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Abstract

We compute explicit orthonormal bases for functions invariant under the rotational symmetries of
a Platonic solid. Each function in the basis is a linear combination of spherical harmonics. For
each symmetry (icosahedral, octahedral, tetrahedral) the calculation has three steps: First derive
abilinear equation for the coefficients by comparing the expansion of asymmetrized delta function
in both spherical harmonics and the symmetric harmonics. The equation is parameterized by the
location (g, ¢o) Of the delta function and must be satisfied for all locations. Second, express the
dependence on the deltafunction location in a Fourier (¢o) and Taylor (6p) series and thereby de-
rive a new system of bilinear equations by comparing selected coefficients. Third, derive a recursive
solution of the new system and explicitly solve the recursion with the aid of symbolic computation.
The results for the icosahedral case are important for structural studies of small spherical viruses.

Key words:: spherical harmonics; rotational symmetries, finite; Platonic solids, icosahedron, dodec-
ahedron, octahedron, cube, tetrahedron.
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1 Introduction

Spherical harmonics are a complete orthonormal basis for smooth functions on the sphere. |f,
however, the function is required to have a symmetry then spherical harmonics are not convenient
because the symmetry implies complicated relationships between the weights i.n the expansion of
the function as a weighted sum of spherical harmonics. In particular, we are interested in functions
that are required to exhibit the symmetries of the icosahedron. This group plays a prominent,
role in at least three problems: the structure of small spherical viruses [13], fullerenes [10], and
quasicrystals [3]. Therefore we would like to determine a complete orthonormal basis for smooth
icosahedrally-symmetric functions on the sphere. Since this is a subspace of srnooth functions on
the sphere and because so much is known about spherical harmonics, it is natural to compute each
element in the desired basis as a linear combination of spherical harmonics. Though we call these
functions icosahedral harmonics, thisterminology issomewhat different than that used for spherical
harmonics. In particular, only the lowest order spherical harmonic actually has the symmetry of
the sphere (invariant under any rotation around any axis) while every icosahedral harmonic has the
symmetry of the icosahedron (invariant under each of 60 different rotations described in Fact 3).

When computing an icosahedral harmonic as alinear combination of spherical harmonics, the
only task is to determine the coefficients in the linear combination. There has been extensive work
on this problem [1, 2, 3, 6, 7, 9, 12, 14, 15] [4, A. Klug cited on p. 413]. One of the more complete
treatmentsis due to La Porte [12], who derived explicit expressions for icosahedral harmonics up to
order 21. To the best of our knowledge, none of the existing literature describes a general explicit
expression for icosahedral harmonics of arbitrary order. In the remainder of this paper we derive
such an expression by a novel method, specifically, by equating the expansions of an icosahedrally
symmetric deltafunction in spherical harmonics and icosahedral harmonics. Our motivation for the
calculation was to derive icosahedral harmonicsfor use in viral structure problems. However, the
same technique can be applied to determine general explicit expressions for tetrahedral harmonics
and octahedral harmonics and we also describe these simpler calculations.

2 The Relationship Between |cosahedral and Spheriical Harmon-
ics

Theorem 1 Let h(8,¢) be invariant under a rotation R. Then the real and #maginary parts of A
are separately invariant under the rotation R.

Proof: See Appendix A O
Let ¥7,.(8, ¢) be spherical harmonics (we use the conventions of Jackson [8]) indexed by ! and
m. It is well known [8, Eq. 3.53] that

Yi,m (8, ) = Nim Pim(cos8)e™? (1)
where P, ,.(z) are the associated Legendre functions [8, Eq. 3.49] and

21+ 1 (1 - m)!

ar I+ m)l

Nl,m =

Spherical harmonics are closely related to rotations. Let R be a rotation of three-dimensiona.l
space described in terms of the Euler angles a, #,v and having inverse R~!. Let Og be the
corresponding rotation in function space: Og[f(Z)] = f(R™(7)).



Theorem 2 Any rotational operation on a spherical harmonic Y}, (6, ¢) will yield a linear combi-
nation of spherical harmonics of only the same I, that is,

OR[Y1.m (6, ¢)] E Dt mi (e, 8,7)Yime(6, 6)

mi=-1

where the Dy, m' coefficients are Wigner's D coeffictents and have the following expressions:
Dl,m,m’(aa 187 7) =e " adl,m,m'(ﬂ)e_thY

H—m 1)’°\/(1+m _m)l(1+mlJl(1—mlJl
di,m,me(B) = Z (I—m' = k)I(l+ m = k)l(m' — m T £)l!

(COS é)21+m—m’—2k(_ sin g)m'—m+2k

Proof: See Ref. [16]. |

Theorem 3 Let f(8, ¢) be invariant under N rotation operators denoted by R; forz=1,...,N.
Let f have spherical harmonic expansion f(8,¢) = S22, S b mYim(6,4). Then, for each.
[ =0,1,..., the function f; defined by fi(6,¢) = E;;I._-_lbl,m}/l,m(g;d’) is also invarient under the
R;fori=1,... N.

Proof: See Appendix A O

Our goal is to determine aset of basis functions T,, where

1. T, are a complete orthonormal basis for smooth icosahedrally symmetric functions on the
sphere.

2. T, are real, as allowed by Theorem 1.

3. Each T, is alinear combination of Y, ,, for fixed I, as allowed by Theorem 3. In particular,
assume that there are N; icosahedral harmonics that are linear combinations of Y, (m =
—!I,...,41), and therefore N; < 21t 1, and denote them asT),(0,¢) withn=0,... N, - 1L

+1
Tl,n(g, d’) = Z bl,n,my},m(gyd)) (2)

m=—I

The orthanormality condition is

[ T8, 9)T00(6,6)d2 = 8111810 (3)

where the complex conjugation is optional since the T; , are real and d2 = sinfdfd¢ in spherical
coordinates. The task of this paper isto find the b, , ,, coefficients in Eq. 2. For each { = 0,1, ...
there are N; sets of 21+ 1 coefficients.

La Porte [12] proves the following result regarding N:

Theorem 4 (LaPorte[12]) For I even, the number N; (denoted by N{®¥®™ ) satisfies the relation-
ship

1 Eoo (even)
(1-=2z8)(1-210) &=

while for { odd, the number N, (denoted by N(Odd)) is

even
Nl(Odd) = I( 15 ) 1>15 (4)
0, 0<!

IAITV



The first fact about the b; , ., coefficients can be determined simply from the choice that T; ,
are real and ), (6, ) = (=1)"Y%,. (6, ¢) 8, Eq. 354L

Fact 1 Foreach!=0,1,..,n=0,...,N,and m= -, ..., 4,
bl,n,m = (_l)m T,n,—m
Proof: Since T}, arereal, it follows that

0 = Tinl0,9) = T1o(0,9

= Zblnmyvlmeqs Zblnm}/lmeqs)

m=-1 m=-I
+!
= Z blnm}/lm 0 ¢ Z bl'nm 1 Yl,—m(91¢)
m=-1 m=—I
= Z blnmyvlm 0 d) Z bln m 1 levm(e,(ﬁ)
m=-—I m=-—l
+!
= Z [bl,n,m - T,n,—m(_l)m] }/l,m(e, ¢)
m=-1

Multiply by Y,;",m,(e, #), integrate over solid angles in ¢ and ¢ (do), and use the orthonormality of
the spherical harmonics to obtain (after renaming the indices I' — | and m’ — m) the result that
0= binm — b, _n,(—1)™ as desired. O

The second fact relates the orthonormality of the b; , ., coefficients to the orthonormality of the
Tin:

’

Fact 2 Ti, ( =0,1,.., n=0,...,N;— 1) are orthonormal if and only if

+!
Z bl,n,mb;‘,n’,m = 6n,n'-

m=-{

Proof: First note that Tj, and Ty, are automatically orthonormal for { # I' because Y.. are
orthonormal and 7}, and Ty, are constructed from Y;,, for m = -/ ..., 4+l and Yy, for m =
=, ..., 4+l respectively. So it remainsonly to consider orthonormality of the 7} , functions within
a fixed I. The equivalence between orthonormality of the 1;, functions within a fixed ! and the
orthonormality of the b, , , coefficients within afixed [ follows from the following equalities:

+!
/I:Z bl,n,m}/l,m(eaqs)

[ 7.0, 6)Ti,0(6,9)40

m=-—I m/=-1

* 4
Z bl,n’,m’Y'l,m’(ea ¢) dQ

+1 +1

= Z Z blnmblnm/}/lmeqsmm(e ¢)

m=-lm'=-1

+H 4l

= Z Z blnmbl n’,m’ém,m’

m=—=I{m'=—|

+!
= Z b?,n,mbl,n',m

m=—|{



3 The Approach for Computing b, m

Many authors compute the b, , coefficients based on Theorem 2. More specificaly, Theorem 2

implies that
+

bl,n,m = Z Dl,m,m’(a, ,6; 7)b1,n,m’ (5)
m!=-1
where D is the Wigner’s matrix associated with any one of the 60 rotational symmetries of the
icosahedron. Study of Eq. 5 was successful in obtaining a few low-order icosahedral harmonics.
however, due to the relatively complicated expression of the Wigner coefficients;, it was not able to
give a general expression for the b; ,, ., coefficients for any given order /.

In this paper we adopt a different approach. Specifically, we express an icosahedrally symmetric
function in terms of both spherical harmonics ¥ (8, ¢) and the unknown icosahedral harmonics
Ti.(8,¢) and then, by comparing the expansion coefficients, we extract the b; . » coefficients.
The natural choice for the function is the icosahedrally symmetric delta function because a delta
function contains finite components at all spatial frequencies and therefore the expansion of the
icosahedrally symmetric deltafunction will involve all of the Ti,,. In more detail, the plan has the
following steps:

1. Express an icosahedrally symmetric delta function in terms of ¥;.,(6,¢) and in terms of
Tin(6, ¢).

2. Equate the two expansions.

3. From the resulting equality extract a bilinear equation for the b;,, ,, coefficients where the
equation is parameterized by the location on the sphere, denoted by (6o, ¢p), Of the delta
function. This equation must be satisfied for any choice of (6, ¢o).

4. Express both sides of the bilinear equation in a Fourier seriesin ¢o and a Taylor series in 6y
which gives an equality between two doublely-infinite sums. Corresponding coefficientsin the
two sums must be equal.

5. By equating corresponding coefficients of Bée"k‘f’o for certain (j k), derive a second system of
bilinear equations for the b, ., ., coefficients.

6. Derive a recursive solution for the second set of bilinear equations.

7. With theaid of Mathematica, solvetherecursionsto giveexact valuesfor theb ,, ,, coefficients.

4 The Fundamental Bilinear Equation for b,

For our concrete cal culations, we choose the coordinate system (Figure 1) used by Altmann [1] and
La Porte [12] in which the > axes passes through two opposite vertices and the xz plane includes
one edge of the icosahedron. Let (6o, ¢o) be the (arbitrary) spherical coordinates: of a deltafunction
within the first asymmetric unit. Let {(6,¢x) : kK= 1,2,...,59} be spherical coordinates of delta.
functions in the remaining 59 asymmetric units generated by applying rotations in the icosahedral
group. The locations of these additional 59 delta functions are given by Fact 3:




Figure 1: An icosahedron and 3 of its axes of rotational symmetry. One axis of each type of
rotational symmetry — 5-fold, 3-fold, and 2-fold—is shown.

Fact 3 As a function of the parameters 6o and ¢, the 60 symmetry-related positions on the unit
sphere are:

4
27
{(Ox, 1) : k=0,1,...,59} = {(00,¢k):k:0,1,...,4}U(U{(7n,an+k?):k:O,l,...,4})
n=0
4 2
U(U{(ﬂ'—'yn,ﬂ—an—f-kg) tk=0,1,...,4) | {(m— 00,7~ ¢¢) : k=10,1,...,4}
n=0
where ¢k, vk, and «y are related to 6y and ¢¢ by
2m
dr = ¢O+k?
cosyy = cosfcosfotsinBsin g cosdy
sinap = —3n%SNe oy (6)
SIN Yk
and @ = arctan 2.
Proof: Use the geometric relations of the icosahedron. a

Explicitly, the icosahedral deltafunction is
1 59
A(bo, ¢0;0,¢) = 0 Z 6(cos@ — cosbx)6(¢d — dk)
k=0

where §(z) isthe usual Dirac deltafunction, and (8, ¢x) are locations of the delta functions obeying
icosahedral symmetry. Obviously,

[ A0, 60:0, 6)d5%4 = 1.

