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Abstract
We conducted three-dimensional finite element simulations of the mechanical
response of passivated single crystal copper thin films with a continuum
crystal plasticity model. The model introduces the formation of high density
dislocation layers close to the substrate and passivation interfaces obtained from
dislocation dynamics simulations. These dislocation structures are responsible
for an increase in strain hardening as the film thickness decreases. The model
predicts an increase in strain hardening as the film thickness decreases in
agreement with experimental observation in films with thickness in the range
0.2 to 2 µm.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The continuing shrinking of dimensions and increased complexity in micrometer size devices,
such as microelectronic interconnects and micro-electro-mechanical systems (MEMS), results
in the emergence of new mechanical problems during manufacturing and operation. Even
though plastic deformation is not a key failure mechanism in these devices, crystalline structure,
grain boundaries and interfaces play an important role by affecting the dislocation and vacancy
concentrations and affecting the response and reliability of these devices.

The plastic response of metallic thin films shows size dependence when the film thickness
or another characteristic length such as the grain size approaches the micrometer or sub-
micrometer range. This size dependence is given by an increase in the yield stress as the
characteristic size decreases. This relation, known as Hall–Petch relation [1, 2], is well
established experimentally in polycrystalline materials with sub-micrometer and micrometer
grain size. Experiments conducted with thin films with passivated interfaces show that in
crystalline materials the value of the yield stress increases as the film thickness decreases
following a relation proportional to h−n, where h is the film thickness [3–6] and the exponent
n ranges from 0.1 to 1. A wide range in the value of the exponent is observed due to the fact that
the yield stress also is influenced by the microstructure, grain size and substrate and passivation
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material and thickness and these effects cannot in general be isolated. The dependence of this
hardening relation on the thin film thickness seems to be stronger than that on the grain size
in Cu and Al, where the grain size is on the same order as the film thickness [5–7]. On the
other hand, in Ni thin films the size effects due to grain size are evident [8]. A more detailed
characterization seems to be needed to decouple the effects of grain size and film thickness as
usually both are related.

Strengthening of thin film materials has been the subject of intensive research over many
decades [9–14]. The scaling behavior of the resolved flow shear stress, τy , can be written in
general as

τy = τ0 + αµ
b

hn
, (1.1)

where τ0 is the resolved flow shear stress of the bulk material, µ is the shear modulus, b is
the Burgers vector, α is the scaling parameter. Freund [10] and Nix [11] found an exponent
n = 1 for the above relation based on studies with a single dislocation moving between two
hard interfaces. In this approximation this single dislocation advances under an external stress
leaving a dislocation line along the interface. Recent simulations with a dislocation phase-
field model found the same exponent for the yield stress [14, 15]. In these simulations several
dislocations are considered and a closed form solution of the form of equation (1.1) is obtained
for steady state. This solution shows that dislocations form pile ups made of dislocation
segments against the hard interfaces in agreement with the Freund model [10] and that these
dislocation pile ups are responsible for the strengthening of thin films. Similar dislocation
structures are observed in passivated thin film experiments [4, 16] and dislocation dynamics
simulations [12, 15].

On the other hand film thickness also affects strain hardening in thin films. Experiments
show that in thin films with over 100 nm thickness strain hardening increases as the film
decreases [6, 4, 17, 18]. While films with thickness below 100 nm show very reduced
hardening. Gruber et al [6] calculated the difference in stress, �σ , for two different strain
values (0.5% and 0.1%) as a function of the film thickness. In their results strain hardening
increases as the film thickness decreases following a power law of the form

�σ ≈ αdh
−nd (1.2)

with nd ≈ 0.6.
In general, continuum plasticity models follow the evolution of the dislocation density

[19, 20]. These models were originally developed for bulk materials and do not take into
account boundary conditions for the dislocation density at interfaces such as grain boundaries
and passivation that are responsible for size effects when the domain size approaches the
characteristic size of the microstructure. Several continuum plasticity approaches were recently
developed to account for these effects. These models in general add terms proportional to the
gradient of the plastic deformation and a length scale parameter to account for size effects
[21–25].

It is clear that size effects in the yield stress can be predicted only if individual dislocations
and their interactions are taken into account [12, 15], while strain hardening may be the result of
dislocation accumulation in reduced volumes and can be described in terms of the dislocation
density. Here, we will concentrate on the dependence of strain hardening in film thickness. To
this end we couple the evolution of the dislocation density obtained from direct simulations of
dislocations into a continuum plasticity model.

