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July 9, 2015
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Abstract

We discuss nonparametric estimation of the distribution function G(x) of the autoregressive coefficient

from a panel of N random-coefficient AR(1) data, each of length n, by the empirical distribution of lag 1

sample correlations of individual AR(1) processes. Consistency and asymptotic normality of the empirical

distribution function and a class of kernel density estimators is established under some regularity conditions

on G(x) as N and n increase to infinity. A simulation study for goodness-of-fit testing compares the finite-

sample performance of our nonparametric estimator to the performance of its parametric analogue discussed

in Beran et al. (2010).

Keywords: random-coefficient autoregression, empirical process, Kolmogorov-Smirnov statistic, kernel

density estimator.

2010 MSC: 62G10, 62M10, 62G07.

1 Introduction

Panel data can describe a huge population of heterogeneous units/agents which evolve over the time, e.g.

households, firms, industries, countries, stock market indices. In this paper we consider a panel where each

individual unit evolves according to order-one random coefficient autoregressive model (RC AR(1)). It is

well known that aggregation of specific RC AR(1) models can explain long memory phenomenon, which

is often empirically observed in economic time series (see Granger (1980) for instance). More precisely,

consider a panel {Xi(t), t = 1, . . . , n, i = 1, . . . , N}, where Xi = {Xi(t), t ∈ Z} is RC AR(1) process with the

(0, σ2)-noise and the random coefficient ai ∈ (−1, 1), whose autocovariance

EXi(0)Xi(t) = σ2
∫ 1

−1

x|t|

1− x2
dG(x) (1.1)

is determined by the distribution G(x) = P(a ≤ x) of the autoregressive coefficient. Granger (1980) showed,

for a specific Beta-type distribution G(x), that the contemporaneous aggregation of independent processes

{Xi(t)}, i = 1, . . . , N , results in a stationary Gaussian long memory process {X (t)}, i.e.

N−1/2
N∑
i=1

Xi(t) →fdd X (t) as N →∞,

∗The first, third and fourth authors are supported by a grant (No. MIP-063/2013) from the Research Council of Lithuania.
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where the autocovariance EX (0)X (t) = EX1(0)X1(t) decays slowly as t→∞ so that
∑

t∈Z |EX (0)X (t)| =∞.

A natural statistical problem is recovering the correlation function in (1.1) or the distribution G(x) (the

frequency of a across the population of individual AR(1) ‘microagents’) from the aggregated sample {X (t), t =

1, . . . , n}. This problem was treated in Leipus et al. (2006), Celov et al. (2010), Chong (2006). Some

related results were obtained in Celov et al. (2007), Horváth and Leipus (2009), and Jirak (2013). Albeit

nonparametric, the estimators in Leipus et al. (2006) and Celov et al. (2010) involve an expansion of the

density g = G′ in an orthogonal polynomial basis and are sensitive to the choice of the tuning parameter (the

number of polynomials), being limited in practice to very smooth densities g. The last difficulty in estimation

of G from aggregated data is not surprising due to the fact that aggregation per se inflicts a considerable loss

of information about the evolution of individual ‘micro-agents’.

Clearly, if the available data comprises evolutions {Xi(t), t = 1, . . . , n}, i = 1, . . . , N , of all N individual

‘micro-agents’ (the panel data), we may expect a much more accurate estimate of G. Robinson (1978)

constructed an estimator for the moments of G using sample autocovariances of Xi and derived its asymptotic

properties as N → ∞, whereas the length n of each sample remains fixed. Beran et al. (2010) discussed

estimation of two-parameter Beta densities g from panel AR(1) data using maximum likelihood estimators

with unobservable ai replaced by sample lag 1 autocorrelation of Xi(1), . . . , Xi(n) (see Sec. 5), and derived

the asymptotic normality and some other properties of the estimators as N and n tend to infinity.

The present paper studies nonparametric estimation of G from panel random-coefficient AR(1) data using

the empirical distribution function:

ĜN,n(x) :=
1

N

N∑
i=1

1(âi,n ≤ x), x ∈ R, (1.2)

where âi,n is the lag 1 sample autocorrelation of Xi, i = 1, . . . , N (see (3.3)). We also discuss kernel estimation

of the density g(x) = G′(x) based on smoothed version of (1.2). We assume that individual AR(1) processes

Xi are driven by identically distributed shocks containing both common and idiosyncratic (independent)

components. Consistency and asymptotic normality as N,n→∞ of the above estimators are derived under

some regularity conditions on G(x). Our results can be applied to test goodness-of-fit of the distribution

G(x) to a given hypothesized distribution (e.g., a Beta distribution) using the Kolmogorov-Smirnov statistic,

and to construct confidence intervals for G(x) or g(x).

The paper is organized as follows. Section 2 obtains the rate of convergence of the sample autocorrelation

coefficient âi,n to ai, in probability, the result of independent interest. Section 3 discusses the weak convergence

of the empirical process in (1.2) to a generalized Brownian bridge. In Section 4 we study kernel density

estimators of g(x). We show that these estimates are asymptotically normally distributed and their mean

integrated square error tends to zero. A simulation study of Section 5 compares the empirical performance of

(1.2) and the parametric estimator of Beran et al. (2010) to the goodness-of-fit testing for G(x) under null

Beta distribution. The proofs of auxiliary statements can be found in the Appendix.

