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Abstract. We present a new interpreter for λProlog that runs consis-
tently faster than the byte code compiled by Teyjus, that is believed to
be the best available implementation of λProlog. The key insight is the
identification of a fragment of the language, which we call reduction-free
fragment (Lβ

λ), that occurs quite naturally in λProlog programs and that
admits constant time reduction and unification rules.

1 Introduction

λProlog is a logic programming language based on an intuitionistic fragment of
Church’s Simple Theory of Types. An extensive introduction to the language
with examples can be found in [9]. Teyjus [10,7] is a compiler for λProlog that
is considered to be the fastest implementation of the language. The main dif-
ference with respect to Prolog is that λProlog manipulates λ-tree expressions,
i.e. syntax containing binders. Therefore, the natural application of λProlog is
meta-programming (see [11] for an interesting discussion), including: automatic
generation of programs from specifications; animation of operational semantics;
program transformations and implementation of type checking algorithms.

Via the Curry-Howard isomorphism a type-checker is a proof-checker, the
main component of an interactive theorem prover (ITP). Indeed the motivation
of our interest in λProlog is that we are looking for the best language to imple-
ment the so called elaborator component of an ITP. The elaborator is used to
type check the terms input by the user. Such data, for conciseness reasons, is
typically incomplete and the ITP is expected to infer what is missing. The pos-
sibility to extend Coq’s built-in elaborator with user provided “logic programs”
(in the form of Canonical Structures [4,1] or Type Classes [12]) to help it infer
the missing data turned out to be a key ingredient in successful formalizations
like [3]. Embedding a λProlog interpreter in an ITP would enable the elaborator
and its extensions to be expressed in the same, high level, language. A crucial
requisite for this plan to be realistic is the efficiency of the λProlog interpreter.

In this paper we introduce ELPI, a fast λProlog interpreter written in OCaml
that can be easily embedded in OCaml softwares, like Coq. In particular we focus
on the insight that makes ELPI fast when dealing with binders by identifying a
reduction-free fragment (Lβλ) of λProlog that, if implemented correctly, admits
constant-time unification and reduction operations. We analyze the role of β-
reduction in Section 2 and higher order unification in Section 3; we discuss
bound names representations in Section 4; we define Lβλ in Section 5 and we
assess the results in Section 6.



2 The two roles of β-reduction in λProlog

Example 1 implements type-checking and reduction for λ-terms represented
in λ-tree syntax. For instance, the object-level encoding of (λx.xx) is the term
(lam (x\ app x x)) of type T . The syntax (x\ F) denotes the λ-abstraction
of λProlog, that binds x in F; lam is the constructor for object-level abstraction,
that builds a term of type T from a function of type T → T ; app takes two
terms of type T and builds their object-level application of type T . Following
the tradition of Prolog, capitals letters denote unification variables.

The second clause for the of predicate shows a recurrent pattern in λProlog:
in order to analyze an higher order term, one needs to recurse under a binder.
This is achieved combining the forall quantifier, written pi x\ G, with logical
implication H => I. The operational semantics implements the standard intro-
duction rules of implication and the universal quantifier: the forall quantifier
declares a new local constant x, meant to be fresh in the entire program; logical
implication temporarily augments the program with the new axiom H about x.

In Example 1, line 4, the functional (sub-)term F is applied to the fresh
constant x. Being F a function, the β-redex (F x), once reduced, denotes the
body of our object-level function where the bound variable is replaced by the
fresh constant x. The implication is used to assume A to be the type of x, in
order to prove that the body of the abstraction has type B and therefore the
whole abstraction has type (arr A B) (i.e. A → B). Note that, unlike in the
standard presentation of the typing rules, we do not need to manipulate an
explicit context Γ to type the free variables. Instead the assumptions of the
form (of x A) are just added to the program’s set of clauses, and λProlog
takes care of dropping them when x goes out of scope. Example: if the initial
goal is (of (lam (w\ app w w)) T) by applying the second clause we assign
(arr A B) to T and generate a new goal (of (app c c) B) (where c is the
fresh constant substituted for w) to be solved with the extra clause (of c A) at
disposal.

