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ABSTRACT
Automatic food intake monitoring can be significantly beneficial
in the fight against obesity and weight management in our society
today. Different sensing modalities have been used in several re-
search efforts to accomplish automatic food intake monitoring with
acoustic sensors being the most common. In this study, we explore
the ability to learn spectral patterns of food intake acoustics from a
clean signal and use this learned patterns for extracting the signal
of interest from a noisy recording. Using standard metrics for
evaluation of blind source separation, namely signal to distortion
ratio and signal to interference ratio, we observed up to 20dB
improvement of separation quality in very low signal to noise
ratio conditions. For more practical performance evaluation of food
intake monitoring, we compared the detection accuracy for chew
events on the mixed/noisy signal versus on the estimated/separated
target signal. We observed up to 60% improvement in chew event
detection accuracy for low signal to noise ratio conditions when
using the estimated target signal compared to when using the
mixed/noisy signal.

–
Index Terms—food intake monitoring, audio source separa-

tion, nonnegative matrix factorization, harmonizable processes

1. INTRODUCTION
Obesity is a prevalent chronic condition that affects 1 of 3 adults

in the U.S. today [1]. It leads to an increased risk of heart disease,
high blood pressure, type 2 diabetes, arthritis-related disabilities
and even some cancers [1]. Weight gain (or loss) is often linked
to an imbalance between energy intake through food consumption,
and energy expenditure through physical activities. In recent years,
a lot of research effort has been committed towards recognizing
and quantifying physical activities for estimating energy expendi-
ture [2], [3]. Such work has even progressed into development of
commercially available wearable products such as Fitbit [4] and
Samsung Gear Fit [5]. These products often work with smartphone
applications that allow for manual food intake tracking by selecting
meals from an extensive food database. Meanwhile, objective and
automatic food intake monitoring using wearable systems is still
a work in progress towards development of a realistic and reliable
system. In previous research, different sensing modalities have
been used towards objective food intake monitoring, including
acoustic sensors [6], [7], [8], image sensors [9], [10], electromyo-
graphy (EMG) sensors [11], and even eletroglottograph (EGG)
sensors [12].

Acoustic sensors are the most common sensing modality used
by researchers for food intake monitoring; either in a single-
sensor system such as BodyScope [13] or multi-sensor system
as in [14], [15]. According to [16], there are still many issues
that motivate development of new techniques for wearable ac-
tivity monitoring systems to improve feasibility in more realistic
conditions. Two of these issues are 1) development of portable,
unobtrusive, and inexpensive data acquisition systems, and 2)

collection of data under realistic conditions. Collecting food intake
acoustics in a realistic, noise-prone environment, and properly
handling environmental noise that is bound to interfere with the
target signal is an existing gap in published research. In [17],
the authors use a two-microphone system, an in-ear microphone
for recording in-body sounds and an outside-ear microphone for
recording environmental sounds, then apply spectral subtraction
for noise reduction. Another approach for environmental noise
reduction in food intake acoustics shown in [18], is a microphone
hardware design approach using soft and hard silicone for internal
and external acoustic isolation respectively. Although [17], [18]
made accommodations to reduce environmental noise that can
contaminate food intake acoustic recordings, both datasets were
collected in a quiet/laboratory environment therefore performance
is unknown for recordings from a loud restaurant for example.