In what follows, C stands for a positive constant whose precise value is unimportant and which may change

from line to line. We write →p, →d, →fdd for the convergence in probability and the convergence of (finite-

dimensional) distributions respectively, whereas ⇒ denotes the weak convergence in the space D[−1, 1] with

the supremum metric.
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2 Estimation of random autoregressive coefficient

Consider a random-coefficient AR(1) process

X(t) = aX(t− 1) + ζ(t), t ∈ Z, (2.1)

where innovations {ζ(t)} admit the following decomposition:

ζ(t) = bη(t) + cξ(t), t ∈ Z, (2.2)

where random sequences {η(t)}, {ξ(t)} and random coefficients a, b, c satisfy the following conditions:

Assumption A1 {η(t)} are independent identically distributed (i.i.d.) random variables (r.v.s) with Eη(0) =

0, Eη2(0) = 1, E|η(0)|2p <∞ for some p > 1.

Assumption A2 {ξ(t)} are i.i.d. r.v.s with Eξ(0) = 0, Eξ2(0) = 1, E|ξ(0)|2p <∞ for the same p as in A1.

Assumption A3 b and c are possibly dependent r.v.s such that P(b2 + c2 > 0) = 1 and Eb2 <∞, Ec2 <∞.

Assumption A4 a ∈ (−1, 1) is a r.v. with a distribution function (d.f.) G(x) := P(a ≤ x) supported on

[−1, 1] and satisfying

E
[ 1

1− |a|

]
=

∫ 1

−1

dG(x)

1− |x|
< ∞. (2.3)

Assumption A5 a, {η(t)}, {ξ(t)} and the vector (b, c)′ are mutually independent.

Remark 2.1 In the context of panel observations (see (3.1) below), {η(t)} is the common component and

{ξ(t)} is the idiosyncratic component of shocks. The innovation process {ζ(t)} in (2.2) is i.i.d. if the coefficients

b and c are nonrandom. In the general case {ζ(t)} is a dependent and uncorrelated stationary process with

Eζ(0) = 0, Eζ2(0) = Eb2 + Ec2, Eζ(0)ζ(t) = 0, t 6= 0.

Under conditions A1–A5, a unique strictly stationary solution of (2.1) with finite variance exists and is

written as

X(t) =
∑
s≤t

at−sζ(s), t ∈ Z. (2.4)

Clearly, EX(t) = 0 and EX2(t) = Eζ2(0)E(1− a2)−1 <∞. Note that (2.3) is equivalent to

E
[ 1

1− |a|p
]
< ∞, 1 < p ≤ 2,

since 1− |a| ≤ 1− |a|p ≤ 2(1− |a|) for a ∈ (−1, 1).

For an observed sample X(1), . . . , X(n) from the stationary process in (2.4), define the sample lag 1

autocorrelation coefficient

ân :=

∑n−1
t=1 X(t)X(t+ 1)∑n

t=1X
2(t)

. (2.5)

Note |ân| ≤ 1 a.s. by the Cauchy inequality.
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Proposition 2.1 Under assumptions A1–A5, for any 0 < γ < 1 and n ≥ 1, it holds

P(|ân − a| > γ) ≤ C(n−(p/2)∧(p−1)γ−p + n−1), (2.6)

with C > 0 independent of n, γ.

Proof. See Appendix.

Assume now that the d.f. G(x) = P(a ≤ x) satisfies the following Hölder condition:

Assumption A6 There exist constants LG > 0 and % ∈ (0, 1] such that

|G(x)−G(y)| ≤ LG|x− y|%, x, y ∈ [−1, 1]. (2.7)

Consider the d.f. of ân:

Gn(x) := P(ân ≤ x), x ∈ R. (2.8)

Proposition 2.2 Let assumptions A1–A6 hold. Then, for any 0 < γ < 1 and n ≥ 1,

sup
x∈[−1,1]

|Gn(x)−G(x)| ≤ LGγ
% + C(n−1 + n−(p/2)∧(p−1)γ−p) (2.9)

with C > 0 independent of n, γ.

Proof. Denote δn := ân − a. For any (nonrandom) γ > 0 we have

sup
x∈[−1,1]

|Gn(x)−G(x)| = sup
x∈[−1,1]

|P(a+ δn ≤ x)− P(a ≤ x)| ≤ LGγ
% + P(|δn| > γ).

To see this, note that for any γ > 0 and any r.v. δ (possibly dependent on a)

sup
x∈R
|P(a+ δ ≤ x)− P(a ≤ x)| ≤ LGγ

% + P(|δ| > γ). (2.10)

Indeed, using (2.7), which actually holds for all x, y ∈ R, we have for any x ∈ R that

P(a+ δ ≤ x)− P(a ≤ x) = P(a+ δ ≤ x, |δ| ≤ γ)− P(a ≤ x) + P(a+ δ ≤ x, |δ| > γ)

≤ P(a ≤ x+ γ)− P(a ≤ x) + P(|δ| > γ)

≤ LGγ
% + P(|δ| > γ)

by (2.7), and similarly P(a ≤ x) − P(a + δ ≤ x) ≤ LGγ
% + P(|δ| > γ), which proves (2.10). It remains to

apply Proposition 2.1. �

Corollary 2.3 Let assumptions A1–A6 hold. Then, as n→∞,

sup
x∈[−1,1]

|Gn(x)−G(x)| = O(n
− %

%+p
((p/2)∧(p−1))

).