In the type-checking example, the meta-level β-reduction is only employed
to inspect a term under a binder by replacing the bound name with a fresh
constant. The reduction example in line 6 shows instead a radically different
pattern: in order to implement object-level substitution — and thus object-level
β-reduction — we use the meta-level β-reduction. E.g. if F is (w\ app w w) then
(F N) reduces to (app N N). Note that in this case β-reduction is fully general,
because it replaces a name with a general term, not constrained to be a fresh
constant. This distinction is crucial in the definition of Lβλ in Section 5.

1 of (app M N) B :-

2 of M (arr A B), of N A.

3 of (lam F) (arr A B) :-

4 pi x\ of x A => of (F x) B.

5 cbn (lam F) (lam F).

6 cbn (app (lam F) N) M :- cbn (F N) M.

7 cbn (app M N) R :-

8 cbn M (lam F), cbn (app (lam F) N) R.

Example 1: Type checker and Weak CBN for simply typed λ-calculus.



3 Higher Order unification

Higher order (HO) unification admits no most general unifiers (MGUs), forcing
implementations to enumerate all solutions or delay the flexible-rigid and the
flexible-flexible problems. Moreover, the presence of binders requires a way to
avoid captures, i.e. to check that unification variables are instantiated with terms
containing only bound variables in their scope.

To cope with the absence of MGUs, Dale Miller identified in [8] a well-
behaved fragment (Lλ) of higher-order unification that admits MGUs and that
is stable under λProlog resolution. The restriction defining Lλ is that unification
variables can only be applied to (distinct) variables (i.e. not arbitrary terms)
that are not already in the scope of the variable. Such fragment can effectively
serve as a primitive for a programming language and indeed Teyjus 2.0 is built
around this fragment: no attempt to enumerate all possible unifiers is performed,
and unification problems falling outside Lλ are just delayed. Many interesting
λProlog programs can be rewritten to fall in the fragment. For example, we can
make cbn of Example 1 stay in Lλ by replacing line 6 (that contains the offending
(F N) term) with the following code:

1 cbn (app (lam F) N) M :- subst F N B, cbn B M.

2 subst F N B :- pi x\ copy x N => copy (F x) B.

3 copy (lam F1) (lam F2) :- pi x\ copy x x => copy (F1 x) (F2 x).

4 copy (app M1 N1) (app M2 N2) :- copy M1 M2, copy N1 N2.

The idea of subst is that the term F is recursively copied in the following way:
each bound variable is copied in itself but for the top one that is replaced by N.
The interested reader can find a longer discussion about copy in [9, page 199].
The of program falls naturally in Lλ, since F is only applied to the fresh variable x
(all unification variables in a λProlog program are implicitly existentially bound
in front of the clause, so F does not see x). The same holds for copy.

In λProlog unification takes place under a mixed prefix of ∀ and ∃ quantifiers.
Their order determines if a unification variable (an existential) can be assigned
to a term that contain a universally quantified variable. E.g. ∀x, ∃Y, Y = x is
provable while ∃Y, ∀x, Y = x is not. An implementation can keep track of the
scoping constraints using levels. When a clause’s head is unified with the goal
in a context of length n, the universally quantified variables of the clause are
instantiated to unification variables Xn where the level n records that X has
only visibility of the initial prefix of length n of the context. If later a fresh
constant is added by the pi rule, the constant occupies position n+1 (its level is
n+ 1) and it will not be allowed to occur in instances of the variable Xn. From
now on we will write levels in superscript.

If we run the program (of (lam f\lam w\app f w) T0), after two steps
the goal becomes (of (app c1 d2) B0). Concretely, Teyjus replaces the bound
names f and w with the level-annotated fresh constants c1 and d2 performing
the β-reductions. As a crucial optimization [7] Teyjus implements reductions in a
lazy way using an explicit substitution calculus. The reader can find this example
developed in full details at page 6, where we demonstrate how substitutions of
bound names by fresh level-annotated constants can be avoided in Lβλ.



