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Abstract 

We comp~lte explicit orthonormal bases for functions invariant under the rotational symmetries of 
a Platonic solid. Each function in the basis is a linear combination of spherical harmonics. For 
each symmetry (icosahedral, octahedral, tetrahedral) the calculation has three steps: First derive 
a bilinear equation for the coefficients by comparing the expansion of a symmetrized delta functioii 
in both spherical harmonics and the symmetric harmonics. The equation is parameterized by the 
location ((lo, $0) of the delta function and must be ~at~isfied for all locations. Second, express t,he 
dependence on the delta function location in a Fourier ($0) and Taylor (00) series and thereby de- 
rive a new system of bilinear equations by comparing selected coefficients. Third, derive a recursive 
solution of the new system and explicitly solve the recursion with the aid of symbolic computation. 
The results for the icosahedral case are important for structural studies of small spherical viruses. 

Key words:: spherical harmonics; rotational symmetries, finite; Platonic solids, icosahedron, dodec- 
ahedron, octahedron, cube, tetrahedron. 
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1 Introduction 

Spherical harmonics are a complete orthonormal basis for smooth functions on the sphere. If, 
however, (;he function is required to have a symmetry then spherical harmonics are not convenient 
because the symmetry implies complicated relationships between the weights i.n the expansion of 
the function as a weighted sum of spherical harmonics. In particular, we are interested in functions 
that  are required to exhibit the symmetries of the icosahedron. This group plays a prominent, 
role in a t  least three problems: the structure of small spherical viruses [13], Eullerenes [lo], a.nd 
quasicryst.als [3]. Therefore we would like to determine a complete orthonormal basis for smooth 
icosahedrally-symmetric functions on the sphere. Since this is a subspace of srnooth functions on 
the sphere and because so much is known about spherical harmonics, it is natural to compute each 
element in the desired basis as  a linear combination of spherical harmonics. Tliough we call these 
functions icosahedral harmonics, this terminology is somewhat different than that  used for spherica.1 
harmonics. In particular, only the lowest order spherical harmonic actually has the symmetry of 
the sphere (invariant under any rotation around any axis) while every icosahedral harmonic has the 
symmetry of the icosahedron (invariant under each of 60 different rotations described in Fact 3). 

When computing a n  icosahedral harmonic as a linear combination of spherical harmonics, t,he 
only task is to determine the coefficients in the linear combination. There has b'een extensive work 
on this problem [I ,  2, 3,  6, 7 ,  9, 12, 14, 151 [4, A. Klug cited on p. 4131. One of the more complete 
treatments is due to La Porte [12], who derived explicit expressions for icosahedral harmonics up to 
order 21. To the best of our knowledge, none of the existing literature describes a general explicit 
expressiorl for icosahedral harmonics of arbitrary order. In the remainder of this paper we derive 
such an expression by a novel method, specifically, by equating the expansions of an icosahedrally 
symmetric delta function in spherical harmonics and icosahedral harmonics. Our motivation for t,he 
calculation was to derive icosahedral harmonics for use in viral structure problems. However, the 
same technique can be applied to determine general explicit expressions for tetrahedral harmonics 
and octahedral harmonics and we also describe these simpler calculations. 

2 The Relationship Between Icosahedral and Spheriical Harmon- 
ics 

Theorem 1 L e t  h(B,$) be i n v a r i a n t  u n d e r  a r o t a t i o n  R. T h e n  t h e  real a n d  z7naginary par t s  of h, 
are separa te ly  i n v a r i a n t  un .der  the  r o t a t i o n  R. 

Proof :  See: Appendix A 
Let Yr,,(B, 4) be spherical harmonics (we use the conventions of Jackson [8:1) indexed by 1 and 

m. It is well known [8, Eq. 3.531 that  

where Pl,,,(x) are the associated Legendre functions [8, Eq. 3.491 and 

21 + 1 (I - m)! 
47r ( l + m ) ! .  

Spherical harmonics are closely related to rotations. Let R be a rotation of three-dimensiona.1 
space des'cribed in terms of the Euler angles a ,  P,  7 and having inverse R-l. Let OR be the 
corresponding rotation in function space: OR[f (z)] = f ( ~ - ' ( z ) ) .  



Theorem 2 A n y  rotational operation o n  a spherical harmonic x,,(B, 4 )  will yield a linear combi- 
nat ion of spherical harmonics  of only the same I ,  that  is ,  

where the Dl,,,,l coef ic ients  are Wigner 's  D coef ic ients  and have the followix~g expressions: 

+ - l k  + m - ( 1  + ( 1  - m )  P 21+m-m1-2k Sin - ) , l -m+2i  (cos --) P 
d'*m7m1(8) = x ( 1  - m' - k ) ! ( l +  m - k ) ! ( m t  - m + k ) ! k !  2 k=O - 2 

Proof: See Ref. [16] .  

Theorem 3 Let f(B, 4 )  be invariant under  N rotation operators denoted by R; for i = 1 , .  . . , N .  
Let f  have spherical harmonic  expansion f  ( e l + )  = CEO c L L - ~  bl, ,x, ,(B, 41). T h e n ,  for  each. 

1 = 0 , 1 , .  . ., the function fi defined by fl(B, 4 )  = c L L - ~  bl7,x,,(Bl 4 )  i s  also rnvariant under  the 
R; f o r i =  l , . . . , N .  

Proof: See: Appendix A 

Our goal is to determine a set of basis functions T, where 

1. T, are a complete orthonormal basis for smooth icosahedrally symmetric functions on the 
sphere. 

2. T, a~re real, as allowed by Theorem 1. 

3 .  Each T, is a linear combination of x, ,  for fixed I ,  as allowed by Theorem 3. In particular, 
assume that there are Nl icosahedral harmonics that  are linear combina.tions of x, ,  (m = 
-i,  . . . , + I ) ,  and therefore Nl 5 21 + 1, and denote them as z,,(B, 4 )  with n = 0 , .  . . , N1 - 1: 

The orthanormality condition is 

where the complex conjugation is optional since the Tl,, are real and dC2 = sin BdBd4 in spherical 
coordinates. The task of this paper is to find the bltn, ,  coefficients in Eq. 2. For each 1 = 0 , 1 , .  . . 
there are Nl sets of 21 + 1 coefficients. 

La Poi:te [12] proves the following result regarding Nl :  

Theorem 4 (La Porte [12] )  For 1 even, the number  Nl (denoted by Nl (even)) stltisfies the relation- 
ship 

while for I odd, the number  Nl (denoted by i s  

(even) 
Nl-15 i 2 1 5  
0 , 0 < 1 < 1 5  



The first fact about the b1,,,, coefficients can be determined simply from .the choice that  TI,, 
are real and x,-,(8,4) = (-l)my:m(8, 4 )  [8, Eq. 3.541: 

Fact 1 E'or each 1 = 0 , 1 , .  . ., n = 0 , .  . . , Nl, and m = -1,. . . , $1, 

Proof: Since TI,, are real, it follows that  

Multiply by 3*mt(8 ,  +), integrate over solid angles in 8 and 4 (do) ,  and use the orthonormality of 
the spherical harmonics to  obtain (after renaming the indices I' + I and m' + m) the result that 
0 = b1,,,, - bi,n,-,(-l)m as desired. 

The second fact relates the orthonormality of the b1,,,, coefficients to the orthonormality of the 
Z,n:  

Fact 2 Ti,,, (I = 0 , 1 , .  . ., n = 0 , .  . . , Nl - 1) are orthonormal if and only if 

Proof: First note that  TI,, and Tlt,,1 are automatically orthonormal for 1 # 1' because Y . .  a.re 
orthonormal and TI., and T~I.,I are constructed from x,, for m = - I , .  . . , $1 and XI,, for m = 
-Itl . - . , +l' respectively. So it remains only to  consider orthonormality of the Ti,, functions within 
a fixed 1. The equivalence between orthonormality of the TI,, functions within a fixed 1 and the 
orthonorn~ality of the bl,n,m coefficients within a fixed 1 follows from the following equalities: 



3 The Approach for Computing b,,,,, 

Many aut,hors compute the bl,,,, coefficients based on Theorem 2. More specifically, Theorem 2 
implies th.at 

+I 

b/,n,m = C Dl,rn , rn~(~,  P1 ~ ) b ~ , n , m ~  (5) 

where D is the Wigner's matrix associated with any one of the 60 rotational symmetries of the 
icosahedron. Study of Eq. 5 was successful in obtaining a few low-order icosahedral harmonics. 
however, (due to the relatively complicated expression of the Wigner coefficients;, it was not able to 
give a gen.era1 expression for the bl,,,, coefficients for any given order I .  

In this paper we adopt a different approach. Specifically, we express an  icosahedrally symmetric 
function in terms of both spherical harmonics J<,,(B, 4) and the unknown icoljahedral harmonics 
TI,,(B, $) and then, by comparing the expansion coefficients, we extract the bl,,,, coefficients. 
The natural choice for the function is the icosahedrally symmetric delta function because a delta 
function contains finite components a t  all spatial frequencies and therefore th~e expansion of the 
icosahedridly symmetric delta function will involve all of t,he TI,,. In more deta.il, t,he plan has the 
following steps: 

1. Express an icosahedrally symmetric delta function in terms of Ii,,(B, (1) and in terms of 

Z,nl:o, 4).  