Proof follows from Proposition 2.2 by taking γ = γn = o(1) such that γ%n ∼ n−(p/2)∧(p−1)γ−pn and noting

that the exponent %
%+p((p/2) ∧ (p− 1)) < 1. �
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3 Asymptotics of the empirical distribution function

Consider random-coefficient AR(1) processes {Xi(t)}, i = 1, 2, . . . , which are stationary solutions to

Xi(t) = aiXi(t− 1) + ζi(t), t ∈ Z, (3.1)

with innovations {ζi(t)} having the same structure as in (2.2):

ζi(t) = biη(t) + ciξi(t), t ∈ Z. (3.2)

More precisely, we make the following assumption:

Assumption B {η(t)} satisfies A1; {ξi(t)}, (bi, ci)
′, ai, i = 1, 2, . . . , are independent copies of {ξ(t)}, (b, c)′,

a which satisfy assumptions A2–A6. (Note that we assume A5 for any i = 1, 2, . . . .)

Define the corresponding sample correlation coefficients

âi,n :=

∑n−1
t=1 Xi(t)Xi(t+ 1)∑n

t=1X
2
i (t)

(3.3)

and the empirical d.f.

ĜN,n(x) :=
1

N

N∑
i=1

1(âi,n ≤ x), x ∈ R. (3.4)

Recall that (3.4) is a nonparametric estimate of the d.f.G(x) = P(ai ≤ x) from observed panel data {Xi(t), t =

1, . . . , n, i = 1, . . . , N}. In the following theorem we show that ĜN,n(x) is an asymptotically unbiased

estimator of G(x), as n and N both tend to infinity, and prove the weak convergence of the corresponding

empirical process.

Theorem 3.1 Assume the panel data model in (3.1)–(3.2). Let Assumption B hold and N,n→∞. Then

sup
x∈[−1,1]

|EĜN,n(x)−G(x)| = O(n
− %

%+p
((p/2)∧(p−1))

). (3.5)

If, in addition, N = o(n
2%
%+p

((p/2)∧(p−1))
), then

N1/2(ĜN,n(x)−G(x)) ⇒ W (x), x ∈ [−1, 1], (3.6)

where {W (x), x ∈ [−1, 1]} is a continuous Gaussian process with zero mean and covariance

Cov(W (x),W (y)) = G(x ∧ y)−G(x)G(y), x, y ∈ [−1, 1], and W (−1) = W (1) = 0.

Proof. Note âi,n, i = 1, . . . , N , are identically distributed, in particular, EĜN,n(x) = Gn(x) with Gn(x)

defined in (2.8). Hence, (3.5) follows immediately from Corollary 2.3.

To prove the second statement of the theorem, we approximate ĜN,n(x) by the empirical d.f.

ĜN (x) :=
1

N

N∑
i=1

1(ai ≤ x), x ∈ [−1, 1]

of i.i.d. r.v.s ai, i = 1, . . . , N . We have N1/2(ĜN,n(x) − G(x)) = N1/2(ĜN (x) − G(x)) + DN,n(x) with

DN,n(x) := N1/2(ĜN,n(x)− ĜN (x)). Since A6 guarantees the continuity of G, it holds

N1/2(ĜN (x)−G(x)) ⇒ W (x), x ∈ [−1, 1]
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by the classical Donsker’s theorem, and (3.6) follows from supx∈[−1,1] |DN,n(x)| →p 0. By definition,

DN,n(x) = N−1/2
N∑
i=1

(1(ai + δi,n ≤ x)− 1(ai ≤ x)) = D′N,n(x)−D′′N,n(x),

where δi,n := âi,n − ai, i = 1, . . . , N , and

D′N,n(x) := N−1/2
N∑
i=1

1(x < ai ≤ x− δi,n, δi,n ≤ 0),

D′′N,n(x) := N−1/2
N∑
i=1

1(x− δi,n < ai ≤ x, δi,n > 0).

For γ > 0 we have

D′N,n(x) ≤ N−1/2
N∑
i=1

1(x < ai ≤ x+ γ) +N−1/2
N∑
i=1

1(|δi,n| > γ) =: V ′N (x) + V ′′N,n.

(Note that V ′′N,n does not depend on x.) By Proposition 2.1, we obtain

EV ′′N,n = N−1/2
N∑
i=1

P(|δi,n| > γ) ≤ CN1/2(n−(p/2)∧(p−1)γ−p + n−1),

which tends to 0 when γ is chosen as γ%+p = n−(p/2)∧(p−1) → 0. Next,

V ′N (x) = N1/2(ĜN (x+ γ)− ĜN (x)) = N1/2(G(x+ γ)−G(x)) + UN (x, x+ γ],

UN (x, x+ γ] := N1/2(ĜN (x+ γ)−G(x+ γ))−N1/2(ĜN (x)−G(x)).

The above choice of γ%+p = n−(p/2)∧(p−1) implies supx∈[−1,1]N
1/2|G(x + γ) − G(x)| = O(N1/2γ%) = o(1),

whereas UN (x, x + γ] vanishes in the uniform metric in probability (see Lemma 6.2 in Appendix). Since

D′′N,n(x) is analogous to D′N,n(x), this proves the theorem. �

Remark 3.1 Theorem 3.1 can be used for testing goodness-of-fit, i.e. the null hypothesis H0 : G = G0 vs.

H1 : G 6= G0 with G0 being a certain hypothetical distribution satisfying the Hölder condition in (2.7).

Accordingly, the corresponding Kolmogorov-Smirnov test rejecting H0 whenever

N1/2 sup
x∈[−1,1]

|ĜN,n(x)−G0(x)| > cα (3.7)

has asymptotic size α ∈ (0, 1) provided N,n,G0 satisfy the assumptions for (3.6) in Theorem 3.1. (Here, cα

is the upper α-quantile of the Kolmogorov distribution.) See also Section 5. One can also consider other

statistics that are continuous functionals of the empirical process {N1/2(ĜN,n(x)−G0(x)), x ∈ [1, 1]}.

