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Abstract. In this paper we propose a state estimation method for linear parabolic partial
differential equations (PDE) that accounts for errors in the model, truncation, and observations. It
is based on an extension of the Galerkin projection method. The extended method models projection
coefficients, representing the state of the PDE in some basis, by means of a differential-algebraic
equation (DAE). The original estimation problem for the PDE is then recast as a state estimation
problem for the constructed DAE using a linear continuous minimax filter. We construct a numerical
time integrator that preserves the monotonic decay of a nonstationary Lyapunov function along the
solution. To conclude, we demonstrate the efficacy of the proposed method by applying it to the
tracking of a discharged pollutant slick in a two-dimensional fluid.

Key words. PDEs, DAEs, state estimation, minimax, projection, structure preservation
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1. Introduction. Applications often give rise to new theoretical directions for
numerical analysis. One example of such an application is the tracking of environ-
mental slicks resulting from a discharge of a pollutant into the ocean. A simple
mathematical model describing transport phenomena is the linear advection-diffusion
equation:

(1.1) Ol +v-VI—eAl=f,

where I(x,t) models the concentration of a pollutant at time ¢ and location @ within a
given domain Q, v(x, t) is a divergence-free vector-field representing the fluid flow, and
f(x,t) represents model error. In fact, (1.1) describes the diffusive linear transport
of the initial pollutant concentration I(x,0) = Ip(x) in the flow v. Widespread
interest in pollutant tracking problems stems from concerns of environmental agencies,
energy producers, and governments worldwide, namely, one is interested in combining
sensor readings obtained in real time (for instance, satellite images) in a sensible
manner with the solution of (1.1) to generate reliable predictions of the pollutant’s
transport. Tracking pollutants based on sensor information is challenging because,
on the one hand, the measurements are sparse and noisy, and, on the other hand,
there is incomplete knowledge of the fluid flow ». In fact, v is usually inferred from a
flow identification procedure (see, for instance, [11]), and the resulting identification
error f is only quantifiable as a bounded signal. This motivates the work of the
present paper. Specifically, we are concerned with the following problem: estimate
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the state I(a,t) of the infinite dimensional system (1.1) given incomplete and noisy
observations y;. associated to I(x,t) by

(1.2) yi(t) = /ng(:v,t)l(w,t)dm +ep(t),

where g models a sensor and ey, represents the measurement error.

There are two principal strategies to construct a numerical state estimate for a
partial differential equation (PDE). The first one is to consider the PDE (1.1) as a
dynamical system with an infinite dimensional state space [6], then derive the estima-
tor for the infinite dimensional system analytically, and finally reduce the resulting
estimator to a finite dimensional system in order to construct the numerical estimate.
The second strategy is to reduce a PDE to a finite dimensional system and then esti-
mate the state of the reduced system. The first strategy applies either the semigroup
theory given in [18] or the concept of Sobolev spaces [7]. One such class of infinite
dimensional state estimators is based on optimal control theory for PDEs [15]. For
example, linear optimal estimates for parabolic PDEs were derived in [4, 17]. We
emphasize that to compute an optimal “off-line estimate” one needs to discretize the
so-called Euler—Lagrange equations. This entails the solution of a two-point bound-
ary value problem for (1.1) and its adjoint. On the other hand, obtaining an optimal
“on-line estimate” in the form of a linear filter requires solving a nonlinear operator
equation which is, in fact, an infinite dimensional counterpart of the matrix Riccati
equation [19]. Another class of state estimators based on Lyapunov stability theory
is represented by stable infinite dimensional observers with nonoptimal gains [3].

In this paper we adopt the second strategy, namely, we reduce the PDE (1.1) to
a finite dimensional system and then derive an estimator for the reduced model. In
order to do this systematically and to fully incorporate the reduction method into
the state estimation procedure, we propose an extension of the classical Galerkin
projection method. Recall that the Galerkin projection method is built upon the
following requirement (see [12, p. 43]):

(1.3) Iy +v-VIny —cAly — f Lspan{pr...on},

where Iy = Zf\il a;(t)p; approximates I solving (1.1) and {p;1...¢on} denotes a
finite basis for the projection space. Condition (1.3) yields the following reduced
system for the vector of approximated projection coefficients a = (ay ...an)":

(1.4) (O Iy +v-VIN —eAIn — f,pn) =0, n=1,...,N.
If the exact solution I of (1.1) were known, we could project it onto span {@y}o_,
to obtain the vector of the exact projection coefficients a%;“¢. However, we stress

that a’j"© satisfies (1.4) in a very special case, namely, if span{¢; ... n} is invariant
with respect to the differential operator A = v -V — eA. In the general case, the
solution of ODE (1.4) deviates from a’y“¢ for any finite N as the system (1.4) is not
closed, namely, it does not retain all the information which is necessary to describe
the evolution of a%“¢. Although the solution of (1.4) converges to a%;“¢ in the limit
N — oo provided the basis functions are consistent and stable (see [12, p. 251] for
details), the limiting case N — oo is less interesting for our purposes, as in operational
practice one usually fixes N before deriving the state estimator.

In this paper we wish to explicitly account for the truncation error induced by

(1.4), combining knowledge of the regularity properties of the parabolic operator A
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and information available from indirect observations of ai“¢ to control the error of
an approximate solution such that it resides within a known ellipsoid centered around

ali“e. Thus, for a finite N, it is necessary for us to have a closed system describ-

ing the evolution of a“¢, in contrast to the Galerkin projection methods discussed
in [2, 12, 16, 20], where the authors study the limiting behavior only of the approxi-
mation error for the nonclosed system (1.4). Consequently, we propose the following
extension of the Galerkin method: we close (1.4) by including an unknown input vec-
tor field e™ that models the impact of the truncated coefficients {ani1,an42,...}
ona = (a,...,an)’. We allow e™ to take on values within an a priori determined
bounding set constructed using parabolic regularity theory [7]. Further, we introduce
an additional algebraic constraint that filters out inadmissible €. Assembling the
resulting differential and algebraic equations together, we arrive at a reduced model
for a’y“¢ in the form of a differential algebraic equation (DAE). Formal derivation of
the described reduction of PDE (1.1) to the DAE is given in Proposition 3.1. The
formulation is contrasted with the classical Galerkin method in section 3.2.

Although the literature on projection methods and related control techniques is
very rich, to the best of our knowledge the proposed extension of the Galerkin method
is new and has not been discussed in the literature yet. A preliminary version of the
minimax projection method appeared in [27]. With respect to [27], the main difference
is that our state equation is time-dependent and has unknown parameters, and the
time-discretization process has been incorporated into the state estimation procedure.

In our description, the model error f and input e are unknown deterministic
functions that are bounded. The latter is natural as the input e™ represents the
truncation error which can be expanded in Fourier series. On the other hand, the
observation error ey is assumed to be a realization of a random process which is the
most commonly used uncertainty model for such errors. In practice, second moments
of ey are usually given with some error. Thus, the state estimator should be robust
with respect to fluctuations of the covariance matrix. We propose to address this
issue by assuming that the covariance function of ej is unknown but bounded and
belongs to a given ellipsoid. As a result, we need to deal with unknown bounded
deterministic parameters in the state equation and random noise in the observation
equation, which has an unknown but bounded covariance function.