4 Bound variables

The last missing ingredient to define Lβλ and explain why it can be imple-
mented efficiently is to see how systems that manipulate λ-terms accommodate
α-equivalence. Bound variables are not represented by using real names, but
canonical “names” (hence α-equivalence becomes syntactic equality). De Bruijn
introduced two, dual, naming schemas for λ-terms in [2]: depth indexes (DBI)
and levels (DBL). In the former, that is the most widely adopted one, a variable
is named n if its binder is found by crossing n binders going in the direction
of the root. In the latter a variable named n is bound by the n-th binder one
encounters in the path from the root to the variable. Below we write the term
λx.(λy.λz.f x y z) x and its reduct in the two notations:

Indexes: λx.(λy.λz.f x2 y1 z0) x0 →β λx.λz.f x1 x1 z0
Levels: λx.(λy.λz.f x0 y1 z2) x0 →β λx.λz.f x0 x0 z1

In both notations when a binder is removed and the corresponding variable
substituted some “renaming” (called lifting) is performed. Teyjus follows a third
approach that mixes the two, using indexes for variables bound in the terms,
and levels for variables bound in the context. The advantage is that no lifting is
required when moving a term under additional binders. However, an expensive
substitution of a level for an index is required to push a binder to the context.

In ELPI we crucially chose DBL because of the following three properties:

DBL1 xi in Γ keeps the same name xi in any extended context Γ,∆
DBL2 the variables bound by Γ in a β-redex keep their name in the reduct
DBL3 when a binder is pushed to the context, the bound occurrences keep their

name: no lifting is required to move from Γ ` ∀xi, p(xi) to Γ, xi ` p(xi)

Another way to put it is that variables already pushed in the context are treated
exactly as constants, and that the two notions of level — De Bruijn’s and the
position in the context introduced in Section 3 — coincide.

5 The reduction-free fragment Lβ
λ

λProlog is a truly higher order language: even clauses can be passed around,
unified, etc. Nevertheless this plays no role here, so we exclude formulas from
the syntax of terms. Therefore, our terms are defined just by:

t ::= xi | Xj | λxi.t | t t

Since variables follow the DBL representation, we do not have a case for con-
stants like app or lam, that are represented as xi for some negative i. Since the
level of a variable completely identifies it, when we write xi . . . xi+k we mean k
distinct bound (i.e. i ≥ 0) variables. The superscript j annotates unification vari-
ables with their visibility range (0 ≤ j, since all global constants are in range).
A variable Xj has visibility of all names strictly smaller than j. E.g. X1 has
visibility only of {. . . , x−1, x0}, and X3 has visibility of {. . . , x−1, x0, x1, x2}.
Technically, when following the De Bruijn convention, we could just write λxi.t
as λ.t. We keep writing the name xi to ease reading.



Definition 1 (Lβλ) A term is in the reduction-free fragment Lβλ iff every occur-
rence of a unification variable Xj is applied to xj . . . xj+k−1 for k >= 0.

We allow k = 0 to accept variables that are not applied. A consequence of
the definition is that if a term is in Lβλ then all occurrences of applications of
unification variables can be instantiated with a term closed in an initial segment
of the λProlog context seen as a ordered list. Examples: X2 x2 x3 and X2 are in
the fragment; X2 x3 and X2 x3 x2 are not; X2 x2 x3 can be instantiated with
any term closed in {. . . , x0, x1, x2, x3}.

Observe that the programs in Example 1 (when cbn is rewritten to be in the

pattern fragment as in Section 3) are in Lβλ. Also, every Prolog program is in

Lβλ. As we will see in Section 6, a type-checker for a dependently typed language

and evaluator based on a reduction machine are also naturally in Lβλ, showing
that, in practice, the fragment is quite expressive.

Property 1 (Decidability of HO unification) Being Lβλ included in the pattern-

fragment Lλ, higher order unification is decidable for Lβλ.

The most interesting property of Lβλ, which also justify its name, is:

Property 2 (Constant time head β-reduction) Let σ be a valid substitu-
tion for existentially quantified variables. Then the first k− 1 head reductions of
(Xj xj . . . xj+k−1)σ can be computed in constant time.