4 Kernel density estimation

In this section we assume G has a bounded probability density function g(x) = G′(x), x ∈ [−1, 1], implying

assumption A6 with Hölder exponent % = 1 in (2.7). It is of our interest to estimate g(x) in a nonparametric

way from â1,n, . . . , âN,n (3.3).
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Consider the kernel density estimator

ĝN,n(x) :=
1

Nh

N∑
i=1

K
(x− âi,n

h

)
, x ∈ R, (4.1)

where K is a kernel, satisfying Assumption A7 and h = hN,n is a bandwidth which tends to zero as N and n

tend to infinity.

Assumption A7 K : [−1, 1]→ R is a continuous function of bounded variation that satisfies
∫ 1
−1K(x)dx =

1. Set ‖K‖22 :=
∫ 1
−1K(y)2dy and µ2(K) :=

∫ 1
−1 y

2K(y)dy and K(x) := 0, x ∈ R \ [−1, 1].

We consider two cases separately.

Case (i) P(b1 = 0) = 1, meaning that the coefficient bi = 0 for the common shock in (3.2) is zero and that

the individual processes {Xi(t)}, i = 1, 2, . . . , are independent and satisfy

Xi(t) = aiXi(t− 1) + ciξi(t), t ∈ Z.

Case (ii) P(b1 6= 0) > 0, meaning that {Xi(t)}, i = 1, 2, . . . , are mutually dependent processes.

Proposition 4.1 Let assumptions B and A7 hold. If h1+pn(p/2)∧(p−1) →∞, then

EĝN,n(x) → g(x) (4.2)

at every continuity point x ∈ R of g. Moreover, ifn(p/2)∧(p−1)h1+p →∞ in Case (i),

n(p/2)∧(p−1)(h/N)1+p →∞ in Case (ii),
(4.3)

then

NhCov(ĝN,n(x1), ĝN,n(x2)) →

g(x1)‖K‖22 if x1 = x2,

0 if x1 6= x2
(4.4)

at any continuity points x1, x2 ∈ R of g. If Nh → ∞ holds in addition to (4.3), then the estimator ĝN,n(x)

is consistent at each continuity point x ∈ R:

E|ĝN,n(x)− g(x)|2 → 0. (4.5)

Proof. Throughout the proof, let Kh(x) := K(x/h), x ∈ R. Consider (4.2). Note EĝN,n(x) = h−1EKh(x−
ân), because âi,n, i = 1, . . . , N , are identically distributed. Let us approximate ĝN,n(x) by

ĝN (x) :=
1

Nh

N∑
i=1

Kh(x− ai), x ∈ R, (4.6)

which satisfies EĝN (x) = h−1EKh(x − a) → g(x) as h → 0 at a continuity point x of g, see Parzen (1962).

Integration by parts and Corollary 2.3 yield

h|EĝN,n(x)− EĝN (x)| =
∣∣∣ ∫

R
(Gn(y)−G(y))dKh(x− y)

∣∣∣ (4.7)

≤ V (K) sup
z∈[−1,1]

|Gn(y)−G(y)| = O(n−((p/2)∧(p−1))/(1+p)),
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uniformly in x ∈ R, where V (K) denotes the total variation of K and V (K) = V (Kh). This proves (4.2).

Next, let us prove (4.4). We have

NhCov(ĝN (x1), ĝN (x2)) =
1

h
EKh(x1 − a)Kh(x2 − a) →

g(x1)‖K‖22 if x1 = x2,

0 if x1 6= x2,
(4.8)

as h → 0 at any points x1, x2 of continuity of g, see Parzen (1962). Split Nh{Cov(ĝN,n(x1), ĝN,n(x2)) −
Cov(ĝN (x1), ĝN (x2))} =

∑3
i=1Qi(x1, x2), where

Q1(x1, x2) := h−1[EKh(x1 − ân)Kh(x2 − ân)− EKh(x1 − a)Kh(x2 − a)],

Q2(x1, x2) := h−1[EKh(x1 − ân)EKh(x2 − ân)− EKh(x1 − a)EKh(x2 − a)],

Q3(x1, x2) := (N − 1)h−1 Cov(Kh(x1 − â1,n),Kh(x2 − â2,n)).

Note Q3(x1, x2) = 0 in Case (i). Similarly to (4.7), |Q1(x1, x2)| = h−1|
∫
R(Gn(y) − G(y))dKh(x1 −

y)Kh(x2 − y)| ≤ Ch−1n−((p/2)∧(p−1))/(1+p) → 0 since V (Kh(x1 − ·)Kh(x2 − ·)) ≤ C and |Q2(x1, x2)| ≤
Ch−1n−((p/2)∧(p−1))/(1+p) → 0 uniformly in x1, x2. Finally,

|Q3(x1, x2)| = (N − 1)h−1
∣∣∣ ∫

R

∫
R

(P(â1,n ≤ y1, â2,n ≤ y2)− P(â1,n ≤ y1)P(â2,n ≤ y2))dKh(x1 − y1)dKh(x2 − y2)
∣∣∣

≤ CNh−1 sup
y1,y2∈[−1,1]

|P(â1,n ≤ y1, â2,n ≤ y2)− P(â1,n ≤ y1)P(â2,n ≤ y2)|

= O(Nh−1n−((p/2)∧(p−1))/(1+p)) = o(1),

proving (4.4) and the proposition. �

Remark 4.1 It follows from the proof of the above proposition that in the case of a (uniformly) continuous

density g(x), x ∈ [−1, 1] relations (4.2), (4.5) and the first relation in (4.4) hold uniformly in x ∈ R, implying

the convergence of the mean integrated squared error:∫ ∞
−∞

E|ĝN,n(x)− g(x)|2 dx → 0.