We simulate a Cu single crystal thin film constrained by a substrate and passivation under
thermal cycling. The thickness of the thin film is between 0.2 and 2 µm and therefore size
effects due to grain size are not included. The model is able to predict hardening for decreasing
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film thickness in agreement with experimental observation. The evolution of the dislocation
density shows a high density close to interfaces.

2. Single crystal plasticity

In this section we introduce the general formulation for the continuum single crystal plasticity
theory used in the simulations. The kinematics is based on the model developed by Cuitino
and Ortiz [20]. Following this model we consider that the deformation gradient, F , may
be assumed to be decomposed multiplicatively into an elastic part, F e, describing the lattice
deformation and a plastic part, F p, providing the cumulative effect of the dislocation motion:

F = F eF p. (2.1)

Considering that the material undergoing plastic deformation is face center cubic (fcc), the
plastic part of the deformation gradient can be written as the sum of the slip on each of the 12
systems of a fcc crystal, following [19]

F p = I +
∑

α

γ αsα ⊗ mα, (2.2)

where γ is the shear strain on the glide plane, sα is the slip direction and mα is normal to the
slip plane α [19]. The plastic flow rule results

Lp =
∑

α

γ̇ αsα ⊗ mα, (2.3)

where the sum is over all the slip systems and Lp = F pF p−1 is the plastic velocity gradient and
γ̇ α is the shear rate on system α. Following [20] we assume that the rate of shear deformation
in the slip plane α is given by a relation of the form

γ̇ α =
{

γ̇ α
0

(
τα/τα

y

)1/m
if τ > τy,

0 otherwise,
(2.4)

where γ̇ α
0 is a reference strain rate , τα is the resolved shear stress in the slip plane α, τα

y is
the flow stress in the slip system α and m is a hardening exponent set to 0.01 in the current
simulations. The evolution of the flow stress is governed by the hardening law:

τ̇ α
y =

∑
β

hαβγ̇ β, (2.5)

where hαβ are hardening moduli coefficients; these hardening coefficients are not constant
but depend on the state of deformation and the local dislocation density. Following [20] we
assume that the hardening coefficients are of the form

hαβ = aµnα

ρα

(
τα
y

τα
o

)3

cosh

(
τα

0

τα
y

)2

− 1


 δαβ, (2.6)

where τα
0 is a characteristic flow stress that follows Taylor’s hardening law τα

0 = aµb
√

nα ,
a is a constant coefficient set to 0.3, b is the Burgers vector, µ is the shear modulus and nα

is the number of forest dislocations piercing the slip plane α that depends on the dislocation
densities, ρ, on other slip systems, following

nα =
∑

β

aαβρβ. (2.7)
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Values of the interaction matrix aαβ were determined experimentally by Franciosi and Zaoui
[26] for fcc materials and those values were used in the current simulations.

In general the constitutive equation for the dislocation density evolution in continuum
models follows a phenomenological equation that accounts for dislocation multiplication and
annihilation. The most general expression is of the form

ρα = ρα(ρsat, ρ0, γ
α), (2.8)

where ρ0 and ρsat are the initial and saturation density, respectively. The evolution of the
dislocation density on each slip plane and its dependence on the plastic slip γ α determines the
rate of hardening in the present model as follows. During the initial stage of deformation glides
occur predominantly in the slip system with the biggest resolved shear stress. The number of
obstacles in the inactive slip systems increases due to dislocation multiplication in the active
system. This has the effect of a rising the value of the critical stresses τ0 in the other systems.
This effect, called latent hardening, is observed in experiments. On the other hand, the effect
of self-hardening is clear from equations (2.5) and (2.6) and Taylor hardening law.

In the following section we will introduce an evolution equation for the dislocation density
derived from a phase-field dislocation theory that accounts for dislocation interactions with
hard interfaces and integrates size effects into the single crystal plasticity model described in
this section.

3. Dislocation density evolution in metallic thin films

In bulk materials the strength is determined by the resistance to dislocation motion due to
dislocation dislocation interactions and dislocations interacting with impurities, second phase
particles and grain boundaries. As the grain size decreases the ratio between the grain boundary
and the volume of the grain increases and the interaction of dislocations with grain boundaries
plays a prominent role in plastic deformation. In thin film materials film thickness is of the
order of the grain size and dislocation motion is also constrained by the substrate and the
passivation layer. This confinement in the dislocation motion is responsible for an increase in
the yield stress as the film thickness decreases.

The dislocation density is the microscopic quantity that we will use to make the connection
to the macroscopic model in the current theory. To this end, we will describe the evolution of
the dislocation density following the phase-field theory of dislocations developed by Koslowski
et al [14, 15, 27]. We will describe the evolution of the dislocation density in an individual slip
plane where dislocation motion is constrained by impenetrable interfaces as shown in figure 1.