Within the context just sketched, it is natural to analyze the worst-case realization
of all the unknown parameters to derive the state estimate for a%;“¢. This may be
realized using the minimax state estimation approach [5, 14, 17], which was extended
to DAEs in [22, 23, 24, 25]. To construct the minimax state estimate for a DAE, we
apply a generalized Kalman duality principle [26] that converts the state estimation
problem into a dual control problem with quadratic cost. This cost is, in fact, the
worst-case estimation error and so, by minimizing it, we get the state estimate with
the minimal worst-case error. The dual control problem is derived in Proposition 3.6
and provides a key component of the estimation procedure as it accumulates all the
information about the deterministic projection error e, model error f, and random
measurement error ey, which are present in the original DAE. As a result, the solution
of the dual control problem has minimal worst-case error and is, therefore, robust to
all the aforementioned sources of errors. This solution provides a starting point for
the design of a numerical minimax estimate. Namely, we represent the minimax
estimate ay for a“® in the form of a linear filter. We also build an ellipsoid which
is centered around ay and contains! aﬁ(,“e. This ellipsoid describes how the DAE

Hn fact, the latter inclusion holds only on average, as the measurements contain a random error.
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propagates all admissible errors enclosed in the a priori determined bounding set
constructed in Proposition 3.1. The ellipsoid is parametrized by a symmetric positive
definite matrix-valued function ¢t — K (¢), which is obtained by solving a differential
Riccati equation (DRE). Further, the largest eigenvalue of K (t) defines the worst-
case estimation error. All these important details are summarized in Corollary 3.7.

To conclude the introduction, we turn our attention to the numerical method.
As mentioned above, the key ingredients of the minimax estimation are the linear
filter a and matrix Ky defined in Corollary 3.7. It is worth noting that the DRE is
well understood from the theoretical point of view: for example, it is known (see [19]
for the details) that Kx(t) = V(¢)U~1(t), where V and U solve an associated linear
Hamiltonian ODE. The exact representation of this ODE is given in Corollary 3.7.
We make use of this fact to approximate V' and U using a generic s-stage symplectic
Runge-Kutta (RK) method of order p. The corresponding numerical method is de-
rived in Proposition 4.1. Symplectic RK methods preserve quadratic invariants [10],
an important point as the proper choice of discretization method ensures that the
structure of the estimation error is preserved for the discrete filter ay,. Namely, the
estimation error admits a nonstationary Lyapunov function which is preserved by the
proposed discretization, as is discussed in Remark 3. The importance of this is that
the simulation results are trustworthy and represent indeed what has been predicted
by the theory for the continuons case. To the best of our knowledge, this is the first
result of this kind in the framework of minimax state estimation. We note that sym-
plectic RK methods were applied in [8] to obtain structure preserving discretization
of Mébius integrators for DREs arising in the context of control problems for ODEs.
In this paper we generalize this result to DAEs. To illustrate our approach, we repre-
sent the discrete filter @}, by means of the implicit midpoint rule and apply it to the
tracking problem, assuming that a slick of a discharged pollutant moves in the flow
generated by the two-dimensional (2D) incompressible Euler equation.

This paper is organized as follows. Subsection 1.1 gives the notation used in the
paper. Section 2 presents the formal problem statement. Our main results are given
in section 3: subsections 3.1 and 3.2 contain the minimax projection method and
comparisons to the classical Galerkin approach. Subsection 3.3 derives the minimax
estimate for the projection coefficients and provides the worst-case estimation error.
Section 4 introduces the structure-preserving discretization for the minimax estimate.
Finally, section 5 presents the case study, and conclusions are given in section 6.

1.1. Notation. N denotes the set of natural numbers {1,2,...}; R denotes n-
dimensional Fuclidean space; @ -w denotes the canonical inner product for &, w € R",
|x||2. := - = and, more generally, (f,g)n denotes the canonical inner product in
a Hilbert space H for f,g € H and ||f||% = (f,f); L*(0,T,H) := {f : f(t) € H

T . .
and [ [f(®)]} dt < +oo}; L=(0,T, H) := {f : esssupgcpcr [ f(#)|a < +oo}; Q is
an open subset of R” with boundary 0€}; Qr := Q x (0,7); Hf”%z(g) = [, [*(x)de,
where L?(Q) denotes the space of all measurable f such that HfH%z(Q) < +o0.

L*>(Q) is a space of measurable functions bounded almost everywhere in €; C' Q)
is a space of continuous functions over the closure Q of ©; C2°() is a space of all
infinitely differentiable functions with compact support in Q; 0., f denotes the weak
derivative of f; Vf denotes the spatial gradient of f; Af := Y7, 9%, f; H'(Q) :=
[ € 129) : VF € L) 11 ) = 1730y + IV F2200 H() is a closure
of C2°(§) with respect to the norm of H(Q); Z stands for an identity operator or

matrix; J,(x) denotes Jacobian matrix for the vector-field v; || Al|3 := Zznjzl azj is
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the Frobenius norm for the matrix A € R™*™; the prime ’ denotes the operation of
taking the adjoint: A’ denotes the adjoint operator and A’ denotes the transposed
matrix; ||A| is the largest singular value of A; Az denotes the square root of a
symmetric semidefinite matrix A; d; ; = 1 if ¢ = j and 0 otherwise. Finally, E denotes
the expectation of a random variable in its associated probability measure.

2. Problem statement. In this section we formalize the program laid out in
section 1 to specify a problem statement. Assume ¢ > 0 and that I(-,t) € H(Q)
satisfies for almost all ¢ € (0,T") the following equation:

(2.1) Ol +v-VI—cAl=f, I(x,0)=1I(x), I(x,t)=0,x¢cI,

where € Q@ C R", n > 2, Q is an open bounded convex set and v(x,t) =
(My(z,t) ... M,(z,t)) with M; € L>(0,T, H}(Q)) for all i = 1,...,n.

Suppose also that the deterministic model error f € L?(0,7T, L*(2)) and initial
condition Iy € H?(Q) N Hg(Q) satisfy the following inequality:

(2.2) /QQO(:B)VIO(:B)-VIO(:B)d:B—i— ., Q(z, ) f*(z, t)dxdt < 1,

where Qo(z) is a symmetric matrix such that Qo € C(2) and 4, lI€lRn < Qo(x)€-€ <
7oll€l|3. for all z € Q, € € R™ and given 0 < 4, <Tp < +o0, and Q € C(0,T,0(2)) is
a weighting function such that 0 < ¢(t) < Q(x,t) < q(t) < +oo for the given ¢,q. We
note that Qp and Q may be considered as design parameters which quantify our level
of confidence in Iy and f, namely, Q¢ may specify “zones” of 2 where our knowledge
of the initial condition is more precise or less so, and @) defines zones of 2 where (2.1)
holds almost exactly or only up to a significant error and these zones may vary over
time.

We assume that a vector y(t) = (y1(¢) ... ynm(t))

" is observed in the form

(2.3) () = Agk(w,t)l(x,t)dw+ek(t),k —1,.M,

where g, € L?(0,7,L?(2)) is a spatial averaging kernel that models the effect of
a measurement instrument, and e = (e1(t)...en(t)) is a realization of a random
process with zero mean and unknown but bounded covariance function cov(t, s) :=
Ee(t)e’(s), that is,

T
(2.4) /0 trace(R(t) cov(t,t))dt <1,

where t — R(t) is a symmetric positive definite continuous matrix-valued function
with bounded inverse. In other words, the covariance function of e belongs to an
ellipsoid in the space of real symmetric positive definite matrices where the trace is
taken as the inner product. We note that, in practice, second moments of e are
usually given with some error, and this fact is reflected by assumption (2.4): indeed,
the inequality (2.4) represents a constraint on the weighted second moments of e as
fOT trace(Rcov(t,t)) dt = IEfOT Re - edt.

Now, assuming that functions {¢y }xen form an orthonormal basis in L2(€2), we
expand the solution I into the following series:

(2.5) I(@,t) =Y ait)ei(@), ai(t):= (1), 0:)r20) -

€N

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Note that I is completely defined by the coefficients {a;(t)}ieny and IV = P]TVPNI
represents the most natural approximation for I in the given basis {¢y }1_,, provided
that

(2.6) PrI(-,t) = a(t) = (a1(t)...an(t)) and Pla(t) =Y ai(t)pi.