Proposition 4.2 (Asymptotic normality) Let assumptions B and A7 hold and assume Nh→∞ in addition

to (4.3). Moreover, let K be a Lipschitz function in Case (ii). Then

ĝN,n(x)− EĝN,n(x)√
Var(ĝN,n(x))

→d N(0, 1), (4.9)

at every continuity point x ∈ (−1, 1) of g.

Proof. First, consider Case (i). Since ĝN,n(x) = (Nh)−1
∑N

i=1 Vi,N is a (normalized) sum of i.i.d. r.v.s

Vi,N := Kh(x− âi,n) with common distribution VN := V1,N , it suffices to verify Lyapunov’s condition

E|VN − EVN |2+δ

N δ/2 [Var (VN )](2+δ)/2
→ 0, (4.10)

for some δ > 0. This follows by the same arguments as in Parzen (1962). Analogously to Proposition 4.1, we

have E|VN |2+δ = E|Kh(x − ân)|2+δ ∼ hg(x)
∫ 1
−1 |K(y)|2+δdy = O(h) while Var (VN ) = Nh2Var (ĝN,n(x)) ∼

hg(x)‖K‖22 according to (4.4). Hence the l.h.s. of (4.10) is O((Nh)−δ/2) = o(1), proving (4.9) in Case (i).
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Let us turn to Case (ii). It suffices to prove that
√
Nh(ĝN,n(x) − ĝN (x)) →p 0, for ĝN (x) given in (4.6).

By |K(x)−K(y)| ≤ LK |x− y|, x, y ∈ R, for ε > 0

P
(√

Nh|ĝN,n(x)− ĝN (x)| > ε
)
≤ P

( LK√
Nh

N∑
i=1

|âi,n − ai|
h

> ε
)

≤ NP
(
|ân − a| >

√
Nh
( h
N

) ε

LK

)
,

≤ C(h(Nh)−p/2(N/h)1+pn−(p/2)∧(p−1) + (N/n)) = o(1)

follows from Proposition 2.1 and (4.3) with Nh→∞. �

Corollary 4.3 Let assumptions of Proposition 4.2 hold with h ∼ cN−1/5 for some c > 0, i.e.

N =

o(n
5
3

1
1+p

( p
2
∧(p−1))

) in Case (i),

o(n
5
6

1
1+p

( p
2
∧(p−1))

) in Case (ii).

Moreover, let g ∈ C2[−1, 1] and
∫ 1
−1 yK(y)dy = 0. Then

N2/5(ĝN,n(x)− g(x)) →d N(µ(x), σ2(x)),

where µ(x) := (c2/2)g′′(x)µ2(K) and σ2(x) := (1/c)g(x)‖K‖22.

Proof follows from Proposition 4.2, by noting that EĝN (x)−g(x) ∼ h2g′′(x)µ2(K)/2 as h→ 0 and EĝN,n(x)−
EĝN (x) = O(h−1n−((p/2)∧(p−1))/(1+p)) by (4.7). �

5 Simulations for goodnesss-of-fit testing

In this section we compare our nonparametric goodness-of-fit test in (3.7) for testing the null hypothesis G =

G0 with its parametric analogue studied in Beran et al. (2010). In accordance with the last paper, we assume

{Xi(t)} in (3.1) to be independent AR(1) processes with standard normal i.i.d. innovations {ζi(t)}, ζ(0) ∼
N(0, 1) and the random autoregressive coefficient ai ∈ (0, 1) having a Beta-type density g(x) with unknown

parameters θ := (α, β)′:

g(x) =
2

B(α, β)
x2α−1(1− x2)β−1, x ∈ (0, 1), α > 1, β > 1, (5.1)

where B(α, β) = Γ(α)Γ(β)/Γ(α+β) is Beta function. Note that β ∈ (1, 2) implies the long memory property

in {Xi(t)}. Beran et al. (2010) discuss a maximum likelihood estimate θ̂N,n,κ = (α̂, β̂)′ of θ = (α, β)′ when

each unobservable coefficient ai is replaced by its estimate âi,n,κ := min{max{âi,n, κ}, 1− κ} with âi,n given

in (3.3) and 0 < κ = κ(N,n) → 0 is a truncation parameter. Under certain conditions on N,n → ∞ and

κ→ 0, Beran et al. (2010, Theorem 2) showed that

N1/2(θ̂N,n,κ − θ0) →d N(0, A−1(θ0)), (5.2)

where θ0 is the true parameter vector,

A(θ) :=

(
ψ1(α)− ψ1(α+ β) −ψ1(α+ β)

−ψ1(α+ β) ψ1(β)− ψ1(α+ β)

)
,

9



and ψ1(x) := d2 ln Γ(x)/dx2 is the Trigamma function. Based on (3.7) and (5.2), we consider testing both

ways (nonparametrically and parametrically) the hypothesis that the unobserved autoregressive coefficients

{a1, . . . , aN} are drawn from the reference distribution G0 having density function in (5.1) with a specific θ0,

i.e. the null G = G0 vs. the alternative G 6= G0. The respective test statistics are

T1 := N1/2 sup
x
|ĜN,n(x)−G0(x)| and T2 := N(θ̂N,n,κ − θ0)′A(θ0)(θ̂N,n,κ − θ0). (5.3)

Under the null hypothesis, the statistics T1 and T2 converge to the Kolmogorov distribution and the chi-square

distribution with 2 degrees of freedom, respectively, see (3.7), (5.2).