In the phase-field dislocation model dislocations are represented by a scalar field, ζ α(x),
for each slip plane α. This scalar field represents the amount of slip on units of the Burgers
vector on the slip plane. Under these assumptions the evolution of the dislocation field in a
single slip system is described by a time dependent Ginzburg–Landau equation [14]:

∂ζ α(x)

∂t
= −L (κ[ζ α(x)] − τα + ηα(x)) , (3.1)

where L is a kinetic coefficient, the first term on the right represents the dislocation interactions,
τα is the resolved shear stress in the slip plane α, ηα(x) represents the interaction with obstacles.
In the first term κ[ζ α(x)] is a non-local kernel that has the following form [27, 28]:

κ[ζ α(x)] =
∫

1

2π(1 − ν)|x − y|3
(

ν + 1 − 3ν
x2

1 − y2
1

|x − y|2
)

(ζ α(x) − ζ α(y)) dy. (3.2)

We assume that the strain rate is slow enough such that the (3.1) reaches equilibrium at
each time step. Therefore, at each time step the dislocation structure is the solution to the
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Figure 1. Geometry of a dislocation moving in a single slip plane in a thin film.

steady state equation

κ[ζ α(x)] − τα + ηα(x) = 0. (3.3)

The solution to this equation can be found in closed form in the presence of point obstacles [27]
or next to impenetrable interfaces [14, 15, 29] and results

ζ α(x2) = G

√
x2/h − x2

2/h2 with G = (τα − τα
η )

2

µ(b/h)
, (3.4)

where x2 = 0 and x2 = h are the interfaces with the following boundary conditions

ζ(x2) = 0 on x2 = 0, h, (3.5)

where τα
η accounts for the resistance of the obstacles and represents an average of ηα(x) in

(3.3). The boundary conditions in (3.5) state that dislocation cannot penetrate the interface
between the thin film and substrate and passivation.

The connection with the continuous model described in section 2 can be achieved by
finding an expression that related the dislocation density to the plastic strain. Following [27]
the dislocation density can be obtained directly as the gradient of the phase field as

ρα(x) = 1

w
|∇ζ α(x)| + ρ0, (3.6)

where w is the slip plane distance, which is assumed to be known and ρ0 is the initial dislocation
density, i.e. the dislocation density at zero applied stress. On the other hand, we define the
average plastic slip as the average of the phase field ζ α(x) over the film thickness, h, for each
slip system α as

γ̄ α = b

hw

∫ h

0
G

√
x2/h − x2

2/h = hπ

4wµ
(τα − τα

η ). (3.7)

Replacing (3.4) and (3.7) in (3.6) we obtain a relation for the dislocation density profile
in a thin film for an average plastic strain γ̄ α

ρα(x) = ρsatγ̄
α b

h

√√√√√√
(

1 − 2
x2

h

)2

x2

h

(
1 − x2

h

) + ρ0, (3.8)
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Figure 2. Average dislocation density profile across the film thickness.

Table 1. Material properties from [30, 31].

Material ν α (K−1) C11 (GPa) C12 (GPa) C44 (GPa)

Cu 0.31 4.5 10−6 168.00 121.00 75.00

where ρsat = 4/πb2 and ρ0 is an initial dislocation density set to 1011 m−2. Figure 2 shows
the dislocation density profile along the film thickness for γ̄ α = 0.3. The dislocation profile is
symmetric with respect to the center of the film x2/h = 0.5 and the distance is normalized with
respect to the film thickness. For the same average strain the dislocation density increases as
the film thickness decreases to accommodate the same amount of plastic strain γ̄ in a reduced
domain. Equation (3.8) is the choice to describe the evolution of the dislocation density in the
model described in section 2 for each slip system.

4. Results

The evolution of a thin film under thermal loading provides an example of the application
of the model described in the previous sections. We simulate the mechanical response of a
metallic thin film with a thickness ranging from 0.2 to 2.0 µm exposed to thermal loading. A
typical manufacturing process consists of several cycles where the temperature is raised and
then cooled down to room temperature. In the present simulations the film is cooled down
from 600 to 300 K to simulate the level of stresses at which thin films are subjected during
fabrication of microelectronics [30].

We consider the material of the film to be copper single crystal within a rigid substrate and
passivation. The single crystal is oriented such that the normal of the passivation and substrate
interfaces are in the (0, 0, 1) direction and the slip planes are in the {1, 1, 1} family. Under the
current loading conditions slip systems A6, B5, C5 and D6 are not active while the other slip
systems are activated (here we adhere to the Schimd and Boas convention for fcc crystals).
Material parameters of copper used in the simulations are listed in table 1.
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Figure 3. Simulated dislocation density in a 0.5 µm thickness thin film with passivated interfaces.
(a) T = 450 K. (b) T = 300 K.

