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Resistance Network-Based Thermal Conductivity Model for Metal 

Foams 

 

Karthik K. Bodla, Jayathi Y. Murthy and Suresh V. Garimella1 

School of Mechanical Engineering, Purdue University 

West Lafayette, Indiana 47907-2088 

 

Abstract 

A network model for the estimation of effective thermal conductivity of open-celled metal foams is 

presented. A nodal network representation of three aluminum foam samples from DUOCEL – 10 ppi, 20 

ppi and 40 ppi – is constructed out of X-ray microtomography data obtained by Computed Tomography 

(CT) scanning of the samples using a commercial CT scanner. Image processing and 3D skeletonization 

are performed with commercially available image processing software. The effective thermal conductivity 

is estimated through a 1D conduction model, representing individual ligaments as an effective thermal 

resistance using the topological information from the scan data. The effective thermal conductivity data 

thus obtained are compared with the Lemlich theory and other pore-based models. Further, 

microstructural characterization of foam features – pore size, ligament thickness, ligament length and 

pore shapes – is performed. All the three foam samples are observed to have similar pore shapes and 

volumetric porosity, while the other features scale with the pore size. For a given porosity the computed 

permeability is found to scale as the square of the pore diameter, as also noted by previous researchers.  

 

Keywords: metal foams, X-ray microtomography, effective thermal conductivity, skeletonization, 1D 

resistance network model, microstructure, permeability 
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1. Introduction 

Open-celled metal foams, initially developed for structural applications, have been shown to have 

desirable thermal properties such as a high heat transfer coefficient and a high surface area-to-volume 

ratio, enabling them to be used as effective cooling solutions in many thermal problems [1-3]. Additional 

desirable features include weight and volume reduction [4].  

Much of the earlier thermal analysis of open-celled metal foams has been largely experimental. 

Calmidi and Mahajan [5] performed thermal conductivity measurements of fibrous metal foams with air 

and water as the interstitial fluids, and proposed a model with an adjustable free parameter to match the 

experimental results obtained. Paek et al. [6] performed both thermal conductivity and permeability 

measurements for highly porous aluminum foams with air as the interstitial fluid. 

Modeling efforts have traditionally employed one of two approaches: a) a macroscopic or semi-

empirical approach, such as in [5] and [7], and b) a microscopic or pore-based approach [8]. Semi-

empirical approaches employ volume-averaged equations to describe flow and heat transfer 

characteristics. On the other hand, the microscopic approach involves pore-based calculations, employing 

idealized periodic cell representations of the cellular metal foam geometry. Geometries such as cubic unit 

cells with square cylinders [9] and minimal surface area-to-volume ratio-based BCC structures [8] have 

been widely employed in the literature.  

X-ray microtomography (XMT) offers a relatively new modeling approach with which the 

randomness of the porous medium is accurately captured. The advent of superior algorithms and sub-

micron scale resolutions have enabled the employment of XMT for visualizing intricate details of 

materials such as random porous media. Fiedler et al. [10] employed a lattice Monte Carlo approach 

directly on the XMT data to perform transient thermal conduction measurements. Laschet et al. [11] 

performed thermal conductivity predictions of Inconel foam samples employing a homogenization 

approach by generating finite element (FE) models of scanned foam samples. In earlier work [12], we 

performed detailed finite volume CFD simulations of the flow and heat transfer properties of aluminum 
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foams by generating computational meshes based on computed tomography (CT) data. Other non- 

conventional approaches include the use of Laguerre tessellations generated by random sphere packings 

[13]. 

Network-based analysis may be used for analytically calculating many of the characteristics of 

random materials, such as permeability and effective thermal conductivity. Some of the earlier models for 

predicting the effective thermal conductivity (for example, [14]) are based on series and parallel 

combinations of thermal resistances. Fatt [15] employed the analogy between electrical conduction and 

fluid flow (Darcy‟s law) for estimation of permeability of porous media. Raoof and Hassanizadeh [16] 

developed a new multi-directional pore network representation of porous media based on a cubic lattice 

network, and compared the co-ordination number with that obtained through CT. In the present work, we 

develop a network model for calculating effective thermal conductivity, employing the analogy between 

thermal and electrical conduction. The data pertaining to the foam microstructure generated through XMT 

is employed for developing the proposed network model. This approach may also be extended to other 

types of porous media, and for estimating properties such as permeability by exploiting the analogy 

between fluid flow and electrical conduction. 