=1

The formal problem statement for our state estimation algorithm is the following;:
(i) Construct matrices An, Hy, Cy and a bounding set & such that the vector

of exact projection coefficients aj“¢ := Py I satisfy for some (ly, f,e™, e°, w)
€ &y the following DAE:

da

b —Ana+e" +Pnf,

(27) 0= HNa—l—eo,a(O) =Pnly,

y(t) = Cn(t)a +w(t) + e(t),

where (€™, e°, w) stand for the projection error. See section 3.1.
(ii) Design a linear minimax estimate ay for the state of (2.7), that is, a vector-

valued function t +— ap(t) such that £ - ayx(t) = a(y) = fotﬁ - ydt and

(2.8) E(L-alie(t)—a(y))? < o(a,t,£) < o(u,t,£) Yu € L*(0,t),£c RV,

where o(u,t,£) == sup(j, .em eow)con,e E(€-a(t) — u(y))? is the estimation
error, corresponding to the worst-case realizations of parameters (I, f, €™, e°,
w) € &y and observation error e satisfying (2.4). See section 3.3.
(iii) Introduce a discrete-time minimax estimate n — a%; such that (2.8) holds for
ay; and discretized error functional . See section 4.
In fact, an represents a robust estimate of a’“¢ with minimal worst-case estima-
tion error o and its discrete analogue a’y has a minimal worst-case error in discrete

time.
3. Minimax estimate for the projection coefficients.

3.1. Minimax projection method. We begin with specifying basis functions
used in (2.6) to define the projection operator Py . Recall that the Laplacian operator
—A possesses an orthonormal set of eigenfunctions {py }ren in L?(9):

—Apr = Ak cpkECOO(Q)ﬂH&(Q), wr =0 on 00,

where 0 < Ay < Ag < -+ and limy_y00 Ay = +00 (see [7, p. 355]).

Define the differential operator Ap = v - Vi — cAgp associated with (2.1) and its
projection Ay := ”PNA”P]T\,. Note that ’PNP]TV = T as the {¢k}ren are orthogonal.
Let Cn(t) :== {{gr(, 1), @S>L2(Q)}%;£l correspond to the projection of the observation

operator. We also introduce Sy = {{Ag;, Ap;)}Y;, and set® Hy := (Sy—ANAN)Z.
Next, we formulate the main theoretical result of this article. It states that the

projection coefficients of the exact solution I(x,t) solve the finite dimensional DAE

(2.7) depending on error terms that can be bounded within a certain ellipsoid & .
PROPOSITION 3.1. Assume that I solves (2.1) for some Iy and f satisfying (2.2)

and y(t) is associated to I through (1.2). Then there exist €™ € RV, e° € RN, and

2The square root of Sy — A\, Ay is well defined as follows from (3.7).
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w € RM such that the vector of the exact projection coefficients aty*¢ = PyI € RN
solves the DAFE

da
$=—ANa+em+7’Nf,
OzHNa—l—eO,a(O):PNIO,

Y(t) = On(t)a + w(t) +e(t),

(3.1)

where (1o, f,e™, e’ w) belong to the ellipsoid &y :

(3.2)

En = {(Io,f, e e’ w): / Qo(x)VIy(x) - VI(x)de + Q(z,t) f*(x, t)dx dt
Q Qr
T

1 1
+ A3 / 152 e™|2x + 1152 e°|2n + Ay IV 2wl|2a dt < uN}
0

for certain positive constants S, V and py =1+ )\Xé_l + Ay S and V.

We postpone the proof of this proposition until the end of this section.

Remark 1. On the one hand, the DAE (3.1) does not seem to be useful from
the computational standpoint as €™, e° are linear functions of a%;“¢ and the latter
is unknown. Therefore, in practice, e™ and the second equation in (3.1) are usually
dropped and only the first equation of (3.1) is used in numerical computations to

approximate a%;“¢. However, if we change our point of view and construct a bound-

ing set &n for ™, e° by using the fact that e™, e are linear functions of a’y*¢ and
applying the energy method, then e™, e® may be considered as elements of &y, which
are independent of a%*¢, and represent the unknown projection error. Specifically,?
e™ represents the error of projecting the differential operator A and the second equa-
tion in (3.1) is necessary to filter out inadmissible €™, e°. From this standpoint, the
DAE (3.1) serves as grounds for deriving a robust estimate for a%“¢ and so every term
in
(3.1) provides information which is then used in the actual numerical computations.
The proof of Proposition 3.1 relies on three lemmas, the proofs of which are
technical and not needed in further calculations. They are provided in the appendix.
We make use of the following definitions: define p;(z,t) := ||v(x,t)||3., p2(z,t) =

|.Jo (2, t)]|% and set

pa(t) = [lp1 (- )] L () + 201AT o2 8) + pa (-, Bl () 5

9 2 (T 2 [
Cle,v) =5 (142 ; lpr(y )l ooy exp g ; [p1(, )l Lo (yds ¢ dt |,

S7hi= ||N1||L°°(O7T)C(5a'v)max{galvmtaxg_l}7
M

vl.= kz (T — P}L\,PN)gkH%z(O’T’Lz(Q))C(a, v) max{ggl, m?xg’l} .
-1

Since 2 may have a nonsmooth boundary (for instance, a rectangular domain used in
the case study), we need to assure that (2.1) has a unique solution I such that AI(-,t)
is well defined for almost all ¢t € (0, 7). This is demonstrated by the following lemma.

3We refer the reader to subsection 3.2, where the detailed interpretation of e™, e is provided.
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LEMMA 3.2. Equation (2.1) has a unique solution I(-,t) € H}(Q) such that
AI(-,t) € L3(Q) for almost all t € (0,T), provided f € L*(0,T,L*(Q2)), Iy € H*(Q) N
H(), and Q is a convex bounded open domain.

We also require the following estimate for e° - e°.

LEMMA 3.3.

(3.3) e’ e® <2AG AT o2 () 4 pa (5 ) oo AT (- )12y -

Finally, we require a bound on ||AI(-, t)||2L2(Q).
LEMMA 3.4.

(3.4) IAT 20,2200 < Cle,0)(IVIol 20y + 17200722 (0)) -

Now we turn to the proof of Proposition 3.1.
Proof. Formally, the first claim is almost obvious. Indeed, let us define

(3.5) e(x,t) == APLPNI(x,t) — PLPNAIL(2,1) .
Since a’y“¢(t) = Pn1(-,t), we show that a’/"® solves
(3.6) aPha=PLPnOI = —APLa+e+PLPnS.

Multiplying (3.6) by Px and noting PNP]TV = Z, we find that a’y“¢ solves the first
equation in (3.1) for €™ = Pye. On the other hand, (3.6) has a solution if and only if
—AP]TVa + e is in the range of ”P}L\,. This holds true, in turn, if (Z — ’P}L\,”PN)AP]TV(L =
(T — Pl Px)e. By (3.5), (T —PLPn)e(t) = (T — PLPN)APLal e, and, recalling
that (Pl)’ = Py, we compute

(3.7) (T = PLPw) AP, af™[3a(q) = (Sn — Ay An)al™ - ali = || Hyal |2y .
Thus, af"¢ solves the second equation in (3.1) for e® = —Hya*¢. To see that the
third equation in (3.1) holds for a“¢, it is sufficient to set w = (vy...vpr)", where
ok (t) = (g (1), (T = PLPN)I( 1) 120y

Let us prove that €™, e® and w satisfy (3.2). In order to estimate e™ - e™, we
recall that IV := PLPyI and so e™ - e™ = |PyA(IN — I)[|Z~. Let us compute
A(IN — ). Noting that, by Lemma 3.2, AI(-,t) € L*(2), we write

m

(3-8) —AI(x,t) =Y (pi AL 1) 2@y pila) = Y Nai(t)pi(z).

