin-film full ydepleted SO1 
n-channel M O S m  fabricated in CLSEG and exhibiting a significantly 
better subthreshold slope 



Table 5.14 Summary of Measured Data on Thin-Film Fully-Depleted CLSEG NMOS 
Devices. Average taken over 20 devices. L=2.6pm, b x v f = ~ A  

and SIMOX devices of the previous section. Large mobility values were obtained in the 

thin-film CLSEG material. It should be reiterated that this is the first time electron and 

hole mobility values have been reported for ultra-thin film CLSEG material. 

Parameter 

: V&.OV, VG=~.OV 

S 

Leakage 

VT 

G, @ V f l . 1 V  

Pn. eff 

5.4.3 Dual-Gated CLSEG NMOS Devices 

The successful fabrication of the dual-gated CLSEG device was constrained by 

inherent processing difficulties due primarily to a lack of foresight when designing the 

masks. The problems associated with fabricating the dual-gated devices did not result 

from difficulties in the selective epitaxy process, but rather from difficu11:ies encountered 

in the post-epi growth processing. Epitaxial growth was typically of excellent quality as 

evidenced by the observation of extremely straight growth fronts and the emergence of 

well-faceted EL0 from cavity vias. In order to explain the difficulties involved with the 

post-growth processing of the CLSEG wafers, a typical cross-section of .a CLSEG dual- 

gated device is shown in fig. 5.49. Also depicted in the figure is a schematic sketch of 

Average 
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Figure 5.49 A dual-gated CLSEG structure immediately following confined epitaxial 
growth. (a) a focused-ion-beam cross-section of the dual-gated structure 
and (b) a schematic crosssection indicating the required level of 
planarization 



the structure. In most cases, the nucleation emerging from the via holes grew well over 

the bottom gate 3. 

In order to fabricate the dual-gated structure, the overgrowth from the via holes 

must be planarized down to the level indicated in fig. 5.49 (b). It is not enough simply t o  

remove the silicon from over the bottom gale reglon, because then there would ~ ~ 1 s t  

regions of unetched nitride under the overgrown silicon to the left of the bbttom gate in 

the figure. The sourceldrain regions cannot be implanted in this case. Since the level of 

the cavity over the bottom gate is higher than the level to which the silicon must be 

planarized, the nitride layer that defines the cavity over the bottom gate: (this is also the 

channel region if the MOSFET) is removed and the underlying epitaxial silicon is 

exposed to the planarization. Once this stage is reached it becomes extremely hard to 

control the planarization process 4. and the epitaxially grown silicon often gets over- 

etched. Alternate schemes to remove the overgrowth using dry SF6 etching or  a wet 

KOH etch did not provide any positive results either. 

The above structural difficulties associated with dual-gated device processing 

using CLSEG, highlights the importance of using a recessed bottom gate. Once the 

bottom gate is planar with the field oxide, CLSEG growth is simple and the devices can 

be fabricated in like manner as the single gated devices. Despite the processing 

problems, a few dual-gated CLSEG devices did work and their characteristics are 

presented in figs. 5.50-5.52. The subthreshold characteristics and the cornputed mobility 

values were extremely poor, probably due to the extremely non-uniform epitaxial silicon 

SO1 overlayer. As an example depicting the non-uniformity of the overlayer, fig. 5.53 

depicts the transconductance of the top gate with the bottom gate groundled. Two peaks 

are evident in the transconductance curve indicating the presence of two devices in 

parallel with different threshold voltages! 

3~ majority of the epitaxial growth on the dual-gated CLSEG wafers were carried out 
during a period of time when the epitaxial reactor was extremely erratic in its growth rate. 
Consequently, the overgrowth emerging from the vias were often of gargantuan 
proportions. 

40ne  must note that there is no etch-stop in this planarization process, and the 
planarization must be controlled manually. This is extremely hard to do  given the non- 
uniform and erratic etch rates of the CMP system. 
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Figun 5.50 Output characteristics of the thin-film fullydepleted CLSEG-NMOS 
transistor under top gate control 
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Figure 5.51 Output characteristics of the thin film fullydepleted CLSEG-NMOS 
transistor under bottom gate control 
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Figure 5.52 Output characteristics of the fully-depleted dual-gated CESEG-SO1 
. .  , n-channel transistor under dual-gate control 
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Figure 5.53 Transconductance curves of the top gate in a dual-gated n-channel 
device fabricated in CLSEG. The bottom gate is grounded 



5.5 Conclusions 

N-channel and Pchannel devices were fabricated in E L 0  and CLSEG material. 

Simultaneously, device were fabricated in substrate silicon and commercially available 

SIMOX material. The results indicated that the SO1 layers formed by selective epitaxy 

are at least as good if not better than the SIMOX material. 

Thin-film fully-depleted SO1 MOSFETs were fabricated by CLSEG for the first 

lime. Although the dual-gated devices did not work very well, the results from the single 

gated devices pointed to material of excellent quality. These results were vindicated by 

measurements on diodes fabricated in CLSEG material. The diodes showed very low 

leakage currents. However the measured ideality factors were larger than expected due to 

the inherently large series resistances present in the CLSEG diode structure. 

Experimental evidence validating the theories regarding volume inversion 

presented in Chapter 3 were provided by measurements on asymmetric dual-gated 

devices fabricated by epitaxial lateral overgrowth.' The results denied the existence of a 

-75% enhancement in the current of fully-depleted dual-gated devices. The measured 

enhancements, when compared at constant gate voltages above threshold, were barely 

13%. This enhancement would be further reduced if the threshold voltages of the 

individual gates were measured with the other gate maintained close to flat-band 

conditions. 



CHAPTER 6 

GENERATION LIFETIME MEASUREMENTS IN THIN-FILM 
SILICON-ON-INSULATOR (SOI) MOSFETS 

The generation lifetime is a very important device parameter. The switch~ng time 

of bipolar devices, the leakage currents of p-n junction diodes and charge-couplcd 
devices (CCDs), and the refresh time of dynamic RAMS all depend on it The gencrallon 

lifetime of the semiconductor material depends directly on such parameters as the 

concentration of deeplevels which may result from foreign impurities or crystal defects. 

Therefore, the generation lifetime can and is often used as a process control monrtor. I t  IS 

also a very good figure of merit to compare the properties and the quality of 

semiconductor materials. It is therefore important to get an accurate value of the 

generation lifetime, tg. 

In this chapter, we describe a new technique to determine generation lifetimes in 

thin-film, partially depleted or fully depleted SO1 MOSFETs. In section 6.1, the basic 

concepts of generation lifetimes are established and the widely used techniques for 

determining generation lifetimes in bulk silicon MOSFETs are described. The 

differences in thin-film SO1 MOSFETs and the review of measurements made on SO1 

devices are presented in section 6.2. Finally in section 6.3 we describe the new linear 

sweep technique applicable to thin-film SO1 MOSFETs and present tlze experimental 

results obtained on thin-film fully-depleted devices fabricated on SIMOX material. 

6.1 The Genemion Lifetime tg 

The generation lifetime (tg) is the average time required to generate an electron- 

hole pair (e-h pair) in a depleted region of the semiconductor device. The generation 



lifetime is applicable in regions of the device where there is a paucity ot'caniers, such as 

in the space charge region of a reverse-biased junction. 

Figure 6.1 (a) Schockley-Read-Hall generation (b) optical and (c) impact ionization 
electron-hole pair generation 

The generation mechanisms in a semiconductor are schematically illustrated in 

figure 6.1 [I]. The Schockley-Read-Hall (SRH) process of figure 6.l(a) is the most 

important generation process in silicon under dark, low electric field conditions. The 

thermal generation of e-h pairs proceeds via intermediate energy levels for most 

semiconductors. The radiative generation mechanism (Fig. 6.l(b)) involves the optical 

gener~tion of e-h pairs using a photon with energy greater than the bandgap energy of the 

semiconductor. The optical or radiative process is absent in the dark, since the black 

body radiation from the surroundings is negligible under these conditions. Finally, the 

inverse-Auger generation mechanism (better known as avalanche multiplication) involves 



three camers. A high energy electron loses its energy by creating an e-h pair. Akalanche 

multiplication is dominant only under high electric field conditions and can be neglected 

at low fields. The generation lifetime in silicon is essentially determined by thermal 

generation processes given by the SRH theory and the remainder of this chapter deals 

with thermal generation alone. 

The generation rate is defined as the rate at which carriers are generated in a given 

volume of the semiconductor. From the Schockley-Read-Hall (SIRH) theory, the 

generation rate can be expressed as, 

where ni is the intrinsic canier concentration, n is the electron concentration, p is the 

hole concentration, nl and pl are trap related parameters given by, 

where t, and tpo are the respective electron and hole lifetimes. Under reverse bias 

conditions, in a depleted region of the device, the mobile carrier concentration is 

neglected and, 

where 

This is the most general expression for the generation lifetime and will be used later in 

the chapter during the development of the new generation lifetime measurement 

technique. 

Any generation lifetime measurement scheme requires that (i) the device be 

placed in non-equilibrium (deep depletion). This involves splitting the minority and 

majority quasi-fermi levels (ii) an excess generation width be created which attempts to 

bring the device back to steady-state or equilibrium through excess carrier generation and 



(iii) the generated charge be monitored through the choice of appropriate test structures 

and instruments. 

In bulk silicon, the MOS capacitor is the most widely used device structure [3] 

and the measured capacitance is used to monitor the generated charge. The pulsed MOS- 

C lifetime measuring technique is the most popular technique to measure tg [4-81. The 

method was first proposed by Jund and Poirier [4] and it involved a capacitance-time 

(C-t) transient measurement following an accumulation to inversion pulse. This 

technique was subsequently analyzed in great detail by Zerbst [5] and Heiman [6]. 