To compare the performance of the above testing procedures, we compute the empirical distribution of

the p-value of T1 and T2 under null and alternative hypotheses. The p-value of observed Ti is defined as

p(Ti) = 1−Ki(Ti), i = 1, 2, where Ki(x), i = 1, 2 denote the limit distribution functions of (5.3). Recall that

when the significance level of the test is correct, the (asymptotic) distribution of the p-value is uniform on

[0, 1]. The simulation procedure to compare the performance of T1 and T2 is the following:

Step S0 We fix the parameter under the null hypothesis H0 : θ = θ0 with θ0 = (2, 1.4)′.

Step S1 We simulate 5000 panels with N = 250, n = 817 for five chosen values θ = (2, 1.2)′, (2, 1.3)′,

(2, 1.4)′, (2, 1.5)′, (2, 1.6)′ of Beta parameters.

Step S2 For each simulated panel we compute the p-value of statistics T1 and T2.

Step S3 The empirical c.d.f.’s of computed p-values of statistics T1 and T2 are graphed.

The values of Beta parameters θ0 = (2, 1.4)′, N , n were chosen in accordance with the simulation study in

Beran et al. (2010).

Fig. 1 presents the simulation results under the true hypothesis θ = θ0 with zoom-in on small p-values. We

see that both c.d.f.’s in the left graph are approximately linear. Somewhat surprisingly, it appears that the

empirical size of T1 (the nonparametric test) is better than the size of T2 (the parametric test). Particularly,

for significance levels 0.05 and 0.1 we provide the empirical size values in Table 1.

Fig. 2 gives the graphs of the empirical c.d.f.’s of p-values of T1 and T2 for several alternatives θ 6= θ0. It

appears that for β > β0 = 1.4 the parametric test T2 is more powerful than the nonparametric test T1 but for

β < β0 the power differences are less significant. Table 1 illustrates the empirical power for the significance

levels 0.05, 0.1.

Signif. level 5% 10%

β 1.2 1.3 1.4 1.5 1.6 1.2 1.3 1.4 1.5 1.6

T1 .532 .137 .049 .208 .576 .653 .223 .103 .315 .702

T2 .500 .104 .077 .313 .735 .634 .184 .134 .421 .827

Table 1: Numerical results of the comparison for testing procedure H0 : θ = (2, 1.4)′ at significance level 5%

and 10% . The column for β = 1.4 provides the empirical size.

The above simulations (Fig. 1 and 2, Table 1) refer to the case of independent individual processes {Xi(t)}.
There are no theoretical results for the parametric test T2, when AR(1) series are dependent. Although the

nonparametric test T1 is valid for the latter case, one may expect that the presence of the common shock

component in the panel data in (3.2) has a negative effect on the test performance for short series. To

illustrate this effect, we simulate 5000 panels with AR(1) processes {Xi(t)} driven by dependent shocks in
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Figure 1: [left] Empirical c.d.f. of p-values of T1 and T2 under H0 : θ0 = (2, 1.4)′; 5000 replications with

N = 250, n = 817. [right] Zoom-in on the region of interest: p-values smaller than 0.1.

(3.2) with bi = b, ci = (1 − b2)1/2. As previously, we choose θ0 = (2, 1.4)′, N = 250, n = 817 and we fix

θ = (2, 1.4)′ to evaluate the empirical size of T1. Fig. 3 [left] presents the graphs of the empirical c.d.f.’s of the

p-values of T1 for b = 1, b = 0.6 and b = 0, the latter corresponding to independent individual processes as in

Fig. 1. We see that the size of the test worsens when b increases, particularly when b = 1 and the individual

processes are all driven by the same common noise. To overcome the last effect, the sample length n of each

series in the panel may be increased as in Fig. 3 [right], where the choice of n = 5500 and b = 1 shows a

much better performance of T1 under the null hypothesis θ = θ0 = (2, 1.4)′ and the alternative (θ = (2, 1.5)′

and θ = (2, 1.6)′) scenarios.

In conclusion,

1. We do not observe an important loss of the power for the nonparametric KS test T1 compared to the

parametric approach.

2. The KS test T1 does not require to choose any tuning parameter contrary to the test T2.

3. One can use the KS test T1 under weaker assumptions on AR(1) innovations. We only impose moment

conditions. The dependence between the series is allowed by (3.2).
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Figure 2: Empirical c.d.f. of p-values of T1 and T2 for testing H0 : θ0 = (2, 1.4)′ under several alternatives of

the form θ = (2, β)′; 5000 replications with N = 250, n = 817.
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Figure 3: [left] Empirical c.d.f. of p-values of T1 under H0 : θ0 = (2, 1.4)′ for different dependence structure

between AR(1) series : bi = b and ci =
√

1− b2 and N = 250, n = 817. [right] Empirical c.d.f. of p-values

of T1 for testing H0 : θ0 = (2, 1.4)′. AR(1) series are driven by common innovations, i.e. bi = 1, ci = 0, for

θ = (2, β)′; 5000 replications with N = 250, n = 5500.
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6 Appendix: some proofs and auxiliary lemmas

We use the following martingale moment inequality.
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Lemma 6.1 Let p > 1 and {ξj , j ≥ 1} be a martingale difference sequence: E[ξj |ξ1, . . . , ξj−1] = 0, j =

2, 3, . . . with E|ξj |p <∞. Then there exists a constant Cp <∞ depending only on p and such that

E
∣∣∣ ∞∑
j=1

ξj

∣∣∣p ≤ Cp


∑∞

j=1 E|ξj |p, 1 < p ≤ 2,(∑∞
j=1(E|ξj |p)2/p

)p/2
, p > 2.