2. Equate the two expansions. 

3. From the resulting equality extract a bilinear equation for the bl,,,, coefficients where the 
equation is parameterized by the location on the sphere, denoted by (do, $o), of the delta 
function. This equation must be satisfied for any choice of ($0, $0). 

4. Express both sides of the bilinear equation in a Fourier series in $0 and a. Taylor series in Bo 
which gives an equality between two doublely-infinite sums. Corresponding coefficients in the 
two sums must be equal. 

5. By equating corresponding coefficients of 6 ~ e i k ~ 0  for certain (j, k), derive a second system of 
bilinear equations for the bl,,,, coefficients. 

6. Derive a recursive solution for the second set of bilinear equations. 

7. With the aid of Mathematics, solve the recursions to give exact values for the bl,,,,,  coefficient,^. 

4 The Fundamental Bilinear Equation for br,,,,, 

For our concrete calculations, we choose the coordinate syst,em (Figure 1) used by Altmann [I] a.nd 
La Porte [12] in which the t axes passes through two opposite vertices and the xz plane includes 
one edge of the icosahedron. Let (00, $0) be the (arbitrary) spherical coordinates: of a delta function 
within the first asymmetric unit. Let {(Bk, $k) : k = 1 , 2 ,  . . . ,591 be spherical coordinates of delta. 
functions in the remaining 59 asymmetric units generated by applying rotations in the icosahedra.1 
group. The locations of these additional 59 delta functions are given by Fact 3: 



Figure 1: An icosahedron and 3 of its axes of rotational symmetry. One axis of each type of 
rotational symmetry-5-fold, 3-fold, and 2-fold-is shown. 

Fact 3 As a function of the parameters B0 and 40, the 60 symmetry-related positions on the unit 
sphere are: 

4 2 n U( U {(T - hl " - an + k-) : k = 0, 1 , .  . . ,  4)) U{(T - do, n - m k )  : k = 0, 1 , .  . . , 4 )  
n=O 

5 

where 4k,,yk, and a k  are related to Bo and 4o b y  

2 n 
4 k  = 40 + k- 5 

cos yk = cos ,f? cos Bo + sin psin Bo cos 4k 
- sin Bo sin 

s inak = k = O , l ,  . . .  , 4  
sin yk 

and ,f? = airctan 2. 

Proof: Use the geometric relations of the icosahedron. 
Explici.tly, the icosahedral delta function is 

where S ( x )  is the usual Dirac delta function, and (Bk, dk) are locations of the delta functions obeying 
icosahedral symmetry. Obviously, 

The following fact describes the relationship between A and the Tr,,: 



Fact 4 The functions TI,, (1 = 0 , 1 , .  . ., n = 0 , . . . , Nl) are a complete orthonormal basis for smooth 
icosahedrally-symmetric functions on the sphere if and only if 

Proof: First assume that  TI,, are a complete orthonormal basis. Eq. 7 follours from the follo

w

- 
ing calculations: Let f (0, +) be a smooth icosahedrally-symmetric function on the sphere. By 
completeness it follows that 

co N1-1 

and by or:thonormality that 

Use Eq. 9 in Eq. 8 to get 

which implies that  

1=0 n=O 

from which Eq. 7 follows since the TI,, are real. 
Seconcl, assume the A formula. Let f (d l+)  be a smooth icosahedrally-symmetric function on 

the sphere. The A formula implies completeness by the following calculation: 

In order t13 prove that  the T1,, are orthonormal, apply Eq. 10 to f(O,+) = TII,,I(B, 4) to get 

which implies that  



By constri~ction (Eq. 2) and the orthonormality of x,,, it follows that J Z,,q1,,1tlS2 = J qnq l .n ldS2  = 
61,1177(72, n') for some function 77. Therefore, Eq. 1 1 simplifies to 

By the linear independence of the T1,, for fixed 1 it follows that  the bracket is zero for each n.. 
Therefore, the TI,, are orthonormal. 

The following fact is used in the simplification of the the bilinear equation determining the 
bl,,,, coefficients. 

Fact 5 For a n y  do a n d  eo, 

(0. 
A 

otherwise 

where 2 (Lre the integers. 

Proof: 

5 
5N1,m xq=o Pl,rn(cos osq) [eimb5q + (-l)1e-imm5q] , rn = 5,u with ,u E 

otherwise 
f i 2 )  

since 
4 c e*i-~F = 5, m = 5p with ,u E 2 

p=o 0, otherwise 



Finally, the conclusion follows from using Fact 3 in Eq. 12. 

Fact 6 is the fundamental equation for determining the bl,n,m coefficients: 

Fact 6 The bl,n,m (1 = 0, 1, .  . .; n = 0 , .  . ., Nl - 1; m = -1,. . . ,  +I) coefficients satisfy each of the 
following equivalent relationships for arbitrary Bo and 40: 

1 Ti NI,, [Pl,m(cos do) (etmmo + ( - ~ ) ' e - ' ~ + o )  
* , m = 5,u with ,u E 2 

+ ~l,,(cos yk) (e'ma* + (- 1 jle-imak)] 

= lo, (14) 

otherwise 
Nr-1 +l r 59 

Proof: Write A(Bo, $0; 8 , 4 )  in terms of both icosahedral harmonics and spher~cal harmoilics and 
equate the two expressions: 

Substitute Eq. 2 into Eq. 16 to obtain 

Multiply Eq. 17 by ~ + , , ( B ,  4 ) ,  integrate over solid angles in B and 4 (dRe,m), and use the ~ r t~honor -  
mality of the spherical harmonics to obtain (after renaming the indices I' + I, rn' + nz) Eq. 13. 
Use Fact !j in Eq. 13 to obtain Eq. 14. Use Eq. 2 in Eq. 13 to obtain Eq. 15. 

The purpose of Eq. 15 is to demonstrate explicitly the bilinear nature of the equations. Notice, 
for example, from Eq. 15, that  there is no coupling between different values of 6. 

From Eq. 14 we immediately obtain the following properties of the b1,,,, coefficients: 

Fact 7 Ij'm # 5,u with p E 2 then blqnjm = 0. 

Proof: Multiply Eq. 14 by T;,,(Bo, 40), integrate over solid angles in Bo and 4o (dR), and use the 
orthonornlality of TlVn (Eq. 3) to find (after renaming the index n' + n) tha.t bl,.n,,, = 0 unless 
m = 5p with p E 2. 

Fact 8 For 1 even, bl,,,, is real. For 1 odd, b,,,,, is imaginary. 



Proof: For 1 even, the right hand side of Eq. 14 is 

which is real while for 1 odd, the right hand side of Eq. 14 is 

which is iimaginary. Multiply Eq. 14 by TTn,(Bo, 40) which is real, integrate over solid angles in Bo 
and 40 ( d n ) ,  and use the orthonormality of X,, (Eq. 3) to find (after renaming; the index n' 4 1 1 )  

that  b~,,,,, = tc where tc E R ( R  is the real numbers) when 1 is even and bl,,,, = itc' where K' E 72. 
when 1 is odd. Therefore the conclusion follows. 

Fact 9 bl,,,, = bl,n,-,(-l)l+m. 

Proof: Facts 1 and 8 imply, for 1 even, that bl,,,, = (-l)mbl,n,-m and, for 1 odd, that  bl,,:, = 
-(- l)mbl,n,-m . By combining these two cases, the conclusion follows. 

Fact 10 For 1 odd, bl,n,o = 0 .  

Proof: Take m = 0 in Fact 9. 

Fact 11 

2 C + '  mr0 - 1 + ~ , , ~  Nl,mbl,n,mPl,m(~0~0) cos m 4  1 even- 

X,n(Q, +) = 
CLL1 2N,,rnibl,n,rn Pl,,(cos 0) sin m+ 1 odd 

Proof: By using Fact 9 and Yj,_,(B, +) = ( - l ) m ~ ~ m ( O ,  +) [8, Eq. 3.541 to coinbine the complex 
exponential terms in Eq. 2 we get, for 1 even, that  

+I 
X,n(Q: 4) = bl,,,oNl,o Pl(cos 0) + C 2b~,,,mN~,m fl,,(cos 0) cos m+ 

m=l  

The same calculation for 1 odd, using also Fact 10, gives the result that 

+1 

TI,n(Ql+) = C 2Nl,mibl,n,mPl,m(cos 0) sin m+. 
m = l  

Fix the value of 1. To this point, the only restriction on TI,, for n = 0 , .  . . , Nl - 1 which we 
have employed is that  the functions must be orthonormal. We now add an additional restrictioil 
in terms of the br,,,,. Here, and throughout the remainder of the paper, let 1x1 denote the integer 
part of x .  



Fact 12 T h e  bl,,,, coefficients can be chosen so that 

ti,, = min {m E (0, . . . ,1)  : bl,n,m # 0) 

satisfy 

t1,o < tl,l < . . . < tl,N1-l 

where the zitequalities are strict. I n  a basis satisfying Eq. 18, it follows that bl,,,, = 0 for m < 5n. 