Various interpretational and experimental variations to this basic technique have been 

proposed and a review of the various methods can be found in [7] and [8]. Figure 6.2(a) 

illustrates the experimental conditions and figure 6.2(b) depicts the experimental C-t 

response and its related Zerbst plot which determines the value of tg. The MOS capacitor 

is pulsed into deep depletion and the capacitance of the device is monitc~red as a function 

of time as shown in figure 6.2(b). The inversion carriers cannot be generated 

immediately in response to the applied pulse. Consequently, the device is forced into 

non-equilibrium (deep depletion). Eventually, thermal generation within the depleted 

volume of the semiconductor begins to generate the requisite inversion charges to balance 

the charge added to the gate and the device relaxes back to equilibrium. In the non- 

equilibrium condition the depletion region is larger that its equilibrium value and 

consequently the measured capacitance is lower than the value at equilibrium. The larger 

depletion width provides the excess generation width which results in the excess 

generation that drives the device back to equilibrium. As the de:vice approaches 

equilibrium, the depletion region shrinks as is evidenced by an increasing capacitance. 

The capacitance relaxation in figure 6.2(b) is determined solely by thermal 

electron-hole pair generation. The e-h pair generation rate consists of tmth space-charge 

generation and quasi-neutral generation components [7J and is given by, 

serf is the effective surface generation velocity and contains both the front and back 

inlcrfacc generation terms in addition to the width-independent quasi-neutral generation 

partlrnelers. Similarly ti is the effective gencrition lifetime and contains both bulk 

generation (space charge region generation under the gate) term and the width-dependent 
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Figure 6 . 2  (a) Experimental conditions for the pulsed MOS C-t transient 
measurement and (b) Experimental C-t response of an MOB-C and its 
Zerbst plot [7,8] 



edge generation component characterized by a surface generation vel(xity. W is the 

time-dependent depletion region width and Wf is the final equilibrium depletion region 

width. The term (W-Wf) determines the 'effective generation width', which is the region 

of the semiconductor that actually generates camers. It is well known lhat using W for 

the effective generation width overestimates the generating volume because there is a 

significant region near the surface of the semiconductor that does not generate any 

camers. Similarly, (W-Wf) underestimates the effective generation width. This is made 

clear in figure 6.3 which qualitatively depicts the energy bands in a p-type semiconductor 

under deep-depletion conditions [9,10]. Rabani and Lamb [9] made a first order 

correction to the effective generation width as shown in the figure, The effective 

generation width can also be expressed as [I I] 

W, - (W-E Wr) where 0<E<1 (6) 

The major uncertainty in estimating the true generation width arises; from a lack of 

knowledge of the quasi-fermi Levels during the transient. Other expressions have been 

derived for a more accurate determination of the effective generation. width [lo], but 

typically (W - Wf) has been accepted as a reasonable approximation in bulk devices. 

Relating the depletion width W to the measured capacitance C, one can derive the 

following final expression, 

This equation is the basis of the Zerbst plot. - is plotted versus 

~i i s  determined from the slope as shown in figure 6.2(b). 

A non-pulse linear sweep technique for bulk MOS capacitors [12] has also been 

developed. This technique promises interpretational simplicity, ease of implementation, 

and does not require differentiation of the experimental data. In the linear sweep 

technique, a linear ramp instead of a pulse, is used to drive the device into non- 

equilibrium. If the linear ramp applied to the gate of the MOS capacitor is very slow, 



Figure 6.3 Energy band structure of a ptype MOS capacitor at (a) equilibrium 
inversion and at (b) non-equi li brium deepdepletion 
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Figure 6.4 Equilibrium inversion curve at extremely slow ramp rates and deep 
depletion saturation curves for higher sweep rate 

then the generation of camers in the MOS-C can at all times balance [.he rate at which 

charge is added to  the gate. The inversion layer can then be formed in response to the 

ramp and the measured C-V curve traces the equilibrium value. As the ramp rate is 

increased, the generation rate cannot form the inversion layer fast enough and the device 

enters non-equilibrium. In this condition the measured capacitance is smaller than the 
equilibrium value. If the ramp is continuously maintained, eventually a stage is reached 

when the excess generation rate equals the rate of change of charge on the gate 

(determined by the ramp rate) and the device reaches a quasi-steady-state situation. The 

depletion region width saturates and the measured capacitance also saturates, albeit at a 

lower value. This is depicted in figure 6.4. The measurement can be repeated for 

different ramp rates and the different saturated capacitance values can be obtained. 

Under the saturated condition, the rate of change of charge on the gate (CoxR) exactly 

balances the rate at which charge is generated in the depleted semi<mnductor region 
' In .  --+ ( Wlat - W eq). WSat is the depletion width at the saturated condition, and Wq is the 
=, 

depletion width at equilibrium. Again the excess depletion width is chosen as the 



effective generation width. Equating these two terms, and expressing thle depletion width 

in terms of the measured capacitance one can readily arrive at, 

Then the linear slope of the R v/s -- plot determines the effective generation 

lifetime zg'. 

The gate-controlled diode (GCD) is the second most commonly used dev~ce 
structure to measure the generation lifetime [13]. A cross-section of the device is shown 

in figure 6.5(a). A reverse bias applied to the diode is used to place the device in  non- 

equilibrium. The diode current (instead of a capacitance) is used to mc~nitor the charge 

generation in the device. For a given diode bias, the current is monitored as a function of 

the gate bias. The measurement procedure is depicted in figure 6.5(b). When the gate is 

in accumulation, the measured reverse-bias current is solely the reverse-biased junct~on 

leakage current. There is no surface or bulk generation under the gate. When the gate is 

biased in depletion then there is a surface and bulk contribution to the measured drain 

current as shown in figure 6.3b). As the gate bias increases with the diode still biased in 

depletion, the diode current also increases due to the increased bulk generation associated 

with the increased depletion width. Finally, when the surface is inverted, the surface 

generation term drops and the measured diode current becomes a constant and is the sum 

of the bulk generation under the gate and the diode leakage current. As \.he diode bias is 

increased, the bulk generation component also increases because the maximum inversion 

depletion width increases with increasing diode bias. 

where WnVq is the non-equilibrium depletion layer width dependent on the diode bias and 

Weq is the equilibrium depletion width when the diode voltage is zero. The effective 

generation lifetime can be determined from the above expression. 



(i) (ii) 
A 

(iii) 

Figure 6.5 (a) Schematic cross-section of a gate controlled diode (GCD) and (b) a 
GCD in (i) accumulation, (ii) depletion and (iii) inversion ; (iv) shows the 
current voltage characteristic with points A, B and C comesponding to (i), 
(ii) and (iii) 



6.2 zg Measurement in Thin-Film SO1 MOSFETs 

The two major electrical lifetime measurement schemes in bullk devices were 
discussed in the above section. In addition there are optical lifetime measurement 

Figure 6.6 (a) The vertical inverted MOS capacitor on SO1 material and (b) lateral 
MOS capacitor on SO1 substrates. The n+ junctions could reach through 
to the bottom oxide interface 

techniques such as the photoconductive decay technique [14] and the photoluminescence 

(PL) decay technique [la. The optical measurement techniques are extremely useful 

because they are in general non-contacting in nature. However all optical schemes 

essentially create excess electron-hole pairs and therefore they measure the excess camer 

lifetime or the minority carrier lifetime (recombination lifetime). The optical excitation 

source is abruptly terminated and the excess carrier decay rate is measured to determine 

the recombination properties or the recombination lifetime. Since we are: dealing with 

generation lifetimes in this chapter, we shall concentrate only on the electrical schemes to 

measure the generation lifetime. 



The major difference between bulk semiconductor devices and SC)I devices, apart 

from the presence of the buried oxide, is the ultra-thin nature of the overlying silicon 

film. However initial characterization schemes on SO1 substrates were directly adapted 

from the techniques used in bulk MOSFETs. The SO1 films studied were: thick (1.0 - 2.0 
pm) so that conventional 'bulk' devices could be fabricated in them. For all practical 
purposes the devices behave like their bulk counterparts. Pulsed MOS-<: measurements 

such as described in the previous section were made on inverted MOS capacitors as 

schematically illustrated in figure 6.6(a) [16-191. Lateral MOS capacitors- (fig. 

6.qb))with reach-through diffusions were also used in pulsed C-t transient measurements 

1201. Capacitance measurements typically require extremely large area devices so that 
the measured capacitance is large enough for accurate measureme:nts. Moreover 

inaccuracies in the capacitance measurements result when the series resistances are large. 

Thin-film SO1 devices usually have large series resistances associated with them and this 

makes the interpretation of capacitance-based results more difficult. Thin-film transistors 

offer distinct advantages for defect characterization in SO1 films. These advantages 

(when compared to capacitance measurements) include (1) no loss of sensitivity with 
reduced device dimensions, (2) natural utilization of the laterally distributed substrate 

contacts, (3) no detrimental effects due to the large series resistance andl (4) test devices 

that are similar or identical to actual circuit components. 

Depletion mode devices (deep-depletion devices or accumulation mode devices) 
operate on the same principle as JFETs in bulk silicon. Figure 6.7 shows the device 

cross-section of the depletion mode transistor (DMT). DMTs were thc: first transistors 

used to characterize generation lifetimes in thin-film SO1 material [21-251. The essential 

principle behind the use of DMTs to measure zg is the same as the pulsed MOS-C 

technique. A pulse is applied to the gate which places the device in deepdepletion (non- 

equilibrium). The device then relaxes back to equilibrium through the thermal generation 

o T  inversion charges. The relaxation transient is monitored by measuring the drain 
current i n  a DMT as opposed t o  a capacitance in a pulsed MOS-C me:asurement. The 

principles oT the measurement and the experimental configuration are also shown in 

figure 6.7. The theoretical treatment follows directly the one described for pulsed MOS- 
Cs in the previous section. If the transient depletion width is W, then the thickness of the 
conducting channel between the source and drain is, 
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Figure 6.7 Schematic cross-section of the depletion mode transistor (DIMT) and 
the experimental configuration for generation lifetime measurements 

where p r sheet resistivity of the material, L - channel length and Z = channel width. Vu 
and ID are the drain voltage and drain current, respectively. From the equation of charge 

conservation in an MOS system, the sum of the inversion charge Qin, and the interface 

charge Qt is, 

and W = bi- k l ~  (12) 



Assuming (as in the bulk MOS-C case) that the total generation rate is the sum of the 

bulk generation component and the surface generation component, the generation rate is 

given by, 

where Wf is the final equilibrium value of the depletion width given by 'Wf= f i - k I ~ r  ., 
and  ID^ is the final saturated value of the drain current at the end oi the transient, 

Differentiating eqn. (1 1) with respect to time and then equating it to eqn (1.3) results in, 

By plotting the left hand side of eqn (14) versus  ID^ - ID], one obtains a straight line from 

which %' can be extracted using the slope. This measurement is essentially an extension 

of the Zerbst technique used in pulsed MOS-C measurements, except that a current is 

used to monitor the generated charge instead of a capacitance. One of the requirements 

of this method is that the film thickness must be greater than the maximum depletion 

width under the gate. In other words, the film must be partially depleted. Therefore this 

method cannot be used to measure generation lifetimes in thin-film fully depleted SO1 

devices. Clearly, a pulsed MOS-C measurement technique cannot be used in that case 

either. because the film would be fully depleted at all times with no change in depletion 

layer width and hence no change in the measured capacitance. 