€N €N

To prove this, we apply an integration by parts formula [9, p. 52] (we omit the argu-
ment (x,t) below to make the notation more convenient):

= ru)ir\v)v;,ac u,v 1
(3.9) /Q(ﬁziu)vdsc+/gu(8riv)dsc—/mt( Vtr(v)ido Y u,0 € HY(Q),

where tr(u) denotes the trace of u on 9Q and v = (v1...v,)" denotes the outward
pointing normal vector for Q. Namely, recalling that I(-,t) € Hg(2) by Lemma 3.2,
¢ € HY(Q) by definition, and v € HI(Q) < tr(u) = 0 (see, for instance, [9,
p. 39]), we integrate (@;, AI(-,t))r2(q) by parts twice to get (@i, —AI(-,1))r2(0) =
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(=Api, I(-,t))12(q) = Miai(t). Now, the orthogonality condition (¢x, @s)r2(q) = Oks
and (3.8) imply that for almost all ¢ € (0,7),

(310) <AI(at)7AI(7 )>L2(Q Z)\2 2( ) < o0,

€N
and so —A(I —IN) = 3, v Niaip; for IV = > i<n @ipi- Combining the obtained
representation with the orthogonality condition (@, ¢s)r2(q) = 0 for k < N < s, we
get that (o, —A(I = IV))72 ) = 0 and so

(3.11) (@r, AL — I p2(0) = (r, v - V(I = IV))p2(0) VE < N .
Now, recalling that ||<pk|\L2 (@) = L and |lv- V(I — IN)||L2 @) = => ek, v- V(I -

IN))%2(q)s We estimate e™ - e™:

N
em-em = ||PNAIN — Dfn = {orv- V(I = IV)2q,
k=1
<o) e @IV = TV F 20
(3.12) = llp1( ) ooy (AT = I¥), T = TV) 120
= llp1( D)l ooy D Aeai (8) < [lpr (s )l e ANy D Aai (¢
i>N i>N

< o1 (Ol @ AN IALC D)2 ) -

An estimate for e® - e° is prov1ded by Lemma 3.3.
Let us estimate w. Define gk = (T - PNPN)gk Recalling the definition of vy

given above, we compute vy (t) = (gi, (Z— PNPN) (ot r2) = Doon {9k, ©s)L2(0) s
(t) and so, by applying the Cauchy—Schwarz-Bunyakovsky mequality, we obtain

(3.13) Uk(t) = Z <gk,g05>L2(Q)aS (Z )\ gk, SDS L2 Q)) (Z )\ )

s>N s>N s>N
N+1Hgk [FE Q)”AI( )||L2(Q) .
Let us note that, by the definition of Qq, @, we have

(3.14) IVIoll7 20y + 1 £ 720,702y < max{g ", mfbxg_l}-

Now, by integrating (3.13) and using (3.4) from Lemma 3.4 followed by (3.14) and the
definition of V', we get fOT v (t)dt < A2 llgi 172 (0.1, 120y C (€, v) max{gy ', max, ¢~ '}
and so

T
(3.15) /0 vt [V 3wl dt < ARL, -
To conclude the proof, we note that

1y Aa
HVIOHL?(Q) <4, 1||Qo2 VIOHL2 (o) and HfHL2(0 T,L2(Q) = maxg 1||Q2f|‘%2(0,T,L2(Q)) :

Finally, to get (3.2) we add (3.12) to (3.3) from Lemma 3.3, integrate from 0 to T,
and bound the right-hand side of the resulting inequality by using the definition of

11, (3.4), and (3.14). Then we multiply the resulting inequality by S’)\X,%_l and add
the result to the sum of (2.2) and (3.15). This completes the proof. O
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3.2. Comparison to the classical Galerkin approach. In this section we
briefly contrast the extended Galerkin formulation of the previous section with the
classical Galerkin method. To simplify the presentation, we assume for a moment
that f = 0 in (2.1). The classical Galerkin projection approach is built upon the
following requirement [12, p. 43]:

v N
(3.16) W—FAI L span{p; ...on},

where IV = PZTVPNI = Zf\il a;p; approximates I solving (2.1). This condition yields
the following ODE for determining @ = (a1 ...an)":

da

(3.17) -

=—Ana, a(0)="PyIy.

Let us investigate the connection between (3.1) and (3.17). We note that the basic
assumption (3.16) of the Galerkin method holds true for a’;“¢ if and only if

dPale

7t + AP]TVa%"e 1 span{p;...on}.

Now, by (3.6), the latter is true if and only if Pye(t) = 0. Recalling (3.5), we rewrite
e as follows:

(3.18) e = (I — PLPN)APLPNT + PLPNAPL PN —T)I .

Now, we compute Pye(t) = PNA(”P}LVPN — I)I and so a(t) = al;“c if and only
if PyA(PLPy —Z)I = 0. In other words, a(t) = aly““(t) if the A-image of the
projection error (PJTV”PN — I)I is orthogonal to the span of {p;}_, and, therefore,
has no impact on the dynamics of a%;“¢. We stress that Pye(t) # 0 in the general case
but there are important special cases when this holds true, namely, e = 0 provided
that Apr = arer. This suggests the following interpretation for (3.18): the norm
of e quantifies the degree to which the subspace generated by {¢)}_, differs from
an eigenspace of A. More generally, Pye = 0 if P]TVPN commutes with A. In this
case, (3.17) gives a closed system for a’“¢: it contains all the required information to
describe how the exact projection coefficients evolve over time. We emphasize that,
in practice, the assumption Pye = 0 is not easy to check (for a given set of basis
functions), as e depends on the solution I which is unknown. Therefore, in practice,
the Galerkin system (3.17) is usually nonclosed.

In contrast to the classical Galerkin method, the solution proposed by Proposi-
tion 3.1 is to consider e™ = Pye as an unknown deterministic input for (3.17) and
construct an a priori estimate for e™ = Pye in the form (3.2) using information
about the coefficients of A, domain 2, and data Iy, f. As a result, the true coeffi-
cients a’y“¢ belong to the set of solutions of (3.1). The information provided by the
second equation in (3.1) allows filtering out inadmissible ™. In fact, it bounds the
norm of (Z —P;TVPN)A”P}L\,(I N, representing the energy of the A-image of the projected
solution PJT\,& ~ in the orthogonal complement of span{ep; ...¢x}. This allows one, in
turn, to narrow down the set of all admissible a solving (3.1). Finally, the resulting
DAE (3.1) together with ellipsoid (3.2) represents a closed system for a’j“.
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3.3. Minimax projection coefficients. In this section we construct the min-
imax approximation of the solution of the DAE (3.1). This solution minimizes the
maximum error over the parameter set &y containing the true projection coefficients.
Subsequently, we show that the minimax solution can be obtained as the solution of
an equivalent optimal control problem. Finally, we cast the optimal control problem
in a form that facilitates its numerical solution.

Following the definition of the minimax estimate given in section 2, we will be
looking for an estimate of a linear function £ - a(T") of the state of (2.7) within the
class of linear functionals:

T
u(y) = /0 w(t) - y(t)dt,u € L*(0,T,RM).

DEFINITION 3.5. A linear estimate u(y) = fOTﬁ -ydt is called a minimax
estimate if inf,, o(u,T,£) = o(a, T, L), where
(3.19) o(u,T, L) := sup E(£-a(T) - u(y))?*.

(Io,f,e™,e°,w)EEN e
The number 6(T,£) = o(a, T, L) is called @ minimax error.

In fact, o(u,T,£) can be interpreted as yielding the “worst” realization of the
unknown deterministic parameters satisfying (3.2) and covariance operator of e sat-
isfying (2.4). Since @ possesses minimal worst-case error 4, it follows that 4 is robust
with respect to any realization of unknown parameters.

Following [26], we apply the generalized Kalman duality principle to construct
the minimax estimate @ for the DAE (3.1). Define

Qon = {A\; A H{Qo Vi, V¢S>L2(Q)}£{s:1
and set Quy := (PNQ”P]TV)’I + )\J_\,ilS’lL Ry = l%NR’1 + )\f\,lﬂvfll.

PRroOPOSITION 3.6. The minimax estimate @ is the unique minimum point of
o(u,T,£), where

<

1
—o(u,T,£) = min Qq y 2(to) - z(to)
KN 9 ’

T 1
(3.20) + / (Qnz-z+ Ryu-u+ 2,5 g g)dt,
0
dz

(3.21) o =Ayz—Hyg+Chu,2(T)=£.