In this paper, we explore the performance of source separation
techniques shown to be successful in the music information
retrieval domain for separation of food intake acoustics from
background noise in a restaurant recording. Food intake acoustic
activities such as bites, chews, and swallows are known to be
low energy signals especially when recorded non-invasively with
a wearable system. In this work, a single microphone approach was
employed to support usability and acceptability criteria of wearable
technology that calls for portable and unobtrusive systems. To
facilitate performance evaluation, acoustics from food intake ac-
tivities were recorded in a quiet environment to have the clean and
uncontaminated signal for comparison, while the restaurant noise
was recorded separately. Both recordings were collected using a
sampling frequency of 16 kHz with 16-bit resolution. The iASUS
NT3 throat microphone [19], which has a frequency response of
20 Hz - 20 kHz, and a sensitivity of -46 dB +/- 3dB was used for
data collection. In this preliminary study, an exemplary signal of
one randomly picked subject from a larger dataset was used. This
database includes tracheal recordings from 12 subjects (7 males,
5 females, age range: 24-33 years) as they ate five foods with
varying textures (almonds, apple, chips, crackers and bread). The
mixed signal containing food intake acoustics and the background
noise from a loud restaurant was created by instantaneous addition
for evaluation of the proposed source separation technique. The
remainder of this paper is organized as follows, section 2 describes
the proposed source separation method applied of food intake
isolation, separation results are presented in section 3, finally the
conclusion is presented in section 4.

2. MODEL AND METHOD
In this section, we present the method used for isolation of

chewing sounds from background noise. The method used is semi-
supervised non-negative matrix factorization (NMF), which we
present in detail after introducing the particular probabilistic model
we adopted for the waveforms.
2.1. Notations and source separation background

Let the tilde notations like, s̃, denote a regularly sampled audio
signal in the time domain. Let then s be the corresponding Short-
Term Fourier Transform (STFT). It is a F ⇥ T matrix, where F
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is the number of frequency bands while T is the number of
times frames. Its entries are written s (f, t) 2 C. When s̃ is a
real waveform, its spectrum is Hermitian and we assume that the
redundant information in its STFT has been discarded.

In this study, we will adopt the ↵-harmonizable model recently
introduced in [20]. It assumes that all entries s (f, t) of the STFT
are independent, and distributed with respect to complex isotropic
↵-stable distributions (abbreviated S↵S

c

):

s (f, t) ⇠ S↵S
c

(�↵

(f, t)) , (1)

where �↵

(f, t) � 0 is called the scale parameter. In essence, it
corresponds to the strength —or power— of the signal across time
and frequency. As shown in [20], this model generalizes the well-
known local Gaussian model (LGM) discussed in [21], [22], [23],
that corresponds to ↵ = 2, and for which the scale parameter is
amenable to a variance called the Power Spectral Density (PSD).
In analogy to this Gaussian case, �↵ in (1) is called the fractional
PSD, abbreviated ↵-PSD.

The ↵-harmonizable model may be understood the following
way: First, the signal s̃ is split into frames, which are all assumed
independent. Second, each frame is assumed harmonizable, which
basically means that all the entries of its Fourier transform are
independent if the frames are long enough. This leads to all s (f, t)
being independent. Third, an isotropic ↵-stable model is picked for
each s (f, t) as in (1). As demonstrated in [24, th. 6.5.1], this last
step is equivalent to assuming that the waveform of each frame is
both an ↵-stable and a stationary process, which generalizes the
well-known Gaussian case. These two features can be used for
modeling waveforms. Stability is important in our contex because
it means that if J signals s

j

are ↵-harmonizable, so will be their
sum. More precisely, if 8j, s

j

(f, t) ⇠ S↵S
c

�
�↵

j

(f, t)
�

are J
independent ↵-harmonizable processes called sources, then their
sum x, called the mixture, is distributed as1:

x (f, t) ,
X

j

⇠ S↵S
c

 
X

j

�↵

j

(f, t)

!
, (2)

so that we have:

�↵

x

(f, t) =
X

j

�↵

j

(f, t) . (3)

Now, let us consider the case where we observe the mixture x.
If we have estimates �̂↵

j

for the ↵-PSDs �↵

j

of the sources, it is
straightforward to estimate the actual source signals s

j

, because
we have [20]:

E
h
s
j

(f, t) | x (f, t) ,
�
�↵

j

 
j

i
=

�↵

j

(f, t)P
j

0 �↵

j

0 (f, t)
x (f, t) . (4)

Thus, a practical estimate ŝ
j

of s
j

is obtained by replacing the
true ↵-PSD by their estimates �̂

j

in (4). This is coined in as
↵-Wiener filtering in [20]. It is the direct generalization of the
classical Wiener filter to ↵ < 2.