A recent measurement scheme for measuring generation lifetimes in thin-film 

enhancement mode devices was proposed by Barth and Angels [26] and subsequently re- 

analyzed by Mukherjee et. al. [27]. Again, the measurement is made by adapting the 

Zerbst technique to current transients. This avoids the effect of large series resistances 

and parasitic capacitances, which make capacitance measurements in thin SO1 films very 

difficult. The measurements are made on enhancement mode MOSFETls which is again 

advantageous because most integrated circuits use enhancement mode MOSFETs. The 

cross-section of a partially depleted enhancement mode MOSFET is shown in figure 6.8. 

In the experiment, the back gate is biased from depletion or accumula.tion to stronger 

accumulation. It must be noted that the only source of accumulation charges in the 
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Figure 6.8 Schematic cross-section of the enhancement mode transistor and the 
experimental setup for generation lifetime measurements 

device is from thermal generation (this is in contrast to the conventionall MOS-C case 

where the only source of inversion charges is due to thermal generation). The 

sourceldrain regions supply and remove the inversion layer charges immediately. The 

front gate is maintained in strong inversion at all times and the drain is biased to 100mV. 

This places the top-gate device in the linear region. Immediately after application of the 

pulse [+ve to -ve in this case], the accumulation charges cannot be generated 

immediately. The quasi-neutral body region present in the partially-depleted device 

develops a negative potential Vg(t) in order to maintain charge neutrality a~cross the back 

interface. The change in body potential affects the threshold voltage of the front gate 

transistor which in turn affects the measured drain current . The negative C r ~ ( t )  increases 

the threshold voltage (its effect on the threshold voltage is similar to the body effect in 

bulk MOS transistors) and hence the measured drain current drops. As the accumulation 

layer is formed by thermal generation, the body potential slowly relaxes to zero and the 



drain current increases to its equilibrium value tracing a relaxation transient. The 

theoretical analysis for the partially depleted case is presented in reference [27. In the 

above pulsed technique the generated carriers not only supply the accumulation layer at 

the back interface but also the shrinking depletion charge at the front interface as the 

body potential relaxes to equilibrium. The basic equation is given by 

where G is the generation rate, @ is the front surface depletion charge, QA is the back 

suriace accumulation charge, is the effective generation lifetime (accc~unting for bulk 

and sidewall generation) and sen is the effective surface generation veloc:ity (accounting 
mainly for front interface generation and also for back interface generation and quasi- 

neutral diffusion processes). The effective generation width is obtained in a similar 

manner as in the bulk theory as (W - Wf). The depletion charge is given simply by , 

The depletion region is expressed as a function of the body potential VB. The 

accumulation charge at the back interface can likewise be expressed as, 

Finally applying Gauss' law to the front gate, the total gate charge is related to the 

depletion charge and the inversion charge by, 

Quations (15) - (18) can bc solved simultaneously and using the additional fact that the 

device is operated in the linear region so that the drain current is easily related to the 

inversion charge density by ID = (W/L)~&VD one obtains, 

- N A  Cox,  d K(Im - ID(t)) + - 
2nis ,  dt 

where K-* = qNA(W/L)pV~. This equation is very similar in form to ecln. (14). Again 

following the Zerbst technique, the left hand side of eqn. (19) is plotted versus K(Im-ID) 



and is obtained from the slope of the resulting straight line. The above analysis was 

canied out for a partially depleted MOSFET. 

In a fully depleted MOSFET the SO1 lilm is depleted at all times. Unlike, in the 

case of a partially depleted structure, the generation rate due to bulk generation cannot bc 

written as n i (W-Wf)  , because W = Wf = hi at all times. A blind application of the 

formula would yield a zero generation rate at all times. On the other hand, it is incorrect 

to assume that the effective generation width is tsi, the film thickness, because then the 

formulation would provide a non-zero bulk generation term even under equilibrium 

conditions. Thus, the analysis for a fully depleted MOSFET is made extremely arduous 

because of the difficulty in determining the effective generation width. 13perimentally, 

the measurement is carried out in the same way for the fully depleted device 128,291 as it 

was for the partially depleted device (figure 3.8). A more detailed qualitative description 

of the experiment is provided in the next section. Due to the fully depleted nature of the 

silicon film, there is no quasi-neutral region in the fully depleted MOSFW. The front 

and back surfaces are coupled together through the depleted film. When the pulse is 

applied to push the back interface into accumulation, the lack of accumulation charges 

immediately after the pulse forces the back surface electric field to increase so as to 

maintain the continuity of dielectric displacement across the back interface. Since the 

back and front surfaces are coupled, the front surface electric field also increases. This 

causes the front surface inversion charge density to decrease causing a decrease in the 

measured drain current. As the thermal generation in the semiconductor bulk provides 

the accumulation layer at the back interface, the drain current relaxes back to its 

equilibrium value. 

Theoretical analyses of the dual-gate deep-depletion met hod tlo measure the 

generation lifetime in fully depleted MOSFETs have been provided in references [28,29], 

for the case when a pulse is applied to the back interface. However in both1 the references 

incorrect assumptions were made in computing the effective generation width. In [28], 

the generation rate was assumed to be constant throughout the transient. Clearly this is 

incorrect because the effective generation width in the semiconductor region changes 

with time. In [29] the trap related parameters nl and pl were chosen equal to ni. In 

addition, the capture cross-sections of electrons and holes were also assumed to be equal. 

Neither of these assumptions are valid and could potentially result in, errors in the 

computed generation lifetime tg'. Moreover, in [29], the depletion approximation was 



used to determine the relationship between the accumulation layer charge and the 

ieversion layer charge, a formulation that may not be valid for thin films. In addition, the 

electric field in the depleted semiconductor film was assumed to be equ'al to a constant 

value given by the front surface electric field. This is again an unjustified approximation 
in the formulation that could result in an incorrect value for the effective generation width 

and hence the computed generation lifetime. 

6.3 The Linear Sweep Technique 

The widely used measurement techniques to determine generation lifetimes in 

bulk and thin-film SO1 MOSFETs were detailed in the above sections. In the previous 

section the dual-gate deep-depletion measurement scheme to measure -cg in partially 

depleted and fully depleted SO1 MOSFETs was introduced. In this section the linear 

sweep technique which was first applied to bulk MOS-Cs in section 6.1, is adapted for 

the first time to the dual-gate deep depletion technique. Instead (of applying an 

accumulating pulse to the back gate, a linear ramp is initiated and maintained under 

accumulation biases. The linear sweep technique simplifies the theoretical interpretations 

and provides ease of implementation. 

The remainder of this section is organized as follows. In section 6.3.1, a complete 

solution of a 1-D Poisson's formulation is provided for thin-film SO1 MOSFETs under 

equilibrium and non-equilibrium conditions, to explain the behavior of partially depleted 

and fully depleted SO1 MOSFETs under linear sweep conditions. A qualitative 

description of the measurement is provided in section 6.3.2. Section 6.3.3 contains the 

quantitative solution of the problem as applied to partially depleted MOSFETs. A 

comparison at this point to the pulsed technique described in the previous section for 
partially depleted MOSFETs proves the interpretational ease offered by the linear sweep 

technique. The quantitative fomulations for the fully depleted MOSFET are detailed in 

section 6.3.4. Finally, the experimental results obtained on fully depleted SO1 MOSFETs 

fabricated on SIMOX substrates are presented in section 6.3.5. 



6.3.1 Analytical Formulations 

The energy band diagram of a fully-depleted thin-film SO1 MOSFET with its 

front surface in strong inversion and its back surface in accumulation is shown in figure 

6.9. Whenever the surface potential changes sign from the front surface to the back 

surface, there is an inflection point in the energy band diagram (denoted in the figure as 
d% 

d,,). At the inflection point -+ - 0, which implies that the charge density p is zero at 
dx 

that point. When both the front and back surfaces are in inversion, as see:n in Chapter 3, 

the energy band displays a point of zero electric field, but there is no inflection point 

because the surfaces potentials at the front and back interfaces have the sarne sign. At the 

inflection point d,, the electric field E in the film attains its minimum valut: given by L. 

Expressions for the charge density, electric field and potential as a function of 

position inside the semiconductor are obtained by solving Poisson's' equation. In onc 

dimensions, Poisson's equation simplifies to, 

In the present case, we choose the inflection point d, as the reference: point for the 

potential. Also, expressing the potential in terms of its normalized units, 

+sf E, (do) - E, (front surface) 
US, = - = 

k% KT 

4 ' ~ b  = - E Ei (do) - Ei (back surface) 
b  k% kT 

Also by definition, N, -NA - n, (e-up -euf ) 



Figure 6.9 Energy band diagram for a fully depleted thin-film SO1 MOSFET with a 
ptype channel and inversion at the front interface and accumulation at the 
back interface 



(i) Equilibrium Formulation 

The electron and hole distributions can be expressed in terms of the normalized 

potentials as, 

Moreover, since p=O and U=O at the inflection point do, 

p m q ni (eUo-wx' -eU'x'-Uo +e-u' - e U ~ )  - 0 - qn i  -e-um + e - " ~  --e"~ ) (26) 

or e". - e-u. - e u ~  - e - u ~  (27) 

Therefore, Uo=U~and the charge density p can be expressed in this case as, 

(ii) Non-equilibrium Formulation 

The electron and hole distributions must be expressed in terms of the majority and 

minority carrier fermi levels. 