(6.1)

For 1 < p <≤ 2, inequality (6.1) is known as von Bahr and Esséen inequality, see von Bahr and Esséen

(1965), and for p > 2, it is a consequence of the Burkholder and Rosenthal inequality (Burkholder (1973),

Rosenthal (1970), see also Giraitis et al. (2012, Lemma 2.5.2)).

Proof of Proposition 2.1. Since ân in (2.5) is invariant w.r.t. a scale factor of innovations {ζ(t)}, w.l.g.

we can assume b2 + c2 = 1 and Eζ2(0) = 1, E|ζ(0)|2p <∞. Then ân − a = δn1 + δn2, where

δn1 := − aX2(n)∑n
t=1X

2(t)
, δn2 :=

∑n−1
t=1 X(t)ζ(t+ 1)∑n

t=1X
2(t)

. (6.2)

The statement of the proposition follows from

P(|δni| > γ) ≤ C(n−1 + n−(p/2)∧(p−1)γ−p) (0 < γ < 1, i = 1, 2). (6.3)

To show (6.3) for i = 1, note that P(|δn1| > γ) ≤ P(|Sn1| > n/2) + P(Sn2 > nγ/2), where Sn1 :=
∑n

t=1((1−
a2)X2(t)− 1), Sn2 := (1− a2)X2(n). Thus, (6.3) for i = 1 follows from

E|Sn1|p∧2 ≤ Cn and E|Sn2|p ≤ C. (6.4)

Consider the first relation in (6.4). Clearly, it suffices to prove it for 1 < p ≤ 2 only. We have Sn1 =

2S′n1 + S′′n1, where

S′n1 := (1− a2)
∑

s2<s1≤n

n∑
t=1∨s1

a2(t−s1)as1−s2ζ(s1)ζ(s2),

S′′n1 := (1− a2)
∑
s≤n

n∑
t=1∨s

a2(t−s)(ζ2(s)− 1).

We will use the following elementary inequality: for any −1 ≤ a ≤ 1, n ≥ 1, s ≤ n

αn(s) := (1− a2)
n∑

t=1∨s
a2(t−s) =

a2(1−s)(1− a2n), s ≤ 0,

1− a2(n+1−s), 1 ≤ s ≤ n

≤ C

a−2s min(1, 2n(1− |a|)), s ≤ 0,

1, 1 ≤ s ≤ n.
(6.5)

Using the independence of {ζ(s)} and a and inequality (6.1) (twice) for 1 < p ≤ 2 we obtain

E|S′n1|p = E
∣∣ ∑
s1≤n

αn(s1)ζ(s1)
∑
s2<s1

as1−s2ζ(s2)
∣∣p

≤ CE
∑
s1≤n

∣∣αn(s1)ζ(s1)
∑
s2<s1

as1−s2ζ(s2)
∣∣p

≤ CE
∑
s1≤n
|αn(s1)|p

∑
s2<s1

|a|p(s1−s2)

≤ CE(1− |a|)−1
∑
s≤n
|αn(s)|p ≤ Cn
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since E(1−|a|)−1 <∞ (see (2.3)) and
∑

s≤n |αn(s)|p ≤ Cn follows from (6.5). Similarly, since {ζ2(s)−1, s ≤
n} form a martingale difference sequence,

E|S′′n1|p ≤ CE
∑
s≤n
|αn(s)|p ≤ Cn,

proving the first inequality (6.4).

Next, consider the second inequality in (6.4). We have Sn2 = 2S′n2 + S′′n2, where

S′n2 := (1− a2)
∑

s2<s1≤n
a2(n−s1)as1−s2ζ(s1)ζ(s2), S′′n2 := (1− a2)

∑
s≤n

a2(n−s)(ζ2(s)− 1).

Similarly as above, we obtain E|S′′n2|p ≤ CE
∑

s≤n |(1− a2)a−2(n−s)|p ≤ C and E|S′n2|p ≤ CE
∑

s2<s1≤n |(1−
a2)|a|2(n−s1)|a|s1−s2 |p ≤ CE(1− |a|)p−2 <∞, proving (6.4) and hence (6.3) for i = 1.

Consider (6.3) for i = 2. We have δn2 = Rn/(n + Sn1), where Rn := (1 − a2)
∑n−1

t=1 X(t)ζ(t + 1) and

Sn1 =
∑n

t=1((1−a2)X2(t)−1) is the same as in (6.4). Then P(|δn2| > γ) ≤ P(|Rn| > nγ/2)+P(|Sn1| > n/2),

where

P(|Sn1| > n/2) ≤ (n/2)−(p∧2)E|Sn1|p∧2 ≤ C

n−(p−1), 1 < p ≤ 2,

n−1, p > 2,

according to (6.4). Therefore (6.3) for i = 2 follows from

E|Rn|p ≤ C

n, 1 < p ≤ 2,

np/2, p > 2.
(6.6)

Since Rn = (1 − a2)
∑

s≤n−1 ζ(s)
∑n−1

t=1∨s a
t−sζ(t + 1) is a sum of martingale differences, by inequality (6.1)

with 1 < p ≤ 2 we obtain

E|Rn|p ≤ CE
∑
s≤n−1

∣∣(1− a2)ζ(s)
n−1∑
t=1∨s

at−sζ(t+ 1)
∣∣p

≤ CE|1− a2|p
∑
s≤n−1

n−1∑
t=1∨s

|a|p(t−s)