Figure 4. Simulated dislocation density in a 1 µm thickness thin film with passivated interfaces.
(a) T = 450 K. (b) T = 300 K.

Figures 3 and 4 show the simulated dislocation density profile across the film thickness
for h = 0.5 µm and h = 1 µm, respectively. Figures 3(a) and 4(a) show the dislocation
density at temperature T = 450 K and Figures 3(b) and 4(b) show the dislocation density
at room temperature after cooling down from 600 K. We start all simulations with a constant
dislocation density ρ0 = 1011 m−2, and we assume ρsat = 1 × 1019 m−2. As the temperature
decreases, the stress raises generating plastic deformation. Therefore, the dislocation density
increases and dislocations get trapped at the hard interfaces creating layers of high dislocation
density at these interfaces. This layer of high dislocation density close to the interfaces has
been observed in experiments and simulations [12, 15, 16].

It can be noted in figures 3 and 4 that for the same temperature the average dislocation
density is higher for the film with smaller thickness. This agrees with discrete and phase-field
dislocation simulations that show that as the film thickness reduces, more dislocations are
necessary to accommodate the same amount of plastic deformation [12, 15]. This relation
is clear in figure 5. This figure shows the evolution of the average dislocation density as a
function of the average stress in the direction of the film thickness. As the film thickness is
decreased to 0.2 µm the average dislocation density almost duplicates its value.

7
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Figure 5. Simulated stress versus average dislocation density.

This rise in dislocation density as the thickness decreases is responsible for the dependence
of hardening on the film thickness. Figure 6 shows the simulated stress strain curves; it is
clear that the strain hardening increases as the film thickness is reduced in agreement with
experiments [6, 4, 17, 18]. It should be noticed that in the flow rule (2.4) the yield stress
does not depend explicitly on the film thickness. The dependence is given by the dislocation
density and, as in all simulations, initially the dislocation density is set to be ρ0 = 1011 m−2

the initial yield stress is independent of the film thickness as can be observed in figure 6.
The dependence of the initial yield stress can be incorporated into the model if different initial
dislocation densities are considered for different film thicknesses. From the stress strain curves
in figure 6 we calculate the average stress at 0.2% plastic strain for different thicknesses. We
find a relation of the form given by equation (1.1) with an exponent n = 0.19 ± 0.05. It bears
emphasis that this value does not agree with dislocation dynamics simulations [15] because
here we do not take into account the effect of film thickness on the yield stress.

To quantify the strain hardening dependence on the film thickness, we calculated the
difference in stress for different strain values following Gruber et al [6]. Figure 7 shows the
difference in stress at 0.4% and 0.2%, 0.6% and 0.2% and 0.8% and 0.2% plastic strain.
Independent of the amount of plastic strain an increase in strain hardening is observed with
decreasing film thickness in good agreement with experiments [6]. In our simulations we find
an exponent nd = 0.5 ± 0.1 in very good agreement with experimental observation.

5. Summary and concluding remarks

We carry finite elements simulations of the mechanical response of a single crystal thin film
with stresses arising from thermal expansion. The film thickness in the simulations ranges
from 0.2 to 2.0 µm. In the current model we incorporate the evolution of dislocation density
directly from phase-field dislocation simulations. The dislocation density increases as the
plastic deformation builds up forming a structure with higher dislocation density close to the
interfaces between the crystal and substrate and passivation.
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Figure 6. Simulated stress–plastic strain curves.

Figure 7. Strain hardening dependence on the film thickness. Different curves show the difference
in stress for 0.4% and 0.2%, 0.6% and 0.2% and 0.8% and 0.2% plastic strain.

Phase-field dislocation simulations show that the yield stress increases as the film thickness
decreases with an exponent n = 1. This exponent corresponds to the onset of plastic
deformation, in particular the stress needed to nucleate one dislocation in a domain with
characteristic size h. In the current simulations this effect is not incorporated and τy in
equation (2.4) is kept constant in all simulations as can be seen in figure 6.

Our finite element simulations capture the dependence of strain hardening on the film
thickness in very good agreement with experimental observation [6]. As the film thickness
decreases a higher dislocation density is required to accommodate the same amount of plastic
strain. Also, dislocation density increases substantially close to the hard interfaces augmenting
the strain hardening effect in thinner films. All these effects cause the strain hardening as the
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film thickness decreases following a power law with an exponent nd = 0.5 ± 0.1 in very good
agreement with experimental observation.
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