Proof: We need only consider m = 5 p  for p = 0 , .  . . , 11/51 by Facts 7 and 9. Construct the matrix 

which is full rank (rank Nl) because the bl,,,, are orthonormal (Fact 2).  Determine the transfor- 
mation to an intermediate basis which satisfies Eq. 18 by applying Gaussian elirnination. However, 
the intermediate basis need not be an orthonorma.1 basis. Therefore, apply Gram-Schmidt orthog- 
onalization, starting with the Nl th  row, to transform to an orthonormal basis while still satisfying 
Eq. 18. The final claim (i.e., bl,,,, = 0 for nz < 5 n )  follows from the strict inequalities and Fact 7. 

We now modify the bl.,,,, notation slightly to incorporate results to this point. First, Facts 9 
and 11 imply that  the icosahedral harmonics are completely determined by the bltn,, coefficients 
for which m 2 0. Therefore, is only defined for m 2 0 and in the remainder of the paper, 
m > 0 and m' 2 0 unless otherwise designated. Second, we absorb the "in that  occurs for 1 odd 
into the definition of by,:,, so that bCYm is always real (Fact 8). In summary, the new definition, 
for 1 = 0, 1, . . . ,  n =  0 , . . . ,  Nl - 1, and m =  0 , . . .  , 1 ,  is 

1 even 
1 odd 

For the remainder of this paper we will use only the new notation and therefore will not include 
the superscript "new". The 1 odd case will not appear until Fact 18. 

The remainder of the calculation of the bl,,,, coefficients is the same in plan but different in 
details for 1 even versus 1 odd. We will show the 1 even case and then state the results for 1 odd. 

Fact 13 For 1 evelt and m = 5 p  with p = 0 , .  . . ,  11/51, the bl,,,, coefficiei~ts satisfy the followiwg 
relationship for arbitrary Bo and $0: 

- 1 
- gNj,m [piYm(cos h) cos mdo + C P l , r n ( ~ ~ s  ~ k )  cos m a *  

k=O J 
Proof: Th'e current fact is a specialization of Fact 6. Evaluate Fact 11 a.t ( e l$ )  =: (Bo,+o) and apply 
Fact 12 tcj get 

+ 1 2 
Z,n(Bo, $0) = C 1 + d r n ~ , ~  

Nl,rnfbl,n,m~ Pl,mf (cos 00) cos na'dlo. 
mf=5n 



Use this result in the left hand side of Eq. 14 and I even on the right hand side of Eq. 14 to get 

1 
= - ~ l , m  6 [ ~ l , ~ ( c o s  00) cos m40 + c P ~ , ~ ( C O S  7k) cos mu* . 

k=O J 
Rewrite the summations using the equality 

to find that  

Finally, utje Fact 12 applied to the bl,,,, factor to demonstrate the claim. 

5 Series Expansions 

For each 1 ,  Eq. 19 represents a system of equations (indexed by m) for the bl,. , .  coefficients which 
must be satisfied for any choice of 80 and 40. We are not able to solve these systems directly. 
Therefore we express the functional dependence on Oo and 40 of both the right and left harid sides 
as infinite series and equate the coefficients of corresponding terms on the right and left hand sides 
in order to derive new systems of equations. Possible choices include Fourier series and Taylor 
series and, especially for the Taylor series, possible variables include 80 and cos do. Because of t,he 
dependence of yk and a k  on Oo and 40 ,  the calculations are complicated and t,he choice we were able 
to pursue successfully was a Fourier series in 40 (i.e., eikQO) and a Taylor series; in Oo (i.e., 06). I11 
fact, we are not able to  compute all of the coefficients in the Fourier-Taylor expansion but only t'he 
coefficients of terms like OrefimQo. It turns out that  equating corresponding coeEicients of this t,ype 
leads to systems of equations that  can be solved recursively. The computation of these coefficieilts 
requires some apparatus which we now develop. Any alternative approach which computes the 
coefficients of the terms OrefimQ0 will lead to the same results. 

5.1 Definitions and Abstract Results for P and Q 

Definition 1 L e t  S = [0, a] x [O,2a) be t h e  sphere  a n d  S be a v e c t o r  space o v e r  t h e  c o m p l e x  ,field 
of s m o o t h  complex-va lued  func tzons  o n  S .  

Definition 2 T h e  o p e r a t o r  Z f r o m  f u n c t i o n s  f i n  S t o  complex-valued sequences  d o n  2 x ( 2 +  U 
(0)) i s  de,fined b y  

dm,k = k! ( dOk 2 a  ( O  0 e)e-im*d+) 1 f o r  m = . . . , - 1 , O ,  + I , .  . . a n d  k = 0 , 1 , .  
8=0 

,where 2+ are  t h e  n o n n e g a t i v e  in tegers .  



These are the coefficients of the Fourier-Taylor expansion. 

Definition 3 The operator 2 - I  from complex-valued sequences d on 2 x ( 2 +  U (0)) to func2ions 
f in S is defined by 

cc 00 

f ( 8 ,  4)  = C C dm,k8ke'm"~r ( 8 , 4 )  E S. 

Notice that  k 2 Irnl not k 2 0 

Definition 4 The function space P is those functions f E S such that if d = Z [ , f  then f = Z - ' [ q .  

The name "P" comes from "Platonic." In the following, cl and c2 are complex-valued constants. 

pro pert!^ 1 P is a subspace of S ,  that is, i f  f l  E P and f2 E P then f = cl fl + c2f2  E P .  It 
follows that if N E 2+ is finite and fk E P for k = 1 , .  . . , N then f = ~ r = ~  ck,fk E P. 

Proof: Let f i  E P,  dl = Z [ f i ] ,  f 2  E P, d2 = Z [ f 2 ] ,  and f = cl f l+c2f2 .  Then, by direct computatiori 
from the definition of Z (Definition 2), d = Z [ f ]  = cldl + c2d2. Therefore, by direct computation 
from the definition of Z-I (Definition 3), Z - ' [ q  = cl fl + c2 f2 = f so that  f is in P .  

Definition 5 Let f E P with d = Z [ f ] .  The operator Q froin P to P zs defineti by 

For example, Q [ l  + 8 + e2 sin 241 = 1 + d 2  sin 24. 
The fcjllowing properties describe important abstract characteristics of functions in P and the 

result of a.pplying Q .  

Property 2 I f f  E P then Q [ Q [ f ] ]  = Q [ f ] .  

Proof: This result follows immediately from the definition of Q .  

Property 3 Q is linear: Q[cl f l  + c 2 f 2 ]  = c l Q [ f l ]  + c2Q[ f2] .  It follows that iif N E 2+ i s  finite 
and fk E :P for k = 1, . . . , N then Q [ c ~ = ~  c k f k ]  = ~ r = ~  c k Q [ f k ] .  

Proof: Lei, 

Since P is, a subspace (Property l ) ,  cl fl + c2 f2 E P. Furthermore, 



Propert~r 4 If f i  E P and f z  E P ,  then f i  f 2  E P and Q [ f i  f z ]  = Q[Q[f l ]Q[ f z ] ] .  It follows th.at if 
N E 2+ ir finite and f k  E P fork = 1 ,  . . . , N then nr='=, f k  E P and Q [n%i f k ]  = Q [nrZl ~ [ f ~ ] ] .  

Proof: See Appendix B. 

N Property 5 If g is a polynomial, g ( z )  = C k = O g k z k ,  and f E P ,  then g ( f )  Ci P and Q [ g ( f ) ]  = 
Q[s(Q[ f l ) l .  

Proof: This result is a corollary of Properties 3 and 4. 

Conjecture 1 If g is a suitable function and f E P ,  then g ( f )  E P and Q[g( f ) ]  = Q [ g ( Q [ f ] ) ]  

If g is a polynomial then this conjecture is exactly Property 5 .  We have not been able to extend 
the result to more general functions g. Difficulties include the fact that Q ,  viewed as a. opera.tor 
from P to P ,  is not continuous for square integrable functions on the sphere (Appendix C). 

Property 6 I f f  E P and nola-zero, then l / f  E P .  Furthermore, Q [ l /  f ]  = Q [ l / Q [ f ] ]  

Proof: This is a special case of Conjecture 1.  

P r o ~ e r t ~ r  7 If f i  E P ,  f 2  E P ,  and f z  is nun-zero, then f 1 / f 2  E P .  Furthermore, Q [ f l / f 2 ]  = 
Q [ Q [ f i l / ~ 2 [ f i l l ,  

Proof That  f l /  f 2  E P follows immediately from Properties 6 and 4. The remaining claim follows 
from the following equalities: 

= Q [Q [ ~ [ f i l & ] ]  by Property 4 

- - Q [%I by Property 2. 

conjecture 2 If f k  E P for k = 1 ,  '2 , .  . ., then Cp=o f k  E P and & [Ep=S=, f k ]  = Cp=O & [ f k ] .  

For finite sums this is a combination of Properties 1 and 3 .  A proof for infinite sums requires 
a more precise definition of P which will be chosen in a way that is convenient for the proof of 
Conjecture 1. 



5.2 Concrete Results for P and Q 

We now describe several concrete properties. 