Proof. Let us compute o(u, T, £). By recalling the third equation in (3.1), we com-
pute u(y) = (u, Cna+w)2,7)+ (U, e) 12, r). Combining this with the assumption
Ee = 0, we get

E(¢-a(T) — u(y))? = Elu, €)% + (€ a(T) — (u,Cya+w) 2o

Clearly, for any w € L?(0,T), we can find at least one 2z, g such that z, g, and u
satisfy the adjoint equation (3.21). Using this observation and integrating by parts
the term (u,Cna + w)r2(o,1), we find

(3.22)
o(u,T,£) = sup o® + sup E(u, 6>2L2(0,T) )

({o,f.e™,e°,w)E&N e

T
o= <IOa,P;VZ(tO)>L2(Q) —|—/ (<f7 ,P]T\/'Z>L2(Q) +em™ . z+ e’ g—u- ’LU) dt .
0
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By the Cauchy—Schwarz-Bunyakovsky inequality, we get
E(u, e>L2(o ) = < (R 'u “>L2(0 T) <Reae>2L2(07T)'
Noting that E(Re, e)r2(,1) = fo trace(RE €' (t)e(t)) dt and recalling (2.4), we obtain
(3.23) Sng<uve>%2(O,T) = <R_1uau>%2(0,T) .

Let us estimate supg, «. We first note that

<IOaP]TVZ(tO)>L2(Q) =

WE

N
(To, ¢r)2(0)2k(to) = Z/\ Hlo, Apk) L2 (0 2k (to)
k= k=1

,_.

Ao Vo, Vior) L2 0y zk(to) -

I
M= T

E
Il

1

Now, by using the latter representation and (3.2), we compute sup e, a by applying
the generalized Cauchy—Schwarz—Bunyakovsky inequality:
(3.24)

1
— sup o —QONz(to) (to) / Qnz- z+)\N+1S lg.g+V~ 1)\N+1u-udt.
KN Iy, f,e™,e°w

Combining this with (3.23) and recalling (3.22), we find that #LNU(U,T, £) is repre-
sented by (3.24). Now, we note that z is uniquely defined by g and w through (3.21)
and g may be considered as a “free parameter” which belongs to the “null-space” of
the linear operator associated to (3.21). (See [22] for further details.) In other words,
the adjoint DAE (3.21) is overdetermined as the original DAE (3.1) is underdeter-
mined. Since the minimax estimate w should have the minimal worst-case estimation
error, the latter is represented by o and o depends on the “free parameter” g; it
follows that we can determine the minimax estimate @ by minimizing o with respect
to u, g, provided z solves the adjoint equation (3.21). This completes the proof. d

COROLLARY 3.7. The unique solution of (3.20) is given by 4 = ]%X,lCJ\rVU_1

(T and g = —/\]%VHSHNVU“(T)E, The optimal value of the cost is o(u,T,£) =
unKn(T)E - £, provided Kn = VUL and the matriz-valued functions V,U solve the
following linear Hamiltonian ODE:

U = AU + (A3, SHy Hy + Cy Ry Cn)V

(3.25) .
V= —ANV +QnU,V(ty) = Qon , U(0) = T.

The minimaz estimate w(y) may be represented as an output of the linear system,
that is, u(y) = £ - an(T), where ay solves the following ODE:
ddN 1
S8~ Avan — Ky (A SHHy + CyRy'Cy ) d
(3.26) I NAaN N | AN+1 NAN + OBy ON ) an
+ KnCOyRy'y, an(0)=0.

In particular, we have that for all £, E(€ - a%i*(t) — £-an(t)))? < unKn(t)- L.
Proof. The proof of the first part of the Corollary follows from the well-known
results of linear control theory [19]. The existence of U~ follows from [19, p. 121,
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L.4.1]. Now, to prove that @(y) = £- an(T), one needs to use the representation
a(t) = Ry'Cn(OV (U N(T)L, (3.25)-(3.26), and integration by parts. Detailed
derivation for DAEs may be found in [26]. 0

Remark 2. Let us note that limy_ .~ /\T = % by Weyl’s Law [7, p. 356],

where || denotes the volume of Q and «(n) is the volume of the unit ball in R™.
1
This observation makes it clear that Qn = (’PNQP]T\,)*1 + Ay ST I & (”PNQP;‘V)*l
and R;,l = (LR '+ A,V 'T)"! = R for large enough N. On the other hand,
1

e

nN N+1
)\f\,HSH]’VHN — 0 by (A.3), (3.3), and so, for large enough N, we have that U, V
can be made arbitrarily close to the solutions of the system

U=ANU+CNRCNV ,U(0) =T,

(3.27) . ty—1 —1
V =—ANV + (PNQPN) U, V(t()) - QON

and the minimax filter a  becomes arbitrarily close to the solution of dg—tN = —Ayan—

KnCyRCyan + KnCyRy, an(0) = 0. In other words, the minimax projection
method guarantees that (3.26) converges to the minimax estimate of the infinite di-
mensional system (2.1). On the other hand, the constant C(e, v) in the estimate (3.4)
for the Laplacian AI(x,t) is very conservative: the errors e™,e® decay faster than
)\X,lHHAI(-, t)||2L2(Q)7 as can be seen from (3.12) and (A.3). Therefore, in practice, it

is not necessary (but, of course, is sufficient) to choose N so that )\J_\,ilS_l, Ay V!
become negligible when compared with (PNQP]T\,)_l and R. A practical way to choose
N would be to make sure that uy ~ 1, ||[HNHn|| =~ 0, ||(I—77]TV”PN)91€||L2(Q) ~ 0 and
N is large enough to numerically resolve the system (2.1) for the anticipated model
error f. Then the estimate may be obtained from (3.27). We will apply this method
in section 5.

4. Structure preserving discretization. In this section we discretize the cost
function o using a quadrature rule and compute the discrete-time minimax estimate
n +— W,, which is the unique minimum point of the discretized cost. As a result,
the discrete minimax estimate n — 4, inherits the key geometric property of the
continuous one: it can be represented in terms of the solution of a discrete Hamil-
tonian system which is, in turn, a discrete version of the continuous Hamiltonian
system (3.25). This allows us, in particular, to represent ,, in the form of discrete
minimax filter n — @R, and derive a representation for discrete o which is similar
to the continuous one given in Corollary 3.7. Also, we prove that the nonstationary
Lyapunov function is preserved along the trajectories of n — a';.

We introduce a uniform grid ¢, := nh, n = 1,...,L, h := L on (0,7) and let
{aij}; j=1, {bi}i=; denote the coefficients of s-stage implicit RK method [10, p. 29]
for s > 1. Now, we set ¢; := Z;:l ai; and introduce the discrete cost:

L s
1 .
M_NUL({U"}’ 6T)=Qunzo 20 +h D> Y biQn(i,n)Zin - Zin

n=0 =1
(4.1) L

_1
F 0> Y RN (6 n)Win - in + bidyT 1S Gin - Gin

n=0i=1

where RN(iv TL) = RN(tn + Clh) and AN (Za n)7 HN(ia n)7 C'N (Za n)7 QN(Zv TL), y(z, n) are
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defined analogously, and

S S
Zny1 =2n+h E bidZin , Zin = 2Zn +h E a;j02jn 21 = £,

i=1 i=1

(4.2)
0zin = Al (i,n) 24 — Hy (4,1)Gin + Cly (i, 0) Wi,

We set by definition Fy(i,n) := /\]%V_HSH]/V(Z', n)Hy (i,n)+C(i,n)Ry" (i,n)Cn (i, n).
In the next proposition, we construct the linear discrete minimax filter n +— af;.