2. Materials under consideration 

The materials studied in this work are highly porous aluminum foam samples with porosity (void 

fraction) in the range of 90-92%. Aluminum foams are a class of cellular metals with novel thermal and 

thermo-mechanical properties such as high thermal conductivity, high permeability to fluids and low 

specific weight [17]. Metal foams are manufactured in a number of ways ranging from direct foaming to 

vapor deposition. Banhart [18] provided an excellent review of the various manufacturing processes 

employed in foaming metals. Conventional techniques such as direct foaming of molten metal by gas 

injection tend to produce closed-cell morphologies, while open-celled porous metals may be 

manufactured by investment casting with polymer foams as noted in [18]. In this process, an open-celled 

polymer foam which is produced conventionally, and is thereby reticulated, is the starting material. It is 
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first filled with a slurry of heat-resistant material such as mullite and then cured. The polymer foam is 

subsequently removed by thermal treatment to produce voids replicating the original foam, which can 

then be filled with molten metal to produce an open-celled metal foam. The foaming company, ERG, 

employs this method to produce aluminum foams under the trade name DUOCEL [19]. Three DUOCEL 

foam samples of varying pore size – 10 ppi, 20 ppi and 40 ppi – are considered in this work. Thermal and 

mechanical properties of DUOCEL foams may be found in [19].       

3. Sample preparation 

Commercially available XMT scanners feature a trade-off between the scan resolution and the size 

of the sample being scanned. In this work, foam samples of size 10 mm x 12.7 mm x 38.1 mm are cut 

from original foam slabs of size 12.7 mm x 38.1 mm x 88.9 mm using electric discharge machining 

(EDM), to ensure that the cuts are clean and that the cut samples are not distorted. The samples are then 

imaged using axial μ-CT at 20 micron resolution employing a commercial X-ray scanner-μCT 40 

(SCANCO MEDICAL), with the axis being along the longest dimension. The resolution is selected such 

that the ligaments are properly reconstructed in the image reconstruction step and that other microscale 

features, such as the pore orientation and shape, are well-represented. The scanner software generates a 

2D stack of images corresponding to the 3D object scanned, which can be later analyzed after 

surface/volume reconstruction. 

4. Image processing and skeletonization 

The images obtained from the scan data suffer from a number of artifacts such as noise and blurriness 

and hence the images must be processed further before skeletonization. The image processing and 

material identification steps are described only briefly in this paper; a detailed discussion may be found in 

[20]. 
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4.1 Image processing 

The commercially available image processing package AMIRA is used in this work for image 

processing. The scan region (foam and pore) is first separated from the background by cropping an 

appropriate region of interest. Resizing is performed in all three dimensions to match the size of the 

original sample. A Gaussian filter with default parameters as described in [20] is then applied to reduce 

noise in the images. The scan data at this stage consist of a large number of pixels which increases the 

demand on memory of the image processing package when used for advanced processing such as 

skeletonization. Hence, the images are first carefully down-sampled such that the foam ligaments are still 

well-represented. These image processing steps are illustrated in Fig. 1. 

4.2 Image segmentation and skeletonization 

XMT, based on the differential absorptivity of different materials to X-rays, generates images which 

reflect these differences in terms of grayscale values. For our samples, two different materials - metal and 

air - may be identified by examining the scan data. Metal, being dense, blocks X-rays, while air lets most 

of the X-rays to pass through. This difference is reflected in the corresponding images where the brighter 

region corresponds to the metal and the darker region to the surrounding pore. However, the transition is 

not smooth, and therefore, detection based on a threshold value selected from the image histogram data is 

needed. The threshold value is selected so that the porosity of the reconstructed sample is the same as that 

of the original scanned sample. A processed image and the corresponding segmented image are shown in 

Fig. 2, along with the image histogram. 

The data thus segmented correspond to the metal part of the original foam sample, which can now be 

used to generate an image skeleton. An image skeleton or medial axis of an image is a skeletal remnant 

that largely preserves the extent and connectivity of the original region while discarding most of the 

original foreground pixels. Various definitions for the skeletons have been proposed in the literature. One 

of the first [21] was based on a “grass-fire” model, i.e., a moving wave-front generated by an inward 

motion of an outline curve with constant speed along a normal vector at every point on the curve. The 
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skeleton is then defined as the set of points at which the wavefront crosses itself. It is widely employed 

for data reduction purposes in the fields of computer vision, medicine and pattern recognition. Image 

skeletons can be used for other purposes as well, such as tracking the fluid flow path in porous media and 

tracking the flow path of blood in blood vessels [22]. Here, the skeletonization is performed using default 

thinning algorithms (as described, for example, in [23]) on the segmented image data employing the 

commercial software AMIRA, which generates a graph-like representation of the skeleton. The skeleton 

for our foam sample has two essential entities – nodes and ligaments. Nodes are generated at the points 

where there is more than one ligament branching out; ligaments are the branches joining these nodes. A 