The following fact describes the relationship between A and the T »:

5




Fact 4 The functions T}, (1=0,1,...,,n=0,...,N;) are a complete orthonormal basis for smooth
icosahedrally-symmetric functions on the sphere ¢f and only if

co Ni—1
A(6o, $0;6,6) =D D Tin(00, $0)Tin(8, $)- (7)
1=0 n=0
Proof: First assume that 7;, are a complete orthonormal basis. Eq. 7 follours from the follo -

ing calculations: Let f(6,+) be a smooth icosahedrally-symmetric function on the sphere. By
completeness it follows that

oo Np=1
=>. 2 finTin(6,9) (8)
1=0 n=0
and by orthonormality that
fin= [ Ti,(6,)£6, 6)d02. ©)

Use Eg. 9in Eq. 8 to get

50.9) = Zi [ 708 )18 32 Tinis. )
2

=0 n=0

=/ [Z S 1000, 610 ¢)} £(8, ¢)de

which implies that
oo Ni—1

A, ¢50,8) =3 3 Tra(8, ) T1n(6, 9)

=0 n=0
from which Eq. 7 follows since the Tj,, are real.
Seconcl, assume the A formula. Let f (4, ¢) be a smooth icosahedrally-symmetric function on
the sphere. The A formulaimplies completeness by the following calculation:

f(6,9)

[aw.60,6)10, a8

/

oo Np—1

)IDD ﬂ.n(e,sﬁm,n(e’,qs')} £0',¢/)d

=0 n=0

s EMs

[ [ Tin(®, 656", )0 Ti(0,9) (10)

2:
._.o

Z nTin(0, 8).

In order to prove that the T; , are orthonormal, apply Eq. 10 to f(6, ¢) = T (6, ¢) to get

oo Nj—

Ton0d) =35 [ 710" 8)T1 006", )30 | T10,9)
1=0 n=0
which implies that
o Ni—1
0= Z [6,_,;6,“”, - /ﬂ,n(e’, STy (0, ¢’)dQ’] Ti..(8, ). (11)

[=0 n=0

e



By construction (Eq. 2) and the orthonormality of Y ,,,, it followsthat [ Tj ,Tir »d§2 = fil"lfnj“,,_n,dﬂ =
61m(n, n’) for some function n. Therefore, Eq. 11 simplifies to

Ni-1
0= 3 [buw = [ a0, 6) 70,00, 610 | 1100, 9).
77,:0

By the linear independence of the 7, for fixed [ it follows that the bracket is zero for each n.

Therefore, the T;,, are orthonormal. O
The following fact is used in the simplification of the the bilinear equation determining the

bj nm coefficients.

Fact 5 For any 8y and ¢,

SNim [Pz,m(COS 00) (eimdm + (_1)1€—im¢0)
m=5p with p € Z

)

59
Y (O, = . L
I;) I ( k ¢k) +22=0 Pl,m(COS“/k) (6 ok +(_1)[€ im k).l

0. il otherwise

where 2 are the integers.

Proof:
59 59 ‘
Z Y'l,m(gk7 ¢k) = Z Nl,mpl,m(COS gk)e"nQSk
k=0 k=0
29 ' .
= N Y [Pin(cos8)e™™ % 4 Pl (cos(n — )™ =%%)]
k=0
29 ) -
= Nl,’m Z [P]ym(COS gk)ezmd)k + P]vm(— cos Bk)(—l)me_""d’k]
k=0
29 ) |
= Nigm 3 |Prn(cosB)e ™ 4+ (= 1) Py n(cos ) (—1) e ™7 ]
k=0
29 . .
= ‘Nl,m Z Pl,m(COS gk) [ezm(bk + (_1)16—1m¢k]
k=0
5 4 . .
= Nl,m Z Z Pz,m(cos 95q+p) [e’md’5q+p + (_1)16—zm¢5q+p]
q=0p=0
5 4 . . . N
= Nl,m Z Z Pl,m(cos 95q) [e‘m(¢5q+1’?) + (_1)16—2m(¢5q+l"5— ]
g=0p=0
5 ) 4 ) o . 4 - o
= Nim Y Pim(cosfs,) [€m0 3 e 4 (—1)lemiméa 5 e
g=0 p=0 =0
- { 5Nim g0 Pim(cos ) [0 4 (=1)lemb2a] | mn = 5y with € Py
0, otherwise
since
4 .
eimp¥E _ 5 M= 5’f with p e 2
= — | 0, otherwise



Finally, the conclusion follows from using Fact 3 in Eq. 12. O

Fact 6 is the fundamental equation for determining the b; ,, ., coefficients:

Fact 6 Thebipm (1=0,1,..5 n=0,...,Ny =1 m= —l,...,+l) coefficients satisfy each d the
following equivalent relationshipsfor arbitrary 8o and ¢q:

Ny— 59

S~ b Tin (60, 60) = = RGHCEY (13)

n=0
N;—1

Z bl,n,mﬂ,n(gm ¢0)

n=0

& Nin [ Plyn(cos o) (7% + (~1)femeo)

} .. m=Spwithpe2
+ Sheg Pn(eonye) (emen + (=1jfeimen )| 4

Q, otherwise
N;—1 +1 1 59
> 2. bimmbiamYim (o, 60) = == > Yim(Ok, 64) (15)
n=0 m/=-] k ]

foranyl=0,1,...and m=—=I,.. . 4+l

Proof: Write A(fo, ¢0; 8, ¢) in terms of both icosahedral harmonics and spherical harmonics and
equate the two expressions:

o Ni—-1 59

M, 1 \
> 2 Tin(60,60)Tin(6, ) = A(60, 60,6, 6) = =5 > D Z Ym0k, $2)Yim(6,6).  (16)
=0 n=0 k=0 Il=0m=-!

Substitute Eqg. 2 into Eq. 16 to obtain

o Ni—1 59 oo
>y Z Tin(80, $0)binm¥im (6, 9) = o5 ZZ Z Vi (8k, $5)Y1.m (0, 9). (17)
I=0 n=0 m=-1 k=01=0m=-!

Multiply Eq. 17 by Y;*, .(8, ¢), integrate over solid anglesin 8 and 4 (dQ 4), and use the orthonor-
mality of the spherica] harmonics to obtain (after renaming the indices I’ — I, m’ — m) Eq. 13.
Use Fact 5 in Eq. 13 to obtain Eq. 14. Use Eg. 2 in Eq. 13 to obtain Eq. 15. O
The purpose of Eqg. 15 is to demonstrate explicitly the bilinear nature of the equations. Notice,
for example, from Eqg. 15, that there is no coupling between different values of /.
From Eq. 14 we immediately obtain the following properties of the b; ,, ., coefficients:

Fact 7 If m 75 D with HE 2 then b[_n,m = 0.

Proof: Multiply Eq. 14 by T7,.(6o, #0), integrate over solid angles in 6o and ¢o (d2), and use the
orthonormality of T;, (Eq. 3) to find (after renaming the index n’ — n) that b;, , = 0 unless
m=5u with g € 2. O

Fact 8 For! even, b isrea. For! odd, bi nm iSimaginary.



Proof: For ! even, the right hand side of Eq. 14 is

1

4
6 Nim [Pl,m(COS fo) cos(meo) + Z Py m(cos yk) cos(mak)]

k=0

which is real while for ! odd, the right hand side of Eq. 14 is

4
—i'é—NI,m [Pz,m(cos bo) sin(m¢o) + Z Py m(cos yx) sin(mak)]
k=0
which is imaginary. Multiply Eq. 14 by T,’jn,(Bo, $0) which is real, integrate over solid anglesin fq
and ¢o (dR?), and use the orthonormality of T, (Eq. 3) to find (after renaming; the index n’ — n)
that bin,m = k where k € R (R is the real numbers) when ! iseven and b; . .» = ik’ where ¥’ € R
when [ is odd. Therefore the conclusion follows. O

Fact 9 binm = bin,—m(—1)*™.

Proof: Facts 1 and 8 imply, for [ even, that b;,m = (—1)™b;n,—m and, for { odd, that by, =

—(=1)™by,n,—m. By combining these two cases, the conclusion follows. O
Fact 10 For ! odd, b;,0 = 0.
Proof: Take m =0 in Fact 9. O

Fact 11
z;'ﬁ';o 148, 0_Nl,mblyn,mPlvm(cos 8) cosm¢ [ even

ﬂ,n(en +) =
Z;;l 2N miby pm Pim(cos 0) sin mé ! odd

Proof: By using Fact 9 and Y;,_m(8,¢) = (=1)™Y%,.(8,¢) [8, EQ. 3.54] to combine the complex
exponential termsin Eqg. 2 we get, for { even, that

+1
Tin(6,¢) = b1 n,oN10P(cosb) + Z 2b1 . Ni,m P m(cos 0) cos mg
m=1
+l1 9
= Z le,mbl.n,mPI,m(COS 6) cos mg.

m=0
The same calculation for [ odd, using also Fact 10, gives the result that

+1
Ti,n(8,0) = Y 2Ny by m Pim(cos 8) sin me.
m=|
O
Fix the value of I. To this point, the only restriction on T;, for n = 0,..., N; — 1 which we
have employed is that the functions must be orthonormal. We now add an additional restriction
in terms of the b;»,m. Here, and throughout the remainder of the paper, let |z] denote the integer
part of X.



Fact 12 The &;, ., coefficients can be chosen so that
t1n =min{m e {0,...,1} : binm # 0}

satisfy
to<tin<...<tin-1 (18)

where the inequalities are strict. In a basis satisfying Eq. 18, it follows that &;, ., = 0 for m < 5n.

Proof: We need only consider m = 5 for £ =0,..., 11/51 by Facts7 and 9. Construct the matrix

bio,0 bos 0 bioyissgs

bin-10 bin—1s o0 bin_a,iys)s

which is full rank (rank N;) because the b, , ., are orthonormal (Fact 2). Determine the transfor-
mation to an intermediate basis which satisfies Eqg. 18 by applying Gaussian elimination. However,
the intermediate basis need not be an orthonormal basis. Therefore, apply Gram-Schmidt orthog-
onalization, starting with the N; th row, to transform to an orthonormal basis while still satisfying
Eq. 18. Thefina claim (i.e., b;,.m = 0 for m < 5n) follows from the strict inequalities and Fact 7.
O

We now modify the b;, ., notation slightly to incorporate results to this point. First, Facts 9
and 11 imply that the icosahedral harmonics are completely determined by the &, , ., coefficients
for which m > 0. Therefore, 6}'7" is only defined for m > 0 and in the remainder of the paper,
m > 0 and m’ > 0 unless otherwise designated. Second, we absorb the “” that occurs for ! odd
into the definition of 47¢¥ so that 6" is always real (Fact 8). In summary, the new definition,

In,m l,n,m

fori=0,1,..,n=0,...,.Ny-1L,andm=0,...,!I is

new __ bl,n,m; Ie\/en
brm = ibypm, {o0dd

For the remainder of this paper we will use only the new notation and therefore will not include
the superscript "new". The [ odd case will not appear until Fact 18.

The remainder of the calculation of the b, ., ,, coefficients is the same in plan but different in
details for [ even versus ! odd. We will show the ! even case and then state the results for ! odd.

Fact 13 For [ even and m = 5p with g = 0,..., 11/51, the b, coefficients satisfy the following
relationship for arbitrary 6y and ¢q:

{  min(N;—-1,|m/5],|m’/5]) 9

Z Z bl,n,m —Nl,m;blvn,m'Plymv(cos 90) cOos ’In/d)o
m’/=0 n=0 1+ 6m”0
1 4 -
= gNl,m lPI,m(COS fo) cos mgo T Z P (cosyy) COSmakj (19)
k=0

Proof: The current fact is aspecialization of Fact 6. Evaluate Fact 11 at (6, ¢) = (o, ¢0) and apply
Fact 12 to get

+i
2
Tin(b0, $0) = E ¥ ,0N,,m,b,,nym,P,,m,(cos%]cosm'q:,o.
m’=5kn my
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Use this result in the left hand side of Eq. 14 and [ even on the right hand side of Eq. 14 to get

Ni-1 +1 9
b —N mlb nmIP ’ 0 ! ]
E Inm E 1+ 6m’,0 1, In, i,m (COS 0) cosm ¢0

n=0 m/=5n
4 -

1 .
= gNim [PI,m(cos 6o) cos m¢g + E P m(cos i) cos makJ .
k=0

Rewrite the summations using the equality

Ni-1 4 ! min(N;-1,[m'/5])
n=0 m’/=5n m/=0 n=0
to find that
[ min(N;-1,|m’/5]) 9
E E bl,n,mWNl,m'bl,n,m’Pl,m'(cos 85) cosm’ ¢y
m’'=0 n=0 + O0m'0
1 4
= gNg,m [Plym(cos bo) cos megg + E P (cos i) cos marg |
k=0
Finally, use Fact 12 applied to the b, ., factor to demonstrate the claim. O

5 Series Expansions

For each {, Eq. 19 represents a system of equations (indexed by m) for the b, .. coefficients which
must be satisfied for any choice of 8y and ¢9. We are not able to solve these systems directly.
Therefore we express the functional dependence on 8y and ¢g of both the right and left hand sides
as infinite series and equate the coefficients of corresponding terms on the right and left hand sides
in order to derive new systems of equations. Possible choices include Fourier series and Taylor
series and, especially for the Taylor series, possible variables include 8¢ and cosfy. Because of the
dependence of v, and o on 8y and ¢g, the calculations are complicated and the choice we were able
to pursue successfully was a Fourier series in ¢o (i.e., e*%) and a Taylor series in 8 (i.e., 8§). In
fact, we are not able to compute all of the coefficientsin the Fourier-Taylor expansion but only the
coefficients of terms like 87*et™™%0 |t turnsout that equating corresponding coefficients of thistype
leads to systems of equations that can be solved recursively. The computation of these coefficients
requires some apparatus which we now develop. Any alternative approach which computes the
coefficients of the terms 6 e**™%0 will lead to the same results.