The advantage of picking an ↵-harmonizable model and not
simply an LGM was highlighted in [20]. It permits adequate
modeling of signals that feature very high dynamic ranges through
the use of heavy tails ↵-stable distributions, while keeping the
computational benefit of separating them effectively in the Time-
Frequency (TF) domain. It thus puts together robust signal filtering,
that has mostly been achieved in the time domain for now [25], and
the efficiency of Wiener filtering, that only holds for wide-sense
stationary signals [23].

1, stands for a definition.

2.2. Model and parameter estimation
The separation procedure (4) permits to recover good estimates

of the sources if their ↵-PSD ↵↵

j

are available, which corresponds
to their strength in the TF domain. However, only the mixture x is
available in practice, and the ↵-PSD need to be estimated from the
mixture only. All that is available at this stage is equation (3), that
provides us with a data-fit idea: whatever �̂

j

we pick, they should
sum up so as to correspond to the ↵-PSD �↵

x

(f, t) of the mixture.
This appears as a natural idea, since it means that we want the
estimated power of our sources to explain the energy of the actual
signal we observe. However, two main issues still prevent us from
readily applying this idea to estimate the ↵-PSDs �

j

.
First, our model is still heavily underdetermined, i.e. with

more unknowns than available equations and thus leading to an
infinite number of equally good solutions. Indeed, we have FTJ
unknown parameters in �

j

to estimate, while (3) provides us
with FT equations only, and �

j

(f, t) � 0 provides us with FTJ
inequalities, resulting in an ill-posed problem. To address this
issue, a common idea is to assume that there is some structure
to be expected in the ↵-PSDs of the sources and to exploit it, e.g.
by expressing each F ⇥ T matrix �

j

using a low-rank model:

�↵

j

(f, t) =

KjX

k=1

W
j

(f, k)H
j

(k, t) , (5)

where K
j

⌧ min (F, T ) is called the number of components for
source j, while W

j

and H
j

are F ⇥K
j

and K
j

⇥T nonnegative
matrices, respectively. Equation (5) is called an NMF model of �↵

j

and only comprises K
j

(F + T ) ⌧ FT parameters. It can be
understood as assuming that the ↵-PSD of each source is well
explained by the superposition of some spectral patterns (the
columns of W

j

) modulated over time by their respective temporal
activations (the lines of H

j

). Due to its success in capturing most
features of audio spectrograms, it has been a very popular model
in audio processing for more than 10 years (see, e.g. [26], [27],
[28] and references therein). In matrix form, we see that picking an
NMF model, we can replace (3) by the now well-posed problem:

�↵

x

=

JX

j=1

W
j

H
j

, (6)

that provides FT equations for the
P

j

K
j

(F + T ) ⌧ FT
unknowns, gathered in the parameter space ⇥ = {W

j

, H
j

}
j

.
Our second issue stems from the fact that we do not really

observe �↵

x

in (6), but rather the STFT x of the mixture, whose
entries x (f, t) are assumed independent, and distributed as:

x (f, t) ⇠ S↵S
c

(�↵

x

(f, t)) , (7)

which combines with (6) to yield:

x (f, t) ⇠ S↵S
c

0

@
X

jk

W
j

(f, k)H
j

(k, t)

1

A .