10 ppi foam sample along with a nodal network representation of its skeleton are shown in Fig. 3. The 

skeleton at this stage may consist of a number of other graphs corresponding to the „hanging‟ ligaments or 

„islands‟ in the scan data, in addition to the main graph representing the chunk of metal foam. These can 

be seen in Fig. 3 b) as loose unconnected ligaments, and are removed to preserve only the connected 

ligaments making up the chunk of the foam. In the present work, we propose the idea of using this image 

skeleton to estimate the effective thermal conductivity of a porous medium as described in section 5 

below.   

5. Reduced-order network model 

An important property governing the utility of a metal foam sample for efficient heat transfer is its 

effective thermal conductivity, keff, which, for a foam sample of area of cross-section A is calculated as: 

.
eff

i

d
k

T
A

x



 
 
 

 J A

 (1) 

 

It is to be noted here that the effective thermal conductivity is calculated by considering conduction 

through both the metal and the pore regions, assuming the pore region to be saturated with an interstitial 

fluid such as air or water, i.e., A is the total area of cross-section including both the metal and pore regions 

and the temperature gradient is the imposed temperature gradient. Also, J in Eq. (1) is the heat flux 
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vector. It may be observed from the experimental measurements of [5] and [6] that aluminum foam 

samples employing common fluids having a thermal conductivity 2-3 orders of magnitude lower than 

aluminum itself have an effective thermal conductivity which is only a weak function of interstitial fluid 

properties. Moreover, most commercial applications of metal foams use common fluids such as air or 

water as the interstitial fluid. For such applications, approximate but fast computations may be performed 

employing the network model proposed here, where we neglect conduction through the fluid altogether 

and represent the foam structure as 1D ligaments with insulated surfaces, as described in section 5.1 

below.   

5.1 1D resistance network representation 

The metal foam samples considered here have ligaments with a length to diameter ratio of 

approximately 5. Steady-state thermal conduction through these samples may therefore be estimated by 

representing individual ligaments as effective 1D thermal resistance elements, although the entire network 

is actually three-dimensional. A 10 ppi image skeleton along with the thermal resistance network for a 

part of the foam sample is shown in Fig. 3 b) and c), respectively. 

5.2 Thermal conductivity model 

The thermal resistance of a cylindrical tube of area of cross-section Across and thermal conductivity, k, 

for conduction along the axial direction, is given by [24]: 

cross

L
R

kA
   (2) 

 

Representing individual ligaments of the foam samples as cylindrical resistance elements of this nature, 

we build a thermal resistance network consisting of a series of nodes joined by these resistance elements. 

At steady state, the heat flow rate through a resistance element, with temperature difference ΔT across its 

ends, is given by: 
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T
q

R


  (3) 

 

Using Eq. (3), heat balance at any node i, joined by neighbors j (j = 1,2..N, N varying at each node), 

gives after rearrangement: 

1 1, ,

1
0

N N
j

i

j ji j i j

T
T

R R 

 
    
 
   (4) 

 

Here, Ri,j is the thermal resistance for the ligament joining nodes i and j, calculated using Eq. (2), 

employing topological information from the image skeleton. Eq. (4) implies that conduction – a 

diffusion phenomenon – leads to the temperature of a node being a weighted average of the temperatures 

of its neighboring nodes, the weighting function being the inverse of resistance of the link joining each 

node to its neighbor. That is, if the resistance of a ligament joining a node and one of its neighboring 

nodes is significantly lower than that of the ligaments joining other neighboring nodes, that particular 

neighbor has the highest influence on the node temperature and vice-versa. 

Developing such equations for every node of the foam sample, a set of linear equations may be 

obtained, which can be cast into the following matrix form: 

     1 1n n n n  M T b  (5) 

 

The subscripts indicate the size of the matrices, with n being the total number of nodes. M is the 

coefficient matrix, T is the temperature matrix and b is the residual matrix. The matrix M is sparse. 