51 Definitions and Abstract Resultsfor P and Q

Definition 1 Let S= [0,a] x [0,27) be the sphere and S be a vector space over the complex field
of smooth complex-valued functzons on S.

Definition 2 The operator Z from functions f sn S to complex-valued sequencesd on 2 x (Z+u
{0}) is defined by

k 1 27 .
dm = | —ime¢
& k! (efgudgﬁ gﬁ%é £(6, ¢)e dqs)

where Z+ are the nonnegative integers.

form=...,—-1,0,+1,... and k=0,1,.
=0
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These are the coefficients of the Fourier-Taylor expansion.

Definition 3 The operator Z~! from complex-valued sequences d on 2 x (Z1 U {0}) to functions
f in Sis defined by

£(8,¢) = Z Z dm k05e™ for (6,9) € S.

m==00 k=[m|

Notice that k > |m| not k > 0
Definition 4 The function space P is those functions f € S such that if d = Z[f] then f = Z~1[d].
The name “P” comesfrom "Platonic." In the following, ¢c; and ¢, are complex-valued constants.

Property 1 P s a subspace of S, that is, if f1 € P and f, € P then f —ahteofLep It
follows that if N € Z¥ is finite and fr € P for k=1,...,N then f =¥ ¢ fi € P.

Proof: Let ti € P,d1 = Z[fi], f2 € P,d2 = Z[f2], and f = ¢1 fi+c2f2. Then, by direct computatiori
from the definition of Z (Definition 2), d = Z[f] = e1d; + c,d,. Therefore, by direct computation
from the definition of Z~! (Definition 3), Z~![d] = c1 f1 +¢,fo = fsothat fisinP. O

Definition 5 Let f € P withd = Z[f]. The operator Q from P to P s defined by

+00 ,
QU8 8)] = S dpmf™le™?.

m=—0o0

For example, Q[ 1t 8+ 62sin2¢] = 1+ 62sin 24.
The following properties describe important abstract characteristics of functions in 2 and the
result of applying Q.

Property 2 | ff € P then Q[Q[f]] = Q[f].
Proof: This result follows immediately from the definition of Q. O

Property 3 Q is linear: Q[clfl + c;;fgj = Q] T c2Q[f2]. It follows that if N € Z* is finite
and fx € P fork=1,...,N then Q[T cxfi] = i1 cxQLfxl.

Proof: Let,
A6,¢) = S3 db)eke™me (20)
m=-00 k=|m|
R0.4) = 3 3 dphotem. (21)

m=-00 k=|m|
Since P is a subspace (Property 1), c¢1f1 + caf2 € P. Furthermore,

Y (crdily + cad D) O™

m=—00

le[fl(B’ ¢)] + c?Q[fQ(B) ¢)]

Qle1f1(8, 8) + c2f2(0, ¢)]

12



Property 4 If fi EP ad f2 € P, then fif: € P and Q[f1f2] = Q[Q[A1]Q[f2]]- It follows that if
N € Z¥ is finiteand fx € P fork=1,...,N then [[oe; fx EP and Q [Hi\;l fk] =Q [Hszl Q[fk]]-

Proof: See Appendix B. m

Property 5 If g is a polynomial, g(z) = SN o gxz*, and f € P, then g(f) € P and Q[g(f)] =
Qle(QLN]-

Proof: This result is a corollary of Properties 3 and 4. m|
Conjecturel If g is a suitable function and f € P, then g(f) € P and Q[g(f)] = Qla(Qf])]

If g is a polynomial then this conjecture is exactly Property 5. We have not been able to extend
the result to more general functions g. Difficulties include the fact that Q, viewed as a. operator
from P tc P, is not continuous for square integrable functions on the sphere (Appendix C).

Property 6 | ff € P and nola-zero, then 1/f € P. Furthermore, Q[1/f] = Q[1/Q[f]]

Proof: This is a special case of Conjecture 1. O

Property 7 If fi € P, 12 € P, and f2 is nun-zero, then f1/f, € P. Furthermore, Q[f,/f) =
QRlAl/Qlf]l.

Proof That f;/f2 € P followsimmediately from Properties 6 and 4. The remaining claim follows
from the following equalities:

o[2] = ofora[2]] v romes

QA]Q [ H by Property 6

[ 1

QLf]
[Q QANQ [
QI[Q

o ]” by Property 2

[ Q[12 H by Property 4

[Q fz]] by Property 2.

conjecture2 If fy €P fork=1,2,. .., then 3320 fx € P and Q [ 520 fil = 2i2o Q[fx]-

For finite sums this is a combination of Properties 1 and 3. A proof for infinite sums requires
a more precise definition of 7 which will be chosen in a way that is convenient for the proof of
Conjecture 1.

13



5.2 Concrete Resultsfor P and Q

We now describe several concrete properties.
Property 8 The spherical harmonic Y;,,(f, ¢) isin P and
Q[)fl,m(ga ¢)] = Nl,mgl,m9|m|eim¢

I+m)!
Ym = { (;i)m”‘%l—'n)!m! m 20

[Erm m<D0

where

Proof: Since P ,(cos8) isfinite at § = 0 (infact P; (1) = 8m0), it follows that, the Laurent series
around 6 = 0 of P;,(cosf) has no negative powers of 8:

P m(cos8) = E him, 0F

We shall show that Ay, x = 0 for k < |m| and k;m |m| = g1m.
The integral representation (Laplace integral) of the associated Legendre polynomials is [5,
Eq. 8.711-2]

m | 2 .
Pim(cos8) = 2_(1+|'m)./ c_'m¢[cosﬁ+isinﬁcos¢]ld¢
0
"+ m)! Xl: (1) S~k / k
= gi* sin® 6 ¥ cosF wdy.
2r = k

Since
m .
/ e cosFydy = 0 ifk < |m]
0

it follows that

;" ! l : o .
P m(cos8) = 12— ¢ +||m) (k) cos=F gk Slnk8/02 e~ ™Y cosF di. (22)
T k=Im]

Therefore the leading term in P ,(cos8) is g™l hence Y; (8, 4) isin P. Using Eq. 22in

1 o™

himm| = 'm|1aelm|PIm(cosﬁ)

#=0

we find that only the |m|! cos' 8 subterm of the k = |m| term of the summation is non zero when
evaluated at ¢ = 0 because all other terms have factors of the type sin®6 for j > 0. Therefore,

sm 1 2T
b = e UL Yl (57 iy coghml
” 2r |m| 0

gmtiml (1 m)!
B 2 (I = |m|)12lml|m]!
= 9im-
14



Property 9 The function P, ,,(cos @) cos(m¢) isin P and

Q[Pl,m(cos 9) COS(TTLQS)] = gl,melml cos TTL¢
where g;,, is defined in Property 8.

Proof: From Eq. 1 it follows that

1
i

Py (cos ) cos(meg) = Nlmi’R{YI,m(B,qS)}

1 ™
= m[yl,m(ga ¢) + YI,m(ex ¢)]
1

= o im(6:8)+ ()i (6, 9]

and therefore Pj.,(cos @) cos(m¢) € P by Properties 3 and 8. Furthermore,

QUPm(cos0) cos(ms)] = 5 [QVin (8, 6)] + (~1)"QLYi-n (8, 6]

1 ) o
= o i g8 ™™ + (=)™ Ni gt -8l
Nim

1 A
= §9|m|[91,m61m¢ + (=D~

= gl,mﬁlml cos me.
O

Property 10 sin(¢ T @), cos(¢ T @), fsin(¢ T @), 0 cos(¢ + @), and sinfsin(++ @), where ® is
an arbitrary angle, are in P and

Qlsin(¢+@)] = 0
Qleos(¢ + @)] = 1
Q[fsin(¢ + ®)] = 6Osin(¢ + D)
Qb cos(¢ + @) = Bcos(¢p+ D)
Q[sinfsin(¢ + ®)] = 6Osin(¢ + D) (23)

Proof: All claims are elementary calculations, we prove only the third. Since
1 . . 1 . .
Hsin(qS-{- (I)) = (Ze@) fei® + (_Ee—ﬂb) 9€—t¢

it follows that the series has non-zero d,, x termsonly for k = 1and m = £1. Since Q leaves d,,
terms of the form d,, |, it follows that Q leaves both terms and therefore the first conclusion is
verified. O

Property 11 Let m,p be non negative integers, m > p. Let ® be an arbitrary angle. Then
0™ cos™ *(¢ + @) sin’(¢ + @) isin P and

2 gm cosm(¢ T ®), p=2rre z+ u{o}
QIOM cos™P(¢ T @) sin? (¢ + @)] =
21=-m(—1)" g™ sinm(++ @), p=2rt1,re ZYU{0}
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Proof: The case where m = p= 10 is trivial. We assume m > ( in the remainder of the proof.
Using the binomial theorem and the complex exponential representation of sine and cosine we

obtain (¢ = ot )

os" " P(¢p + @) sinP(¢p+ D) = (e + e"”l’)m p(e“" —iw)p

_ 1 "&(m PY i(m-p-2k)¢ 2k
_szp (k)(p)z (l)p)

kl

) Z_I > ( k )<kf)ei(m_%kw”’”(—l)k'.

0 k'
k' < m. It follows that 6™ cos™P(¢ T ®)sin?($ + @)

+

Note that in the summands above, 0 < k
isin P. Furthermore,

Q[gm COSm_p(¢+ (I’) sinp(¢+ (D)] lep Z Z (m P) (k/) Q[em (m—2(k+k")) ¢]( l)kl

It

k=0 k'=
gm
_ Y imu
9m 4P ( }

2" (=1) 0" cosm(¢ +B), p=2r,re€ Z,r>0

21=m(_1)"9m sinm($ +<I>), p=2r+1lreZ,r>0

O
Property 12 Let my, m2 be positive integers. Then the functions indicated below are in P and
Q6™ cosmy(¢ + ®)6™? cos ma(¢ + ®)] = Q™ sinm(¢ + ®)6o™ sinmy(gt ®)]
1
— 56m1+m2 cos(my + my)(¢ + )

Q6™ sinmy (¢ T @)6™2 cosmy(¢ T @) = %emﬁmz sin(m; T my)(¢ T @),

Proof: All three claims are elementary calculations, we prove only the first. Since

871 cos my (¢+P)™? cos my(p+D) = g™ T™2 {% cos [(my + ma)(¢ + @) + %cos [(m1 — mo) (¢ + @\]}

it follows, after expanding the two cosines in terms of complex exponentials, that the functions are
in P and

1
Q0™ cosmy (¢ + ®)0™? cosmy(¢p + D) = 9m1+m2§ cos [(my + m2)(¢ + )]
as claimed. 4
Property 13 The function indicated below isin P and
[ BosSing; N =
Q@ |cos(msin™!( o J = Cp2r QIR cos? ¢ sin?
\/1—(COSB+905IHBCOS¢J) ])zz:O’l‘Z:() g ° ’ 2

where c, , are coefficients defined by

~ - y B oo o
J(z, y) = cos(msin (\/1 my (o prp 5)2)) = ;,gcp’quyq

16



Proof: Since fgSing; and g, cos¢; are both in P, the fact that the function of interest is in P
follows from the properties in Subsection 5.1. We first note that f(z,0) ancd f(0,y) are finite,
hence f (x,y) can be expanded into a series of non-negative powers. Second we note that f (z, y)
is an even function with respect toy, i.e., f(z,y) = f(z,—y), therefore ¢, , = 0 for ¢ odd. Let
X =#0pcos ¢;,y = Opsing;. Then

Q] = QS epaaty?]

p=0r=0

= Q[Z Z ¢p,2-(00 cos ¢;)F (B sin QS]')?"]
p=0r=0

= Z_Z Cp,er[Hé’“" cos? ¢, si n’T #;] by Conjecture 2.
p=0r=0

5.3 Specific Results for P and Q

We first apply the Q operator to several expressions that occur due to the geometry of the icosa-
hedron.

Fact 14 Thefunctions indicated bdow are in P and

Qlcosy;] = cosB+ fosinFcose; (24)
Qsiny;] = Q[\/l - (cosft 6, sin 3 cos¢;)?] (25)
Qlsine;] = Q|- fosing; } (26)

1 - (cos @t fpsinBcosg;)?
. _ [ .1 905“1¢j \)) ' (27
Q[cos maj] Q -cos(msm (\/1_ i T Josinfoosg)? J )

Proof: That the functions are in P follows from the properties in Subsection 5.1. Eq. 24 follows by
applying Properties 3 and 10 to the definition of cos+y; in Fact 3. Eq. 25 is a consequence of the
following calculation:

Qfsiny;] = Q[y/1 - cos®y;]
- Q[\/l — (Q[cos ¥;])?] by Conjecture 1

= Q[y/1~ (cos B + Bosin § cos ¢;)?] by Eq. 24.

Eqg. 26 is a consequence of the following cal culation:

_Q[sinfpsing;]

- by Property 7 applied to Eq. 6
Qsin ;]

Qsine;] = Q[

fosin g,

= Q l:— Q[\/i — (cos B F 6o sin 8 cos ¢;)?]