Property 8 The spherical harmonic X,,(B, 4) is in P and 

where 

Proof: Since Pl,,(cos 8) is finite a t  8 = 0 (in fact P1,,(1) = bmY0), it follows that, the Laurent series 
around 8 := 0 of P1,,(cos 8) has no negative powers of 8: 

We shall show that  hl,,,k = 0 for k < Iml and hl,,,lml = g1.m. 
The integral representation (Laplace integral) of the associated Legendre polynomials is [5, 

Eq. 8.711-.2] 

im (I + m)! L2' e - i m + [ ~ ~ s  8 + i sin 8 COS +lid+ Pl,m(cos 8) = - 
2 I! 

Since 

it follows that  

im (I  + m)! (1) 2 " 
Pl,m(cos 8) = - C O S ' - ~  8ik sink 8 1 c-lmi cosk +d+. 

2 I! (22) 
k=lml 

Therefore the leading term in P1,,(cos 8) is 81ml, hence X,,(O, 4) is in P .  Using Eq. 22 in 

we find that only the Iml! cosl 8 subterm of the k = Iml term of the summatiorl is non zero when 
evaluated a t  8 = 0 because all other terms have factors of the type sin3 8 for j > 0. Therefore, 

jm+lml 
- - (I + m)! 

2~ (I - ~ m ~ ) ! 2 I m I ~ m ~ !  
- 
- gl,m. 



Property 9 The function PI,,(cosO) cos(m+) is in P and 

where gl,,, is defined in Property 8. 

Proof: From Eq. 1 it follows that  

1 

and therelfore P1,,(cosO) cos(m+) E P by Properties 3 and 8. Furthermore, 

Pro~ert~r 10 sin($ + a), COS(+ + a ) ,  0 sin(+ + a ) ,  0 cos(+ + a ) ,  and sin O sin(+ + a ) ,  where is 
an arbitro.ry angle, are in P and 

Proof: All claims are elementary calculations, we prove only the third. Since 

it follows tha t  the series has non-zero dm,k terms only for k = 1 and m = h1. Since Q leaves 
terms of t,he form d m , l m l ,  i t  follows that  Q leaves both terms and therefore thr: first conclusion is 
verified. 

Property 11 Let m , p  be nun negative integers, m 2 p. Let be an arbrtrary angle. Theit 
Om  cosm-PI(+ + a )  sinP(+ + a )  is in P and 

M e m  I+~,,o cos m(+ + a), p = 2r ,  r E Z+ u {o) 
QIOm C O S ~ - ~ ( +  + a )  sinP(+ + a ) ]  = 

21-m(-1)'Om sin m(+ + a),  p = 2 r  + 1, r  E Zf U (0)  



Proof: The case where m = p = 0 is trivial. We assume m > 0 in the remainder of the proof. 
Using the binomial theorem and the complex exponential representation of sine and cosine we 

obtain (II, = + + @) 

Note that  in the summands above, 0 5 k + kt < m. It follows that Bm C O S ~ - ~ ( ' +  + @) sinP(+ + @) 
is in P. Furthermore, 

- - 6" im+ -[e + (- 
2mzp I 

21-m(-1)TOmcosm(++@), p =  2 r , r  E 2 , r  > 0 

21-m(-1)T0m sin m($ + a), p = 2r .+ 1, r E 2,7. _> 0 

Property 12 Let m l ,  m2 be positive integers. T h e n  the functions indicated below are i n  p and 

Q[om1 cos m l ( 4  + @)em' cos m2(+ + @)I = -QIBml sin ml($ + @)Bm2 sin m2(4 + a ) ]  

- - 
1 +mz 
2 cos(m1 + m2)(+ + @) 

QIBml sin ml (4 + @)Bm2 cos m2(+ + @)I = Ieml+m2 . 
2 

sln(m1 + m2)(+ + a). 

Proof: All three claims are elementary calculations, we prove only the first. Since 

it follows, after expanding the two cosines in terms of complex exponentials, that  the functions are 
in P and 

as claimetl. 0 

Property 13 T h e  function indicated below is  i n  P and 

Oo sin $j 

41 - (cos ,/? + 60 sin P cos +j)2 P=O T=O 

where c ~ , ~  are coef ic ients  defined by 



Proof: Sin.ce Oo sin 4 j  and Oo cos q5j are both in p ,  the fact that the function of interest is in P 
follows from the properties in Subsection 5.1. We first note that f ( x ,  0) ancl f (0 ,  y) are finite, 
hence f (x ,  y) can be expanded into a series of non-negative powers. Second we note that  f (x, Y) 
is an  even function with respect to y, i.e., f ( x ,  y) = f (x ,  -y), therefore cpVg == 0 for q odd. Let 
x = Q 0 ~ o ~ 4 j ,  y = Oosin4j. Then 

= C C C ~ , ~ ~ Q [ O ~ +  2T cosP )j sinZT Bj] by Conjecture 2. 
p=O r = O  

5.3 Spmecific Results for P and Q 

We first apply the Q operator to  several expressions that  occur due to the geometry of the icosa- 
hedron. 

Fact 14 The  functions indicated below are in p and 

Q[cos yj] = cos /? + 00 sin cos 4.j (24) 

Q[sin yj] = Q[ 4 1  - (cos /'? + 00 sin /? cos )j)l] 

Oo sin q ! ~ ~  
Q[sinajI = Q 1- 

1 - (cos p + O0 sin p cos 4j)2 J 
O0 sin 4 j 

Q[cos maj ]  = Q 
1 - (cos /3 + O0 sin ijl cos 

(27) 

Proof Tha t  the functions are in p follows from the properties in Subsection 5.1. Eq. 24 follows by 
applying ]Properties 3 and 10 to the definition of cosyj in Fact 3.  Eq. 25 is a. consequence of the 
following calculation: 

Q[sin yj] = Q[ 4 1  - cos2 yj] 

- - Q[ J-1 by Conjecture 1 

Eq. 26 is a consequence of the following calculation: 

Q [sin O0 sin 4 j] 
&[sinail = I by Property 7 applied to Eq. r5 

Oo sin q!~j 
= Q 1- J by Eqs. 23 and 25 

Q[ JI - (COS p + 00 s i n p  cos + j ) 2 ~  



Bo sin +j  
= Q 1- I by Property 7 

1 - (cos /3 + Bo sin p cos +j)2 

Finally, Eq. 27 is a consequence of the following calculation: 

Q[cos m a j ]  = Q[cos m sin-' sin cwj] 

= ~ [ c o s  m sin-' Q[sin aj]] by Conjecture 1 

Bo sin 4j  
= Q [cos(msin-l (Q [- 

,/I - (cos p + 6'0 sin p cos $j)2 

Bo sin q5j ) )] by (zonjecture I 
1 - (cos p + 6'0 sin p cos q5j)2 

Being equipped with the a.bove tools, we return to Eq. 19. 

Fact 15 The  left hand side of Eq. 19 is in P .  A follows that the right hand silde of Eq. 19 is also 
in P .  

Proof: By- Properties 3 and 9 it follows that  the left hand side of Eq. 19 is in P as a function of 

(eel $0). 
The key result is the following fact: 

Fact 16 For 1 = 0 , 2 , 4 , .  . . and m = 5p (0 < m < +I), 

where 

Proof: Apply the Q operator to the left and right hand sides of Eq. 19. For the left hand side we 
find: 

i min(Nl-l,Lm/5J,Lm1/5J) 

C 
2 

= 13 bl,n,m Ni ,m~bl ,n ,m~QIPi ,m~(~os  00) cos mJq50~ by Property 3 
m1=0 n=O 1 + 6mf,0 

i min(N1-1,Lm/5J,Lm'/5J) 

= 11 C b i , n , m l b l , n , m ~ l , m l g l , m l e ~ l  cos nz'40 by I'roperty 9 
m1=0 n=O 1 + 6mf,0 





4 0 0 0 0 0 0  1 
gl,mf9!m' cos rnd0 + x x x x E I ~ l ! ( ~ ~ ~ , B )  sink , B C ~ , ~ ~ Q  [8t+p+2r c o s k + ~  d j  sin2' $j]] 

6 
j=0 k=0 p=0 r=0 

by Property 4 

gl,mo!m' cos mdo 
6 

by Property 11 

cos mdo 
6 

00 4  21-m' [+J 

+ x or' ( x  cos ml)j) 
m1 %P~(COSP) 1 sink P cm1-k--:lr,2r(-l)r] 

m1=0 j = O  1 + bo,m' k=O T=O 

by changing the summation index (from p to m1 = k + p + 2r) and regrouping the suinina.nds 

00 [+] 

[ 
21-m' m' 1 

- - R ~ ~ , m  gr,mobmi cos mdo + c 0 r 1 5  cos mido C ,~{x,'(cos P) .ink P C cn,'-k-2r,2..(-l IT]  
u1=0 1 + b0,m' k=O r=o 

4  
5 cos mido if m' = 5p1 

by cos ml+j = { 
j = O  

otherwise ' 

Equating the results for the left and right hand sides and using m 2 0 verifies t,he claim. 
For m" = 5p1 (0 - < m' < +I), equate the coefficient of or' on both sides of Fact 16 to get 

which must hold for I = 0 , 2 , 4 , .  . ., m = 5p (0 < m 5 +I) ,  and m' = 5p' (0 < - ,m' 5 +I). Division 
2 of both sides by G N l , m ' ~ i , m '  cos mido results in 

Fact 17 For I even, m = 5 p  (0 < m < +I), and m' = 5$ (0 < m' < +I), 

where 

5.4 The Case of I Odd 

The derivation of coefficients for the odd harmonics is similar to tha.t for the even harmonics. The 
final expression for determining the blVn,, coefficients is: 



Figure 2: The bl,,,, Array For Fixed I .  "0" indicates a guaranteed 0 element while "*" indicakes a 
possibly n.onzero element. 