Similarly, the majority of the elements in b are zero. Non-zero entries in b correspond to boundary nodes 

with prescribed temperature, the equations for which are given by: 

,i bdy setT T  (6) 

 

The equation set Eq. (5) can then be inverted to obtain temperature values at each node. By 

calculating the total heat flow rate q entering (leaving) the boundary nodes as, 
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,

1

bdyn

tot i bdy

i

q q


  (7) 

 

the effective thermal resistance of the whole foam sample may be obtained. It is to be noted that in Eq. 

(7) above, the summation is performed either on the hot or on the cold boundary; correspondingly, nbdy is 

the number of nodes on the hot or cold boundary. qi, bdy is calculated using Eq. (3). Knowing qtot, the 

effective thermal conductivity, keff, is then calculated as: 

 
tot

eff

set

q l
k

A T



 (8) 

 

l is the distance between hot and cold ends and (ΔT)set is the temperature difference imposed on the foam 

sample. In Eq. (8), A is the area of cross-section of the entire foam sample, i.e., it includes the area of 

both the pore and metal parts. In this work, the entire model is implemented in the commercial computing 

toolkit MATLAB. The entire computation – setting up of the matrix, matrix inversion and calculation of 

keff  – on a machine with dual Xeon processors and 3 GB of RAM took approximately 5 min. 

The skeletonization algorithm in AMIRA reports the thickness of each ligament as the best-fit circle 

diameter, which means that the present foam samples having non-circular cross-sections are represented 

as cylindrical fibers in the AMIRA skeleton. When the reported thickness is directly employed, it is 

observed that the porosity of the sample is significantly higher (correspondingly, the metal volume 

fraction is significantly lower) than that of the original foam sample. A smaller cross-section implies an 

increased thermal resistance and correspondingly decreased effective thermal conductivity. Due to this 

feature in AMIRA, the reported thickness is corrected so as to match the original porosity. A single 

correction factor for the area of cross-section, ΔA, is employed for all the metal ligaments according to: 

, ,metal actual metal skeleton

skeleton

V V
A

l


   (9) 

 

lskeleton is the length of all the segments summed together, as reported by the AMIRA skeleton. Vmetal, actual 

and Vmetal, skeleton are the actual and reported metal volume fractions, respectively.   
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5.3 Boundary conditions 

Analytically, the effective thermal conductivity may be estimated by employing either constant 

temperature boundary conditions and backing out the heat flux, or by imposing constant heat flux 

boundary conditions (imposing equal and opposite heat flow rates at the opposite boundaries) and backing 

out the temperatures at the boundaries. In this work we employ the former approach. But, unlike in an 

analytical solution, boundaries cannot be clearly identified in our case. This can be seen from Fig. 3, 

which shows a series of „loose‟ nodes, corresponding to the outer boundaries, all of which do not fall on a 

single plane, as would be required for imposing boundary conditions. We therefore identify a thin zone on 

either side (along the direction in which conductivity is being estimated) and all the nodes falling inside 

these zones are assigned the boundary temperature. The length, l, used in Eq. (8) is then the minimum 

distance between the hot and cold boundary zones, as shown in Fig. 4 c). The thickness of the boundary 

zones is varied and it is observed that the randomness in the porous medium ensures that the effective 

thermal conductivity is independent of the boundary zone thickness. A variation of smaller than 3% in 

effective thermal conductivity is observed by varying the thickness of the boundary zone from 0.1 to 0.4 

times the total length of the sample in the direction of the temperature gradient. Therefore, all the results 

reported in this work correspond to the thickness of the boundary zones being 0.2 times the total domain 

length in the conducting direction, unless otherwise stated.  

For conduction along a particular direction, all the lateral boundaries (the boundaries parallel to the 

direction of the imposed temperature gradient) are insulated; in our model, this is accomplished by 

insulating all the nodes falling on the lateral boundaries. This is automatically implemented using Eq. (4), 

which is derived through energy balance.  

6. Microstructural characterization 

Open-celled metal foams have a unique microstructure, which directly influences the thermo-

mechanical and thermal properties exhibited. Various authors have employed different representations of 

the metal foam microstructure for the computational estimation of these physical properties. For example, 
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simple cubic unit cells consisting of slender circular cylinders were employed in [21], while  a 

tetrakaidecahendron model was used in [8] based on mathematical arguments pertaining to the minimal 

surface area-to-volume ratio which must be satisfied for energy minimization during foam formation. It 

may be further observed from [8] and [25] that the results are different for different microstructures. 