On probabilistic grounds, a natural idea here would be to estimate
the parameters ⇥ through a maximum likelihood approach. Since
all TF bins x (f, t) are independent, this would lead to:

ˆ

⇥ argmin
⇥

X

f,t

� log p (x (f, t) | ⇥) , (8)

which has been routinely achieved for many years in the Gaussian
case [29], [30], [31]. Unfortunately, such an approach is not
possible in general, because no analytical expression is available
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for the S↵S
c

probability density function except for the ↵ = 2

(Gaussian) and ↵ = 1 (Cauchy) cases2.
Since we cannot readily perform maximum likelihood estima-

tion of the parameters, another optimization-based route we take
in this study consists of first obtaining an estimate �̂↵

x

for �↵

x

, and
then using it to obtain ⇥, by minimizing some cost-function D⇥:

ˆ

⇥ argmin
⇥�0

8
<

:D⇥ ,
X

f,t

d

0

@�̂↵

x

(f, t) |
X

jk

W
j

(f, k)H
j

(k, t)

1

A

9
=

; ,

(9)
where d (a | b) � 0 is a user-defined divergence that is small
whenever a ⇡ b and high otherwise. A common choice for this
purpose is to pick a �-divergence, which is a family of cost
functions indexed by a parameter � 2 [0 2]. It comprises the
Euclidean (� = 2), Kullback-Leibler (� = 1) and Itakura-Saito
(IS, � = 0) as special cases, see e.g. [30], [32].

Now, we study how to estimate �↵

x

(f, t) based on x (f, t) so
as to apply the idea in (9). Intuitively, �↵

x

corresponds to the
power of x. In the Gaussian case we can simply take �̂2

x

(f, t) =
|x (f, t)|2, which states that the PSD of a wide-sense stationary
signal is straightforwardly estimated with the power spectrogram.
However, this estimate is no more valid for ↵ < 2. Indeed, all
moments E [|x (f, t)|p] for p � ↵ are undefined in that case:
8↵ < 2, 8p � ↵, E [|x (f, t)|p] = 1. However, the p-moments
of x (f, t) for p < ↵ are defined and we have [24, p. 19]:

lim

p"↵
(↵� p)E [|x (f, t)|p] = ↵�

↵

�↵

x

(f, t) , (10)

where �
↵

is a constant only depending on ↵. Thus, if we pick
a p < ↵ that is sufficiently close to ↵ and ↵̂ for notational
convenience, we may assume that:

E
h
|x (f, t)|↵̂

i
⇡ � (↵, ↵̂)�↵

x

(f, t) ,

where � (↵, ↵̂) is now a constant that only depends on ↵̂ and ↵,
but not on �↵

x

. Consequently, the empirical ↵̂-spectrogram of x:

v↵̂ (f, t) , |x (f, t)|↵̂ (11)

is expected to match its ↵-PSD �↵

x

, up to a multiplicative constant,
if ↵̂ < ↵ is close enough to ↵. We may hence use it to learn
the parameters �↵

j

, or rather � (↵, ↵̂)�↵

j

. Since this constant will
cancel out when performing ↵-Wiener filtering (4), we do not need
to compensate for it. The strategy we propose for estimating the
model parameters thus amounts to picking:

D⇥ =

X

f,t

d
�

0

@|x (f, t)|↵̂ |
X

jk

W
j

(f, k)H
j

(k, t) |

1

A , (12)

for some ↵̂ 2 [0 2] and � 2 [0 2] that are fixed beforehand. The
choice of these parameters in our case is left to the user and
is discussed in our evaluation. Minimization of (12) is achieved
through standard NMF methodology, and included in algorithm 1
for completeness. In practice, only 10 iterations of this algorithm
were sufficient in our experiments.

2.3. Exploiting learning data
In our particular food intake monitoring application, we have

J = 2 sources: the throat signal s1 and background signal s2. Even
if our objective is to separate them in test conditions when they are
both unknown, we can exploit the fact that in a controlled silent
situation, learning examples s

l

of throat signals may be observed

2In the general case, the S↵S

c

distribution is indeed rather defined
through its characteristic function E [exp i✓x] = exp (� |✓|↵ |x|↵) [24].

