
HAL Id: hal-01178331
https://hal.inria.fr/hal-01178331

Submitted on 20 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating a textual adaptation system
Valmi Dufour-Lussier, Jean Lieber

To cite this version:
Valmi Dufour-Lussier, Jean Lieber. Evaluating a textual adaptation system. International Conference
on Case-Based Reasoning, Sep 2015, Frankfurt, Germany. �hal-01178331�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49501885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01178331
https://hal.archives-ouvertes.fr


Evaluating a textual adaptation system

Valmi Dufour-Lussier1,2 and Jean Lieber2,3,4

1 Université de Moncton, campus de Shippagan, New-Brunswick, Canada
2 Université de Lorraine, LORIA — 54506 Vandœuvre-lès-Nancy, France

3 CNRS — 54506 Vandœuvre-lès-Nancy, France
4 Inria — 54602 Villers-lès-Nancy, France

vdl@umcs.ca, lieber@loria.fr

Abstract. This paper presents a CBR method to retrieve and adapt
processes represented as instruction texts, as well as the evaluation method-
ology that we developed to evaluate it. The evaluation process is user-
based, blind and comparative. It is less labour intensive than most ex-
isting approaches and is more open to a variety of possible solutions to
the same query, among other benefits. It also makes it possible to evalu-
ate separately the textual adaptation process and the underlying formal
adaptation process. Craqpot, a CBR system that adapts recipe texts,
using a case-based process to extract domain knowledge on the fly, is pre-
sented and evaluated. We show that it generates recipes of good quality
and texts of acceptable quality.

Keywords: adaptation, evaluation, textual case-based reasoning, process-
oriented case-based reasoning

1 Introduction

Textual [26] and process-oriented [18] case-based reasoning are two fields of case-
based reasoning (CBR) that tend to use unconventional case structures. They
have therefore required the development of specific retrieval techniques, which
are rather well established nowadays. Adaptation, on the other hand, has been
more problematic. In textual CBR, it has mostly been limited to selecting and
aggregating parts of textual cases. Different techniques have been proposed re-
cently to make a deeper level of adaptation possible in process-oriented CBR.

We propose Craqpot, a CBR system that retrieves and adapts processes
represented as instruction texts. In this system, cases are recipe texts associated
with a formal case structure. The structure consists in a network of temporal
constraints on events, represented using a qualitative algebra based on Allen’s
interval calculus [3]. When a user makes a query, a case is retrieved, and both
the text and the formal structure are adapted. In order to evaluate the quality
of those adaptations, we have made Craqpot available as a Facebook appli-
cation that offers a helpful service to users while encouraging them to provide
evaluations.

In sections 2 and 3, a short introduction to adaptation in textual and process-
oriented case-based reasoning is given, and existing evaluation frameworks are



2 Valmi Dufour-Lussier and Jean Lieber

discussed. Section 4 presents Craqpot, and section 5 details how the domain
knowledge that is needed for the adaptation is “simulated”. The evaluation
methodology is presented in section 6, and section 7 presents the results. Con-
cluding remarks and future work are shown in section 8.

2 Adapting textual cases

The CBR community recognises that significant knowledge is available in a tex-
tual format and, consequently, that being able to exploit this text can be a great
help in deploying CBR applications. There has been a significant interest since
the very beginning of CBR in systems which use texts as cases. This interest
has been expressed, among other things, by a series of workshops on textual
CBR at the 1998 AAAI conference, as well as at International and European
CBR Conference from 2005 to 2007. Most work in textual CBR has focused on
retrieval, but a few have taken an interest in trying to reuse texts.

2.1 Principles

The problem of text reuse in textual case-based reasoning has been addressed
in different manners. In [1], textual solutions are reused by identifying small
chunks of text to be reused from different solutions and aggregating them, which
can be seen as a type of compositional adaptation. An inverse approach is also
possible, in which a text is reused in whole but parts that should be modified
are identified [14].

Another way is to use a natural language generation system following the
adaptation of the underlying formal representation of the textual solution [13].
The approach we propose is based on regeneration, that is starting from existing
text or text fragments and making linguistic changes therein. We are aware of
only one other system that uses a similar approach, which is CookIIS [21],
which performs string substitutions based on ingredient substitutions in recipe
texts.

2.2 Evaluation

The part of a textual adaptation system responsible for selecting parts of a case
text to be reused as part of a solution text can be evaluated. The typical way to
evaluate such a system is to annotate manually the sentences that are expected
to be reused in the answer to test queries, then compare the actual result of the
system with the expected result, computing a precision and a recall score.

On the other hand, other aspects of textual adaptation have not really been
evaluated before. In particular, we are aware of no prior work that aimed at
evaluating actual text quality, nor at evaluating the quality of the text adaptation
separately from the quality of the underlying adaptation mechanism.



Evaluating a textual adaptation system 3

3 Adapting procedural cases

More often, in CBR, the temporal aspect is taken into account by considering
sequences of events, sometimes integrating relative or absolute time stamps [8, 15,
25]. The most advanced work in this respect is that of process-oriented CBR (PO-
CBR), in which cases are often made of activities structured using workflows. In
CBR, workflows are usually expressed in a graph-based formal language, such
as the one described in [19], to make retrieval and adaptation possible. Again,
retrieval has received substantial research interest, but little work has been done
on the adaptation of procedures.