In the present work, we perform a thorough characterization of various features of the metal foams, 

both pertaining to the pores and the metal structure. The pore-side analysis is performed using the 

commercial package AVIZO, employing a set of quantification and granulometry tools ([26]). As a brief 

description, the images are first segmented using a threshold value as described in section 4.2, after which 

a watershed algorithm is employed to identify individual pores. Analysis tools in the package are then 

employed to determine features such as effective pore diameter and surface area of the individual pores. 

Further details pertaining to pore granulometry of scan data may be found in [26]. The information 

corresponding to the metal part of the foam is obtained from the image skeleton, constructed from the 

scan data using AMIRA, as described in section 4.2.  

7. Results and discussion 

This section describes the results obtained for the effective thermal conductivity with the network 

model developed here. The results are compared with experimental and numerical data available in the 

literature. The microstructural features of the metal foam samples – distributions of ligament length, 

ligament area of cross-section, effective pore diameter and the co-ordination number of nodes – are 

described for each foam sample. The three foam samples are then analyzed for their structural similarity, 

in terms of the sphericity of pores and non-dimensional ligament features, non-dimensionalized with 

corresponding effective pore diameters. Finally, the permeability data from our previous study, performed 

on the same foam samples [12], is compared with permeability and pore size data from the literature. 
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7.1 Effective thermal conductivity 

The thermal conductivity reported in this study is averaged along the three co-ordinate directions.  

The thermal conductivity values were different along different directions for the same foam sample, with 

a spread of as much as 15%. This difference is attributed to the small sample sizes leading to a limited 

number of pores being included in each direction – 30-50 along the longest direction and 3-6 along the 

smallest direction, depending on the foam sample. Limitations posed by the scanner (as described in 

section 3) precluded the use of larger sample sizes. The effective thermal conductivity values obtained 

with the network model are shown in Table 1, with air as the interstitial fluid. Also shown are values 

obtained through detailed CFD simulations on samples that were half the size along the largest dimension 

reproduced from our prior work [12]. 

Fig. 4 and Fig. 5 show the temperature contours obtained with the present model and our previous 

work [12], respectively. Fig. 6 shows the predicted effective thermal conductivity values for the three 

foam samples considered in this work, along with the effective thermal conductivity data from literature, 

with air as the interstitial fluid. The present data are compared with experimental data [5], semi-empirical 

models [7], pore-based models and a detailed CFD analysis performed on the XMT data [12]. Further, 

Fig. 6 shows the results obtained with the Lemlich theory [27], which predicts the effective thermal 

conductivity as a function of thermal conductivity of the metal ligaments (ks) and porosity (εv), by 

employing an analogy between thermal conduction and electrical conduction using: 

 1

3

v

eff sk k


  (10) 

 

It can be seen from Fig. 6 that the results are very sensitive to porosity and that analytical models such as 

the Lemlich theory (Eq. (10)) predict the trends reasonably well.  However, it was shown in [8] that the 

Lemlich theory deviates significantly from the experimentally observed data for the case of high thermal 

conductivity interstitial fluids. 
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It may be noted that the models of Boomsma and Poulikakos [7], Calmidi et al. [5] and 

Bhattacharya et al. [28] employ a free parameter to match the experiments of Calmidi et al.  The model 

of Krishnan et al. [8] is a pore-based model, where a tetrakaidecahedral representation of the metal foam 

pore is employed for estimation of flow and heat transfer properties without the need for a free parameter. 

Our previously published model [12], on the other hand, is a direct CFD computation on the as-scanned 

data. 

Differences of the order of 15% were observed for some samples when compared with the detailed 

CFD simulation [12] performed on the same samples, but with half the size considered for analysis, as 

described previously. This difference with respect to the detailed CFD computation is mainly attributed to 

the approximations in the area of cross-section employed in the current model. As described in section 

5.2, an area correction ΔA is employed to ensure that the solid volume is consistent with the measured 

porosity of the sample. The results indicate that larger sample sizes must be used in the computation to 

mitigate the effect of domain-size artifacts, and multiple realizations of the sample geometry are 

necessary to obtain statistically invariant predictions in these random media. These caveats also apply to 

experimental measurements. Nevertheless, the match between the predicted results and the available 

literature is encouraging.  