Fact 18 For 1 odd, m = 5 p  (0 5 m 5 +I), and m' = 5p' (0 5 5 +I), 

where 

and where the s,,, coefficzents are defined b y  

Note that  C I I m , , ~  is defined differently for 1 even and 1 odd. 

6 Recursive Solution 

Eqs. 28 and 29 enable us to obtain the bl.,,, coefficients sequentially in n for 1 even and odd 
respectively. The symmetry of the left hand side of Eqs. 28 and 29 in m' a.nd m implies that  
Cl,,,,f = C1,,r,, and that  we need only consider m 2 m' so Eqs. 28 and 29 simplify to 

In addition, Cl,nt,m~ vanishes for m > 1 due to the P,(? term so the same symmetry implies t,ha.t 
Cl ,,,,,, I va.nishes for m' > 1. 

We now describe an algorithm for solving Eq. 30. Based on Fact 7, we are only concerned with 
m = 5 p  itnd m' = 5p'.  Fix the value of I .  As observed following Fact 6 ,  there is no coupling 
between different values of I .  Construct a Nl x ( [ 1 / 5 ]  + 1) array of the bl,,,,, coefficients where 
the (i, j )  l;h element is b1,i-1,5(j-1). Because of Fact 12, this array ha.s the form shown in Figure 2.  
Eq. 30 describes a sum over elements in one (if m = m') or two (if 171 f m') columns. Suppose 



p f - 1  b2 112 
b r , p l . s p f  = ( 4 , s p 1 , s p ~  - i , n , 5 p l )  (Eq. 30 for m' = m = 5p')  

for(: p = p' + 1 ; p <= 11/51 ; p + + ){ 
pl-1 

b1,p1,5p = ( ~ 1 , 5 p 1 , 5 p  - b i , n , 5 p l b l , n , ~ p )  / b l , p f , 5 p ~  (Eq. 30 for m' = 5p1 and m = 5~1) 

1 
1 

Figure 3: An Algorithm for the Solution of Eq. 30. The control structures are written in the C, 
programming language. 

that  the values of b l , , , ,  in rows n = 0 and 71 = 1 are known. Then the values in row n = 2 call be 
determined in two steps: First, set m = m' = 10 for which Eq. 30 becomes 

Since b l , o , : l ~  and b l , l , l o  are known, Eq. 31 can be solved for b1 ,2 ,10:  

Now that  b1 ,2 ,10  is known, the remainder of the n = 2 row can be determined by evaluating Eq. 30 
for m' = I 0 and m = 15,20,25,30. The key is that  the upper limit of Eq. 30, which is determined 
by na', does not change as m moves across the row. Specifically, Eq. 30 becomes 

and b l , o , l o ,  b l , ~ , ~ ,  b l , l , l o l  b l , l , m , ,  and b1,2,10 are known so Eq. 32 can be solved for b l , n , , :  

Generalization of this approach 1ea.d~ to the algorithm shown in Figure 3. 
The algoritl~m of Figure 3 will fail if b l , p ~ , 5 p f  = 0 for any p' in 0,  . . . ATl - 1. Th~e simplest exa.inple 

of this problem is I = 15 for which ATl5 = 1 ,  C 1 5 , 0 , 0  = 0, and C 1 5 , 5 , 5  # 0. The complete set of 
equations implied by Eq. 30 is shown in Table 1. The algorithm of Figure 3 would use the (m,  171') 

pairs marked by "t" in Table 1 which are indeterminate since b15,0,0 = 0. However, by using the 
(m,  m') pairs marked by "§", the four b15,0,rn can be determined by a very similar algorithm: 



Table 1: Eq. 30 for 1 = 15. 

The algorithm of the previous paragraph can be generalized to cases where Nl > 1 and there 
are multiple zero diagonal elements by taking advantage of Fact 12. Specifically, if the algorithm 

- 0 for determines that  bl,,:, = 0 for m < tl,, then, for any 7 2 0, it follows tha.t b/,,+,:, - 

nz < tl,, $- 5~ The resulting algorithm is shown in Figure 4. Note two aspects of the algorithm of 
Figure 4: First, when a new zero is found by the "while" statement, the diagoma.1 containing: t,ha.t, 
zero is immediately set to zero for rows beneath the current row (i.e., for n' > n:). Second! because 
of the zeros, the upper limit on the summations E n ,  b[,,,,, and I , ,  b1,,~,,,~bl,,,~,, is n - 1 rather 
than min(N, - 1, Lrn1/5j). 

In order to  execute the algorithm of Figure 4 in exact arithmetic, we have used the Mathe- 
matica sy~mbolic computation system. The program for performing these calcrllations is listed in 
Appendix E. The key fact is that  Cl,m,m~ can be evaluated for arbitrary I, rn, and m' through 

(k) (k)  1 elementary calculations. In order to  evaluate P,,,(cos 0) = Pi (-), the fol1ov:ing fact is useful. 'm JS 

Fact 19 P?L)(X), where 1x1 < 1, can be expressed in the following form 

where Ak(x)  and Bk(x) satisfy the following recursive relations: 

with the i,nitialization A ~ ( x )  = 0, B ~ ( x )  = 1. 

Proof: Note that  for 1x1 < 1 ([5, Eq. 8.733-1,2]) 



Figure 4: An Algorithm for the Solution of Eq. 30 in the General Case. The co~ntrol structures are 
written in the C programming language. 

Now proviz by induction. The claim is obviously true for k = 0. Suppose it is true for k ,  then 

Substitute Eq. 33 and collect terms. Tha t  the claim is true for k + 1 follows itr~mediately. 

7 De:rivation Of Explicit Forms Of Icosahedral Harmonics 

To substantiate the derivations in the previous sections, in this section we derive explicit expressions 
for those icosahedral harmonics that  can be determined from Eq. 30 for m.' = 0 (the so-called "first 
set") or n2' = 5 (the so-called "second set"). (Recall that m 2 m' a.1wa.y~). Notice that the first 
and second sets do not correspond to n = 0 and n = 1. For instance, N15 = 1 SO there is only a. 
n. = 0 icos.ahedra1 harmonic for 1 = 15 but,  because b15,0,0 = 0, it is necessary to consider m' = 5 in 
Eq. 30 so the single icosahedral harmonic belongs to  the second set. 



In Appendix D we list the coefficients for all icosahedral harmonics in the range 0 < 1 < 45. 
Though our theory and Mathematica software can compute the coefficients exactly, we only tabulate 
results to  16 decimal digits of precision in order to save space. Please contact P.C.D. for machine- 
readable tables of coefficients and software. 

7.1 The First Set Of Icosahedral Harmonics 

The first set of icosahedral harmonics is the collection of T1,,(6, 4)  for which bl,n,o # 0. Specif- 
ically, the first set is those icosahedral harmonics that are computed by the bl,,:, = (CI,,~,,, - 
C:z0 bl,n,,mjbl,n',m)/bl,n,ml statement in the algorithm of Figure 4 with n = m' = 0. From Fact 10 
we know that  bl,n,o = 0 for 1 odd. Therefore, there are no I-odd icosahedral ha~:monics in the first 
set. 

Set m' = 0 in Eq. 28 to get 

Noting gl,,, = 1,  co,o = 1,  we obtain 

1 (1 - m)! 
bl,o,obl,~,m = - d 1 

6 (1 + m)! [6m,o + 5Pl,m(--)] h 

Evaluate Eq. 34 at  m = O to get 

Evaluation of Eq. 35 shows that bl,o,o = 0 for I = 2 ,4 ,8 ,14 .  Therefore, icosahedral ha.rmonics of 
order 1 = 2 , 4 , 8 , 1 4 ,  if they exist, are not members of the first set and, in fact, Eq. 4 shows that 
they do not exist at  all. (We have verified t,ha.t icosahedral harmonics of order [ = 2 , 4 , 8 , 1 4  do 
not exist in the first or second set but in order to demonstrate that a harmonic of order I does not 
exist at  all it is necessary to check through the ([ + 1) st set). The first four unnormalized 1-even 
icosahedral harmonics, obtained by exact numerical calculations from Eq. 34, are 

TO,O(:~, 4 )  = 1 

T~,ol:8, 4 )  = 396OP6,o(cos 8) - P ~ , ~ ( c o s  6) cos 54  

TIO,O(:~, 4) = 896313600Pio,o(~0~ 8) + 2736OP~o,~(cos 8) cos 54  + P l o , l o ( c ~ ~ ~  8) cos 104 

Ti2,ol:6', 4)  = 1425O2976O0Plzo(~os 8) - 55440P12,~(cos 8) cos 54  + P12,10(cos 8) cos 104. 