] by Egs. 23 and 25
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_ 0 (_ Qo sin ¢;]
G Ger s+ tomn e
_ Q _ Bosing; ‘ by Property 7
1- (Cosﬁ + 90 SinﬁC05¢j)2

Finally, Eq. 27 is a consequence of the following cal culation:

Qlcosma;] = Q[cosmsin-' sina;]
= Qcosmsin-' Q[sinq;]] by Conjecture 1
= Q |[cos(msin~! (Q - boSing, J| by Eq. 26
I /1 (cosf + Bgsin Bcos ¢;)?

= Q cos(msin_l(

Bosing;
\/1— (cos@ t 8ysin 3 cosg;

)| by Conjecture 1
)2

Being equipped with the above tools, we return to Eq. 19.

Fact 15 The left hand side of Eq. 19 isin P. A follows that the right hand side of EQ. 19 is also
inp.

Proof: By- Properties 3 and 9 it follows that the left hand side of Eq. 19 isin P as a function of

(90)¢0)' ]
The key result isthe following fact:

Fact 16 For1=10,2,4,... and m=5p (0 < m < +!),

L min(N-Llm/sLm'/s)

> > bl mbinm N g1 05 cos m'g
m!'=0 n=0 1+ 5’"”0
1 o , Ql—m’ m/ 1 (%) Lmlz_k.] ,
= ENg’m [glymﬁ(’)” cos meg + Z 65" 5 cos m'¢01— Z —'Pl,m(cos B) sin* 3 z Cont—k—2r2r(— 1)
=0 + 60'"’/ k=0 k! r=0
n
mf=5u’
where N
k d Pl,m
Pz(,nf(r) = 46k (z).

Proof: Apply the Q operator to the left and right hand sides of Eq. 19. For the left hand side we
find:

min(N,—1,|m/5],|m'/5]) 9

!
Q> > bl,ﬂ,mWNl,m’bl,n,m’Pl,m’(cos fo) cos m’ o]
m’/=0 n=0 + Om/,0
| min(N=1,[m /5], m'/5)) )

= 13
m’'=0
i min(N{—~1,{m/5],{m'/5])

-
= 2
m’=0

bz,n,ml iy Nt bt nmt QL Pims(cos Bg) cosm’dg] by Property 3
m',0

n=0

2

binm'blnmNim g m:%n’ cosm’¢g by Property 9
S THog et
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For the right hand side we find:

QL Nign [ Pin(c0s o) cos mao + i(:)Pl,m(cos i) cosmas ]|
= éNl.m Q[P m(cosbp) cos meo] + JX_(:)Q Py m(cosy;) cos maJ]] by Property 3
= éNl,m Q[P1,m(cos o) cos mepo] + JX_(:)Q [P1.m(cos ¥;)]Q[cos maj]]] by Property 4
= %Nl,m q1, mB'  cos mego + zE)Q Q[P1,m(cos n)]Q[cosmaJ]]] by Property 9
iz
- % Nim| a mBI cos mgo + ;)Q [Py (Q[cos 7;])]Q[cos maj]]] by Conjecture 1
= L [ontlylcos moo + ;0@ LQ g L P8 cos 3)(@leos 7] — cos ﬁ)"] Qleos maj]]]

by the Taylor series expansion of Py, around cos 3

4 [ oo
= lNl,m [g,vmﬁtl)ml cos mep + EQ Q L P (cosﬁ)(ﬁo sin 3 cos ¢;) ] Q]cos maj]H by Eq. 24

6 j=0 o k!
1 Lo T
= ENl’m [gz,m%ml cos meg + E Q E Q [ P (cos B)(fosin B cos ¢;) ] Qcos maj]H by Conjecture 2
7=0 L k=0

1 m
= “Nl,m l:gl,mgl) |COS meg

6
(k) lo) C msi -1 6051n¢j ‘
[EQ[MP (cos 3)(fo sin B cos ¢,;) ]Q[os( sin (\/1_(cosmeosinﬂcoscsj)?))HJ

] 0
by Eq. 27

1
= ENl’m [glymﬁl,ml cos me¢qg

4 E Q [E Q [k' . m(cos B) (8o sin (3 cos ¢;) ] E E cp2r QI 9P+2r cos? ¢; sin®" ¢J]:|]

=0 p=0r=0
by Property 13

1 m
= gvam l:gl,mgtl) 'COS meo

- E Q |:E E E Pl m (cos ) sin ﬂc,, 2» Q@ [(90 cos ¢;) ] Q[ 9p+2r cos” ¢, sin r d)J]”

1=0 k=0p=0r= 0

1
= EN;,m [gl’mﬂ(l,m| cos meg

I 3)3)35> 7 P cos B) sin ey 20Q [@ [(60 cos 67)*] QIGEH cos? g3 sin®” MH

7=0k=0p=07r=0
by Conjecture 2
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4

= l1\’zm[gzmﬁl | cosmdo +ZZZZ P,m(cosﬁ)sm Bep2:Q (0517 cost+P ¢ sin® ¢]”

6 7=0 k=0 p=0 r-_O
by Property 4

1
= —Nim [gz,mﬁl}mi cos Maq

6
4 ZZ ZZ le(cosﬁ smk Bepar

j=0 k=0p= OT—O
by Property 11

1
= éNl'm [ cos Mg

21—(k+p+2r)(_1)r

OFPE2 os(k + p + 2r)@ ]
1+ 6k+p+2r,0 0 ( P ) !

(k) k q|mi=k
Z o5 ( ZCOSm ¢] Zg‘sz(COSﬂ)Sln ﬁ[ijcm' k—2r2r(— 1)]

b0.m! =
m’'=0 0,m k=0 =0
by changing the summation index (from p to m’ = k+ p¥+ 2r) and regrouping the summands

- =N 0™ cos mep T gm's ! 2t-m ( k

giNim [gl,m o Ccosm@o g_: o Dcosm ¢01+60 Z k|sz)(COSﬁ sin” 3 Z Cm!—k—2r,2+(—1)
u'=0 m'!
m/=5u’

4 .
+, _ {4 5cosm'¢y if m' =5y
by jzzg)cosfn 9i = { 0 otherwise
Equating the results for the left and right hand sides and using m > 0 verifies the claim. O

For m’ = 5u' (0 < m’ < +1), equate the coefficient of 2% on both sides of Fact 16 to get
min(N;—1,|m/5],|m'/5]) 9

—} b N »cos m’
1+6m',0 In,m OlnmNm' 3 m ¢0

n=0
rom L=k
Zk_ ) (cos B) sin* 3 E_‘ Cmi—k—2r27(—1)

1-m

+ do,

1
= 5 Nim [6m,m:g1,m cos meg + 5 cos m'¢0

which must hold for 1=0,2,4,.., m=5p (0<m< 4!, and m' = 5" (0 < m' < +lI). Division
of both sides by 1+5 N; m'gl,m' COSM’Pg results in

Fact 17 For | even, m=5u O <m<+l), andm’ =5u (0 <m' <+1),

min(N;—1,|m/5],|m'/5])

bl,n,m’bl,n,m = C'l,m,m’ (28)
n=0
where
Nim 5 x 21-m' I (%) L= 7]
CYl,m,m' = m 6m.m’(1 + 6m’,0) + T Z k—IPI m(COS ﬁ) sin [3 Z% Con/—k—27 2,.( 1)

5.4 The Case of { Odd

The derivation of coefficients for the odd harmonics is similar to that for the even harmonics. The
final expression for determining the b, ,, coefficients is:
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Figure 2: The by, Array For Fixed [. “0” indicates a guaranteed 0 element while “+” indicates a
possibly nonzero element.

Fact 18 Forl odd, m =5pu (0 < m< 41), and m’ = 5’ (ogm'g +1),

min(N;-1,|m/5],[m'/5])

bl,n,m’bl,'n.,m = C'1,111,,77‘/.’ (29)
n=0
where
Nijm 5x 2™ Bl k L3
Climm = 12]\]'1'171’ bm,m + Tgﬁp,m(ms B)sin® 3 TZ:(:) Sm!—k—2r—1,2r41(=1)
and where the s, , coefficients are defined by
y [e <l o}
—sin(msin~! - ) = SpazPy?.
(\/1—(cosﬂ+a:smﬂ)2 ;gj pa

Note that Cj .,  is defined differently for [ even and ! odd.

6 Recursive Solution

Egs. 28 and 29 enable us to obtain the b, coefficients sequentially in n for { even and odd
respectively. The symmetry of the left hand side of Eqgs. 28 and 29 in m’ and m implies that
Clmm' = Cim’.m and that we need only consider m> m’ so Egs. 28 and 29 simplify to

min(N;—1,[m’/5]}
bl,n,m’bl,n,m = Cl,m,m' 0 S m/ S l, ml S m S [ (30)

n=0

In addition, Cj s vanishes for m > { due to the Pz(,frz
Ci,m,m’ vanishes for m’ > 1.

We now describe an algorithm for solving Eq. 30. Based on Fact 7, we are only concerned with
m = 5¢ and m' = 5x’. Fix the value of I. As observed following Fact 6, there is no coupling
between different values of {. Construct a N; x ([1/5] + 1) array of the b, ,, coefficients where
the (i, ;) th element is b;;_15(;—1). Because of Fact 12, this array has the form shown in Figure 2.
Eqg. 30 describes a sum over elements in one (if m = m') or two (if m # m') columns. Suppose

term so the same symmetry implies that
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for(p=0;p <N ;p++){

forl m=10;m<5u; m+=5){

bl,y.,m =90

}

for( ' =0; ' < Nijp'++ K
11 - 1/2
bt st = (Cl,su’,su' D Siairs b2 5u,) (Eq. 30 for m" = m = 5u')
forl p=p'+1; p<=115 st
b s = (Cl,Su’,Su - Zy‘:z_ol bl,n,Su’blanSu) /b1 s, (Eq. 30 for m’ = 5’ and m = 5)

Figure 3: An Algorithm for the Solution of Eq. 30. The control structures are written in the C
programming language.

that the values of b;,,, in rows n = 0 and n = 1 are known. Then the valuesin row n = 2 can be
determined in two steps: First, set m = m’ = 10 for which Eq. 30 becomes

512,0,10 + b12,1,10 + 512,2,10 = Cl,10,10- (31)

Since b 0,10 and b;,10 are known, Eq. 31 can be solved for &; 5 10:

— 2 2
bi2,10 = \/Cl,lo.w = bi0,10— bi1,10

Now that b; 2,10 is known, the remainder of the n = 2 row can be determined by evaluating Eq. 30
for m’ =10 and m = 15, 20, 25, 30. The key is that the upper limit of Eq. 30, which is determined
by m’, does not change as m moves across the row. Specifically, Eq. 30 becomes

b1,0,1061,0,m + b1,1,1061,1,m + b1,2,1001,2,m = Cl,10,m (32)
and b;,0,10, b1,0,m, b1,1,10, b1,1,m, and by 2,10 are known so Eq. 32 can be solved for b2 m:
bi2,m = (Cr10,m — b1,0,10010,m — b1,1,1001,1,m) /b1.2,10

Generalization of this approach leads to the algorithm shown in Figure 3.

The algorithm of Figure 3 will fail if b; ,# 5,» = 0 for any g/ in 0,...N;— 1. The simplest example
of this problem is ! = 15 for which N5 = 1, Ci500 = 0, and Cis55 # 0. The complete set of
equations implied by Eq. 30 isshown in Table 1. The algorithm of Figure 3 would use the (m,m’)
pairs marked by “i” in Table 1 which are indeterminatesince b;500 = 0. However, by using the
(m,m") pairs marked by “§”, the four 4,50, can be determined by a very similar algorithm:

bisp0 = 1/Ci500= Vi=0
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m
0 5 10

15

=0 =0

0 | b3 50="Cls500=0t§ b1500b1505 = Cis,05f b150,0b150,10= Cis,0,10t

m 5 b5 05 = Cis,5,58 b15,0,5b15,0,10 = C15,5,108
10 b%s,o,m = Cis,10,10
15

=0

b15,0,0b15,0,15 = Cis,0,151

bi5,0,5015,0,15 = C155.158

b15,0,10015,0,15 = C15,10,15
b%5,0,15 = C15,15,15

Table 1: Eq. 30 for I = 15.

bisps = 1/Cisss

b15010 = Ciss10/bis05
bis015 = Ciss,15/b150,5

The algorithm of the previous paragraph can be generalized to cases where N; > 1 and there
are multiple zero diagonal elements by taking advantage of Fact 12. Specifically, if the algorithm
determines that b;,,, = 0 for m < t;, then, for any n > 0, it follows that b;,4,m = 0 for
m < t;, + 5. The resulting algorithm is shown in Figure 4. Note two aspects of the algorithm o
Figure 4: First, when a new zero is found by the "while" statement, the diagonal containing: that
zero is immediately set to zero for rows beneath the current row (i.e., for n’ > n:). Second! because
of the zeros, the upper limit on the summations }_,., bﬁn,,m, and Y./ b1 mbinrm is N — 1 rather

than min(N; — 1,|m’'/5]).