For a top gate front n-channel device, i.e, a ptype SO1 film, FN = El:, because the 

electrons are in equilibrium with the source and drain regions. The sourceidrain regions 

can instantaneously supply electrons to the inversion layer or remove electrons from the 

inversion layer. Again we define the normalized potentials as, 



Using these expressions, the electron and hole concentrations become, 

Thus, the charge density is given by, 

P - q ni (e 'Jo-'Jf -e'J-u, +e-u, -eu') 

Again, at the inflection point do, p=O and U=O. Therefore, 

= q ni (e u.4  -e-'J. +e-'J' -eU') I 0 ~ L l m t i o n  point (33) 

I f  we can now neglect the terms e-'* and e - ' ~  , especially since during the 

measurement U p O  and E>0, 

The above f~rmulation says that &(do)-Fp is always the same regardless of the system 

state o r  where do lies on the x-axis. We may therefore write, 

Thus Uo is again totally eliminated from the formulation and U is always measured 

relative to the do point. This is important because the reference point must remain the 

same at  all times. If in eqn. (36) we substitute g=0, the equation simplifies to eqn. (28), 



the expression for charge density under equilibrium conditions. We can therefore 

continue the derivation of the analytical expressions starting with eqn (36), knowing full 

well that the equilibrium solution can be obtained merely by substituting e=O in the final 

result. 'E' is referred to as the quasi-fermi-level splitting parameter and can be considered 

a measure of the state of non-equilibrium of the device, i.e. a measure of how Pill. ('1.0n1 

equilibrium the device is operating. In the application of the analytical ex.pressions lo thc 

linear sweep technique, the quasi-fermi-level splitting parameter, detenrnines the ramp 

rate and the effective generation widths under the different saturation conditions as will 

be seen in the next section. The larger the value of E, the larger the ramp rate and the 

generation rate. 

Maneuvering to recast Poisson's equation into a form more amenable to solution, 

we note, 

Poisson's Equation is then expressed as, 

The next step is to solve the above equation subject to the boundary conditions , 

U = Us, ; x=O U - 0 ; x-do  

Multiplying both sides of eqn. (38) by (dU/dx) and integrating from x=d,, to a arbitrary 

point x, 



We can choose either a positive or a negative sign for the square root. A :look at the figure 

shows that the field is positive everywhere. Moreover, the front surface potential is 

positive. If the front surface potential were negative and the back surface potential 

positive, then the field would be negative everywhere. Based on this observation, 

where osf = 1 if Usf > 0 and osr = -1 if Usf < 0. The electric field in the film is then 

given by, 

l e t  us now denote the F-function as, 

Then, 

Fcparating variable and integrating, 



Adding equations (46) and (47), 

The inflection point d, is determined from equation (46). Finally, the potential 

distribution across the film can be computed from 

= x O s x s d ,  

Once the potential distribution is determined, the electron and hole concentrations are 

determined from eqn. (31). The terminal voltage relationships are given by, 

2 
kT dU F2 (UST,UF, 5 )  

= , [(XI,.) + L,. 1% 
The methodology for the solution of the above equations is as follows. 'The front gate 

voltage V G ~  and the back surface potential $sb are chosen such that the front surface is in 

strong inversion and the back surface is in strong accumulation. The back surface 

potential +sb is chosen such that the front surface inversion charge density is saturated for 
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Figure 6.10 Algorithm used to determine the integrated electron density for the front 
n-channel device using the analytical formulation 



the given choice of the quasi-fermi-level splitting 'El. Given VGf, kband E and knowing 

the device parameters such as the front and back oxide thicknesses, the channel doping 

concentration and the silicon film thickness t i ,  eqns (48) and (50) are solved by the two- 

dimensional bisection method to determine +sf and - :[. Once - dU k is determined, 
dx 

the value of E, is determined using eqn. (46). The value of the front surface electric field 

is also determined using eqn. (50). The potential distribution across the film is obtained 

using eqn. (49) and the electron and hole concentrations are obtained usin,g eqn (3 1). The 

solution algorithm is shown in fig. 6.10. 

6.3.2 Qualitative Description of the Linear Sweep Technique 

The schematic cross-sections of a partially depleted and fully depleted N-channel 

MOSFET are illustrated in figure 6.11. The front surface of the SO1 MOSFET is placed 

in strong inversion. The inversion charge density across the front interface is monitored 

by placing a small bias (Vg=lOOmV) on the drain and measuring the drain current (ID). 

The bias on the drain is maintained at a small value for two reasons: (a) it allows 

continued use of the gradual channel approximation and the device behavior can be 

modeled by the 1-D formulations presented in the previous section and (b) higher drain 

voltages could potentially cause impact-ionization to occur near the drain which then acts 

as a source for additional carriers. In order that thermal generation be the only source of 

carrier generation, the drain field must be minimized which is achieved by keeping the 

drain voltage as small as possible. A linear voltage ramp of variable ramp rate is applied 

at the back interface. The ramp is initiated and maintained under accumulation biases, so 

that the back interface is constantly being pushed towards greater accumulation. It  is 

important to note that in both the partially depleted and fully depleted MOSFETs, there is 

no source of accumulation charges (such as a body contact) so that all accumulation 

charges must be thermally generated. Moreover, the inversion charges are in equilibrium 

with the source and drain regions. That is to say that the sourceldrain regions can 

instantaneously supply the inversion camers to the inversion layer or remove electrons 

from the inversion layer. 

The measurement involves monitoring the drain current (Id) at the fi.xed front gate 

voltage. During the initial stages of the sweep, the accumulation charges at the back 
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Figure 6.11 Schematic cross-section of the partially and fully depleted SO1 MOSFET 
under the linear sweep technique. Also shown in the figure are the charge 
density and electric field distributions under the equilibrium and non- 
equilibrium saturation conditions 
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interface cannot be generated fast enough to offset the charge being placed on the back 

gate. In the partially depleted device, the quasi-neutral region develops a positive 

potential (for a n-channel device) in order to maintain charge neutrality ,across the back 

interface. For example, assume for the moment the delta depletion approximation shown 

in fig. 6.11 The field in the semiconductor at the back interface 1s zero. 'The field in the 

oxide then determines the amount of accumulation charge as dictated by (Gauss' Law. If 

the back gate voltage continuously decreases (goes more negative), but there is no 

corresponding accumulation charge formation, then the fleld across the back oxide cannot 

increase which forces the quasi-neutral region to develop a positive potential as seen in 

the figure. The quasi-neutral body potential has the same effect on the front-channel 

transistor, that the body voltage in a bulk MOSFET has on its device performance. The 

threshold voltage of the front channel transistor decreases due to the widening of the 

depletion layer under the front interface. The measured drain currenl consequently 

decreases due to a decrease in the front channel inversion charge densily. In a fully- 

depleted MOSFET the front and back interfaces are electro-statically coupled together. 

When the back gate voltage decreases but there is no attendant increase in the back 

surface accumulation charge density, the back surface electric field increases in order to 

maintain the dielectric displacement continuity across the back interface. Due to the 

coupling between the two interface, the front surface electric field also increases as seen 

in fig. 6.11. The field across the front oxide is however constant. Therefore the field at 

the front interface In the sllicon film must be balanced by a decrease in the inversion 

charge density at the front interface in order to maintain the displacemc~nt continuity 

there. Consequently the measured drain current again decreases just as in the case of the 

partially depleted MOSFET. 

The inversion charge density in the semiconductor volume decreases in both the 

partially depleted and the fully depleted MOSFETs until such time that the generation 

rate within the semiconductor exactly balances the rate at which charge is king added to 

the back gate by the linear voltage ramp. Once the dynamic steady stalte is attained, 

where for every charge added to the back gate there is a compensating accumulation 

charge generated in the semiconductor, the inversion charge in the semiconductor (Q,,) 

saturates. The measured current (Id) would also saturate. If the linear ramp were 

extremely slow, then there is sufficient time for the accumulation layer I:o form at all 

times. In  this case the measured drain current wouldn't change very much. (The drain 

current would show a slight decrease with increasing back gate bias even under 



equilibrium conditions because of the small dependence of the front channel current on 
the back surface potential, which though ideally pinned at zero, does increase a small 

amount with increasing back gate voltage). For increasing values of the: ramp rate the 

drain current saturates at decreasing values as it takes longer for the semiconductor 

generation to match the rate of change of charge at the back gate. This conduct is shown 

in figure 6.12 which depicts the simulated dependence of the inversion charge density 

(which is proportional to the drain current Id) on the back gate voltage for increasing rates 

of linear sweep (R). The most important feature of the linear sweep charac:teristics shown 
in fig. 6.12 is the existence of a readily observable saturation inversion charge density 

(QnSad. The simulations were camed out using the analytical expressions derived in 
section 6.3.1. 

i I increasing R -- I-I---.-.-*-* 

9.-.- -.----------------g.----- 

- 
- - 
,-..1.-.11 ....... ..-I-.=. 

V gb (volts) 

Figure 6.12 Simulated linear sweep characteristics for a fully depleted SO1 MOSFET 



Since the back gate is always in strong accumulation and the front gate is always 

maintained in inversion, the two interfaces do not contribute to canier generation and the 

only viable generation mechanism is bulk generation. In this regard it is important to 

note that there is a distinct possibility that the front surface could comle out of strong 

inversion if the ramp rate applied were too large. In this case the front interface will 

contribute to the total generation and the generation lifetime measllred would be 

incorrect. If there is any additional generation in the semiconductor such as field- 

enhanced generation or  oxide leakage, then the curves would not satu,rate but would 

instead show a tendency to gradually increase. Hence using the linear sweep technique i t  

is possible to detect these non-ideal situations, which would not have beerr detected were 

the pulsed technique used. 

Finally, we must develop the relevant equations which would aid the application 

of the analytical formulation above to the linear sweep technique. The generation rate 

according to the Schockley-Read-Hall theory is given by eqn. ( I )  and is repeated here as  

eqn. (51). 