7.2 Foam microstructure 

The metal foam microstructure is analyzed in terms of pore-based features – effective pore diameter 

and sphericity – and metal ligament-based features – ligament length, ligament area of cross-section and 

node co-ordination number. With this detailed information regarding the distribution of various features 

pertaining to the random metal foam samples, computational models with realistic representations of 

metal and pore regions may be developed, which can then be employed to estimate flow and thermal 

transport characteristics. Using these data, larger samples with a more realistic geometric representation 

may also be constructed. These are at present impossible even with XMT because of the limitations on 

sample sizes that can be scanned with the majority of the available commercial scanners.  
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7.2.1 Pore-based features 

 

The effective pore diameter is an important parameter that may be employed for describing many 

pore-based features such as friction factor, permeability and heat transfer coefficient. After segmenting 

and identifying individual pores using a watershed algorithm [29], the pores are analyzed by measuring an 

effective pore diameter, calculated as: 

 
3

6 p

pore

V
d


                             (11) 

 

where Vp is the volume of the pore. The identified pores in a 10 ppi foam sample are shown in Fig. 7. The 

distribution of effective pore diameter is shown in Fig. 8 for the three foam samples considered in this 

study. The average effective pore diameter and the standard deviation for each sample are shown in  

Table 2. The standard deviation in pore diameter is in the range of 0.25 to 0.3 times the corresponding 

average values. Fig. 8 further demonstrates the need for employing a distribution of pore sizes rather than 

a single pore size value when modeling porous media. It may also be noted that the effective pore 

diameter values are significantly different from the inverse-ppi (inches per pore) values which are 

generally employed for the pore diameter in characterizing pore-based features. The probability density 

function of the pore diameter for the three foam samples is fitted using a Fourier series polynomial of 

order 10 as follows: 

   ( ) cos sin
10 10

pore i pore i pore

i 1 i 1

p d k a id a id
 

                   (12) 

 

The values of the coefficients ai, bi and the constant k may be found in Table 3 along with the range over 

which this expression is applicable. 

  Another parameter of interest is the sphericity of the pores, which is a measure of the extent to 

which an object is spherical. The minimum surface area for a 3D object of given volume corresponds to a 

spherical shape. By measuring the surface area of pores and comparing it with the surface area of a fitted 

sphere, the sphericity Ψ may be defined as: 
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 
2/3

1/3 6 p

p

V

A


   (13) 

It may be observed from Table 4 that the sphericity values for the three foam samples are within 5% of 

each other, implying that the pore shapes are essentially similar for the three, which is a consequence of 

the foaming process employed by ERG, as also described in [18]. The deviation of the sphericity value 

from that of a sphere (which has a value of 1) indicates that non-spherical pores must be employed in 

modeling metal foams, in contrast to the spherical pores conventionally used.  

It is also interesting to consider the permeability values for the three foam samples computed 

previously [12]. A normalized permeability is defined as: 

*

2

pore

K
K

d
  (14) 

and values for the three samples are included in Table 4. It is clear that the K
* 
values for the three samples 

are quite similar, varying by at most 5% from the average value, thereby demonstrating that for samples 

with similar porosity such as those considered here, the permeability K is a strong function of pore 

diameter. Samples with a larger pore diameter exhibit a large permeability and vice-versa. Similar 

observations have been made by [30]. 

7.2.2 Metal matrix features 

 

Features of the metal matrix such as ligament cross-section and ligament length govern the heat 

conduction through the foam sample. The distributions of ligament length and corrected ligament area of 

cross-section, after inclusion of parameter ΔA (Eq.(9)) are shown in Fig. 9 and Fig. 10, respectively. The 

distributions indicate a fair amount of randomness in the foam samples. Though clear peaks close to the 

average values are observed, standard deviations are of the order of the average values themselves, for 

both the ligament area of cross-section and ligament length. Table 5 shows the ligament length and 

ligament area of cross-section non-dimensionalized as: 
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* *

2
,

lig lig

lig lig

pore pore

l A
l A

d d
   (15) 

 

It may be observed that the non-dimensionalized ligament length and area of cross-section values are very 

similar for the three foam samples, with a less than 13% deviation with respect to the mean values, 

indicating that the three foam samples are structurally similar but have features that are scaled as the pore 

diameter. Samples with larger pore sizes have larger ligament length and area of cross-section and vice-

versa. 

 As with the pore diameters, the probability densities of ligament length and effective ligament 

area of cross-section are fitted using Fourier polynomials of order 8 and 10, respectively, as follows: 

    ( ) cos sin
8 8

lig i lig i lig

i 1 i 1

p l k a il a il
 

            (16) 

 

    ( ) cos sin
10 10

lig i lig i lig

i 1 i 1

p A k a iA a iA
 

            (17) 

 

The corresponding coefficients for Eqs. (16) and (17) are provided in Table 6 and Table 7, respectively, 

along with the range of applicability for each foam sample. 