In order to execute the algorithm of Figure 4 in exact arithmetic, we have used the Mathe-
matica symbolic computation system. The program for performing these calculations is listed in
Appendix E. The key fact is that Cj . »» can be evaluated for arbitrary {, m, and m’ through

elementary calculations. In order to evaluate P(k)(cos B) = Plf];?(—\/l_g), the following fact is useful.

i,m

Fact 19 P,fg(z), where |z| < 1, can ke expressed in the following form

pk)

i,m

(z) = Ak(x) Pro1,m(2) + Bi(z) Piym(z)
where Ai(z) and By(z) satisfy thefollowing recursive relations:

leAg(z) + (I + m)By(z)
1-—z2

lzBi(z) + (I — m) Ax(x)
-1 4 z2

Aen(z) = Ai(z) +

Bjt1(x) Bi(z) +
with the initialization Ao(z) = 0, Bo(z) = 1.

Proof: Note that for || < 1 ([5, Eq. 8.733-1,2])

d (I+ m)Pi_1 m(z) — Iz P1 ()
dz Pim(z) = 1—-22
d L zPg () - (I = m)P ()
d;vPI_l'm(l) - 1— 22
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for(n=0;n< N ;n++ )

forf m=0;m<5n; mt+ =5){
bl,n,m:0

m =0

for(n=0;n< N ;n++){

, n— 1/2
while( (binm = (Crmtms = Sl B )  )==0 ){
for(n'=n+1l,m=m'4+5;n <N ;n'+4,mt=5){
bl,n’,m =0

}
m+ =35

}

forl m=m'+5;m<=1;,m+=5){
bl,n,m = (Cl,m’,m - EZ’_zlo bl,n’,m'bl,n’,m) /bl,n,m’
m+4+ =5
Figure 4: An Algorithm for the Solution of EQ. 30 in the General Case. The control structures are
written in the C programming language.

Now prove by induction. The claim is obviously true for k = 0. Suppose it is true for k, then

d
PUI(@) = [Ak(2)Pioiym(z) + Bulz) Pim(2)]
= A(@)Pio1m(@) + Ap(2) Pl_y jn(2) + Bip(x) PLm(@) + Br(a) Pl ()
Substitute Eq. 33 and collect terms. That the claim is true for k + 1 follows immediately. O

7 Derivation Of Explicit Forms Of |Icosahedral Harmonics

Tosubstantiate the derivations in the previous sections, in thissection we derive explicit expressions
for those icosahedral harmonics that can be determined from Eq. 30 for m’ = 0 (the so-called "first
set") or m’ = 5 (the so-called "second set"). (Recall that m > m’ always). Notice that the first
and second sets do not correspond to n = 0 and n = 1. For instance, N5 = | so there isonly a
n. = 0 icosahedral harmonic for 1 = 15 but, because b1500 = 0, it is necessary to consider m’ = 51in
Eqg. 30 so the single icosahedral harmonic belongs to the second set.
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In Appendix D we list the coefficients for all icosahedral harmonicsin the range 0 < 1 < 45.
Though our theory and Mathematica software can compute the coefficients exactly, we only tabulate
results to 16 decimal digits of precision in order to save space. Please contact F.C.D. for machine-
readable tables of coefficients and software.

7.1 The First Set Of Icosahedral Harmonics

The first set of icosahedral harmonics is the collection of T;,(8, ¢) for which &,,0 # 0. Specif-
ically, the first set is those icosahedral harmonics that are computed by the b;n.m = (Cipmrm —
o Bl mebint m) /b nms Statement in the algorithm of Figure 4 with n = m’ = 0. From Fact 10
we know that &;,0 = 0 for I odd. Therefore, there are no I-odd icosahedral harmonics in the first
set.
Set m’ = 0in Eq. 28 to get
lg}\';zo [26m,0+ gl—(:)Pl,m(cos B)co o).

’

b1,0,0b1,0m =

Noting g0 = 1,co0 = 1, we obtain

b1 0,0b10,m = %\/ g; rr:;:[ém,o + 5P1,m(“\},5‘)] (34)

Evaluate Eq. 34 at m= 0 to get

oo = g1+ 5Pa( e ). (35)

Evaluation of Eq. 35 shows that b;,00 = 0 for I = 2,4,8,14. Therefore, icosahedral harmonics of
order I = 2,4, 8, 14, if they exist, are not members of the first set and, in fact, Eq. 4 shows that
they do not exist at all. (We have verified that icosahedral harmonics of order { = 2,4,8,14 do
not exist in the first or second set but in order to demonstrate that a harmonic of order { does not
exist at all it is necessary to check through the (I + 1) st set). The first four unnormalized 1-even
icosahedral harmonics, obtained by exact numerical calculations from Eq. 34, are

Tool8,¢) = 1

Ts0(8,¢) = 3960Ps(cos8) — Ps 5(cos6) cos54
Tioo(8,¢) = 896313600P1g0(cos d) T 27360 Py 5(cos 8) cos 54 T Pyg10(cos 8) cos10¢
Tizo(6,¢) = 14250297600 P 0(cosf) — 55440 Pz 5(cos 8) cos54 F Pry 10 cos 8) cos 10¢.

(Division of the stated formula by /4, 3600,/%, 25920000 /1729 x, or 399168000 /595 7 will
normalize Too, T6,0. T10,0, OF Ti2,0 respectively). In Figure 5 we show spherical plots of these
harmonica. The icosahedral symmetry is apparent.

7.2 The Second Set Of Icosahedral Harmonics

The second set of icosahedral harmonics is the collection of T;,(#, ¢) for which &, ,0 = 0, and
bins # 0. Specifically, the second set is those icosahedral harmonics that are computed by the

binm = (C,,m:,m - Z,;lo bl,n:,m:b,’nl‘m> /bin,m Statement in the algorithmof Figure4 withn = 0,1
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(c)

Figure 5: Tcosahedral harmonics. Each stereo pair of plots shows a surface whose distance from the
origin at particular  and ¢ vauesisthe value o ¢, + 11 (¢, ¢) where ¢;, = 2maxg ¢ (|7} (0, d))-
(a) Te,0, (b) Th0,0, and (C) Ti2,0- To0(F, ¢) takes value 1/+v/4r independent of the values of ¢ and ¢

so a plot of this type for Ty shows a sphere.
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and m’ = 5. We now determine the &, ., coefficients. First consider the 1-even icosahedral
harmonics;. Setting m’ =5 in Eq. 28, we obtain

L(5-k)/2)

N qlim k) &
P1i0,5810,m bt 1,5001,m = 12N.5 (Bl 5 1691 Zk' Lm (f)(f) ; Cs—k—2r2-(—1)"
(36)
where, by applying Eq. 34 three times to achieve the second equality,
1
bl bl — (blooblos)(blooblom) (1_5)!(1_ m)!25P1,m(ﬁ)P1,5(7-§) (37)
0,591,0m = 612,0’0 (1+5)'(1+ m)? 6(1+5Pl(ﬁ)) .

Using Eqg. 37 in Eq. 36, the expression for the 1-even second-set icosahedral harmonics was worked
out with the aid of Mathematica and is

. 1 (I—m)!(l+5)!{ (I-5) [2 551, 5Ule(\/‘|P15(\/‘)]} (38)
1,1,50,1,m = (I+ m)!(I = 5)! ™5 (I+ 5)! 1+5P4(ﬁ) N
where
Wm = 768 —[(120 — 561 — 195[% — 51 + 150* + [® + 925m? + 95Im? — 1951*m? — 150°m? + 275m*

+ 25im* )P,,m(%) + V/5(—120 — 881 + 631% + 291° — 31* — I° 4 120m — 32lm — 311%m

+ 2Bm+ 'm — 275m? — 260Im? + 30°m? + 153m? + 275m> — 15Im° — 15I°m°

1
— 25m* — 25Im* + 25m5)P,+1,m(-\/—5)].

Evaluate Eq. 38 at m = 5 to get an expression for b, 1,5- Evaluation of this expression using exact
arithmetic shows that the smallest even { such that ;1 5 # 0isl = 30,i.e., the lowest order second-
set |-even icosahedral harmonic is T50.1(6, +). By further calculations with Mathematica we find
that an unnormalized expression for T3¢ iS

T30.1(0, ¢) 21575737826844783682237777575936000000 Psq 5(cos 8) cos54
2404901042680144820126515200000 Psp,10(cos §) cos10¢
195936300573276856320000 P3g,15(cos 8) cos15¢
7601550560755200 P30 20(cos 8) cos204

7075752000

11

+ 4+ 4+

Ps30,25(cos 0) cos 25¢ + 12251 P3g 30(cos 8) cos 30¢.

(Division of the stated formula by 11587425684543700992000000000000 \/ 280727764277662?43191873906” T
will normalize T30,1). A spherical plot of T50.1(8, ¢) is shown in Figure 6. For comparison, an un-
normalized expression for T390(6, ¢), a member of the first set, is

Taoo(f,4) = 813279038255889216053348786362122240000000 Pso o cos 8)
—  47353003689115160214196322304000000 Pso 5(cos ) cos54
+ 1645439737221580537036800000Psg,10(cos §) cos 10¢
—  55708614976734720000 P3,15(cos8) cos 15¢ T 9702264499200 Pso,20(cos 8) cos 204
— 5407920 P50 25(cos #) c0525¢ T Psg 30(cos8) cos304.
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Figure 6: Icosahedral harmonics. Each stereo pair of plots shows a surface whose distance from the
origin at particular 6 and ¢ valuesisthe value of ¢, +Ti (8, ¢) Where ¢, = 2maxg 4(|T;,.(8, ¢)])-
(a) Tis,0, (b) T30,0, and (c) T301.
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(Division of the stated formula by 41445759345654852911923200000000000000 /21981557397 ||

normalize T30,0). A spherical plot of T30,0(8, ¢) is also shown in Figure 6.
Now let us consider the second-set 1-odd icosahedral harmonics. By setting m’ = 5 and noting
that by nn =0 for ' =1,...,Ny—1and m=10,15,...,]1/5]5 in Eq. 29 we get

1 [I=m)l(1+5)] 1~ 5)!
b1.0,5b1,0,m = _\/ (omM+5) e 3840(——)—'u,,m} (39)

12\ 1+ m)I(1 =5)! (1+5)!
where
5\/3m 1
m = l — — 32 2 1m(—=
w, 768 V5l + m)(26 — 31 — 31> + 10m?)P,_;, (\/5)
+ (24 =501 — 2012 4 58 +1* 4+ 55m? — 15Im? — 5I2m? 4 5m4)1>,,m(—\1[5)].

As before, by setting m = 5 in Eq. 39 we derive an expression for 512,0,5~ The smallest odd [ for
which this. expression is nonzero is{ = 15. Therefore, the lowest order 1-odd second-set icosahedral
harmonic is T15,0(8, ¢), which has the unnormalized expression

Ti5,0(6, ¢) = —36306144000Py5 5(cos 8) sin 5¢ — 62640 Py5 10(cos 8) sin 106 F Py5 15(cos 8) sin 15¢.

(Division of the stated formula by 3919104000000\/21Lg‘?“‘“1 will normalize Ty50). A spherical

plot of Ty:,0(8, ¢) is shown in Figure 6. The nodal lines at ¢ = k2%, which are due to the sin 5m¢
factors (m = 1,2,3), are clear. Tis¢ is, by EQ. 4, the lowest order 1-odd icosahedral harmonic
among any set.

7.3 Symbolic Verification of the Icosahedral Harmonics

Because of technical difficulties in the mathematics, we were unable to prove Conjectures 1 and 2
in the der.vation of a general formulae for icosahedral harmonics. However, we believe that our
use of them is reasonable and the results derived from them are correct.. We have verified explicit.
instances of our calculation in two ways. First, our exact results reproduce the 6-significant)-digit
results for 0 < ! < 30 in Ref. [7]. (For I = 30 Ref. [7] lists only one icosahedral harmonic, which
isour T3g,, in spite of the fact that N3 = 2). Second, for a significant subset of the icosahedral
harmonics we have verified symbolically that the icosahedral harmonic is invariant under each
of the 60 :symmetriesin the icosahedral group. 11 particular, we have verified Too, 76,0, T10,0,
T12,0, and Tys5 9, which are all of the icosahedral harmonics with [ < 15, and we have verified Tzo0
and 7301, which are the lowest-order icosahedral harmonics for which N; > 1. Such symbolic
verification can be performed for any particular icosahedral harmonic by widely-available symbolic
computation software. In the remainder of this subsection we describe the method and procedures
to use Mathematica to verify the symmetries of icosahedral harmonics.

A spherical harmonic Y:,,, when expressed in terms of Cartesian coordinates, is a polynomial
in X,y,z of order I. Therefore, an icosahedral harmonic is also since an icosahedral harmonic is a
linear combination of spherical harmonics of the same order. A rotation of the harmonic is simply
a linear transformation of the coordinates. The transformation will yield a (generally different)
homogeneous polynomial of the same order in the transformed coordinates. The invariance un-
der icosahedral symimetry is verified if, for the 60 transformations in the icosahedral group, the
polynomials before and after the transformation are the same.