(Division of the stated formula by G, 3600 &, 25920000 d m ,  or 399168000 d m  will 
normalize ToPo, T6,0, TlO,0, or T12,0 respectively). In Figure 5 we show spherical plots of these 
harmonica. The icosahedral symmetry is apparent. 

7.2 The Second Set Of Icosalledral Harmonics 

The secortd set of icosahedral harmonics is the collection of T1,,(6, 4) for which bl,n,o = 0, and 
b1,n,5 # 0. Specifically, the second set is those icosahedral harmonics that  are computed by the 

blVn,m = (Cl,ml,m - Z:;io bl,nl,m~bl,nl ,m) /bl,,,,~ statement in the algorithmof Figure 4 with I ,  = 0, 1 



Figure 5: I[cosahedral harmonics. Each stereo pair of plots shows a surface whose distance from the 
origin at particular 0 and 4 values is the value of cl,, +q, , (0 ,4)  where cl,, = 2 rnw,+((X,,(0, 4)() .  
(a) T6,0, (1)) TlO,0, and (c) Tl2,O. TO,O(O, 4) takes value I/& independent of the values of 0 and 4 
so a plot of this type for Toto shows a sphere. 



and m' =: 5. We now determine the br,,,, coefficients. First consider the 1-even icosahedra.1 
harmonics;. Setting m' = 5 in Eq. 28, we obtain 

(36) 
where, by applying Eq. 34 three times to achieve the second equality, 

Using Eq. 37 in Eq. 36, the expression for the 1-even second-set icosahedral harmonics was worked 
out with ifhe aid of Maihematica and is 

where 

Evaluate Eq. 38 a t  m = 5 to get an expression for bf,1,5. Evaluation of this expression using exact 
arithmetic shows tha i  the smallest even 1 such that  b1,1,5 # 0 is 1 = 30, i.e., the lowest order second- 
set I-even icosahedral harmonic is T30,1(e, +). By further calculations with Mathematics we find 
that  an uimormalized expression for T30,1 is 

T3o,l(e, 4)  = 21575737826844783682237777575936000000P30,5(cos 8) cos 54  

+ 2404901042680144820126515200000 P 3 0 , 1 0 ( ~ ~ ~  0) cos 104 

+ 195936300573276856320000P30,15(~~~ 8) cos 154 

+ 7601550560755200P30,20(cos 8) cos 204 

(Division of the stated formula by 11587425684543700992000000000000 ,/E6427766y1918'390si1n 
will normalize T30,1). A spherical plot of T30,1(e, 4)  is shown in Figure 6.  For comparison, an un- 
normalized expression for T30,0(e, +) ,  a member of the first set, is 

T30,0(er ( b )  = 813279038255889216053348786362122240000000P~o,o(~~~ 8) 
- 473530036891 15160214196322304000000P~o,~(cos 8) cos 54  

+ 1645439737221580537036800000 P 3 0 , 1 0 ( ~ ~ ~  0) cos 104 
- 55708614976734720000P30,15(~~~ 8) cos 154 + 97022644992OOP~0,~0(~0~ 8) cos 204 
- 5407920P30,25(cos 0) cos 254 + P30,30(~os 8) cos 304. 



Figure 6: Icosahedral harmonics. Each stereo pair of plots shows a surface whose distance from the 
origin at  particular 6 and $ values is the value of cl,, +z,,(6,$) where cr,, = 2 rn;zWl4(Iz,,(6, $)I). 

(a) T15,0, (b)  T30,0, and (c) T30,l. 



(Division of the stated formula by 41445759345654852911923200000000000000 Jy will 

normalize T30,0). A spherical plot of T30,0(B1 4 )  is also shown in Figure 6. 
Now let us consider the second-set 1-odd icosahedral harmonics. By setting m' = 5 and notsing 

that  br,,l,,, = 0 for n' = 1 , .  . . , N1- 1 and m = 10,15, . . . , [1/5]5 in Eq. 29 we get 

where 

As before, by setting rn = 5 in Eq. 39 we derive an expression for 6F,0,5. The smallest odd 1 for 
which this. expression is nonzero is 1 = 15. Therefore, the lowest order I-odd second-set icosa11edra.l 
harmonic is T15,0(6, d ) ,  which has the unnormalized expression 

T15,o(B, 4) = -36306144000P~5,5(cos 8) sin 54 - 62640P15,10(cos 0) sin 104 + Plii,15(cos 8) sill 154. 

(Division of the stated formula by 3919104000000 J2156z441" will o r l i e  l , , ) .  A spherical 

plot of Tl:,,o(8, 4 )  is shown in Figure 6. The nodal lines at  = k?, which are due to the sin5m4 
factors (a! = 1, 2 ,3 ) ,  are clear. Tls,o is, by Eq. 4, the lowest order 1-odd icosa.hedra1 ha.rmonic 
among any set. 

7.3 Syrnbolic Verification of the Icosahedral Harmonics 

Because of technical difficulties in the mathematics, we were unable to prove Conjectures 1 and 2 
in the der:.vation of a general formulae for icosahedral harmonics. However, we believe that our 
use of thern is reasonable and the results derived from them are correct.. We have verified explicit. 
instances of our calculation in two ways: First, our exact results reproduce the 6-significant)-digit 
results for 0 5 1 5 30 in Ref. [7]. (For 1 = 30 Ref. [7] lists only one icosahedral harmonic, which 
is our T30,0r in spite of the fact that  IV30 = 2). Second, for a significant subset of the icosahedra.1 
harmonics we have verified symbolically that  the icosahedral ha.rmonic is invariant under ea.ch 
of the 60 :symmetries in the icosahedral group. I11 particular, we have verifiesd To,o, T6:0, TIO,O1 
Tl2,o, and T15,0, which are all of the icosahedral harmonics with 1 < 15, and we have verified T30,0 

and T30,1, which are the lowest-order icosahedral harmonics for which Nl > 1. Such symbolic 
verification can be performed for any particular icosahedral harmonic by widely-available symbolic 
computation software. In the remainder of this subsection we describe the method and procedures 
to use Malhemalica to verify the symmetries of icosahedral harmonics. 

A sphe::ical harmonic XI,, when expressed in terms of Cartesian coordinates, is a polynomial 
in x ,  y ,  z of order 1. Therefore, an icosahedral harmonic is also since an icosahedral harmonic is a 
linear coml~ination of spherical harmonics of the same order. A rotation of the h.armonic is simply 
a linear tritnsformation of the coordinates. The transformation will yield a (generally different) 
homogeneous polynomial of the same order in the transformed coordinat,es. The inva.riance un- 
der icosahedral symmetry is verified if, for the 60 transformations in tlhe icosahedral group, t,lle 
polynomials before and after the transformation are the same. 

There asre 2 reasons for using Cartesia.n rather than spherical coordinates for the verifica.tion: 



Table 2: The First 30 Icosahedral Rotations in Terms of S and T. 

1. The rotational operation is more easily expressed in Cartesian coordinates than spherical 
coo1 dinates ( a  linear transformation versus complicated angular relations). 

2.  Most symbolic computation software handles polynomials much better than tr ig~nomet~ric 
functions, specifically, the manipulation of polynomials (collecting terms, expansion a.nd fa.c- 
toriz:ation, etc.) is fairly mechanical and the behavior of the output is predictable, while 
the .manipulation of trigonometric functions requires the use of possibly rnany trigonomet,ric 
identities and the sequence of their application may greatly change the appearance of the 
o u t ~ u t ,  so without the intelligent interference of the user, the symbolic computation software 
rare1.y arrives a t  the simplest form of a trigonometric expression. 

I t  is not necessary to  separately verify the invariance of the icosahedral ha.rmonic under each 
of the 60 rotations of the icosahedral group. If a function is invariant under the unitary operations 
S, IJ and P ,  which are defined below, then it is invariant under all GO rotationsi of the icosahedral 
group, because any rotation in the icosahedral group is a product of S, U ,  P and their inverses. 

The operation S is a rotation about the z axis ( a  five-fold axis), USU-I is a rotation about a. 
different five-fold axis, and P is a quasi spatial reflection operation. 111 the coordinate system used 
in this paper (Figure l), S, lJ ,  and P have the following matrix representations: 

c o s y  - s i n 3  
27r sin 9 cos 5 

0 0 

0 
cosp 0 s i n p  

- s i n p  0 0 1  cosp  

Table 2 tabulates the first 30 rotations of the icosahedral group in terms of S a.nd T = US['-'. 
The  second 30 rotations are related to  the first 30 rotations by 

In Appendix F, we give a concrete illustration of the needed computations by verifying t11a.t 
T6,0 is invariant under the operation U. The necessary Mathernatica programs3 are contained ill 
Appendix (2. 



8 Other Polyhedral Harmonics 

Using the same idea and techniques, we can derive the complete orthonorma,l sets of harmonics 
with octebedral and tetrahedral symmetries. Since the cube is dual to the octahedron and t,he 
dodecahe'dron is dual to  the icosahedron, it is not necessary to  compute cubic and dodecahedra.1 
harmonics. Below we only outline the calculations and have suppressed the details. Please contact 
P.C.D. for machine-readable tables of coefficients and software. 