The distributions of co-ordination number and node density are shown respectively in Fig. 11 and 

Fig. 12. Co-ordination number is the number of neighboring nodes surrounding each node, while node 

density is the number of nodes per cm
3
 volume of the sample. The results of nodes per unit volume are 

computed by discretizing the foam sample into cubic volumes, with sides of 2.5 mm, 2.5 mm and 1.6 mm 

for the 10 ppi, 20 ppi and 40 ppi samples, respectively. More than two-thirds of the total number of nodes 

in each case demonstrate a co-ordination number of 3 or 4. Again, all the three foam samples show a 

similar distribution, further corroborating the similarity in their structure. The probability density function 

of the node density is fitted as a ratio of two polynomial expressions given below: 

 ( )
2 3 4

2 3 4 5

a cx ex gx ix
p x

1 bx dx fx hx jx

   


    
 

          (18) 
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Here x is the node density, and the values of the coefficients in Eq. (18) are listed in Table 8. 

8. Conclusions 

Imaging-based analytical modeling of realistic porous media is performed in this work. Employing an 

analogy between electrical and thermal conduction, a new resistance network model for effective thermal 

conductivity is presented. It is demonstrated that approximate yet very fast computations of effective 

thermal conductivity may be performed with the proposed model. Further, through microstructural 

characterization of metal and pore features, it is observed that all the three foam samples are structurally 

similar and the microstructural features scale with the pore size of the samples. It is further demonstrated 

that real foam samples exhibit a distribution of pore features and that the pores are not exactly spherical. 

For samples with similar porosity, a strong dependence of permeability on pore size is also demonstrated 

employing previously computed permeability data using detailed CFD analysis on the same samples.
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Fig. 1. Image processing steps: a) Original image, b) cropped region of interest after filtering, and c) 

resampled image. 

Fig. 2. Image segmentation: a) greyscale image, b) segmented (binarised) image, and c) greyscale image 

histogram. 

Fig. 3. a) A 10 ppi foam sample, b) its corresponding image skeleton, and c) resistance network 

surrounding one sample node. 

Fig. 4. Temperature contours predicted for conduction along the longest dimension in a) 10 ppi, b) 20 ppi, 

and c) 40 ppi foam sample (also shown are the boundary zones and actual conducting length). 

Fig. 5. Temperature contours in 10 ppi foam sample, reproduced from [12]. 

Fig. 6. Effective thermal conductivity as a function of porosity. 

Fig. 7. Pores identified by color in 10 ppi foam sample. 

Fig. 8. Distribution of effective pore diameters. Mean and standard deviation values may be found in 

Table 2. 

Fig. 9. Distribution of ligament lengths. 

Fig. 10. Distribution of ligament areas of cross-section. 

Fig. 11. Distribution of node co-ordination numbers. 

Fig. 12. Distribution of node density. 
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Sample  ε
v
 (%)  

k
eff

(W/m.k) 

(Present)  

k
eff,air 

(W/m.k) 

(XMT+CFD)  

10 ppi  91.31  5.20  5.34  

20 ppi  91.26  5.21  6.59  

40 ppi  91.98  4.52  5.35  

 

Table 1



Sample  Inverse ppi (mm) 
Pore diameter, d

pore
 

(mm)  

Standard deviation 

in d
pore 

(mm)
 
 

10 ppi  2.540 3.214  0.929  

20 ppi 1.270 2.976  0.999  

40 ppi 0.635 2.406  0.593  

 

Table 2



Co-efficients  10 ppi 
Range 

(mm) 
20 ppi 

 Range 

 (mm) 
40 ppi

 
 

Range 

(mm) 

k 68.16 

0.0-5.0 

85.76 

0.0-6.0 

-11270.30 

0.2-4.0 

a1 3.76 -0.76 -121.70 

a2 -105.57 -132.60 17396.27 

a3 -6.73 -1.44 207.73 

a4 47.89 59.81 -7801.82 

a5 3.78 -0.92 -104.04 

a6 -11.70 -14.45 1860.56 

a7 -0.87 0.26 18.48 

a8 1.24 1.51 -188.47 

a9 0.06 -0.03 -0.48 

a10 -0.03 -0.03 3.71 

b1 -127.89 -160.85 21134.67 

b2 -6.22 1.28 197.49 

b3 76.29 95.58 -12513.50 

b4 5.63 -1.26 -165.87 

b5 -25.80 -32.07 4161.22 

b6 -2.04 0.54 50.84 

b7 4.33 5.31 -675.33 

b8 0.028 -0.10 -4.47 

b9 -0.25 -0.30 36.42 

b10 -0.01 0.01 -0.05 

 