Since 5 is the quasi-fermi-level splitting parameter, the np product can be written as 

ni2 e--5. G is the generation rate per unit volume per sec , and can now be recast as, 

zg is given by eqn. (4). The generation rate per unit area per sec is the:n obtained by 

integrating eqn. (52) across the entire film . The rate of generation of accumulation 

charges is then given by, 

where the effective generation width Weff is defined from first principles by, 



Therefore, for a given choice of the quasi-fermi-level splitting (which defines the ramp 
rate R), the electron and hole distributions across the SO1 film can be determined 

following the algorithm outlined in figure 6.10. The effective generation width can then 

be obtained using eqn. (54). 

6.3.3 Partially Depleted MOSFf3 

A qualitative description of the linear sweep measurement for a partially depleted 

MOSFET was presented in the previous section. In the following, we develop the 

relevant equations to be able to extract the generation lifetime. 

For a partially depleted SO1 MOSFET, the steady-state charge generation rate 

within the semiconductor can be written as, 

The effective generation width is expressed as in the bulk case as (WarW4. Only bulk 

generation is considered because surface generation is avoided by the nature of the 

measurement. Quasi-neutral region generation in the volume of the: semiconductor 

within one diffusion length of the depletion region is also neglected in the analysis. In 

eqn. ( 5 3 ,  WSat is the saturated depletion width beneath the front gate under dynamic 

steady-state and Weq is the equilibrium depletion width. When the quasi-steady state 

condition is reached, the generation rate or accumulation caniers in the volume or the 

semiconductor exactly equals the rate at which charge is added to the back gate by the 
('V G b  

linear ramp. Charge is added to the back gate at a rate given by Co4 -- - 
dt Cox. R . 

Therefore, under steady-state the charge balance equation is, 

Since the device is biased in the linear region of operation, the drain current is given by, 



The threshold voltage of the front gate is given by the bulk MOSFET theory as. 

If the current under the non-equilibrium saturation condition is  ID,^,^ and  the equilibrium 

current is  ID,^^ then from eqn. (57), 

The threshold voltage under equilibrium and non-equilibrium conditions are, 

Therefore, the difference I D , ~ ~ ~ I D , ~ ~  is given by, 

w q NA 

1 ,  - 1 ,  = ~ P C ~ ~ ~  VD -(W, - We,) 
c o x ,  

From equations (56) and (61), 

Thus, tg can be determined from the linear slope of a  ID,^,^ versus R plot. Results based 

on the exact 1-dimensional analytic model are shown in fig. 6.13 for a partially depleted 

MOSFET. 



Ramp Rate (Vls) 

Figurc 6.13 Qqat versus Ramp Rate plot for a partially depleted SO1 hIOSFET. The 
linear slopeof the plot yields zg. Qqat is proportional to the measured 
drain current Idsat 



6.3.4 Fully Depleted SO1 MOSFETs 

The measured drain current in the linear region for the fully depleted SO1 

MOSFET is given by, 

The generation rate of accumulation charges per unit area per sec. is, 

where We{{ is again the effective generation width. Again, all surface generation 

components are suppressed in the measurement. As seen in section 6.3.2, there is a 

potential difficulty in determining the effective generation width. Clearly, the bulk 

approximation cannot be used in this case. The generation lifetime must be determined 

from the basic equation(s) derived from the SRH theory as given by eqn. (54) and 

repeated here for clarity. 

where ' n  P "1 'no PI 5,21+1; I = -+-- (67) 
'no 'no "i "i 'po "i "i 

. .  . 

Thus, Weff depends on n(x), Hx), q,dtp, and (ET-Ei). q,dtp, is the ration 'of the capture 

cross-sections of electrons to holes, and (ET-E,) determines the trap related parameters nl 

and pl . The electron and hole distributions can be determined using the analytic 

expressions of section 6.3.1. We can therefore compute the exact We{{ using eqns. (66) 

and (67) provided the values of bdtp, and (ET-Ei) are known. Let us assume for the 

moment that we do know q,dzp, and ET-E, and that We{{ could be exac1:ly computed. 

Then under the dynamic steady-state condition, the rate of accumu~lation charge 

generation given by eqn. (64) must exactly equal the rate of change of charge on the back 

gate. 



zg can then be determined from the linear slope of the W d  vls R plot. 

In the experiment the two measurable parameters are R, the ramp rate and ID,,(, 

the saturated drain current. In the case of the partially depleted device it was easy to draw 

an explicit relationship between and R. However, in the fully depleted device, the 

relationship is implicit through the effective generation width. Different values of  ID,,^ 
correspond to different values of Weff which in turn is related to the ramp rate. 

6.3.4.1 Determining the Effective Generation Width 

In order to get an insight into the behavior of Weff on the trapping parameters 

Figure 6.14 R versus Weff plot for different assumed values of ET-6. The computed 
from the linear slope of this plot varies with the choice of ET-6 



tno/tpo and ET-Ei, we use the analytic simulation detailed in fig. 6.10 and work 

backwards. We begin by assuming a known device which fixes the values of ~ d % ,  

ET-E, and tg. The structural device parameters such as the front and back gate oxide, the 

channel thickness and the channel doping concentration are also assumed to be known. 

One can then compute the effective generation width W,ff using eqns. (66) and (67) and 

the ramp rate using eqn. (68). Clearly a plot of Wem v/s R for this ideal case would result 

in straight line going through the origin. This is illustrated in fig 6.14. The assumed 

device parameters are indicated in the figure ( ~ 2 0 . 0  ps, ~ d z p o  = 1.0. ETE, = 0.3eV). 

It is worthwhile to note that the computation of Weff does not involve the 

generation lifetime zg. The values of the ramp rate determined in the abclve calculations 

could now be considered the 'measured' ramp rates corresponding to the saturated 

(Ramp ~ a t ~ c o m ~ u t e d  assuming t /z -1 -0) 
n P- 

0.0 -10' 2.0 1 0 ' ~  4.0 lom6 6.0 1 0 ' ~  8.0 1 0 ' ~  1.0 

Figure 6.15 R versus Weff plot for different values of %dzpo 



inversion charge densities (drain currents). If one now chooses an 'incorrect' value of 

ET-E, and then re-computes the effective generation width, the plot is no longer a perfect 

line. This is also shown in figure 6.14 for ET-E, = 0. lev and ET-E, = 0.2eV(these are 

'incorrect' assumptions for ET-E,, the 'correct' value being 0.3eV). Similady, if we fix 

ET-E; and choose 'incorrect' values of z,d%, the  we^ vls R plot again deviates from the 

straight line dictated by eqn. (68) as illustrated in fig. 6.15. It is clear after studying figs. 

6.14 and 6.15 that an incorrect assumption in the value of Er-E, andlor q,,l-cp, could 

potentially yield erroneous values for the computed generation lifetimes. 

If one assumes the correct values of ET-E, and z,dtpo, then the Weff vls R plot is 

a straight line through the origin. For all other choices, the plot develops a non-zero x- 
intercept. This observation gives us a methodology to get at the correct value of the 

generation lifetime. For a fixed value of z,d%, we can vary ET-E; until the x-intercept 

of the Weff V/S R plot becomes zero. The slope of the line with the zero x-intercept then 

determines the generation lifetime zg, This methodology is demonstrated in fig. 6.16. 

ET-Ei is varied for different choices of d z p o .  In each case the x-intercept obtained is 

plotted in fig. 6. lqa). The corresponding generation lifetimes obtained from the slope of 

the line are plotted in fig. 6.16(b). It is observed that when the x-intercept is zero, the 

corresponding generation lifetime value is 20.0 ps, which was the value initially assumed 

in the simulations (fig. 6.13). 

Another interesting point emerges from fig. 6.16. It can be seen that there exists 

pairs of values of ~,.,dzp, and ET-E, that provide the same correct value c3f the generation 

lifetime. With reference to the figure, for example, the 2-tuples ( 1000,0.2 1) and 

(0.001,0.03) both yield curves with a unique zg=20ps. Therefore, in conclusion, although 

we cannot uniquely determine all the parameters -cno/-cp0, ET-E; and -cg, we can 

unambiguously determine the generation lifetime zg. 

In order to throw further light on this matter, we first look at the electron and hole 

density distributions across the film as plotted in fig. 6.17. The electron density 

distribution plotted on a semi-log scale is non-linear near the two surfatxs but is more or 

lcss lincar near the center of the film, more so under the non-equilibrium deep depletion 
conditions. This implies that the electron and hole distributions become: exponential near 

the center of the film. Since the contribution to the effective generation width essentially 

comes from the center of the film, little error is made in assuming that the carrier 

distributions are exponential across the entire film. An exponential canier distribution in 
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Figure 6.16 Variation of (a) the X-intercept and (b) the slope of the HT,ff v/s R plot 

as a function of ET-E, for different values of 
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Figure 6.17 Electron and hole distributions in a fully depleted SO1 M0SFET under 
equilibrium and non-equilibrium conditions 



turn implies a linear potential distribution or a constant field distribution across the film. 

Under these assumptions the effective generation width W,ff given by eqn. (66) can be 

simplified as follows. Let a = % j c g  and y = Zpdzg. Then, 

Without making any error in the computation, the limits of integration can be extended 

from -m to +m. 

kT 
E0 (B=-) is the value of dUldx at the inflection point and this 

dx $ q 

value is assumed to be constant across the entire film. This assumption is valid since the 

surfaces d o  not contribute to the effective generation width. 

The discriminant of the quadratic expression in the denominator is, 



B wd - - [E - In (ay)] 
Eo 

Let (a,y ) be the 'true' values for the device fixed by the true values of (z,+ , ET-6). 
qn. B Then, the measured ramp rate could be written as R - --E -,ln(ay)]. Let us 

Coa t,, Eo 

choose two arbitrary values of (sdzp, ,  ET-E,) such that the chosen pair yields the 2- 

tuple (a,, yo). The effective generation width for this choice of trap parameters is 
B W, - -[E - ln(aS)]. The slope of the R vls W,ff line is 

Eo 

In order for the slope to be unique, a y  = aoyo. Thus any choice of (%,,/I+, , ET-b) that 

satisfies the above condition will yield a unique value of 'cg, the generation lifetime. 

6.3.4.2 Determining the Generation Lifetime 

This section sketches the necessary steps to obtain the generation lifetime. 

Stcp 1 .  Carry out the linear sweep experiment as detailed in section 6.3.2. Measure thc 

saturated drain currents and the corresponding values of the ramp rate R. 