Algorithm 1 Fitting NMF parameters of an ↵̂-spectrogram v↵̂.
Always using the latest parameters available for computing
�̂↵

x

=

P
J

j=1 Wj

H
j

, and for all W
j

or H
j

not fixed, iterate:

W
j

 W
j

⇣
v↵̂ · [�̂↵

x

]

·(��2)
⌘
H>

j

[�̂↵

x

]

·(��1) H>
j

H
j

 H
j

W>
j

⇣
v↵̂ · [�̂↵

x

]

·(��2)
⌘

W>
j

[�̂↵

x

]

·(��1)
j

,

where a · b, a

b

and a·c correspond to element-wise multiplication,
division and exponentiation, respectively.

without any superimposed background. Even if these signals differ
from those we want to separate later, they ought to “sound the
same”. In our model (5), this can be translated as stating that
their spectral patterns W1 should be the same in clean and noisy
conditions, even if their activation times are different.

Hence, a natural approach inspired by a previous similar
study [33] is to learn W1 using the ↵̂-spectrogram |s

l

|↵̂ of the
clean signal s

l

, while assuming that only one source J = 1 is
present at that time, and then fix it during test conditions, for which
we set J = 2 and only estimate H1, W2 and H2 when fitting the
↵̂-spectrogram (11) of the mixture. This method proved to yield
very satisfying results in practice. A complete implementation
in Matlab is available on the webpage dedicated to this paper3.
Even if implemented as a batch method now, the computational
complexity of the separation step is small in practice and can be
implemented for online processing.

3. EVALUATION
3.1. Separation performance

To evaluate performance of the proposed method, we first
considered classic metrics from BSSeval toolbox [34], that notably
feature Signal to Distortion Ratio (SDR) and Signal to Interference
Ratio (SIR). While SDR gives an overall score for separation
of each source, SIR provides a metric for interference reduction
between sources. Both are expressed in dB and are higher for
better separations. In order to quantify improvement brought by
the method, corresponding dSDR and dSIR metrics are computed,
these metrics give the difference between the score obtained after
separation as compared when trivially picking the mixture as an
estimate for both sources, i.e. not doing any separation at all.

The K1 = 10 target spectral patterns W1 were learned on
1 minute of diverse food intake acoustics recorded in silent
laboratory setting. Then, these sounds were mixed with real-world
background recorded from a restaurant environment, so as to
form the mixture signals to separate. A gain was applied to the
background noise, to achieve any desired Signal to Noise Ratio
(SNR) in the mixture. The same microphone was used to record
both the clean throat sounds and the background. After applying
the proposed separation procedure to the mixture (using K2 = 5),
separation quality was then assessed by comparing the estimated
throat sounds with their true values.

First, for a fixed SNR = �17dB, the performance of the
method was computed for 200 (↵̂,�) values in [0.2 2] ⇥ [0 2].
Results are displayed in figure 1.

Considering figure 1, we see that the benefit of using the
method is not the same for all (↵̂,�). On the contrary, we notice
that the value ↵̂ = 0.5, i.e. modelling square-root magnitude
STFTs can yield a near 20dB improvement, depending on the �-
divergence considered, over using the classical power spectrogram.

3www.loria.fr/~aliutkus/fimWASPAA2015/
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Figure 1. Separation performance for various ↵̂ and � with a signal to
noise ratio of -17dB. Higher is better.

−20 −15 −10 −5 0 5 10
−10

0

10

20

30

SNR (dB)

d
S

D
R

 (
d
B

)

Separation quality (dSDR)

 

 
dSDR target
dSDR background

−20 −15 −10 −5 0 5 10
0

20

40

SNR (dB)

d
S

IR
 (

d
B

)

Interference removal (dSIR)

 

 
dSIR target
dSIR background

Figure 2. Separation performance for ↵̂ = 0.5 and � = 0, for various
signal to noise ratios (SNR).