There are 2 reasons for using Cartesian rather than spherical coordinates for the verification:
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Ry Ry R, R3 Ry Rs R R7 Rg Ry
1 S S S3 sS4 ST TRs TRs | T71Rs | T-TRg
Ry Ry Ry Ry3 R4 Ris R Rz Ris Rig
SR; S Rg SRy SRs SRy SRio SR SRy SRz SRy
R2o Ry R Ra3 Ray Rys Rae Ror Rss Rag
‘ S—lﬁf5 S_lRe S_1R7 S_ng S—mg S_1R20 S_lel S_1R22 S'-1R23 S_1R24

Table 2: The First 30 Icosahedral Rotationsin Terms of Sand T.

1. The rotational operation is more easily expressed in Cartesian coordinates than spherical
coordinates (alinear transformation versus complicated angular relations).

2. Most symbolic computation software handles polynomials much better than trigonometric
functions, specifically, the manipulation of polynomials (collecting terms, expansion and fac-
torization, etc.) is fairly mechanical and the behavior of the output is predictable, while
the .manipulation of trigonometric functions requires the use of possibly rnany trigonometric
identities and the sequence of their application may greatly change the appearance of the
output, so without the intelligent interference of the user, the symbolic computation software
rarely arrives at the simplest form of a trigonometric expression.

It is not necessary to separately verify the invariance of the icosahedral harmonic under each
of the 60 rotations of the icosahedral group. If a function isinvariant under the unitary operations
S, U and P, which are defined below, then it isinvariant under all GO rotations of the icosahedral
group, because any rotation in the icosahedral group is a product of S,I/, P and their inverses.

The operation Sis a rotation about the z axis (afive-fold axis), USU ! is a rotation about a
different five-fold axis, and P is a quasi spatial reflection operation. In the coordinatesystem used
in this paper (Figure 1), S, U, and P have the following matrix representations:

cos25—’r —sin2—5’r 0
S = sinZ  cosZ 0
0 0 1
cosg 8 §1Hﬁ
U = 0 1 0
—sing 0 €83/
(-1 0 o0
P = 0 1 0
| 0 0 -1

Table 2 tabulates the first 30 rotations of the icosahedral group in termsof Sand T = USI/ 1.
The second 30 rotations are related to the first 30 rotations by

R,’+30—_—‘PR1‘, i:O,l,...,Qg.

In Appendix F, we give a concrete illustration of the needed computations by verifying that
Ts,0 1s invariant under the operation U. The necessary Mathernatica programs are contained in
Appendix (5.
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8 Other Polyhedral Harmonics

Using the same idea and techniques, we can derive the complete orthonormal sets of harmonics
with octebedral and tetrahedral symmetries. Since the cube is dual to the octahedron and the
dodecahedron is dual to the icosahedron, it is not necessary to compute cubic and dodecahedral
harmonics. Below we only outline the calculations and have suppressed the details. Please contact
P.C.D. for machine-readable tables of coefficients and software.

8.1 Octahedral Harmonics

Choose appropriate coordinates such that the spherical coordinates of the vertices of the underlying

octahedrcn are:
7r 37r

{0,0,(5.0, (3,3 (.M. (5, 5. (7.0))

Express the octahedrally symmetric delta function in terms of both spherical harmonics and the
unknown octahedral harmonics. After simplification this gives

e [1is even

Z Z Lnm T g Nlm by n,m Prms(cos 8g) cos m’ ¢

[
m'>04n<m’ bm 0

1
= 3N1 m [ Pr,m(cos Bg) cos mgg + = Z Py m(cosyk) cos mag] m = 4pu
Cward

e [isodd
Z Z bl,n,le,m'bl,n,m’Pl,m’(COS 60) Sinm,¢0

m/’>04n<m/’
3

1 1
= éNl,m[Pz,m(cosé)o)Sinquo + 3 Z Py m(cos yk) Sinmag] m=4p
k=0

where ag, v have the same definitions as in the icosahedral case with 3 = 7/2 and ¢x = ¢o + k.
Using the series expansion techniques, we obtain expressions for determining tht: coefficients by, m:

e [iseven

I

< Nlm 22 m' J
Zl bl,n,m'bl,n,m = —‘—[6m m'(] +6m’0)+ Zk'PI (0) Z Cm/—k— 2r2r( 1)]

an<m’ 6vam' ' k Jm! 2o
e [is odd
. Nim g2-m' ™’ (k) =7 i
Y binmbinm = 2o B + ——P w0 D smpoar_12e41(—1)7]
ar<m! 6Ny, hm! = r=0

where ¢, 4 and s, , are defined by

Z Z cpgtty? = cos(m arcsin(\/%))

p=0¢=0

: . y
Pyl = ~ ¥ 9.
d "> speaPy sm(marcsm(\/l___ﬁ))

p=0g=0
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8.2 Tetrahedral Harmonics

The spherical coordinates of the vertices of the underlying tetrahedron are

(0,0),8,0), (6,5, 6, %)}

where 8 = 7 — arccos%. Because the vertices of the tetrahedron do not have spatial reflection
(x — —x) symmetries, the coefficients b;n,, for tetrahedral harmonics may be complex. It is
more convenient to introduce the dual tetrahedron which has vertex coordinates that are spatial
reflection!; of those of the primal tetrahedron, specifically,

{((r,0),(r=8,7), (= 6,20, (6, )},

so that the coefficients b; , ., can be chosen real (or pure imaginary) as in theicosahedral case. Let,
()(8o, ¢c; 8, $) be the deltafunction associated with the primal tetrahedron and let §(9)(8o, ¢o; 8, ¢)
be the delta function associated with the dual tetrahedron. Further, let

5(+)(90,¢0;97¢) = 5(p)(90,¢0;9,¢)+5(d)(90,¢0;9,¢)
8o, $0:6,6) = 86y, go; 8, $) — 6D (b0, go; 8. B)

Instead of expanding §(7) (6, ¢o; 6, ¢), weexpand 6%) (8, #o; 6, ) in termsof both spherical harmon-
ics and the unknown tetrahedral harmonics. This will give us two independent sets of tetrahedral
harmonics. The master equations for determining the coefficients are:

e [1s even

Z Z In m_lTé__Nl,m’bE:;?m;PIym/(COS 00) cos Tnld)o
m!'>03n<m’
2

= NI m[P1.m(cosbp) cos mgp + Z P m(cos k) cos mavg]
k=0

ZZ:O 3I”\Z<:m1 : e 1 + (S lem’bE';?m/PI’m’(COS 60) SI n ml¢0

1 , 2
= ZN[,m[PI,m(COS fo) sin mgo + ; Prm(cosyg) sinmay] m = 3p
=0

e | isodd

Z Z bg;?le,m’b(::?m/PIVmI(COS60) sinm’qSO

m'>03n<m’

1 2
= 4Ny [Pinm(cosbo)sinmego T N Z P (cos 7k) sinmay]

k=0
Z Z bl n, mNI m’bl n)m!PI,m’(COS 60) cOs m'qSO
m!>03n<m’
1 2

= ZNI’"L [P1m(cos ) cos meg + Z Py 1n(cos k) cos marg] m=3pu
k=0
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where ay v are defined as before (with the new value of 8 and ¢, = d>o+k%”). The final expressions
for determining b; .., coefficients are

e /iseven
(+) (+) vam 3 % 21 m' m' 1 m'— J .
S b bin) s = [ e (18 0) + Z— )(cos 8) sin* 8 Z enr—tozran(=1)']
3n< 8NI m’ m' k!
n<m’ ’ k=0 r=0
1-m/ m'
() b() — Nl,m6 (1 6o Ix2 (k)
37§n Iinm'Yinm 8N1'ml[ m,m( + 0m ,0)+ P k'P (COSIB) sin ,BX
I.m’—zk_lj
X Z Smi—k—2r—1,2r+1(—1)"]
r=0Q
o [ is odd

Lm-—k lJ

Nim 3x21-m' 1 -
Z bl n)mlbl(:)m = 8]\;17"1/ (8 gt +————— Z F ( )(cos B) sin /3 Z Smt—k—2r—1,2r41(=1)"]

4n<ra’ gim' =0 p
Nim 3x ot-m' g R
b = M 6 ] _ — cos Slll ey or 1
3121 lnm Inm 8Nl,m’[m'm * gim ék ( B)sin* 3 Z mi—k—2r20(—1)"]

where ¢, , and s, ;, are defined the same as in the icosahedral case with the new value of j3.
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Appendix

A Proofs of Theorems 1 and 3
Proof of 'Theorem 1: Let (6, ¢) = Rh(6, ) and g(8, ¢) = Sh(8, ). Applying the rotation R gives
t(8,¢) tig(6,4) = h(6,¢) = R[R(8, $)] = R[f (6, ¢) + ig(6, $)] = RIf(6, )] -+ iR[g(6, $)].  (40)

Since a rotation of a real function is a real function, it follows that taking the real and imaginary
parts of Eq. 40 gives the desired result that f and g are separately invariant: R(f(6,4)) = f(8,¢)

and R(g(9,¢)) = g(0,¢). m]
Proof of Theorem 3. Applying R; gives

oo+l

z: E bl,m}/l,m(gx ¢)

1=0 m=—1!

f(8,9)
= sz(g) ¢)

o0 +1

= R1Z Z bl,m}/l,m(gu ¢)

=0 m=-{

oo+ +1

= > > bim Y. Dymm(R)Yim(6,4) by Theorem 2

1=0 m=-1 mfi=-|

=0 m'==1 \m=-I

oo+l +1
= Z Z (Z bl,le,m,m'(Ri)) Y[,ml(ﬂ, ¢)

Multiply by Yi7,.»(8, ¢), integrate over solid angles df2, and use the orthonormality of the spherical
harmonics to get (after renaming the indices I' — | and m"” — m’)

+!
b = D bimDimm(Ri). (41)

m=—|
Now consider the f;. Apply R; to get

+i

Rifi8,¢) = Ri > bimYim(6,9)

m=-—|

+{ +1
= Z bl,m Z Dl,m,m’(Ri)Y'l,m’(BWﬁ)
m=-—I mi=-1
+ A +
m m m i Y,Ym,(e,q&)
P
+1
= Z bl,m’}[l,m'(eags) by Eq 41
m!=-1
= fi(6,9).
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B Proof of Property 4

Let fi ard f, be defined as in Egs. 20 and 21. Set dfn) dfn) = 0 for k < |m| so that Egs. 20
and 21 can be rewritten in the form

f1(6,¢) = Z Zd gkeimd

mM=—00 k=—o00

+o00 400 )
fg(g,gb) = Z Z dg?k9k61m¢~

m=—00 k=—00

Then

AOORED = S 3 333 d) g, gk ionins,

m=—o0om'=—00 k=—occ k'=—o0

Change vsriables from m and m’ to n and »’ using the transformation
n 11 m
n' 10 m’
m _ 0 1 n
m’ - 1 -1 n'

and change variablesfrom k and ¥’ and { and | using the same transformation to get

{t

+o00 400 )
H6,9)f00,6) = > ( Z Z ! ,,,dn ol ,;) gleind

n=—00|=—00 \n'=—o0l'=—0c0

400

oo .
SN dy e (42)

n=-—00 [=—00

where
; o)
dn,l = Z Z dn’ l’dn n! =1
nf=—co l'=—0co
400 1)
= Z Z d 'l’ n— n’l 4
n'=—o00 I'=|n'|

since d(,),, =0 for I <|n’|.

Based on Eq. 42, fif2 isin P if and only if Jn,l = 0 for I < |n|. It would be sufficient to
show that | < |n| and I > |n’| implies that di)n,, y = 0. For this it would bt: sufficient to show
that | < |n] and | > |n/| impliesthat | = I’ < |n = n/|. But | < |n} and =I' < —|n’| implies
| =1 <n —|n'| <|n— n'| where the final inequality is the standard complex variables result that
|z1] — |z2] < |21 F 22| < |21| T |22]- Therefore, fif2 isin P and it follows that any finite product of
functions mm P isin P. )

Now prove Q[f1f2] = QIQ[f1]1Q[f2]]. First compute Q[f1f2]. The variables d,,; are defined by

CEnJ = Z Z dn’l’ 512)71'.1-1'

n'=—co l'=—co
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- T

nl=—co I'=|n'|
since d(l,),, =0 for I <|n’|
I=|n—n
= Z Z d(l')lldflz)n'l I
n=—co U=|n’|
smced (2) wia—p =0for I =1 <|n-—n’|

Therefore,

t

|
]
™
A
[

n,|n|

n—n',|n|-l'
n'=—oco I'=|n!|
Consider cases:
1. Assumen > 0:
(a) Assumenr’ > n > 0:
in]-In—n'| n4n—n' 2n—n'
l’=|n’| U=n! V=n'

Thisrequires 2n — n’ > n’ & 2n > 2n’ < n’ < n <« contradiction.
(b) Assume 0 < n’ < n:

in|—|n—n | n—n+n'
Ilzlnll l/_nl Il_n/
(¢) Assume n’ <O:
[n|~[|n—n' | n—-n+n'

=2 = E

U'=|n’| =—n! V=—n
This requires n’ > —n’ < contradiction.