Step 2. Measure the threshold voltage of the device under strong accu.mulation. Also 

measure the drain conductance of the MOSFET while operating the device in the 

linear region and at the same drain voltage at which the linear sweep 

measurement was made. 

Step 3. Calculate the saturated inversion charge density Qnsat using eqn. (64). 

Step 4. Simulate the device for different values of 'E,' and determine the simulated 

saturated inversion charge density Qnsat,Sim. The channel doping concentration 

and the oxide thickness could be varied to fit the simulated inversion charge 

density to the experimentally obtained value under equilibrium conditions. 

Step 5. Use interpolation on the simulated 5 vls QnsatVsim curve to deternine the values 

of E, that correspond to the experimentally determined values of Qn,,,. 

Step 6. Compute the electric field (G) at the inflection point (&) for each value of 5 
obtained in step 5, by running the analytical simulations again. 

Step 7. For an arbitrarily chosen value of -c&+, Weff is calculated using equation (73) 

for a range of values of ET-&. The value of ET-Ei at which the x-intercept of the 

W,ff V/S R plot becomes zero is determined. 

Step 8. The slope of the Weff vls R plot is used to calculate the generation lifetime 

according to eqn. (68). 

6.3.4.3 A Final Note 

The linear sweep technique has its advantages over the pulsed technique because 

it is easy to analyze and i t  becomes possible to determine zg without making any 

assumptions on the values of trap parameters. Typically, the pulsed measurement 

techniques require differentiation of experimental data which can produce extremely 

noisy results. The linear sweep technique avoids any such differentiation. Finally, in the 

above analysis, surface generation is not taken into account. If there were a small surface 

component to the generation, or there is a small constant generation tenti either due to 

oxide leakage or drain field effects, then the Weff vls R plot would not lhave a zero x- 

intercept. In this case, the algorithm is modified to pick out the ET-E, for which the W,ff 



V/S R plot shows the smallest deviation from the straight line. (i.e. for which the relative 

error of the least squares fit is minimum). 

The methodology used to determine Weff can be easily adapted to generation 

lifetime measurements made on gate contolled diodes fabricated in fully depleted SO1 

MOSFETs. Indeed in a gate controlled diode, the quasi-fermi level is dirextly determined 

by the applied idode bias, and the effective generation width can be obtained in a manner 

similar to that discussed above. In this case, however, the generation lifetime is 

determined from the linear slope of a Weff v/s ID plot where ID is the measured reverse 

bias diode current, which is predominantly determined by bulk generation, provided the 

gate is biased suitably. 

Finally, in the above analyis the channel mobility is assumed to be constant under 

the different non-equilibrium conditions. This is not a bad assumption provided the gate 

oxides are thick and the effect of the perpendicular electric field on the mobility is 

minimal. However for thinner gate oxides the channel mobility could show a significant 

dependence on the transverse surface electric field which could result in an 

overestimation of the generation lifetime. The linear sweep technique., by virtue of its 

quasi-steady state computations, lends itself to the potential for correcting for the 

decreased channel mobility at each saturated point. 

6.4 Experimental Results 

Fully depleted p-channel SO1 MOSFETs were fabricated on SIMOX substrates. 

The process flow was presented in Chapter 4. The schematic diagram of the fabricated 

MOSFET is shown in figure 6.18. The device is a mesa-isolated edgeless MOSFET. 

Excess carrier generation at the device edges is avoided in an edgeless geometry. The 

gate length is approximately 2.0 pm. A total of four devices on two SIMOX substrates 

wcrc mcasurcd, thrce from one wafer and one from the other. A summary of the device 
paramclers [.or the four samples are shown in Table 6.1. In sample G, which was 

fabricated on a n-type substrate, the substrate was implanted n+, prior to metallization. 

The film thickness was determined from profilometric measurements. The back oxide 

thickness was provided by the vendor. The nominal value of the back oxide thickness 

was changed to match the simulated and experimental inversion charge density. The 



front gate oxide thickness was again determined from profilometric rrreasurements on 

thickness measurement bars fabricated on the same die. 

Table 6.1 Device Parameters for the Four Samples used in the Linear Sweep 
Measurement 

All the electrical measurements were made using the HP4145B. The mmp rate in the 

41458 was adjusted by varying the number of points chosen for a given sweep. The time 

taken for the sweep was measured using a stop watch. Each sweep was ~camed out five 

times and the measured time was averaged so that any errors in the measurement of the 

ramp rate would be minimized. Contrary to the measurement description presented in the 

earlier sections, the back gate was maintained in strong inversion while the front gate was 

swept to greater accumulation with varying ramp rates. Since the back gate oxide is very 

thick, the effect of perpendicular electric fields on the back gate characteristics is 

minimized. This strengthens the constant mobility assumption made in the theoretical 

analysis. 

The front gate and back gate sub-threshold characteristics for sample E are shown 

in fig. 6.19. The front gate sub-threshold characteristics vary with the back gate voltage 

and vice-versa. This confirms that the SO1 MOSFET is indeed fully-(depleted. The 

subthreshold slope also depends on the charge state of the other interface, which is again 

indicative of a fully depleted film. The back gate subthreshold curves cease to vary once 

the front gate voltage reaches 2V. Thus the front interface is strongly acc~~mulated at 2V 

and the linear sweep was therefore initiated at 3V. The back gate drain conductance 



Figure 6.18 A schematic illustration of the edgeless mesa-isolated SO1 MOSFEI' 
fabricated on a SIMOX substrate 
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Figure 6.19 Subthreshold characteristics for Sample E (a) front gatc and (b) back gate. 
In each case the other gate is used as a second variable pararr~ctcr 



Figure 6.20 Drain conductance for Sample E under back gate operation. The front gate 
is strongly accumulated at 5.OV. The drain conductance and the back gate 
threshold voltage are measured with the front gate in strong accumulatio~ll 



curve with the front gate biased in accumulation is shown in fig. 6.20 for the same device. 

The linear drain conductance region shows no deviation from linearity even for large 

back gate voltages. This confirms the weak dependence of the channel  mobility on the 

perpendicular electric field. 

The linear sweep characteristics for sample E are presented in fig. 6.21 (a) and the 

corresponding W,ff v/s R plot is presented in fig. 6.21 (b). The linear sweep 
characteristics show well saturating curves just as was expected from the theory 

developed earlier. In computing Weff, ~ 1 %  was assumed to be 100.0, since the ratio of 

the capture cross-sections of electrons to holes is typically 100.0. ET-E; was varied till 

the relative error of the least squares fit became minimum. This also gave a x-intercept 

very close to zero. The x-intercept could not be made exactly zero, possibly due to an 

extraneous generation term as discussed in the previous section. The generation lifetime 

is determined from the slope of the line to be 1.7 psec. This value agrees with typical 

numbers quoted for SIMOX wafers. 

Linear sweep measurements were also made on two other devices fabricated on 

the same wafer. The measured linear sweep characteristics and the Weff-R plot for 

samples C and D are shown in figs. 6.22 and 6.23. Finally, the technique was also 

applied to a device fabricated on the second SIMOX wafer (sample G). Its characteristics 

are shown in fig. 6.24. The measured generation lifetime values on all the samples arc 

summarized in Table 6.2. 

Table 6.2 Summary of Measured Generation Lifetimes 

Generation Life time Lk 
SamreC 23; , 
Sam leD 

Sample G 0.3 ps 1 
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Figure 6.21 (a) The linear sweep characteristics for smaple E and (b) the 
corresponding Wd vls R plot 
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Figure 6.22 (a) The linear sweep characteristics for smaple C and (b) the 

corresponding W,ff vls R plot 
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Figure 6.23 (a) The linear sweep characteristics for smaple D and (b) the 

corresponding W,gf v/s R plot 
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Figure 6.24 (a) The linear sweep characteristics for smaple G and (b) the: 
corresponding Weif vls R plot 



6.5 Conclusions 

A new generation lifetime measurement technique was proposed and verified. 

The analytical formulations that described the device behavior under linear sweep 

conditions were developed and the device behavior was successfully simulated. The 

linear sweep technique was applied to both the partially depleted and fully depleted SO1 

MOSFETs and the theoretical derivations of the appropriate formulas were presented. 

Finally a novel algorithm to accurately determine the generation lifetime without a 

requiring unique knowledge of the Itrap related parameters in the device was detailed and 

the measurement technique was experimentally verified by applying the procedure to 

fully depleted SIMOX MOSFETs. The generation lifetime values achieved on the 

SIMOX devices ranged from 0.3 ps to 2.4 ps, which is a fairly typical range for SIMOX 

material. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

Microelectronics has in recent years seen a relentless drive towards aggressive 

scaling of semiconductor device dimensions. The minimum feature size of devices, 

which in CMOS technology is determined by the gate length, is already down to 0.4pm 

and active research is being canied out to advance technology to the 0.:25pm regime. 

Further scaling of device dimensions is however yielding diminishing returns, largely due 

to the prohibitively increased cost of CMOS process development, increased process 

complexity and the need to revamp and retool the manufacturing techno1og:y for each new 

generation of microprocessorsl. In order to make further advances financiallly profitable, 

what is really needed is a way to maintain the current manufacturing sophistication and 

the current feature sizes, while at the same time achieving a future generation in terms of 

speed. Silicon-on-insulator technologies satisfy this rather challenging criteria. The 

reduced parasitic capacitances in SO1 (both individual device parasitics and global 

parasitics such as wiring and line capacitances) result in speed performancets which are on 

an average about three times faster than that in a comparable CMOS technology. 

SIMOX technology currently represents the state-of-the-art in SO1 development. 

However selective epitaxial techniques such as Epitaxial Lateral Overgrowth (ELO) and 

Confined Lateral Selective Epitaxial Growth (CLSEG) provide a simpler and far cheaper 

option as compared to SIMOX, while simultaneously providing circuit designers vast 

freedom in designing circuits with mixed substrate and SO1 device components. 

Consequently, the prime objective of this research was to advance the state-of-the-art of 

1Microprocessors like DRAMS , form the technology driver for new generations of 
process technologies. 