This is a strong empirical confirmation of the superiority of the ↵-
harmonizable model over LGM (↵ = 2) in some cases. In our
setting, this can be explained by the fact that throat sounds are
extremely impulsive in nature, thus strongly benefiting from a
model that explicitly handles large dynamic ranges and impulsive
data, as does the ↵-harmonizable model. Then, fixing ↵̂ = 0.5, we
notice that � = 0 (IS) achieves the best results. These results bear
similarities with those presented in [35], where ↵ < 2 showed
better performance.

Now picking the identified (↵̂ = 0.5,� = 0) optimal parame-
ters, we performed a second set of evaluation of the separation
performance, to study the benefit of using the method for various
SNRs, from �20dB to 10dB. Results are displayed in figure 2.

From this figure, we see that the gain in using the proposed
technique compared to using the original mixture is very high for
small SNR, which is our use-case in practice. When the SNR
gets very high (above 5dB), we notice only a marginal increase
of the separation quality (dSNR), while interferences are still well
reduced (dSIR ⇡ 10dB).

3.2. Counts of chewing events
Detecting and counting of chew events in a food intake cycle is

an objective metric that can be used to evaluate an automatic food
intake monitoring system [6], [17]. Päßler and Fischer, in [17],
presented and evaluated eight different algorithms for automated
chew event detection on food intake sounds from consumption of
six types of food. In this study, we apply the most successful and
efficient algorithm from [17], maximum sound energy algorithm,
for evaluation of the proposed source separation method. As with
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Figure 3. Chew event detection on mixed signal and estimated target signal
relative to performance on clean signal, for various signal to noise ratios.

the maximum sound energy algorithm in [17], chew events were
detected from a food intake cycle when the signal energy in a
23 ms frame segment and the following 12 frames exceeded a
minimum threshold. Our minimum threshold value was found
by comparing results of the chew event detection algorithm to a
manually annotated ground truth of the test signal to obtain the best
possible performance. See [17] for specific details on this chew
event detection algorithm. Performance of the maximum sound
energy algorithm for chew event detection on the mixed signal
and the estimated target signal, relative the clean signal, was then
computed for various SNR values.

Figure 3 shows the results achieved from comparing chew
event detection on the estimated signal with chew event detection
on the clean signal. We observe that in negative SNR cases,
when the noise signal completely overpowers the target signal, for
example: [�20 � 5] dB, there is ⇡ 60% increase in chew event
detection accuracy achieved from using the estimated signal. On
the other hand, there is a little-to-no notable difference in detection
accuracy when the SNR is � 7dB. This result shows that in food
intake monitoring applications, where the target is a low energy
signal compared to the surrounding noise, in a loud restuarant
for example, a huge benefit can be achieved from applying an
intelligent source separation technique to estimate the clean signal
compared to simply using the mixed signal for processing.

4. CONCLUSION
In this study, we have demonstrated how the recent source

separation models and methods can be used to denoise signal
of interest in real-world single-sensor food intake acoustic data.
Using only a limited recording, 1 minute, of the target signal,
obtained in a silent laboratory setting, we showed that we can
learn an adequate signal model for use in isolating the food intake
acoustics from adverse background noise. We also showed the
benefit of using this technique to exploit the denoised data for
automatic monitoring applications is very high, compared to using
the original mixture data. Additionally, in the case of automatic
food intake recognition, we observed that using the proposed
method to obtain an estimated target signal provided up to 60%
improvement in chew event detection compared to the detection
accuracy achieved on the mixed signal.

On practical grounds, using the ↵-harmonizable model for
denoising real-world food intake acoustics recorded in a noisy
environment proved to be very beneficial due to its performance
and low computational requirement. This makes it feasible to be
embedded in a small wearable system. On theoretical grounds,
the results obtained in this work shows that the recently proposed
↵-harmonizable model can achieve excellent separation in cases
where the classical Gaussian model fails. Since food intake acous-
tics are very impulsive in nature, we interpret this result as a strong
claim in favor of the ↵-harmonizable model, when the dynamic
range of the signals to separated is very high.
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