≤ CE|1− a2|2
(∑
s≤0
|a|−ps

n−1∑
t=1

|a|pt +
n−1∑
s=1

n−1∑
t=s

|a|p(t−s)
)

≤ CE|1− a2|2
{

(1− |a|p)−2 + n(1− |a|p)−1
}
≤ Cn,

proving (6.6) for p ≤ 2. Similarly, using (6.1) with p > 2 we get

E|Rn|p = E|1− a2|pE
[∣∣ ∑
s≤n−1

ζ(s)
n−1∑
t=1∨s

at−sζ(t+ 1)
∣∣p∣∣a]

≤ CE|1− a2|p
{ ∑
s≤n−1

(
E
[∣∣ζ(s)

n−1∑
t=1∨s

at−sζ(t+ 1)
∣∣p∣∣a])2/p}p/2

≤ CE|1− a2|p
{ ∑
s≤n−1

n−1∑
t=1∨s

a2(t−s)
}p/2

≤ CE|1− a2|p
{∑
s≤0

a−2s
n−1∑
t=1

a2t +
n−1∑
s=1

n−1∑
t=s

a2(t−s)
}p/2

≤ CE|1− a2|p
{

(1− a2)−2 + n(1− a2)−1
}p/2 ≤ Cnp/2,
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proving (6.6), (6.3) and the proposition. �

Let a, a1, . . . , aN be i.i.d. r.v.s with d.f. G(x) = P(a ≤ x) supported by [−1, 1]. Define ĜN (x) :=

N−1
∑N

i=1 1(ai ≤ x), UN (x) := N1/2(ĜN (x) − G(x)), x ∈ R, and ωN (δ) (= the modulus of continuity of

UN ) by

ωN (δ) := sup
0≤y−x≤δ

|UN (y)− UN (x)|, δ > 0.

Lemma 6.2 Assume that G satisfies assumption A6. Then for all ε > 0,

ε4P(ωN (δ) > 6ε) ≤ (3 + 3C)LGδ
% +N−1,

where C is a constant independent of ε, δ, N .

Proof. As in Shorack and Wellner (1986, p. 110, Inequality 1) we have that

E|UN (y)− UN (x)|4 ≤ 3P(a ∈ (x, y])2 +N−1P(a ∈ (x, y]),

E|UN (y)− UN (x)|2|UN (z)− UN (y)|2 ≤ 3P(a ∈ (x, y])P(a ∈ (y, z]),

for −1 ≤ x ≤ y ≤ z ≤ 1. Now fix δ > 0 and split [−1, 1] = ∪i∆i, where ∆i = [−1 + iδ,−1 + (i + 1)δ],

i = 0, 1, . . . , b2/δc − 1, ∆b2/δc = [−1 + b2/δcδ, 1]. According to Shorack and Wellner (1986, p. 49, Lemma 1),

for all ε > 0,

ε4P(ωN (δ) > 6ε) ≤ (3 + 3C) max
i

P(a ∈ ∆i) +N−1,

where C is a constant independent of ε, δ, N . Lemma follows from Assumption A6 on d.f. G of a r.v. a. �

Note that if we take δ = δN = o(1), we then get P(ωN (δ) > ε)→ 0 as N →∞.

Lemma 6.3 Let â1,n, â2,n be given in (3.3) under assumptions A1–A6 with % = 1. Then for all γ ∈ (0, 1)

and n ≥ 1, it holds

sup
x,y∈[−1,1]

|P(â1,n ≤ x, â2,n ≤ y)− P(â1,n ≤ x)P(â2,n ≤ y)| = O(n−((p/2)∧(p−1))/(1+p)).

Proof. Define δi,n := âi,n − ai, i = 1, 2. For γ ∈ (0, 1), we have

P(|δ1,n| > γ or |δ2,n| > γ) ≤ P(|δ1,n| > γ) + P(|δ2,n| > γ) ≤ C(n−(p/2)∧(p−1)γ−p + n−1),

by Proposition 2.1. Consider now

P(â1,n ≤ x, â2,n ≤ y) = P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y)

≤ P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ) + P(|δ1,n| > γ or |δ2,n| > γ).

Then

P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ) ≤ P(a1 ≤ x+ γ, a2 ≤ y + γ, |δ1,n| ≤ γ, |δ2,n| ≤ γ)

≤ G(x+ γ)G(y + γ)

and

P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ) ≥ P(a1 ≤ x− γ, a2 ≤ y − γ, |δ1,n| ≤ γ, |δ2,n| ≤ γ)

≥ G(x− γ)G(y − γ)− P(|δ1,n| > γ or |δ2,n| > γ).
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From (2.7) we obtain

|G(x± γ)G(y ± γ)−G(x)G(y)| = |(G(x) +O(γ))(G(y) +O(γ))−G(x)G(y)| ≤ Cγ.

Hence

|P(a1 ≤ x, a2 ≤ y)−G(x)G(y)| ≤ C(γ + n−1 + n−(p/2)∧(p−1)γ−p). (6.7)

In a similar way,

|P(a1 ≤ x)P(a2 ≤ y)−G(x)G(y)| ≤ C(γ + n−1 + n−(p/2)∧(p−1)γ−p). (6.8)

By (6.7), (6.8), the proof of the lemma is complete with γ = γn = o(1), which satisfies γn ∼ n−(p/2)∧(p−1)γ−pn .

�
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