A valid substitution assigns to Xj a term t of the right type (as in simply
typed λ-calculus) and such that the free variables of t are all visible by Xj (all
xi are such that i < j). Therefore Xjσ = λxj . . . . λxj+n.t for some n. Then

(Xj xj . . . xj+k−1)σ =

{
t xj+n+1 . . . xj+k−1 if n+ 1 < k

λxj+k. . . . λxj+n.t otherwise
(1)

Thanks to property DBL2, Equation 1 is syntactical : no lifting of t is required.
Hence the β-reductions triggered by the substitution of Xj take constant time.

Property 3 (Constant time unification) A unification problem of the form
Xj xj . . . xj+k−1 ≡ t can be frequently solved in constant time.

The unification problem Xj xj . . . xj+k−1 ≡ t can always be rewritten as
two simpler problems: Xj ≡ λxj . . . . λxj+k−1.Y

j+k and Y j+k ≡ t for a fresh
Y . The former is a trivial assignment that requires no check. The latter can be
implemented in constant time iff no occur-check is needed for X and if the level
of the highest free variable in t can be recovered in O(1) and is smaller than j+k.
The recovery can be economically implemented caching the maximum level in
the term, that is something often pre-computed on the input term in linear time.
Avoiding useless occur-check is a typical optimization of the Warren Abstract
Machine (WAM), e.g. when X occurs linearly in the head of a clause. These



properties enable us to implement the operational semantics of pi in constant
time for terms in Lβλ.

We detail an example. The first column gathers the fresh constants and extra
clauses. The second one shows the current goal(s) and the program clause that
is used to back chain.

Context Goals and refreshed program clause

of (lam x0\lam x1\app x0 x1) T0

of (lam F0) (arr A0 B0) :- pi x0\ of x0 A0 => of (F0 x0) B0

x0;(of x0 A0) of (lam x1\app x0 x1) B0

of (lam G1) (arr C1 D1) :- pi x1\ of x1 C1 => of (G1 x1) D1

x0;(of x0 A0) of (app x0 x1) D0

x1;(of x1 C0) of (app M2 N2) S2 :- of M2 (arr R2 S2), of N2 R2

x0;(of x0 A0) of x0 (arr R2 S0), of x1 R2

x1;(of x1 C0) of x0 A0 , of x1 C0

After the first step we obtain F0:= x0\lam x1\app x0 x1; T0:= arr A0 B0;
the extra clause about x0 in the context and a new subgoal. Thanks to property
DBL3, x0 has been pushed to the context in constant time. Note that the redex
(F0 x0) is in Lβλ and thanks to Equation 1 head normalizes in constant time to
(lam x1\app x0 x1). The same phenomenon arises in the second step, where
we obtain G1:= x1\app x0 x1 and we generate the redex (G1 x1). Unification
variables are refreshed in the context under with the clause is used, e.g. C is
placed at level 1 initially, but in consequence to a unification step they may be
pruned when occurring in a term assigned to a lower level unification variable.
Example: unifying B0 with (arr C1 D1) prunes C and D to level 0.

The choice of using DBL for bound variables is both an advantage and a com-
plication here. Clauses containing no bound variables, like (of x0 A0), require
no processing thanks to DBL1: they can be indexed as they are, since the name
x0 is stable. The drawback is that clauses with bound variables, like the one used
in the first two back chains, need to be lifted: the first time the bound variable is
named x0, while the second time x1. Luckily, this renaming, because of property
DBL1, can be performed in constant time using the very same machinery one
uses to refresh the unification variables. E.g. when the WAM unifies the head
of a clauses it assigns fresh stack cells: the clause is not really refreshed and
the stack pointer is simply incremented. One can represent the locally bound
variable as an extra unification variable, and initialize, when pi is crossed, the
corresponding stack cell to the first xi free in the context.

Stability of Lβλ. Unlike Lλ, Lβλ is not stable under λProlog resolution: a clause

that contains only terms in Lβλ may generate terms outside the fragment. There-

fore an implementation must handle both terms in Lβλ, with their efficient com-
putation rules, and terms outside the fragment. Our limited experience so far,
however, is that several programs initially written in the fragment remains in
the fragment during computation, or they can be slightly modified to achieve
that property.