PROPOSITION 4.1. Assume that the coefficients ay;,b; correspond to an s-stage
implicit RK method of order p and Mjj, := bjby, — brar; — bjaj, =0 for 1 < j k <s,
and let ay; solve the discrete system

(4.3) =t _ i=1
5£”l = _AN(i7 n)iln - K]l\?FN (Za n)iizzn
+ K@ C(i,n) Ry (i,n)y(i,n) ,an(0) = 0,

where Ky, = VnUn_1 and K]i\? = VmU-f1 and Uy, V, and Uy, Vi are defined as

m

solutions of the variational equations:

Upt1 =U, + hzbi(SUm yUin = Up + hz aij0Ujn ,Ug =1,
i—1 j=1

44 5 s
W - Y bidVin Vin =V + 7> ai;oVin , Vo = Qo

i=1 j=1

Then minoy, = uy Kn(L)€-£ and the minimaz error and estimate admit the following
approximation:

(4.5) |6(T,£) —minoy| = O(h?), |a(y) — £-a%| = O(h).
Proof. Let us prove that minoy, = uny Ky (L)€ - £. To this end, we define z,, :=
U,LUL_lﬂ and p, := V,zo and set 0z, := dU;n20, ODin := 0Vinzo, Zin := Ujnzo and

Pin = VinZo0- Define ﬂ7L = R;,l(n)CN(n)pn and gn = —)\J%VHSHN(n)pm where
Cn(n) stands for Cy(t,,) and similarly for Ry(n), Hy(n), with intermediate values
Wiy = R;,l (1,n)Cn(i,n)pin, and gin = —)\]%\,HSHN(Z',n)pm. We claim that @, and
gn minimize the discrete cost function o, defined by (4.1) over solutions of (4.2). To
see this, one needs to check that or, ({u,},£,T)—or({t,},£,T) > 0 for any {w,,g.}.
The latter can be proved by plugging the expressions for p,, z, into the right-hand
side of the following subgradient inequality,

1 1 N ~ Uy —Up
E%({un},e, T)— M—Nm{un},& T) > Viu,.gyor({an}, £,T) Y (4o

n=0
and integrating the resulting expression by parts using the formula

L s
(46) ZL PL — 20 °"Po = h Z Z bl(sz'LTL * Pin + bizin : 5pin 5

n=0 i=1
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which holds for any RK method satisfying M, = 0. Now, recalling the definitions of
pn and py, given at the very beginning of the proof, we note that p,, = K} z,, where
K% =V, U1, and pi, = KWz, where K& = VmU;Ll. Plugging these formulas
into (4.6) and using (4.4), one easily gets

(4.7) iaL({ﬂn},E,T) =¢ -Ky(L)L.
UN

To prove (4.5), we recall that, by Corollary 3.7, o(u,T,£) = unKn(T)€ - £, provided
Ky = VU™, where the matrix-valued functions V, U solve (3.25). We stress that the
assumption Mj; = 0 is precisely the necessary condition that (4.4) be a symplectic
s-stage RK method (see, for instance, [10, p. 192]) for (3.25). In addition, we have
|U(tn) — Unll2 = O(RP) and |V (t,) — Vpll2 = O(h?), as the RK-method has order
p by assumption. Now, we note that, although U~!(T) is well defined, it can be
ill-conditioned numerically. To overcome this, we note that under the change of
variables U(t) := U(t)X, V(t) := V(t) X, where U, V solve (3.25), one would get that
I/(;(t) = ?(t)ﬁ’l(t) = V(@)U Y(t) = Kn(t). Therefore, we are free to reinitialize
U, Vi, at each time-step t,, that is, we can compute Kyt as Kyt = v, 11U},
where V,, 41, Up41 are obtained through (4.4) with V,, = K% and U,, = Z. Computed
in this way, Uy, is well-conditioned, as it is close to the identity matrix Z and so
|UHT) — U2 = O(hP) implying that |Kn(T) — Kk||2 = O(hP) for Kn(T) =
V(T)U~YT) and K% = V,,U, 1. This and (4.7) proves the first equality in (4.5). Let
us prove the second equality in (4.5). To this end, we recall that the minimax estimate
u(y) = £ - an(T) by Corollary 3.7, where ay solves (3.26). On the other hand, we
note that (4.3) is an s-stage symplectic RK method for (3.26), and so one has at least
lan(T) — aX|lgy = O(h). If t — y(t) is smooth, then the previous estimate can be
improved. d

COROLLARY 4.2. Assume that the coefficients a;;,b; are chosen so that the RK-
method corresponds to a Gauss—Legendre method (see [10, p. 34]). Then the order of
the method is p = 2s, and for s = 1 the discrete system (4.3) reads as the implicit
midpoint rule:

- ~n h 3 n -
Tin = @Y — 5 (AN(try) + A SEN Hy (b ) Hn (t,401)) 810

2
h n — L
(4.8) + S EN Ot ) BN (b ) (g y) = On (g g )1n)
h
Ay =281, 4%, Ay =0, fyyi=tat g,

where K\* = Vanl_n1 and Vin, Uiy, solve (4.4) with s = 1. If the coefficients a;j,b;
are chosen so that the RK method corresponds to a diagonally implicit RK method
of order p (see [10, p. 147]), then the s-stage method (4.3) may be represented as a
composition of implicit midpoint steps [10, p. 192].

Remark 3. Let us define the estimation error £(t) := ay““(t) — an(t). Then, by
differentiating € and using (3.1) and (3.26), it is easy to derive that

@ _

> = —(Ay + Ky Dx)E +m(t), £(0) = P,

1
where Dy := A}, SHNHy + CyRY'Cn, m = €™ + Py f — KNCy Ry (w + e) —
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1
KnAR 1 SH)ye. Now, by using (3.25), it is not hard to note that
—1
dK 5
dt
Then we have LK '¢ &€ = —(Dn + Ky'QnEy)E E+2K 5" € -m, and so Ky'€- €

decays along ¢ + &(t) given that 2K '&-m is dominated by the quadratic term. Now,
by using an argument of [8], it may be demonstrated that (Ky)~1&, - &, decays.

=Ky Ay + AyKy' + Dy — K'Qe KR KN'H(0) = V(0).

5. Case study. As a proof of concept for the minimax projection method, in
this section we compute an idealized experiment with specifications similar to real
pollutant tracking problems. In particular, we assume that the observations of a
discharged pollutant are available in the form of images in which observation data
is either lacking or occluded by moving clouds, making it impossible to track and
predict the pollutant from the image data only. Specifically, we will consider two test
cases in which the observations differ. In Case I, we impose incomplete observations
as well as a moving cloud profile over the domain. In Case II, we consider a situation
in which observations have large error over part of the domain. We first describe Case
I in detail, and then point out the differences with Case II.

5.1. Test Case I. The pollutant is discharged in the center of the domain
Q = (0,2m)%. The initial concentration In(z,y) is a radial Gaussian profile cen-
tered at (m,7) with standard deviation 2. The pollutant concentration I(z,y,t)
evolves according to the linear transport equation (2.1) with e = 0. The fluid flow
v = (u(x,y,t),v(x,y,t))" is computed by solving the 2D incompressible Euler equa-
tion in vorticity-stream function form as suggested in [11] with homogeneous Dirichlet
boundary conditions for vorticity and stream functions. The initial vorticity field is
obtained from the MATLAB peaks function. The vorticity field is then approximated
by using a Fourier pseudospectral discretization on a uniform 128 x 128 grid, denoted
I', with fourth-order explicit RK time-stepping. For each time-step, we project the
vorticity field onto a span of eigenfunctions of the Laplacian, {¢y, = sin(£2) sin(2£)},
that allows us to find the exact stream function by solving the Poisson equation.