Therefore

+oo  [n|~[n—n'

Jn»lnl = Z Z d(l,)l,dff)n, Jn|=1

n'=—co U'=[n|
= Z d(l) ’d$l2)n n-n’

> L T

n!/=0
2. Assume n < 0:
(a) Assumen’ > 0:
Inl=|n=n'|  —ntn—n’
I'=|n’| B U'=n' U'=n'

Thisrequires —n’ > n’ < contradiction.
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(b) Assumen<n <0:

[n|~|n—n'] —n4+n—n’ —-n
I'=|n’| I=—n! V=—n'
(c) Assume n’ < n < 0:
[n|=In~n’| —n~n4n' —2n4n’
I'=|n’| '=—n' '=—n/

Thisrequires —2ntn' > —n’ & —2n > —2n’ & n< il & contradiction.

Therefore

400 |n|—|n—-n’|

J’I’L,lnl = Z Z d(l’)l’dfl )n' |-t

n'=—0co l'=|n!|

— (2

- z dn’ —n'dn n',—n4n'
n/=n

= Z "

So, by combining the cases n > 0 and n < 0, we get

max(0,n)

;o E)
AN D S v sy s

n’=min(0,n)

Now compute Q[f1], Q[f2], and finally Q[Q[f1]Q[f-]] and compare with the result for Q[fi f2]-

QA = Z d glml imé
QA = Z Al
Q[fl]Q[f?] = _Z d(l) 8|m| ime I_Z d(2,| '|B|m'leim'¢
400 400
— Z Z d(l)l ,d(2,)| ,(0|m|+|m’|ei(m+m')¢

Change variables from m, m' to n, n’ as before to get

Q[fl]Q[,fZ] = Z Z dnl |n,l 22)"’ |n n,|0!n’|+|n—n’,el‘ﬂ¢.

n=—00 n=—00

Thisisafunction in P because Q[f:] and Q[f2] are functions in P and products of functions in 7
arein P. Therefore
+00

QUL = X X dg e (43

n=—00 {n':[n’l-}-ln—"'l:,nl}

Consider cases:
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1. Assume n > 0:
(a) Assume ' > n>0: {n":|n'|t|n=n'|=|n]} {0 —n+n' =n)e{n: 2=
2n) < {n': n’ = n) & contradiction.
(b) Assume0 < n' < n: {n':|n'|+|n—n|=[n]} o {n 2" Thn-n"=n)o0=0sn0
further restriction on n'.
(c) Assume n’ < 0: {n' : |n|F|n-n'|=|n|} @{n ="t n-n'=n)< {n: =2n' =
0) < {n':n’ =0) < contradiction.

Therefore
oo w© n
’;’{n'=ln’l+l§;n’l=lnl} } 7;§0~
2. Assume n < 0:
(@ Assumen’ > 0: {n':|n/|+|n—-n/|=|n|} o {n :n'-ntp'=-n)e{n: 2 =0} &

{n':n' =0) & contradiction.
(b) Assumen< n/ <0: {n' :|n’|F|n-n'|=|n]} & {n:=n'-nta'=-n)e {n:0=
0) & no further restriction on n'.
(c) Assume n’ < n<0: {n' : ||t |n=-n'|=n|} @ {n :=n'FTh-n"=-n)e {»n:
-2n' = —=2n) < {n' : n’ = n) < contradiction.
Therefore

-1 -1 0

2. 2. = 2 2

n==c0 {n':|n’|+In-n'|=|nl} n=—co n'=n

So, by combining the cases n > 0 and n < 0, we get

+o0 max(0,n)
S 3 = Z > (44)
n==o0 {n{nl4ln-wlzlnl}  n=—co n'=min(On)

Apply Eq. 44 to Eg. 43 to get

max(0,n)

Q[Q[fl]Q[fz]] = Z Z d(1’)|n1|df12]n' e nllglnieinqb

n=—00 n/=min(0,n)

+00 max(0,n) 4
= Z( 2 dfllf)|n'|dff)n'|nn|> olrleine

n=—00 '=min(0,n)

— Z d/ el’nl ing
where d’, Inl is defined to be
max(0,n) ) @)
/ [—
d”y'”] - Z dn’.|n’|dn—n’,|n—n’|‘

n'=min(0,n)
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Since d., | = dn,jn| it follows that Q[f1f2] = Q[Q[A)Q[f2]] is verified.
The general case is proved by induction:

N N-1
QUI M = elelI] sl
7=0 ] =0
= HQfJ]]Q LN
7=0
N
= Q[[[ elr
7=0
C Q Is Not Continuous
Define
S = unit sphere in R?

s = ([ )’

L(8) = {f:5=C:|fll,s < =}
T = unitcircleinC

(5 [ 150 |pdt>1/,,

Ly(T) = {f :T—C:|lfllur) < o}

I Fllz,(T)

The spaces Ly(S) and L,(T) have the topology induced by the norms || . ||z,(s) and || .

respectively. p(r)

Lemmal Q: Ly(S)— Ly(S) is not boundedfor p = 2.

Proof: Counter example to the assertion that Q is bounded. Define

1, 0<f<m
p(8) = {—1, T<0<2r
0, otherwise
+ oo
z(f) = Z p(f — n27).
The Fourier series coefficients of z are
1 7 , 1
- —7k6 — o= {r_1Vk _
ap = 277/0 z(8)e™1"d8 =, (( 1) 1)
and the partial sums are
2
— k6 _ :
z,(0) = k—z—n age’ z Z T sin(2k + 1)6.
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The key theoretical result is [17, Section 4.26 Eq. 7]
Lim |l2(8) = 2n(0)llL,(7) = 0.
Define

fa(8,6) = 1-z4(0)

([ 1srran)”
(/021r /OW (1- xn(e)v’sinededqs) v
- (zﬂ /O - zn(H)lpsianB)l/p

which is obviously finite for 1 < p< 00 s0 f, € L,(S) for 1 < p < oo. Furthermore,

(i.e., independent of ¢). Note that

(1 fallzp(s)

' i/p
nleroloufn”Lp(s) = lim (27 / |1—zn(6)|psm6d6)
< lim (2 / 11— 2,(9) |Pd9)

(
(

- lim (2 /0 |2(6) — 2 (6) de)w
(QW /_ T 12(6) - xn(e)wde)l/p

Jim (5= [T la0) = 207 a0) "

(4x)Y? lim [|2(6) = 2n(8)||L,(7)
0

IA
:I—‘
=

IA
~
IS
e
[
S
—
.y
o
5

IN

for p= 2.
Expand f, as a Taylor seriesin 8 to find that

Fal8,4) =1+ Zd () gk

Therefore

Q[fn] =1
NQLfelll Lo(s) 4.

Boundedness of Q requires the existence of c independent of n such that

QU L,y £ cllfallys)

But this is impossible because the left hand side has value 47 independent of n while the right
hand side goes to 0 as n goes to oo. O
Since Q is not bounded it is not continuous [11, Thm. 2.7-9 p. 97].
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D Table of Icosahedra Harmonics

1=0

6

10 y

m=20

2.820947917738781 x 107!

6.746726148605862 x 10!

4.691941147166168 x 10!

5

—1.703718724395419 x 104

1.43221646738894 x 10=° |

10

5.23470931063209 x 1010 J

[ =12

15

16

m=0

8.257237892937810 x 107!

7.266060945668594 x 101

5

—3.21243304269289 x 10~°

—1.981609297252692 x 10~°

9.4847286780344 x 10~

10

5.794431895189197 x 10~ 11

—3.418925633631284 x 1012

—1.84241038811857 x 1012

15

5.458054970675743 x 10717

—1.17921811835546 x 1017

| =18 20 21
9.002655639988 x 107! 1.974780890363718 x 10~!
—4.983700158317558 x 3.407144393312143 x 4.092807665027534 x 10~ "

10

2.95803665617139 x 10~13

2.227863454007644 x 1013

—3.010993744539446 x 10~ 14

15

—1.333890988533275 x 10718

6.341985647126132 x 10~2°

20

1.15898860510346 x 10~2*

|
—6.788856747248027 x 10~ |

1.769037092778827 x 10~2>

{ =22

24

25

m =

9.37575294971949 x 101

9.21002314556901 x 10!

1.384569813591985 x 10~

—1.421035598340473 x 10~

—7.836655445742523 x 1073

10

—5.112584978701351 x 10~ 14

1.41618895252736 x 1014

—92.212844336129518 x 10~14

15

2.516822842735015 x 10~20

~3.592455208180777 x 10721

—3.108175909252568 x 102!

20

4.848248656832747 x 10726

5.399914634711366 x 1027

—2.351130649241877 x 10~ %8

25

6.664202520526863 x 10733

=26

27

28

m=20

3.860047773473439 x 101

1.109757377696939

1.172309989757126 x 10~7

—1.212289006689981 x 10~

2.466285348255486 x 107

10

7.210763030113126 x 10~1°

5.001166305854851 x 10~1°

—3.796785188178502 x 10~ *°

15

—~1.841009178201948 x 10~2!

6.81115797800298 x 10~23

3.831523631119293 x 1022

20

—3.081476412319671 x 10~%8

—2.439701260119987 x 1028

—7.253047020276402 x 10~2%°

25

—9.61759179875053 x 1034

1.77966069978407 x 1034

—5.53498704233547 x 10~%° |

[=30

31

32

m =0

9.01569227139824 x 101

5.912043206775618 x 107!

—5.249368166465911 x 108

4.066423227257543 x 10~8

4.516106993595139 x 10~°

10

1.824069922388993 x 10~1°

2.147891855582007 x 10~1°

2.855322894969714 x 10716

15

—6.175638444747661 x 10~%

—4.260982316778084 x 10~ 23

—5.312331540457917 x 10~%°

20

1.075554968785223 x 10~2°

—9.05248128889912 x 1039

3.475695412280682 x 100

25

—5.995007894572019 x 1036

—3.974788085024645 x 10737

3.6853048735186758 x 103"

30

1.108560758031187 x 10~%2

1.810012789173336 x 10~%2

3.370317401055845 x 10 |
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[=33

34

35

m =10

1.242957162616307

4.486285313525142 x 10~2

2.380278380794479 x 10~°

—6.032316664388148 x 10~°

10

—8.52285852319967 x 10~ 16

—4.725495304789349 x 1016

—4.595952834415354 x 10716

15

1.008085340956216 x 10~2°

1.584241562420297 x 10~23

—1.974304602544374 x 1023

20

5.272366428771854 x 10~°1

—7.281659645442291 x 10~31

—5.245009573501727 x 10!

25

—2.499264840327398 x 10~°7

6.326030738966593 x 1033

—8.87544935404272 x 10~

30

6.70116055428839 x 10~%4

2.273849328188475 x 10~ H

—9.93054644122186 x 10=%7

35

1.253856873891649 x 10~°0

[ =36

37

38

m=0

8.56692849713775 x 1071

8.02920876707103 x 10!

—2.152533913520913 x 108

—2.122177182350715 x 10~8

1.911274555252725 x 10~8

10

3.804515951584917 x 10~16

—2.743111103464194 x 10~1¢

—92.434891556327175 x 10717

15

—3.749484450202822 x 10~

5.092490758073693 x 104

—92.598492653811124 x 10~ %*

20

6.58716976948225 x 10~32

1.142912702558767 x 1032

7.806577174288525 x 1032

25

—1.080807166661601 x 103

—7.406812860704781 x 10~3°

—2.136777280783503 x 10~

30

2.345992971190676 x 10~%

—2.019602205408182 x 10~%¢

—1.528700910628074 x 10~*°

35

—2.867106842446356 x 10~>%

2.536169134780216 x 10~°2

—5.377901999001163 x 10~°°

[ =39

40

41

m =10

1.33588637256797

—1.921472637729343 x 10~8

—2.222877700343102 x 10~°

5.106552332260171 x 10~°

10

1.844404284013966 x 101

—7.781110244333583 x 1017

1.237898502324493 x 10~ 1®

15

—1.282826197584042 x 10~ %4

1.23300080075066 x 10~24

1.198805920770535 x 10~ 21

20 |

3.242397542911047 x 10733

—1.826761158766107 x 1032

—9.29118303087409 x 1032

25

5.469150678188241 x 10~4°

4.798290114278227 x 10~40

—3.847457531098831 x 10~

30

—9.41556094573599 x 10~47

—2.083888698912835 x 10~%7

—4.730007598610431 x 10~*®

35

1.100216050831976 x 10~5°

—3.99452386976723 x 10~°4

—3.416126089592718 x 10~°°

40

1.033497023010075 x 10~°1

6.161843595946462 x 10~°1 |

[ =42

43

44

m =

8.06071321824356 x 101

1.011111294485445

—8.63760995566038 x 10~°

1.164911977536833 x 10~%

8.56099642897334 x 10~

10

1.017062390750238 x 10~1©

4.068515022247794 x 10~ 17

—1.3708832046258 x 10717

15

—4.810395831967041 x 10—2°

—5.586860979470261 x 10~2°

—1.785868201272553 x 10~ 2%

20

9.94869187201453 x 10—34

2.646041577375465 x 10733

2.896782107262829 x 10~33

25

—2.161763116615656 x 10—4

3.161354500569589 x 10~—#

—3.871580673004682 x 10~

30

4.327504389994189 x 10~

—92.283643210069411 x 1048

5.236495191096205 x 10~*°

35

—3.748264428640973 x 10~°°

—4.081559696939951 x 10—°°

2.670334941512591 x 10~

40

3.419400195443956 x 10~°2

1.857415764225622 x 10752

4.286637228246185 x 10~%° |

Table 3: Table of b;,,,, coefficientsfor T;, for n=0and ! € {0,1,...,44}
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=30

36

40

m=2>5

2.448476817539395 x 10~8

1.803441604722151 x 10~8

1.932825739861001 x 10~°

10

2.729150909570428 x 10~1°

4.48552570399961 x 10~ 1°

8.46281746373447 x 10~17

15

2.923541523901881 x 10~22

4.42763367294824 x 10~%

2.185857402650686 x 10~

20

8.62645832774495 x 10730

—3.304529063250246 x 10~°1

3.772670014340045 x 10~32

25

7.299788172714104 x 10~37

—9.17215096845515 x 10739

4.09207555121917 x 10~

30

1.390278734957254 x 10~

—6.356669301255897 x 10~%°

3.586951882500613 x 10~ %8

35

—1.482301423807387 x 10~>!