8.1 Octahedral Harmonics 

Choose appropriate coordinates such that the spherical coordinates of the vertices of the underlying 
octahedrcn are: 

Express the octahedrally symmetric delta function in terms of both spherical harmonics and the 
unknown octahedral harmonics. After simplification this gives 

1 is odd 

C C b/ ,n ,mN/ ,m 'b / , n ,m fP1 ,mf (~~~  6 0 )  sin mt40 
mf>O 4n<mf 

1 1 = - Nl,m [ P 1 , m ( ~ ~ ~  d o )  sin mdo + - C P1,,,,(cos yk) sin mak]  nl = 4p 
3 2 

k=O 

where c r k ,  yk have the same definitions as in the icosahedral case with 3 = n/2 and 4 k  = $0 + k$. 
Using the series expansion techniques, we obtain expressions for determining tht: coefficients bl,,,,: 

[ is even 

where cp, ,  and s, , ,  are defined by 



8.2 Tetrahedral Harmonics 

The spherical coordinates of the vertices of the underlying tetrahedron are 

where p = 7r - arccos i. Because the vertices of the tetrahedron do not have spatial reflection 
(x -+ -x) symmetries, the coefficients bl,,,, for tetrahedral harmonics may be complex. It is 
more convenient to  introduce the dual tetrahedron which has vertex coordina.tes that are spa.tia1 
reflection!; of those of the primal tetrahedron, specifically, 

so that the coefficients bl,,,, can be chosen real (or pure imaginary) as in the icosahedral case. Let, 
6(p)(Bo, 4c; 6 , 4 )  be the delta function associated with the primal tetrahedron and let 6 ( d ) ( ~ o ,  $0; O,+) 
be the del.ta function associated with the dua.1 tetra.hedron. Further, let 

Instead of expanding 6 ( ~ ) ( 6 ~ ,  40; 6, 4) ,  we expand 6(*)(B0, $0; 6 , 4 )  in terms of both spherical harmon- 
ics and the unknown tetrahedral harmonics. This will give us two independent sets of tetrahedral 
harmonics. The master equations for determining the coefficients are: 

c X bI,!m + iml ~ i , ~ t  bj,:!ml P ~ , ~ I ( C O S  00) sin ml$o 
ml>O 3n<m1 

1 2 

= qN~,m[Pi,m(cos 60) sin m40 + C P/,,(cos rk) sin mak]  m = 3 p  
k=O 

I is odd 

1 2 

= - 4 NI,, [~i,,(cos 60) sin m$o + N X P1,,(cos rk) sin ma,+] 
k=O 



where a k  ~k are defined as before (with the new value of P and q5k = ~ $ ~ + k % ) .  The final expressions 
for determining br,,,, coefficients are 

1 is even 

where c p , ,  and sp,, are defined the same as in the icosahedral case with the new value of P. 
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Appendix 

A P1:oofs of Theorems 1 and 3 

Proof of 'Theorem 1 : Let f ( B , + )  = sJlh(B,+) and g ( B ,  4) = ~sh(B,4).  Applying t'he rotat,ion R gives 

f ( e l + )  + ig(B,+) = h(B, 4 )  = R[h(B, + ) I  = R[f  (B,4) + ig(B, 4)]  = R[ f  ( 6 ,  + ) I  -t iR[g(B, 411. (40) 

Since a rot,ation of a real function is a real function, it  follows that  taking the real and imaginary 
parts of Ilq. 40 gives the desired result that  f and g are separately invariant: R( f (6 ,4 ) )  = f ( 6 , + )  

and R(g(9,4)) = g ( 6 ,  4 ) .  
Proof of Theorem 3: Applying Ri gives 

= x C br,, x D~,m,m~(Ri)x ,m~(B,  4 )  b y  Theorem 2 

Multiply 1)y K,,,,(B, + ) ,  integrate over solid angles d o ,  and use the orthonorma.lity of the spherica.1 
harmonics to get (after rena.ming the indices I' - I and 171'' - m') 

Now consj.der the f l .  Apply R; to get 

= C ( m m m i  Yi ,mf(O,  4 )  
mf=-1 m=-1 I 



B Proof of Property 4 

Let f l  a r d  f 2  be defined as in Eqs. 20 and 21. Set d t ! k  = d:lk = 0 for k < Iml so that Eqs. 20 
and 21 can be rewritten in the form 

Then 

Change vsriables from m and m' to n and n' using the transformation 

and change variables from k  and k' and 1 and I' using the same transformation to get 

where 

since d$!l, = 0 for I' < Inf/. 

Based on Eq. 42, fl  f 2  is in P if and only if = 0 for 1 < In1 It would be sufficient to 
( 2 )  show that  I < In1 and I' > In'l implies that  dn-nl, l- l ,  = 0. For this it would bt: sufficient to show 

that  I < JnJ  and I' 2 In'l implies that  I - 1' < In - n'l. But I < In\ and -.I' < -1n'l implies 
I - I' < In - In'l 5 ( n  - n'l where the final inequality is the standard complex vs.riables result t,hat 
1 . ~ ~ 1  - lz21 < Izl + 221 < 1 . ~ ~ 1  + Therefore, f i  f 2  is in P and it follows that  aiIy finite product of 
functions In P is in P. 

Now prove Q[fl f i ]  = Q[Q[fl]Q[f2]].  First compute Q[fi f2]. The variables are defined by 



since d$ll. = 0 for I' < In'l 

(2) since dn-nl,l-ll = 0 for I - I' < In - n'l 

Therefore, 

Consider cases: 

1. Assume n > 0: 

(a)  Assume n' > n 2 0 :  

This requires 2n - n' 2 n' e 2n 2 2.12' e~ n' < n e contradiction. 

(b) Assume 0 < n' < 71: 

lnl-In-nlI n-n+nl n' 

C  = C  = C  
( c) Assume n' < 0: 

ll=lnll 

This requires n' 2 -n' e contradiction. 

2 .  Assume n < 0: 

(a)  Assume n' > 0: 
In(-In-n'l -n+n-nl -nl 

C  = C  = C  
ll=lnll 1' = n' ll=n' 

This requires -n' 2 n' e contradiction. 



(b)~ Assume n < n' 5 0:  
In[-In-ntl -n+n-nf - n t  

(c) Assumc ' 

C = C = C  
This requires -2n + n' 2 -n' (j -2n 2 -2n' (j n 5 n' (j contradiction. 

Therefore 

So, by combining the cases n 2 0 and n < 0, we get 

Now compute Q[f  11, Q [ f 2 ] ,  and finally Q[Q[f l ]Q[f2] ]  and compare with the result for Q[f i  f 2 ] .  

Change variables from rn., m.' to n, n' as before to get 

This is a function in P because Q [ f l ]  and Q[f2]  are functions in P and  product)^ of functions in P 
are in P. Therefore 

Consider cases: 



1. Assume n 2 0 :  

(a) Assume n' > n 2 0 :  { n ' :  In'l + In-n'l = In/) u {n' : n'-  n+n' = n )  u {n' : an' = 
2n) u {n' : n' = n )  u contradiction. 

(b) Assume 0 5 n' < n: {n' : In'l+ In - n'l = Inl) u {n' : n' + n - n' == n )  u 0 = 0 @ no 
further restriction on n'. 

(c) Assume n' < 0: {n' : In'[ + In - n'l = Inl) u {n' : -n' + n - n' = n )  u {nt : -2n' = 
0 )  u {n' : n' = 0 )  @ contradiction. 

Therefore 

2 .  Assume n < 0 :  

(a) Assume n' > 0 :  {n' : In'l+ In - n'l = In\) u {n' : n' - n + n' = - n) u {n' : 2n' = 0 )  u 
{n' : n' = 0 )  u contradiction. 

(b) Assume n 5 n' 5 0 :  {n' : In'] + In - n'l = Inl) @ {n' : -n' - n + nt = - n) u {n' : 0 = 
0 )  u no further restriction on n'. 

(c) Assume n' < n < 0 :  {n' : lnll + In - ntl = Inl) @ {n' : -n' + n - n1 = - n) u {nl : 
-2n1 = -2n) u {n' : n1 = n )  u contradiction. 

Therefore 

So, by combining the cases n 2 0 and n < 0)  we get 

Apply Eq. 44 t o  Eq. 43 to  get 

where db,lnl is defined to  be 



- 
Since dh,lnl = dntIn, it follows that  Q [ f l h ]  = Q[Q[fl]Q[f2]] is verified. 

The general case is proved by induction: 

C Q Is Not Continuous 

Define 

S = unit sphere in R~ 

T = unit circle in C 

I I ~ I I L , ( T )  = (1 27r JfT -7 ~f(t)lpdt) 

Lp(T) = {f : T + C : Ilf I ~ L , ( T )  < m} 

The spacc:s L ~ ( S )  and Lp(T) have the topology induced by the norms 1 )  . and ) I  . ( I L , ( T )  
respectively. 

Lemma :L Q : Lp(S) - Lp(S) is not bounded for p = 2. 