The above approach yields a semianalytical representation 01f v(x,nh) which is
inserted in (2.1). The latter is then projected onto span{wps}y ., to compute the
stiffness matrix An(¢). Model error f was represented as a linear combination of
ks, with random coefficients uniformly distributed in (0,1). Finally, the resulting
nonstationary, nonhomogeneous linear system for the projection coefficients a’jj“¢ was

integrated in time using the implicit midpoint rule to obtain semianalytical represen-
tation for I(z,y,t) = Zg;l ai™ e (t)prs. We used 55 basis functions in each direction
(z,y) so that N = 552, Snapshots of I(z,y, hn) are displayed in Figure 1(c)-1(i) for
the case of L = 8000, h = % ~ 0.0002, and T" ~ 1.36. Roughly speaking, the flow v is
represented by two vortices which move clockwise inside the domain €2 and transform
the initial concentration I into a mushroom-like shape, as shown in the figures.

To generate observations y(hn), we projected the continuous in space snap-
shots I(z,y,hn) onto the grid I, so that y(nh) is an M := 128%vector: y(nh) =
I(2i,y;,nh) for z;,y; in T. Accordingly, we set g;; := e 2B(£=%)B(¥4), where
B denotes the quadratic B-spline concentrated at 0, so that (g;j;, I(-, -,nh)>L2(Q) ~
I(z;,y;,nh). As a result, the (k — 1+ s)th column of Cx is composed of the values
taken by ¢y over the grid I'. We define a region O = {(z,y)|z,y > 2} in the
upper-right part of the grid, where observations are lacking, so C'y does not contain
rows corresponding to that part. We also introduced nonstationary observational
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0035
-0.005

-0.005

y(nh) relative error: 266% (b) Estimate Cya’;, relative er- (c) Ground truth I(a:,y,nh)
ror: 100%. n = 1001.

- ‘4 005

d) y(nh), relative error: 251%. (e) Estimate Cyal};, relative er- (f) Ground truth I(z,y,nh),
ror: 49%. n = 3001.

20 40 20 40

(2) y(nh), relative error: 224%. (h) Estimate Cya%,, relative er- (i) Ground truth I(z,y,nh), n =
ror: 20%. 8001.

FiG. 1. Test Case I: observed images y(nh), minimaz estimates Cnyay;, and ground truth
I(z,y,nh).

noise 1 in a form mimicking slowly translating clouds. The clouds are defined with
respect to a periodic function composed of two Fourier modes, where the occluded
regions are enclosed by a chosen level set. The clouds advect slowly over the domain
with uniform wind vector (1,1). In all, 400 observations were extracted (1 image per
20 time-steps) and occluded. The observed images y(nh) together with the relative
lly(nh)—I(zi,y;,mh) |l
11 (@i,y5,mh) I

Figure 1(a)-1(g). The weighting matrix R is set up so that the occluded regions have
variance 10,000 and the rest of the observed image has variance 0.01. We assume that
the “pixels” are uncorrelated according to the hyperbolic nature of (2.1) and so R is
diagonal.

For the minimax projection method, we followed the procedure given in Remark 2.
Namely, we checked that uy ~ 1 and ||[HyHy|, ||(Z — ’P;(,’PN)ginp(Q) ~ 0 for
N = 552, We also ensured that (2.1) was well-resolved numerically, as can be assessed

norm of the resulting observation error, that is, , are shown in
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[=Obsenaton e

o

A e N S 2o
(a) Estimates aM1...aM5 vs. true coef- (b) Relative estimation and (c) uncertainty map: mini-
ficients aT1...aT5. observation errors for images; max error in the image space.

Fic. 2. Test Case I: convergence measures.

visually looking at Figure 1(c)-1(i). For the state equation, we chose the diffusive
version of the transport equation, (2.1) with ¢ = 0.01, which is equivalent to adding
ediag(A1 ... An) to the stiffness matrix —Ay computed for (2.1), as described above.
The latter introduces nonadditive model error which is taken into account together
with additive model error f by setting Q(x,t) = 1. We also used Qo(x) = 0.01Z,
reflecting the fact that we do not have any information about the initial condition
(the place and amount of the discharge). The discrete minimax estimate a% was
implemented by using the implicit midpoint rule (4.8), and the discrete gain K (n+1)
was computed using (4.4) with s = 1 and reinitialization U,, = Z, V,, = K} discussed
in the proof of Proposition 4.1. As was suggested in Remark 2, we dropped all the

terms involving )\X,_%H ! and )\X,lHV*l.

The discrete filter a%, starts from zero and Ky (0) = 100Z. Hence, the relative
error in the initial condition is 100%. Observations y(nh) are assimilated at time-
steps nh, n = 21,41, ...,8001. For other n, we set Cy(n) = 0, which corresponds to
the case with no innovation term. In the latter case @}, evolves according to (4.8)
with zero innovation term (2nd line in (4.8)). Since the observations are discrete in
time and observation noise together with model error are nonstationary, the filter a¥;
converges to the “true” projection coefficients only at the end of the time window:
Figure 2(a) compares estimates of the first five projection coefficients against the truth.
The estimation results (in the “space of images”) are shown on Figure 1(b), 1(e), 1(h),
where we can see how the convergence in the “space of coefficients” corresponds to
the convergence in the “image’s space.”

We note that after the transition phase, the estimate reconstructs the solution

: o M @iy T)-Onagllam
occluded by clouds and in the unobserved region: VICETN Oy, < 20% (see

Figure 1(g), 1(h), 1(i)). The reason for this is that the flow v is quite strong across
the boundary of O; and so the “trusted” observations from the adjacent regions flow
into the unobserved region. The latter allows the filter to pick-up the right shape and
the magnitude of the image in O;. We also observe that the model error is smoothed

out, which explains the 20% relative error of the final estimate. Finally, the dynamics
HI(‘T'hyj )T)cha‘lJ\ll ”RM

Hl(rl sYj 7T) ”RAI
observation error in Figure 2(b): estimation error drops from 100% to 20% as opposed
to the observation error, which stays above 200%.

of the relative estimation error is compared against the relative

5.2. Test Case II. The second test case simulates a scenario in which observa-
tions are unreliable in a part of the domain, e.g., due to an instrument failure. To

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/12/15 to 128.93.51.83. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

A1192 S. ZHUK, J. FRANK, I. HERLIN, AND R. SHORTEN

model this situation, the domain was partitioned into a 3 x 3 array, and two subdo-
mains occluded: the centermost subdomain Oy = {(z,y) |37 < 2,y < 27} and the
lower left subdomain O3 = {(z,y) | =,y < 37}. This test case is challenging because
a dynamically interesting part of the solution is obscured for much of the simulation.

For Case II, the true solution was computed at higher resolution, using a 75-mode
truncation in each direction, i.e., N = 752. Furthermore, the model was assumed
perfect: f = 0. Imperfect observations of the square regions Oz and O3 were obtained
from the discrete images y(nh) by setting I(z;,y;,nh) = 0 for (x;,y;) € O23 CI'. The
observed images y(nh) together with the relative norm of the resulting observation
error are shown in Figure 3(a)-3(g). Observation uncertainty was again defined by
diagonal R with occlusion patches having variance 10,000 compared to variance 0.01
elsewhere. We also used Qo(z) = 0.01Z reflecting the fact that we do not have any
information about the initial condition (the place and amount of the discharge), and
Q(x,t) = 100, to indicate high confidence in our PDE model (2.1).

The estimation results (in the space of images) are shown in Figure 3(b), 3(e),
3(h). We note that again after the transition phase the estimate perfectly reconstructs

. . — AL
the central occluded region Os, i.e., HI(QC‘L‘IU(JIT; IC,%GZZHRM < 0.08 (see Figure 3(g), 3(h),
95, D)

3(i)) thanks to the very strong flow v over Os. In contrast, v is not strong in the
lower-left region O3 and so the reconstruction is imperfect. This intuitive description
is in full agreement with Figure 4(c), where the uncertainty map (minimax errors
in the space of images) and the corresponding occlusion pattern are shown: as we
can see, the uncertainty is quite high in O3z as opposed to Osy. Finally, the relative
estimation error drops from 100% to 8%, as opposed to the relative observation error,
which stays above 45% (see Figure 4(b)).