9.24608924171111 x 10~56

40

5.478206798694867 x 10~60

1 =42

m=2>5

1.225965666804088 x 103

10

7.336055391266129 x 10-17

15

—2.057018909283102 x 10=%7

20

—9.56403128492941 x 1033

25

1.547346440349331 x 10~

30

2.864253792321392 x 10~18

35

1.869449403196465 x 10~°°

40

9.13353520771848 x 10~°2

Table 4: Table of b, coefficients for 7, , for n=1and l € {0,1,...,44}.

E Mathematica Programs for Computing Icosahedral Harmonics

(x Mathematica Programfor generating i cosahedral harnonics. *)

BeginPackage["IcosahedralT*"]

(x Warning: Conputation of higher order icosahedral harmonics nay

take a lot of tine. It

IcosahedralT:: usage =
"IcosahedralT[1l,n] gives the n-th set of the 1-th order
normal i zed i cosahedral harnonics in terns of the regul ar

spherical harnonics Y.

is advisable to save the icosahedral
har moni ¢cs once they are formed by the program =)

(*x Y appears to substitute for SphericalHarmonicY used in Mathematica %)

Begi n(“‘Private‘"]

(x* The sinpl est icosahedral

harnonic is a constant.

of the icosahedral harnoni cs are such that

Integratel[T[1, n,theta,phil*Sin[thetal,{theta,0,R),

IcosahedralT[0,0]

:= Sqrt [15/Pi]

43

The normalization

{phi,0,2%Pi}]=60 *)




xp=1/Sqrt[5]

(* Number of icosahedral harmonics of order 1. x)

N1[1_] := N1[1] = If [EvenQ[1],Neven[1],Nodd[1]]

Nodd[1_] := Nodd[1] = If[1>=15,Neven[1-15],0]

Neven[l_] .= Neven[1] = CoefficientNormal [Series [sel[x],{x,0,1}]1}, x~1]
sell[x_] := 1/((1 - x"6)*(1 - x~10))

deltal[n_] :

If[n==0,1,0]

NP[1_,m_] := Sqrt [(2%1+1)*(1-m) !/ (4*Pi*(1+m)!)]

gll_,m_ ] := (-1) " m¥(L+m)!/(1-m)1/(2%m)!!

(* Compute the c or s coefficients. x)

fcIm_] := Cos[m*ArcSin[(5~(1/2)*y)/(2*%(1 - x - x~2)"(1/2))1]]

fs[m_] := -Sin[m*ArcSin[(5°(1/2)*y)/(2*%(1 - x - x~2)"(1/2))]]

clp_,q_,m_] := clp,q,m] = Coefficient [cie[m],x"p*xy~ql/.{x->0,y->0}
SCp_,q_,m_] := slp,q,m] = coefficient [sielm],x"p*y~ql/.{x->0,y->0}

(* Conmpute the k-th derivative of the associ ated Legendre functions. *)

P[1_, m_, k_, x_] :=
Simplify[LegendreP[1l ~ 1, m, x]J*A[1l,m,k, x]+LegendreP[1, m, x]*B[1l,m,k, x]]

All_,m_,0, x_] =0

A[1_:m_3k_, x_] .= A[l,m,k, X] =
Simplify[(D[A[Ll,m,k - 1, y], y1/.y->x) + (L*x#A[l,m,k - 1, x] +
(1 + m)*B[1,m,k - 1, x])/(1 - x~2)]

B[l_,m_,0, x_] =1

B[l_,m_,k_, x_] := B[1l,m,k, x] =
Simplify[(D[B[1,m,k - 1, y1, y1/.y->x) - (1*x*B[1,m,k - 1, x] +
(1 - m)#*A[l,m,k - 1, x1)/(1 - x~2)]

IcosahedralT[1_,n_] := Mdul e[{},

(* Check validity of 1 and n. *)
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If['IntegerQ[1] || !'IntegerQ[n] || 1<0 || n<0 ||
If(EvenQ[1],n>=N1[1],n>N1[1] || n == 0], O,

(* Deal with even and odd icosahedral harmonics separately #)
If[EvenQ[1],
(* Compute the right hand side of Eg. (59), (60) *)
rhs[m_,mp_] := rhs[m,mp] =
5#Sqrt [(1-m) ! * (1+mp) 1 /(1+m) 1/ (1-mp) ] *
Simplify[deltalm-mp]*(i+deltal[mp])+
5%2~(1-mp)/g[1,mp]*Sum[P[1,m,k,xp]*(2+xp) "k/k!*
Sum[c [mp-k-2%r,2%r m]*(-1) "r,{r,0, (mp-k)/2}]1,{k,0,mp}]1];

(* Conpute b[l,n,5*n]*b[1,n,m]=bpln,m] recursively. #)

bplni_,m_] := bplni,m] =
rhs[m,5*%n1]-Sum[bp[np,5*n1]*bpnp,m]/bpnp,5*npl,{np,0,n1-1}];

bpl[O,m_] := bp[0,m] = rhs[m,0];
cie[m_] = Expand[Simplify[Normal[Series[fc[m],{x,0,5*n},{y,0,5*n}]111],
rhsm_,mp_] := rhs[m,mp] =
5xSqrt [(1-m) !*(1+mp)!/(1+m) !/ (1-mp) 1] *
Simplify[delta[m-mp]l +
5#2"(1-mp)/g[1l,mp]*Sum[P[1,m,k,xp]*(2+xp) "k/k!*
Sum[s [mp-k-2*%r-1,2*r+1 m]*(-1)"r,{r,0, (mp-k-1)/2}],{k,0,mp}]];

bplni_,m_] := bplni,m] =
rhs[m,5%n1]~Sum[bpInp,5+ni1l*bp[np,m]/bp[np,5*np]l ,{np,1,n1-13}]1;

bpl[1,m_] := bp[1,m] = rhs[m,5];

sie[m_] = Expand[Simplify[Normal[Series[fs[m],{x,0,5%n},{y,0,5%n}]11]]
3

b[5#n]l=Sqrt [bp[n,5*n]];

For [m=5#4n,m<=1,m+=5,b[m]=bp[n,m]/b[5*n];
b[-m]=(-1)"(1+m)*b[m]];

Simplify[Sum[b[m]*Y[1,m],{m,-5%n,-1,-5}] + Sum[b[m]l*¥Y[1,m],{m,5%n,1,5}]]

]
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End []

EndPackage[]

F Verification of the Symmetry of T Under Operation U

In thisappendix weillustrate the verification procedure by demonstrating that 75 o(¢, ¢) isinvariant
under the operation U. The procedure to perform the symbolic verification is the following:

1. Express 75,0 as a homogeneous polynomial in x,y, 2. To do this:

e Expand Pgo(cos8) and Ps 5(cos8) into polynomialsin siné and cos$:
Pso(cos8) = 1—16(—5 + 105cos® 6 — 315cos? § + 231 cos® 8)
Pg5(cosf) = —10395cosd sin’f.

e Write cosh¢ (or sinm¢p, m = 5y, if [ is odd) as sums of products of trigonometric
functions of the single angle ¢:

cos5¢ = Hcosg — 20 cos® ¢ + 16 cos® .
e Expand Ts,0(f, ¢) into sums of products of siné, cosé, sin ¢, cos ¢:

2475 51975 cos(f)® 155925 cos(#)* N 114345 cos(6)®

Too(0,¢) = 5 5 7 5
+ 51975 cos(¢) cos(8) sin(6)° — 207900 cos(¢)> cos(8) sin(#)®
+ 166320 cos(¢)® cos(8) sin(6)°.

e Apply the following transformation rules sequentially:

sin"gcos"¢ — z™sin""™8 n>m>0
sin"gsin™ ¢ y"sin®""™8; n>m>0
cosf — z;

b

sin"8 — (1- 22)"/2; n >0, neven.

|

The result is that

247 1975 22
Toolz.4,2) = —— D 519753 2 — 207900 4% 2 + 166320 2% 2 + E—-Q—i — 103950 = 2°

155925 z4

114345 28

+ 51975z 2° + 5

+ 207900323 — (45)
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2. Apply the rotation (linear transformation) to 7so(z, y, z) by making the following substitu-
tions:

(—z + 22)

(2z + 2).

@
I
Sl-< &l

The result is that

2475  10395(2z + z)*  6237(2z +2)* 22869 (2z + 2)°
7t 2 B 2 + 50

I

Té,O(l‘J Y, Z)

+ 10395 (224 z) (—2+22)— 4158 2z + 2)° (—z +22)
2079 (2 S(—2+2 .
LAY z'”; (2422 _ 5316 (204 2) (=2 4 22)°
. 8316(2z+ z;:"(-x +22)° | 33264 (2x+235] (—z +22)° (46)

3. Expand the polynomial obtained in the Step 2 (Eq. 46) and collect terms.

4. If the polynomial obtained in Step 3 is equal to that obtained in Step 1 (Eq. 45), then the
symmetry is verified. In comparing the polynomials, it may be necessary to use the collstra.int
that x, y, and z lie on the surface of the unit sphere, i.e.,

z? + y2 + 22=1.
That is, if the difference of the polynomialsis zero or if it contains a factor of x2+ y? +,2- 1,

then the two polynomials are equal on the surface of the unit sphere.

In the case of Ts o, Eq. 46, after expansion, is exactly the same as Eq. 45.

A set of transformation rules written in Mathematica, which perform Steps 1-4, is listed in
Appendix G.

G Mathematica Programs for Verifying | cosahedral :Har monics

(*
Verify the icosahedral symmetry of polynom als of
spherical harnoni cs T[theta, phi]. The coordinate system

is that defined in the text.
*
)

<<Algebra‘Trigonometry"*

(x step 1: Transformthe harnmonics into pol ynom al s of
{Sin[phil], Cos[phil, Sin[thetal, Co$theta] };
Not e ComplexToTrig or ruleC may not be necessary,
dependi ng on how you write the spherical harnonics.
Command :
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Expand [TrigReduce[ComplexToTrig[SimplifyT[theta, phi] 1/.rule0]]].
*
)

rule0 = {(Sin[thetal~a_) b_->Sin[thetal (a*b)};

(* step 2: Transformthe expression obtai ned above i nto pol ynonial -s
of Cartesian coordinates {x,y,z};
Command :

Expand[((%/.rule1)/.rule2)/.rule3].
*
)

rulel : {Co§phi] *Sin[thetal->x,
Cos[phi]*Sin[theta] “(n_)->x*Sin[theta]l "(n - 1),
Cos[phil~(m_)*Sin[theta] " (n_)->x"m*Sin[thetal "(n - m)};

rule2 = {Sin[phi]*Sin[thetal->y,
Sin[phiJ*Sin[theta] (n_)->y*Sin[thetal "(n - 1),
Sin[phi]~(m_)*Sin[theta]l (n_)->y"m*Sin[theta]l " (n - m)};
rule3 = {Cos[theta]->z, Sin[thetal n_->(1-z"2) " (n/2)};

(* step 3: Now the icosahedral symmetric rotation;
To verify symmetry under U, use rule4a;
To verify symmetry under S, use rule4b;
To verify symmetry under P, use ruleéc;
Command :

Expand.[/ .rule4a] .
*
)

ruleda = {x->(2*z - x)/Sqrt[s], ¥y=>-y, z->(z + 2%x)/Sqrt[5]};
ruledb = {x->(x¥Sqrt [5]-1)/4-y*Sqrt[5+Sqrt[5]1/(24Sqrt[2])),

y->(x#Sqrt [5+Sqrt [51] /(2+Sqrt [2])+y*(Sqrt [51-1)/4)};
ruled4c = {x->-x, z->-z};

n

(* step 4 If the polynomal obtained instep 3 is identical to
that in step 2, the symmetry is verified. The constraint
x"2+y~2+z"2 = 1 nmay be used.

Command :

Factor [%-%%1/.rul e5 .
*
)

ruleS={y "n_?EvenQ->(1-x"2-z"2)"(n/2)};
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