EL0 and CLSEG for competitive SO1 VLSI applications. In this regard, fully-depleted 

SO1 devices were fabricated simultaneously in ELO, CLSEG and SIMOX in order to 

maintain a fair comparison between the properties of the three materials. Results from 

this work indicate that EL0 and CLSEG are of at least as good if not better quality than 

SIMOX. This conclusion coupled with the flexibility offered by the selective epitaxy 

techniques makes EL0 and CLSEG a far more competitive technology for SO1 VLSI. 

Thin-film (= 1500A) fully-depleted SO1 MOSFETs fabricated in CLSEG grown 

in pre-defined 2500A cavities were fabricated for the first time. Both n-channel and p- 

channel devices exhibited excellent device characteristics and effective hole mobilities 

approaching 240 cmzl'lr-sec were extracted from the PMOSFETs. The absence of the 

kink-effect in the n-channel transistors proved that the devices were: indeed fully- 

depleted. In addition, fabrication of thin-film fully-depleted dual-gated devices were 

attempted in CLSEG for the first time and marginal success was achieved. 

In order to take advantage of the flexibility offered by ELO, dual-gated fully- 

depleted SO1 MOSFETs were fabricated at Purdue for the first time. The devices showed 

excellent properties and the effective electron and hole mobilities obtained on the devices 

were comparable to the devices fabricated with a single gate. The quality of the epitaxial 

material was found to depend on the step height of the bottom polysilicon gate. When the 

step height was about 5000A, the material developed a lot of edge dr:fects along the 

growth front that encountered the step. The defects were considerably reduced if the step 

height was maintained less than 3000A. Thus for best material, EL0 growth must be 

initiated and maintained along a smooth planar surface. In this regard, the bottom-gate of 

the dual-gated devices must be recessed in the field oxide. 

A new linear sweep technique to determine generation lifetime measurements in 

thin-film SO1 material using a fully-depleted thin-film SO1 MOSFET was developed. 

This technique provides an accurate measure of the generation lifetime and makes no 

approximations in its theoretical development, unlike the other electrical techniques 

proposed in the literature. An accurate analytical formulation for the 1-11 dual-gated SO1 

MOSFET was developed for both equilibrium and non-equilibrium conditions. The exact 

solution to Poissons equation was then used to simulate the behavior of the SO1 

MOSFETs under the proposed linear sweep conditions. The new technique was then 

applied to fully-depleted thin-film SO1 M O S m s  fabricated on SIMOX: material and an 

average lifetime of 2ps was extracted from devices across the wafer. 



The effects of volume inversion in enhancing the properties olf dual-channel 

MOSFETs were investigated using two-dimensional device simulaticns and one- 

dimensional analytical computations. It was shown that the output characteristics cf 

dual-channel devices were not significantly enhanced over those of single-channel 
devices when the two devices were compared at constant VG-VT. 

A novel process sequence for self-aligning the top and bottom gates in a dual- 

gated SO1 MOSFET was presented. The device has significant advantages over existing 

dual-gated SO1 MOSFET technologies. The two gates can be independently biaqcd which 

is essential for flexible design of SO1 VLSI circuits. Furthermore, the top and tx)tlon~ 

gates are self-aligned. This self-alignment minimizes parasitics and reduces active area. 

The device is fully scalable and in fact conforms in device structure to the proposed 

ultimate scalable MOSFET. 

7.2 Recommendations 

A major difficulty in fabricating the dual-gated devices using CLSEG arose from 

the fact that the bottom gate was not recessed. Using a recessed bottom gate would 

ensure a planar growth surface for CLSEG and EL0 and would significantly ease the 

process development. However, the current mask design could not be used to fabricate 

the recessed structure. Consequently future research on dual-gated devices should 

incorporate recessed bottom gate for improved material quality as well as ease of 

fabrication. 

A second major drawback of the dual-gated devices was the fact the top and 

bottom devices in the dual-gated structure were not symmetrical. The bottom gate oxide 

was always grown thicker than the top gate oxide, and to be absolutely certain that the 

oxide didn't degrade under the adverse selective epitaxy conditions, the oxide was made 

1500A thick. In addition, there was a lot of arsenic out-diffusion from the bottom poly 

gate which pushed the threshold voltage of the bottom device higher than that of the top 

gate. In order to counter both these problems, further investigations must Ix made on the 

possibility of using alternate dielectrics such as nitrided oxides or oxidelnitride stacks. 

Although it was the original intent to study the interface traps at the front and 

back interfaces of the EL0 devices and compare them to the SIMOX devices, difficulties 



encountered in processing precluded the fabrication of the five-terminal devices that 

could be used for making charge-pumping measurements. Alternate schemes to measure 

the front and back interface state densities must be exploited. The prcxess flow for 

fabricating the SO1 MOSFETs must be modified so that photo-resist need not be used as 

an implant mask. Moreover, the mesa-isolation process must be optimized for making 

better quality NMOS devices with sharp subthreshold slopes. In this regard, the optimum 

mask design for E L 0  and CLSEG would be to first grow the epitaxy material from a long 

seedhole and then segment this epitaxial region into requisite active areas. This is 

opposed to the mask design which was adopted in the current research in which each 

device had its own respective seedhole. 

The generation lifetime measurement technique must be applied to both the E L 0  

and CLSEG material to determine the lifetimes in the selective epitaxy material and then 

compare them to those in the SIMOX material. The modified linear sweep method that 

incorporates a feedback loop can be applied in cases where the ramp rate is very small. 

This would speed up the data acquisition process. 

Finally, the fully self-aligned process detailed in the thesis can he attempted to 

achieve the ultimate scalable MOSFET structure. 



APPENDICES 



Appendix A - Run Sheets 

RUN SHEET 
DUAL-GATE SO1 MOSFET USING 

Em 

Process Steps Daterrime 

1. Start with p-type <100> wafers. Number of wafers 
Process run nomenclature 
Resistivity 

2. Degrease the wafers 
(a) TCA - ultrasonic - 10 mins 
(b) ACE - ultrasonic - 10 mins 
(c) METH - ultrasonic - 10 mins 
(d) Dl Rinse - 5mins 

3. PIRANHA clean. 2:l :: H 2 Q  : H2SO4 - 10mins 
Dl Rinse - 10 mins 

4. FIELD OXIDATION - Tube#4 - H2 Burn - 200081 
Ti me Temp 
Color Approx. Thickness 
Comments: 

5. PIRANHA clean - 2: 1 :: H202:H2S04 - 10 mins 
DI Rinse - 10 mins 

(unless the process is continued immedialtely after field oxidation) 

6. Polysilicon deposition for Gatel. (300081) 
Temp : 550°C Time: Pressure: 
Gas Flow rates : SiH4 
Comments: 

7. Polysilicon Doping. Use Spin-on dopant for Arsenic 
Prebake at 150 "C for 20 mins. Wait for the wafer to cool. 
Spin the dopant on at l000rpm for 20 secs. Bake at 150 "C for 
15 mins. Introduce slowly into the furnace at 1100 "C and anneal 
for 1 hour. Wait for the wafers to cool completely before dipping 
in BHF. 
P a m e t e r s  : 
Sheet Resistivity : 

8. PHOTOLITHOGRAPHY # 1 
(a) Expose wafers to HMDS - 5 mins 
(b) Spin positive photoresist Speed: 4000rpm, Time: 40 secs 
(c) Prebake Temp: 95°C Time: 30 mins 
(d) Expose Time: 7.5 secs POLY GATE 1 MASK 
(e) Develop in A2351 1:5 
(f)Postbake Temp: 120°C Time: 20mins 

9. M E  Material etched: Oxide, Gas used: Freon 115, 



Time: , Power: , Flow: 
Etch Rate: 
Comments: 

10. Remove the positive photoresist with acetone. 
TCA, ACE, METH, DI clean 

1 1. PIRANHA clean - 2: 1 :: H202:H2S04 - 10 mins 
DI Rinse - 10 mins 

12. Remove surface oxide with a BHF dip. 

13. Bottom Gate Oxidation. Tube#l, Dry/Wet Oxide. (1500 A) 
Temperature: , Time : , a :  
Color : 

Comments: 

14. PIRANHA Clean. 2: 1 :: H2a :  H2S04 - 10 mins 
DI Rinse - 10 mins 
(unless continuing the process directly after gate oxidation) 

15. PHOTOLITHOGRAPHY # 2 
(a) Expose wafers to HMDS 
(b) Spin AZ 1350 Positive Resist on. 

Speed: 4400 rpm, Time: 40secs 
(c) Prebake. Temp: 95°C Time : 30 mins 
(d) Expose Time : 7.5 secs SEED HOLE MASK 
(e) AZ 351: Hz0 :: 1:s Develop for 40 secs. Agitate. 
( f )  Postbake. Temp: 120°C. Time: 20 mins 

16. Wet etch Material Etched. Oxide, BHF 
Etch Rate: 
Comments: 

17. PIRANHA Clean. 2: 1 : : H2Q:H2S04 - 10 mins 
DI Rinse - 10 mins 

18. BHF dip to clear seed hole (15-20 secs) Agitate 

19. PIRANHA Clean. 2: 1 :: H2a:H2S04 - 10 mins 
DI Rinse - 10 mins 
Extrcmely important step. Make sure the wafers are thoroughly 
cleaned and blow dried. 

.................................................................................. 
EPITAXY STEP. 

Growth Length: 13 microns. Growth Rate: 
Temp: , Pressure: 
Time: 
Comments: Determine the n-type doping based on threshold 
requirements. 

2 1. Pol ysilicon deposition for the etch stop. Thickness 3000A 



Temp : 550°C Time: Pressure: 
Gas Flow rates : S i b  
Comments: 

22. Oxidize the polysilicon 2000A 
Temperature: , Time : . ,%: 
Color : 

Comments: 

23. Chemical Mechanical Planarization.Use a final 2355 planarization 
Parameters : 

24. Determine Thickness of the SO1 layer from alpha step measuremenls. 
Thickness: 

At this stage, depending on whether the devices are PMOS or NMOS, there would have to 
be a boron counter-doping to make the channel doping ptype. 