Table 3



Sample  Sphericity, Ψ  
Pore diameter, 

d
pore

 (mm) 
Permeability, K 

(mm
2
) 

Normalized 

Permeability, K
*

  

10 ppi  0.766  3.214  1.72 x 10
-07

 1.68 x 10
-02

  

20 ppi 0.751  2.976  1.60 x 10
-07

 1.81 x 10
-02

  

40 ppi  0.791  2.406  1.02x 10
-07

 1.75 x 10
-02

  

 

Table 4



Sample Ligament length (l
*

) 
Ligament 

Area (A
lig

*

) 

10 ppi  0.498  1.83 x 10
-02

  

20 ppi  0.537  2.04 x 10
-02

  

40 ppi 0.469  1.50 x 10
-02

  

 

Table 5



Co-efficients  10 ppi 
Range 

(mm) 
20 ppi  

Range 

(mm) 
40 ppi

 
 

Range 

(mm) 

k 34.61 

0.0-6.5 

118.35 

0.0-6.0 

141.96 

0.0-6.5 

a1 12.12 6.34 20.51 

a2 -47.54 -171.09 -203.14 

a3 -18.95 -10.02 -32.48 

a4 14.07 61.43 70.40 

a5 7.63 4.15 13.52 

a6 -1.12 -8.93 -9.42 

a7 -0.80 -0.47 -1.55 

a8 -0.02 0.25 0.20 

b1 -63.06 -218.37 -261.30 

b2 -19.02 -9.97 -32.36 

b3 29.18 112.77 132.07 

b4 13.88 7.42 24.10 

b5 -5.01 -26.86 -29.78 

b6 -3.05 -1.71 -5.59 

b7 0.07 2.04 1.97 

b8 0.10 0.07 0.22 

 

Table 6



Co-efficients  10 ppi 
Range 

 (mm
2
) 

20 ppi  
Range 

(mm
2
) 

40 ppi
 
 

Range 

(mm
2
) 

k 15964.46 

0.01-1.0 

12724.85 

0.05-2.0 

11884.01 

0.02-1.0 

a1 513.59 2722.49 1611.74 

a2 -24517.70 -18969.30 -17916.10 

a3 -931.79 -4721.80 -2795.52 

a4 10814.66 7597.69 7454.42 

a5 538.79 2479.84 1468.01 

a6 -2494.15 -1448.62 -1544.24 

a7 -130.24 -510.10 -301.69 

a8 236.83 96.11 123.52 

a9 9.65 29.57 17.46 

a10 -4.08 -0.72 -1.66 

b1 -29900.20 -23658.40 -22155.90 

b2 -852.19 -4442.87 -2630.29 

b3 17519.37 13038.49 12500.89 

b4 789.14 3837.97 2272.25 

b5 -5687.66 -3686.75 -3741.53 

b6 -297.52 -1275.18 -754.64 

b7 881.31 440.69 505.40 

b8 43.03 150.76 89.08 

b9 -43.32 -12.91 -20.14 

b10 -1.11 -2.92 -1.72 

 

Table 7



Co-efficients  10 ppi 
Range 

 (cm
-3

) 
20 ppi  

Range 

(cm
-3

) 
40 ppi

 
 

Range 

(cm
-3

) 

a 0.11 

0-1450 

0.08 

0-1100 

0.23 

0-5600 

b -0.01 -0.01 0.00 

c 0.00 0.00 0.00 

d 2.88 x 10
-05

 2.90 x 10
-05

 -3.90 x 10
-06

 

e 8.22 x 10
-07

 8.36 x 10
-07

 1.41 x 10
-07

 

f -5.40 x 10-
08

 -5.30 x 10
-08

 3.78 x 10
-09

 

g -5.80 x 10
-11

 -7.90 x 10
-10

 -2.80 x 10
-11

 

h 3.24 x 10
-11

 3.69 x 10
-11

 -1.10 x 10
-12

 

i -1.80 x 10
-13

 3.10 x 10
-13

 1.95 x 10
-15

 

j 1.03 x 10
-13

 -8.80 x 10
-16

 1.02 x 10
-16

 

 

Table 8
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