6. Conclusion. In this paper we solve the state estimation problem for lin-
ear parabolic PDEs using a “discretize and optimize” strategy. That is, to project
PDE (2.1) and its solution I onto a finite dimensional space, to bound the truncation
error, and then derive the DAE for the projection coefficients. Using the minimax ap-
proach, we derive the state estimate for the DAE in the form of the linear filter (3.26),
which depends on the number of the basis functions N and the norm of Al through

1

the terms involving Ay 3 S ~!and )\J_\,{HV“. Consequently, for large enough N, these
terms have little or no impact and the constructed estimate converges to the infinite
dimensional state estimator. We conclude that the “discretize and optimize” strategy
adopted in the paper is equivalent to “optimize and discretize” in the limit N — oo.

Appendix A. Proofs of lemmas. In this appendix we provide the proofs of
Lemmas 3.2, 3.3, and 3.4.

A.1. Proof of Lemma 3.2.

Proof. The first part of the claim follows from the standard results on second-
order parabolic equations [7, p. 374]. To show that AI(-,t) € L?(Q) for almost all
t € (0,T), we employ the following assertion. For any g € L?(0,T, L*(Q)), there exists
the unique I € B(T) := L?(0,T, H?(2) N H}(Q)) such that
(A1) Ol —eAl =g,1(x,0)=0,

(A.2) HI||2L00(0,T,H3(Q)) < (25)71Hg”%2(0,T,L2(Q))'

The existence and uniqueness of I € B(T) solving (A.1) was proved in [21]. The
_1
estimate (A.2) can be verified projecting (A.1) on the span of {1 := A\, 2}, which
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60 80 120

(b) Estimate Cya¥, relative (c) Ground truth I(z,y,nh),
error: 90%. n = 1001.

20 40 60 80 100 120

(d) y(nh), relative error: 59%. (e) Estimate Cya¥,, relative er- (f) Ground truth [I(z,y,nh),
ror: 67%. n = 3001.

40 60 80 120

(2) y(nh), relative error: 44%. (h) Estimate Cva}, relative er- (i) Ground truth I(z,y,nh),
ror: 8%. n = 8001.

FiG. 3. Test Case II: observed images y(nh), minimaz estimates Cna¥y;, and ground truth
I(:v,y,nh).

o £ £ o £ =3 o o w00 20 40 80 80 100 120

(a) Estimates aM1...aM5 vs. true coef- (b) Relative estimation and (¢) uncertainty map: mini-
ficients aT1...aT5. observation errors for images; max error in the image space.

Fia. 4. Test Case 11: convergence measures.
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form an orthonormal basis in H}(Q) with respect to the inner product (u,v); =
(Vu, V)2 (), and estimating the projection coefficients by applying the Cauchy—
Schwatrz—Bunyakovsky inequality. Let us now prove that AI(-,t) € L?(Q2) for almost
all t € (0,7). Indeed, we introduce a linear operator v — I assigning v € X(T) :=
L>(0,T, H3(Q)) the solution I € B(T) of (A.1), which corresponds to g = g(v) :=
f—wv-Vve L*0,T,L*(Q)). Then, by applying the same argument as in [7, p. 425],
we prove that v — I has a fixed point I* € X (T™*) for small enough 0 < T* < T.
Therefore, the parabolic equation 91 + AI = f, I(x,0) = 0 has a unique solution
I € B(T*) and so AI(-,t) € L?(2) for almost all t € (0,7*). In the case I(x,0) =
Io # 0, we have that Aly € L?(0,T*, L*()) and so the PDE 0,1 + Al = f — Alj,
I (x,0) = 0 has the unique solution Iy € B(T*). But then I := I + Iy solves
ol + AI = f, I(x,0) = Iy, and AI(-,t) = AL, + Aly € L*(Q) for almost all

€ (0,7*). Now, to conclude the proof, we split up the original interval (0,7") into
subintervals (0,7%), (T*,27*), and so forth and repeat the above argument to prove
that AI(-,t) € L?() for almost all t € (0,7). O

A.2. Proof of Lemma 3.3. )

Proof. Noting that (see, for instance, [7, p. 357]) {\, 2¢x} form an orthonor-
mal basis in H(2) with respect to the inner product (u,v); := (Vu, Vo) 2(q), and
recalling that IV PT frue — Zfil a;p;, we derive

e’ e’ = |Hyaly" |ix = (T — PLPn)AIN ()30
= D {on AINC D)2y = D (rv(51) - VIV (L 8))i2q)

(AS) k>N k>N
= Z AI;2<_A907€7'U( ) ) VIN( )>L2(Q)
k>N

Now, we claim that

(A4) <_A<pkvv( ’ ) VIN( )>L2(Q) <<pkv'v('vt) ’ VIN('vt)>1'

Indeed, it is sufficient to apply integration by parts (3.9) to the left-hand side of (A.4)
and note that tr(v(-,t) - VIV(-,t)) = 0. The latter can be shown, in turn, by
approximating M;(-,t) € H}(2) with smooth functions ¢/ € C2°(Q) such that
limy o0 |90 — M;(-,t)|| i) = 0 and tr(p7) = 0 for almost all ¢ (see [7]). Now,
combining (A.4) with (A.3), we get

- AN+1 N 2
e’ - e’ _)‘N+1 Z )‘ 907@7 v(-,t) - VIT (-, 1)1
(A.5) Py
<AvilloGt) - VIV -
Let us now estimate the last term in (A.5). Equation (3.10) implies
(A.6) IVIN ()2 S ATHIALY ()1 220y S ATHIALC )] F2(q) -

Denote v’ := (1/1{ .. wﬁl)' , where z/J{ is a smooth function approximating M; as sug-
gested above. Then v? € C$°(Q), and consequently we can write

2
o7 - VIN(., ”1—2/ <Za L0y TN (1) + 1] ”kIN(a,»,t)> da .
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Now, recalling that 3°7; _; [(07 ., I" (z,1))?dz < [[AIN(-,t)]|75 g for a convex open

TiTk
bounded domain 2 (see [1, 13]), we bound |[v? - VIV (-, #)||? by applying the Cauchy—
Schwarz—Bunyakovsky inequality:

lo7 - VIV )] < 2/Q(||Jw(fv7t)l\§||WN(w,t)llfen + v (@, ) [ [ AT (2, 1) |2 ) de

Now, recalling that v/ — v(-,t) in H*() and taking limits in the above inequality, we
deduce that it holds true for v(-,t) € HJ () (for almost all ¢). This latter observation,
(A.6), and (A.3) prove (3.3). O

A.3. Proof of Lemma 3.4.
Proof. Let I solve (2.1). Then, eAT = 0] +v-VI — f in Q and so

T
A, 720,122 =/O (O] +v- VI — feAl)12q)dt

AT T
(&.7) <3 / 11200 + 11 s )l IV )2

(|72 dt -
Applying the energy method [7, p. 372], we obtain
T
| 108 gyt + 91
(A.8) <el|[VIN(,0)[Z 20

T
+ 20 flI20,7,22(0)) + 2/0 o1 ()| Lo IV I (- )12 dt -
By (A.6), we get 1% (-,0) 2 g < [V ol[2a(q and [ V1Y () 1y < V1,050
This and (A.8) imply that the sequence {0;I"}yen is bounded in L?(0,T, L*(12)),

and so we can find a subsequence {9;IV* } weakly converging to d; in L?(0, T, L?(2)).
As the norm in L?(0, T, L*(9)) is weakly lower-semicontinuous, we get

T T
/0 10,125y dt < lim / 10T |2y dt < 2020012560
(A.9) .
+ e[V 720 +2/0 lo1( )| oo @ VI (1) 172y -

Since (A.8) holds for any T > 0, it follows by the Gronwall inequality in the integral
form that

b2
IV Ol < (2150 oo + 19l ) exo { [ 2lon ¢ Ollmioras)

and by the weak convergence argument, we get the same estimate for VI(-,¢). Com-
bining this latter estimate with (A.7) and (A.9) gives (3.4). O
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