25. Define the active area mask.PHOTOLITH0GRAPHY # 3 
(a) Expose wafers to HMDS 
(b) Spin AZ 1350 Positive Resist on. 

Speed: 4400 rpm, Time: 40secs 
(c) Prebake. Temp: 95°C Time : 30 mins 
(d) Expose Time : 7.5 secs A/A MASK 
(e) AZ 351: H20 :: 1:s Develop for 40 secs. Agitate. 
(0  Postbake. Temp: 120°C, Time: 20 mins 

26. GATE OXIDATION. Tube # 5, Dry oxide, TCA. (550 A) 
Temp: , Time: -02: 
Color: , Thickness: 
Comments: 

27. Polysilicon deposition for Gate2. (4000-45008,) 
Temp : 550°C Time: Pressure: 
Gas Flow rates : S i b  
Comments: 

28. PHOTOLITHOGRAPHY # 4 
(a) Expose wafers to HMDS 
(b) Spin AZ 41 10 Positive Resist on. 

Speed: 4400 rpm, Time: Il(>secs 
(c) Prebake. Temp: 90°C Time : 30 mins 
(d) Expose Time : 6.5 secs POLY Gate 2 MASK 
(e) AZ 351: H20 :: 1:s Develop for 40 secs. Agitate. 
( 0  Postbake. Temp: 120°C, Time: 20 mins 

36. HE.  Material Etched: Poly, Gas Used: Fr115 
Time: , Power: , Gas Flow: 

37. Remove Photoresist. ACE, METH, DI Rinse 

38. PIRANHA Clean. 2:l :: H2%:H2S04 - 10 mins 



DI Rinse - 10 mins 

39. SourcdDrain Implant for self-aligned process 
Dose: Energy: 

40. Source/Drain Anneal 
Temp: , Time: ,@: 
Color: , Thickness: 
Comments: 

41. PHOTOLITHOGRAPHY # 5 
(a) Expose wafers to HMDS 
(b) Spin AZ 41 10 Positive Resist on. 

Speed: 4400 rpm, Time: 40secs 
(c) Prebake. Temp: 90°C Time : 30 mins 
(d) Expose Time : 6.5 secs CONTACT MASK 
(e) AZ 35 1: H20 :: 1:5 Develop for 40 s e a .  Agitate. 
(0 Postbake. Temp: 120°C, Time: 20 mins 

42. BHF dip. 

43. PHCYI'OLITHOGRAPHY # 6 
(a) Expose wafers to HMDS 
(b) Spin AZ 41 10 Positive Resist on. 

Speed: 4400 rpm, Time: 40secs 
(c) Prebake. Temp: 90°C Time : 30 mins 
(d) Expose Time : 6.5 secs Metalization MASK 
(e) AZ 351: H20 :: 1:s Develop for 40 secs. Agitate. 
(0 Postbake. Temp: 120°C, Time: 20 mins 

44. METALLIZATION. 
Parameters: pp - 
Thickness: 

45. Lift-Off metal. Agitate in Acetone. 

46. Remove Photoresist. ACE, METH, DI Rinse. 

47. Metallization Anneal. Tube # 8. 
Temp: , Time: 

48. ELECTRICAL TESTING. 

RUN SHEET 
DUAL-GATE SO1 MOSFET USING 

CLSEG 

Follow steps detailed in the EL0 process till step # 17 

18. Oxidation to protect seed region (20081) 
Temp: 1000 "C, Time: 8 mins, Dry Q 

19. Amorphous silicon deposition. (300081) SiH4: 
Temp: 550°C, Time: , Pressure: , 



Comments: 

20. PHOTOLITHOGRAPHY # 3 
(a) Expose wafers to HMDS 
(b) Spin AZ 1350 Positive Resist on. 

Speed: 4400 rpm, Time: 40secs 
(c) Prebake. Temp: 95°C Time : 30 mins 
(d) Expose Time : 7.5 secs AIA MASK 
(e) AZ 351: H20 :: 1:s Develop for 40 secs. Agitate. 
(f) Postbake. Temp: 120°C, Time: 20 mins 

21. RIE. Material Etched: Polysilicon, Gas : Freon 115 
Time , Power: , Gas Flow: 
Etch Rate: 
Comments: Etch to the field oxide. Remember thc color ol' the 

field oxide after the last oxidation. 

22. Remove Photoresist. ACE, METH, DI Rinse 

23. PIRANHA Clean. 2: 1 :: H29:H2S04 - 10 mins 
DI Rinse - 10 mins 

24. OXIDATION to convert the A:Si to Poly. Tube # 1, Wet Oxide (1000 .A) 
Time : , Temp: 9 :  
Comments: 

25. NITRIDATION. Deposit Cavity support nitride. (3000 %i) 
Temp : 800"C, Time : , SiH2C12: , NH3: -- 

Color: 
Comments: 

26. PHOTOLITHOGRAPHY # 4 
(a) Expose wafers to HMDS 
(b) Spin AZ 1350 Positive Resist on. 

Speed: 4400 rpm, Time: 40secs 
(c) Prebake. Temp: 95°C Time : 30 mins 
(d) Expose Time : 7.5 secs VIA HOLE MASK 
(e) AZ 351: H20 :: 1:5 Develop for 40 s e a .  Agitate. 
(f) Postbake. Temp: 120°C, Time: 20 mins 

27. RIE. Material Etched: Nitride, Gas: SF6 
Time , Power: , Gas Flow: 
Etch Rate: 

28. Remove Photoresist. ACE, METH, DI Rinse 

29. PIRANHA Clean. 2: 1 :: H2Q:H2S04 - 10 mins 
DI Rinse - 10 mins 

30. BHF Dip to clear surface oxide 

3 1. EDP Etch to clear the polysilicon and open the cavity 
EDP composition 
Temp: , Time: , Etch Rate: 
Comments: 



32. PIRANHA Clean. 2: 1 :: H2a:H2S04 - 10 mins 
DI Rinse - 10 mins 

33. BHF dip to clear seed hole (200 A, 15-20 secs) Ultrasonic 

34. PIRANHA Clean. 2: 1 :: H2@:H2S04 - 10 mins 
DI Rinse - 10 mins 
Extremely important step. Make sure the wafers are thoroughly 
cleaned and blow dried. 

35. SILICON EPITAXY STEP. 
Growth Length: 13 microns. Growth Rate: 
Temp: , Pressure: 
Time: 
Comments: Determine the n-type doping based on threshold 
requirements. 

36. Chemical Mechanical Planarization. 
Parameters : 

37. Remove nitride. Boil in Hot Phosphoric Acid. 
Time: , Temp: 
Remove Oxide. BHF Dip. 
Time: , Temp: 

38. Determine Thickness of the SO1 layer from alpha step measurements. 
Thickness: 

At this stage, depending on whether the devices are PMOS or NMOS, there would have to 
be a boron-counter-dop& to make the channel doping ptype. 

39. GATE OXIDATION. Tube # 5, Dry oxide, TCA. (550 A) 
Temp: , Time: , a :  
Color: , Thickness: 
Comments: 

40. POLY SILICON DEPOSITION. Gate 2. 
Temp: 550, Time: , Pressure: 
Comments: 

41. Polysilicon Doping. IF NECESSARY 
Parameters: 
Sheet Resistivity: 

42. PHOTOLITHOGRAPHY # 5 
(a) Expose wafers to HMDS 
(b) Spin AZ 1350 Positive Resist on. 

Speed: 4400 rpm , Time: 4Qsecs 
(c) Prebake. Temp: 95°C Time : 30 mins 
(d) Expose Time : 7.5 secs POLY Gate 2 MASK 
(e) AZ 351: H20 :: 1:5 Develop for 40 secs. Agitate. 
(f) Postbake. Temp: 120°C, Time: 20 mins 



43. Poly Etch. Remove the excess polysilicon using a wet etch. Could also 
use the RIE. - 

44. Remove Photoresist. ACE, METH, DI Rinse 

45. PIRANHA Clean. 2: 1 :: Hz@:HzS04 - 10 mins 
Dl Rinse - 10 mins 

---------------------------------------------------.--- ---------------------------------------------------.--- 
AT THIS TIME THERE IS A CHOICE OF TWO PROCESSES. ONE IS A 7-MASK 
PROCESS WHICH COLLD YIELD PMOS DEVICES (ie dual-gated PM:OSFETs). BUT 
IT WOULD YIELD NOTHING ELSE. THE OTHER IS A &MASK PROCESS WHICH 
WOULD YIELD NMOS DEVICES, SUBSTRATE MOSFETS, DIODES, GATE- 
CONTROLLED DIODES AND SUBSTRATE CONTACTED DEVICES. 

46. Implantation for SourceDrain regions 
Parameters: 

47. OXIDATIONIANNEAL. Tube # 4. Hz- bum. ( 1200A) 
Time: , Temp: , Color: 

Comments: 

48. PHOTOLITHOGRAPHY # 6 
(a) Expose wafers to HMDS 
(b) Spin AZ 1350 Positive Resist on. 

Speed: 4400 rpm, Time: 40secs 
(c) Prebake. Temp: 95°C Time : 30 mins 
(d) Expose Time : 7.5 secs CONTACT MASK 
(e) AZ 351: Hz0 :: 1:s Develop for 40 secs. Agitate. 
(f) Postbake. Temp: 120°C, Time: 20 mins 

49. BHF dip. 

50. METALLIZATION. 
Parameters: - 
Thickness: 

5 1. PHOTOLITHOGRAPHY # 7 
(a) Expose wafers to HMDS 
(b) Spin AZ 1350 Positive Resist on. 

Speed: 4400 rpm, Time: 40secs 
(c) Prebake. Temp: 95°C Time : 30 mins 
(d) Expose Time : 7.5 secs Mettization MASK 
(e) AZ 351: Hz0 :: 1:s Develop for 40 secs. Agitate. 
(f) Postbake. Temp: 120°C, Time: 20 mins 

52. Lift-Off metal. Agitate in Acetone. 

53. Remove Photoresist. ACE, METH, DI hnse. 

55. Metallization Anneal. Tube # 8. 
Temp: , Time: 

56. ELECTRICALTESTING. 



Appendix B - Layout and sizes of the different SO1 structures 

The following figures shows the layout and the widths of the four different devices used 

in the test mask set. 

W = 75 microns 
W = 90 mi corns 

microns 

microns 

Figure B. 1 Layout and sizes of the different SO1 structures 
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