6 Assessment and conclusions

We assess ELPI on a set of synthetic benchmarks and a real application. Syn-
thetic benchmarks are divided into three groups: first order programs from the
Aquarius test suite (crypto-multiplication, µ-puzzle, generalized eight queens

problem and the Einstein’s zebra puzzle); higher order programs falling in Lβλ;

and an higher order program falling outside Lβλ taken from the test suite of
Teyjus normalizing expressions in the SKI calculus.

The programs in Lβλ are respectively type checking lambda terms using the of
program of Example 1 and reducing expressions like 55 in the syntax of Church
numerals using a call by value/name (CBV/CBN) strategy. The typeof test was
specifically conceived to measure the cost of moving under binders: the type
checked terms, projections, are mainly made of lam nodes.

Test ELPI Teyjus ELPI/Teyjus

time (s) space (Kb) time (s) space (Kb) time space

crypto-mult 3.48 27,632 6.59 18,048 0.52 1.53

µ-puzzle 1.82 5,684 3.62 50,076 0.50 0.11

queens 1.41 108,324 2.02 69,968 0.69 1.54

zebra 0.85 7,008 1.89 8,412 0.44 0.83

typeof 0.27 8,872 5.64 239,892 0.04 0.03

reduce cbv 0.15 7,248 11.11 57,404 0.01 0.12

reduce cbn 0.33 8,968 0.81 102,896 0.40 0.08

SKI 1.32 15,472 2.68 8,896 0.49 2.73

The data in the table shows that ELPI shines on programs in Lβλ, and com-
pares well outside it. The alternating performance Teyjus on the reduction tests
has to be attributed to the explicit substitutions (ES) machinery [7] when em-
ployed to cross binders: by its very nature ES fit well a lazy reduction strategy
like CBN (even if some space overhead is visible). On the contrary ES are coun-
terproductive in the CBV case since the program, by fully traversing the redex
argument, systematically pushes the suspended substitution to the leaves of the
term, completely defeating the purpose of the entire machinery (i.e. if the substi-
tution has to be performed, there is no gain in delaying it). If one makes Teyjus
artificially push explicit substitutions in the CBN case too, he halves memory
consumption but degrades the performances by 10 seconds, confirming the time
we see in the CBV case is dominated by the overhead of ES. By avoiding substi-
tution when crossing binders ELPI is not only faster, but also more predictable
performance wise: as one expects CBV is faster than CBN in computing the
normal form of 55 since it avoids duplicating non-normal terms.

The real application we present is a checker for the formal system λδ [5,6]
Such checker is able to validate the proof terms of the formalization of Landau’s
“Grundlagen” [13] done in Automath. The reference checker for λδ, named He-
lena, has been implemented in OCaml. Our λProlog implementation follows it
closely, and naturally falls in Lβλ. Nevertheless, the λProlog code is much simpler
than the corresponding OCaml code and consists of just 50 clauses.

The “Grundlagen” is a theory comprising definitions and proofs for a total
of 6911 items (circa 8MB of data). Teyjus seems to have a fixed maximum heap



size of 256MB that in turn limits it to the verification of the first 2615 items.
In the table we compare pre-processing (Pre) time like parsing, compilation or
elaboration, and verification (Ver). We compare ELPI with Helena, Teyjus, and
Coq. The Coq system implements a type checker for a λ-calculus strictly more
expressive than λδ, hence can check the proof terms directly but surely incurs
in some overhead. We use its timings as a reference for the order of magnitude
between the performance of ELPI and the ones of a state-of-the-art ITP. When
applicable we compare softwares compiled to native code or interpreted.

Time (s) for 2615 items only

ELPI Teyjus ELPI/Teyjus

Pre 2.55 49.57 0.05

Ver 3.06 203.36 0.02

RAM (Mb) 91,628 1,072,092 0.09

Time (s) for all 6911 items

Task Helena ELPI Coq

interp. comp. interp. interp. comp.

Pre 2.42 0.41 9.04 49.28 8.83

Ver 4.40 0.33 13.90 7.21 1.19

Our conclusion is that Lβλ admits a very efficient implementation and is large
enough to express realistic programs like a type checker for a dependently typed
λ-calculus. ELPI is under active development at http://lpcic.gforge.inria.fr.
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