Proof: Counter example to the assertion that  Q is bounded. Define 

i 1, O j 8 < 7 r  
p(8) = -1, 7r 5 8 < 27r 

O !  otherwise 
+m 

The Fourier series coefficients of z are 

and the partial sums are 



The key theoretical result is [17, Section 4.26 Eq. 71 

Define 

(i.e., independent of 4). Note that  

= (L2r lir ( I  - xn(.G) l p  sin .Gd.Gd+ 
lIp 

which is c~bviously finite for 1 5 p <_ oo so fn E Lp(S) for 1 I p <_ oo. Furthermore, 

1 IP 
lim 1 Ifn 1 ~L,(s) = lim (2n Lir 11 - xn(.G) l p  sin 19d.G) n-03 n+m 

for p = 2. 
Expand f, as a Taylor series in .G to find that  

Therefore 

Boundedness of Q requires the existence of c independent of 12 such that  

But this is impossible because the left hand side has value 4n independent o:E n while the right 
hand side goes to 0 as n goes to oo. 
Since Q is not bounded it is not continuous [ l l ,  Thm. 2.7-9 p. 971. 



D Table of Icosahedral Harmonics 

1 = 0  6 

5.2:3470931063209 x lo-' 

I =  18 2 0 
9.002655639988 x 10-I 1.974780890363718 x lo-' 

-4.983700158317558 x 3.407144393312143 x 
2.95803665617139 x 10-13 



Table 3: Table of bI ,,,, coefficients for z,, for n = 0 and 1 E (0,  1 ,  . . . ,441  



Table 4: Table of bl ,,,, coefficients for Tl,, for n = 1 and 1 E (0 ,  1 , .  . . , 441 .  

E M(tthematica Programs for Computing Icosahedra.1 Harmonics 

(* Mathematics Program for generating icosahedral harmonics. * )  

Beginpackage ["IcosahedralT' "1 

(* Warning: Computation of higher order icosahedral harmonics may 
take a lot of time. It is advisable to save the icosahedral 
harmonics once they are formed by the program. *) 

1cosahed.ralT: :usage = 
"IcosahedralT[l,nl gives the n-th set of the 1-th orcler 
normalized icosahedral harmonics in terms of the regular 
spherical harmonics Y. " 

(* Y appears to substitute for SphericalHarmonicY used in Mathematics *) 

Begin [" Private ' "1 

(* The simplest icosahedral harmonic is a constant. The norma1izat;ion 
of th.e icosahedral harmonics are such that 
Integrate [T[1 ,n, theta,~hi]*Sin[theta] ,(theta,O ,Pi), (phi,O,2*Pi)l=60 *) 

1cosahed.ralT LO, 01 : = Sqrt [15/Pil 



(* Number of icosahedral harmonics of order 1. * )  

N1 [l-] : = ~l [l] = If [Evenq [l] , Neven [l] , Nodd [l] ] 

NevenCl-.I : = NevenCll = Coefficient [Normal [Series [sel [x] , (x, 0, l)]:] , x-11 

~~Cl-,m-,l : = Sqrt C(2*1+1)*(1-m) !/(4*Pi*(l+m) ! 11 

(* Compu.te the c or s coefficients. *) 

fc [m-] := Cos [m*ArcSin[(5^(1/2)*y)/(2*(1 - x - xe2)'(1/2) )]I 

Cp- ,q- ,m-] : = c [p,q,m] = Coefficient [cie [m] ,x-~*~-q]/. (x->o, y->0> 
s [p-,q-,m-] :=  s[p,q,m] = coefficient [sie[m] ,X-~*~-~]/.(X->O,~->O:. 

(*  Compute the k-th derivative of the associated Legendre functior~s. *) 

IcosahedralT[l- , n-1 : = Module [ I ) ,  

(* Check validity of 1 and n. *) 



(* Deal with even and odd icosahedral harmonics separately *) 

(* Compu.te the right hand side of Eq. (591, (60) *) 

rhsCm-,m.p-1 := rhs[m,mpl = 
5*Sqrt [(l-m) ! * (ltmp) ! / (ltrn) ! / (l-mp) !] * 
Simplify[delta[m-mp]*(i+delta[mp])+ 

5*2~(i-mp)/g~l,mpl*Sum~P~l,m,k,xpl*(2*xp)~k/k!* 
SumCcCmp-k-2*r,2*r,rnI*(-l)-r,(r,O, (mp-k)/2>] ,{k,O,mp]]] ; 

(* Compute b[l,n,5*n]*b[l,n,m]=bp[n,m] recursively. *) 

rhs [m- , mp-1 : = rhs Cm ,mpl = 
5*sqrt[(1-m)!*(l+mp)!/(l+m)!/(l-mp)!]* 
Simplify[delta[m-mp] + 
5*2^(i-mp)/g[l,mp] *Sum[P [l,m,k,xp]*(2*xp)-k/k!* 

Sum[s[mp-k-2*r-i,2*r+i,m]*(-i)-r,(r,0, (mp-k-1)/2>] ,{k,0,mp]]] ; 



End [I 

F Verification of the Symmetry of T6$ Under Operation U 

In this appendix we illustrate the verification procedure by demonstrating that  T6,0(%, 4) is inva.riant 
under the: operation U. The procedure to perform the symbolic verification is .the following: 

1. Express T6,0 as a homogeneous polynomial in x ,  y, z .  To do this: 

Expand P 6 , 0 ( ~ ~ ~  8) and P ~ , ~ ( c o s  8) into polynomials in sin 8 and cos 9 :  

1 
P 6 , 0 ( ~ ~ ~  8) = -(-5 $ 105 C0s2 8 - 315 C0s4 8 $ 231 c0s6 8) 

16 
P ~ , ~ ( c o s  8) = -10395 cos B sin5 8. 

Write cos54 (or sinm4, m = 5p1 if 1 is odd) as sums of products of trigonometric 
functions of the single angle 4 :  

Expand T6,0(8, 4 )  into sums of products of sine, cos8, s in4,  cos4: 

Apply the following transformation rules sequentially: 

sinn 8 cosm 4 - xm sinn-m 8; n > m > 0 

sinn 8 sinm 4 - ym sinn-m 8; n > m > 0 

COS 8 " 2 ;  

sinn 8 - (1 - z2)"I2; n > 0) n even. 

The result is that 



2. Apply the rotation (linear transformation) to T 6 , 0 ( ~ ,  y,  Z) by making the following substitu- 
tions: 

1 
z + -(2x+ z ) .  

h 
T ~ E :  result is that  

3 .  Expand the polynomial obtained in the Step 2 (Eq. 46) and collect terms. 

4. If tlie polynomial obtained in Step 3 is equal to  that  obtained in Step 1 (Eq. 45), then t,he 
sym-metry is verified. In comparing the polynomials, it may be necessary to use the collstra.int 
that, x,  y ,  and z lie on the surface of the unit sphere, i.e., 

T h a i  is, if the difference of the polynomials is zero or if it contains a factor of x2 + y2 + z2 - 1, 
then the two polynomials are equal on the surface of the unit sphere. 

In the case of T6$, Eq. 46, after expansion, is exactly the same as Eq. 45. 

A set of transformation rules written in Mathernatica, which perform Steps 1-4, is listed in 
Appendix G.  

G Mtzthematica Programs for Verifying Icosahedral :Harmonics 

(* 
Verify the icosahedral symmetry of polynomials of 
spherical harmonics TCtheta, phi]. The coordinate system 
is that defined in the text. 

* > 

(* step 1: Transform the harmonics into polynomials of 
(Sin[phil , Cos [phi] , Sin[theta] , Cos [theta] ); 
Note ComplexToTrig or rule0 may not be necessary, 
depending on how you write the spherical harmonics. 
Command : 



Expand [TrigReduce [ComplexToTrig [Simplif y [T [theta, phi] ] , I .  rule01 ] ] . 
* 1 

(* step 2: Transform the expression obtained above into polynomial-s 
of Cartesian coordinates (x,y,z); 
Command : 
Expand.[((%/ .rulei)/ .rule2)/ .rule31 . 

* 1 

rule1 = (Cos [phi] *Sin[thetal ->x, 
Cos [phi]*Sin[theta] -(n-)->x*Sin[theta] (̂n - I), 
cos [phi] -(m-)*~in[theta]-(n-)->x-m*~in[theta]-(n - m)); 

(* step 3: Now the icosahedral symmetric rotation; 
To verify symmetry under U, use rule4a; 
To verify symmetry under S, use rule4b; 
To verify symmetry under P, use rule4c; 
Command : 
Expand. [%/ . rule4al. 

* 1 

rule4a = (x-> (2*z - x)/Sqrt [5] , y->-y , z-> (z + 2*x)/sqrt [51) ; 
rule4b = (x->(x* (Sqrt [5] -1)/4-y*Sqrt [5+Sqrt [511 /(2*sqrt C21 I), 

y-> (x*sqrt [stsqrt [5l I / (2*Sqrt C2l )+y* (Sqrt [51-1)/4)); 
rule4c = (x->-x, z->-z); 

(* step 4: If the polynomial obtained in step 3 is identical to 
that in step 2, the symmetry is verified. The constraint 
x-2+y-2+za2 = 1 may be used. 
Command : 
Factor M-%%I / . rule5 . 

* 
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