3.1 Principles

Arguably the first approach to workflow adaptation was case-based adaptation:
adaptation cases, which are combinations of a source case, a change request
and the resulting case, are used as a source of adaptation knowledge [16]. A
somewhat similar approach identifies small workflow parts from the case base
that attain specific goals, and uses this to make substitutions of parts of the
retrieved workflow [20].

3.2 Evaluation

Most evaluation work in procedural adaptation is manual: either test queries
are provided along with the expected result, or users are asked to evaluate the
quality of the result. This is labour intensive and requires the intervention of
both domain experts and of people familiar with the formalism used.

An alternative, automatic approach is to compare the various parts of the
solution with the case base, the expectation being that if a generated workflow
part describes a feasible activity, it is likely to occur naturally in a large enough
case base [17].

4 Craqpot

In this section, we present our own approach to textual and procedural adapta-
tion and its software implementation, named Craqpot—the Case-based Rea-
soning Adaptor of Qualitative Procedures Over Texts—which provides an in-
terface to obtain recipes in response to any query. As its case base, Craqpot
uses the recipe database published for the 2nd Computer Cooking Contest.5 The
processes for case acquisition, for retrieval, for formal case adaptation and for
textual adaptation are all implemented as separate modules, and will therefore
be presented individually in the following subsections.

5 http://www.wi2.uni-trier.de/shared/eccbr/ccc09/



4 Valmi Dufour-Lussier and Jean Lieber

4.1 Case acquisition

The cases are provided as unannotated text, and so their formal counterpart
must be extracted to make adaptation possible. This is the case acquisition step,
which is detailed in [11]. Our approach is based on natural language processing,
and therefore goes through much of the same main steps as any other natural
language understanding system:

– Identifying word, clause and sentence boundaries. This task is performed
using hand-crafted regular expressions.

– Identifying the part-of-speech of each word, i.e. finding verbs, nouns, etc.
This task is performed by a Brill tagger [5], a semi-supervised machine learn-
ing tool trained on a small set of annotated recipes.

– Performing syntactic analysis. This is done using a chunker, which is a parser
using a regular grammar, implemented using regular expressions, which is
not able to compute a complete parse tree, but can find noun and prepo-
sitional phrases. Those are sufficient to identify verb complements, which
correspond to action parameters.

This is not the only possible approach: for instance, in [23], satisfying results
are obtained over the same type of texts, using information extraction. Both
approaches are efficient with instruction texts but would require adjustments
to give good results with different types of text. Another important and diffi-
cult step is resolving anaphoras i.e. associating words from the text with the
objects they are referring to. To this end, we implemented certain ideas from
dynamic semantics, wherein actions expressed in the text are considered as cre-
ating, transforming and removing objects.

Once all the relevant linguistic information has been identified in a text,
annotation rules are used to translate it into workflow patterns or, more inter-
estingly in our case, in qualitative constraints between events—cooking actions
and states—expressed using the qualitative algebra INDU [22], an extension of
Allen interval calculus [3]. The 9 annotation rules used in this implementation
are detailed in [9]

As an example, the following INDU constraints would be part of a simplified
formal case representation of the recipe shown in figure 1:

cook rice ?= 18 min Rice cooks for 18 minutes.
cook mushrooms ?= 2 min Mushrooms cook for 2 minutes.

cook mushrooms {f>} cook rice Mushrooms start cooking after rice and
finish at the same time.

(1)

Because case acquisition from text is not perfect, it is essential to evaluate it
separately to interpret the overall evaluation results of the system, because any
error at this stage will correspond to a decrease in the solution quality further
down the road.



Evaluating a textual adaptation system 5

Mushroom risotto
Heat the oil and butter. Add the onion and cook until soft, about one
minute. Add the rice and cook for two minutes, then add a glass of
wine. Once the wine is evaporated, start adding broth, one ladleful
at a time. Meanwhile, slice the mushrooms. Add them two minutes
before the end.

Fig. 1. A simple mushroom risotto recipe.

4.2 Retrieval

While it could in theory rely on an approach inspired by adaptation-guided
retrieval [24], in practice Craqpot relies on a reimplementation of Tuuur-
bine [12], a generic, ontology-guided case-based inference engine, using Wiki-
Taaable6 [4, 7] as its knowledge base. Our evaluation framework is based on
the comparison of different adaptation approaches all using the same retrieval
engine, so retrieval should not have a strong influence on the evaluation results.

4.3 Case adaptation

When a solution to a user query cannot be retrieved from the case base, adapta-
tion is required, which in Craqpot begins with a substitution. If, for instance,
the user wants a recipe for a carrot risotto and the case base does not con-
tain one, the mushroom risotto recipe of figure 1 may be retrieved. The system
will then adapt the retrieved recipe by replacing mushrooms with carrots, and
making whichever modifications are necessary to the instructions to obtain a
satisfactory result—for instance, adding the carrots earlier during the cooking
because otherwise they would be too crunchy—as described into more details
in [10].

Intuitively, this is done by finding the conjunction of the retrieved recipe
modified by the necessary ingredient substitutions and of the domain knowledge
that is available about the new ingredients—for instance, their required cooking
time, which may be represented as

cook carrots ?= 20 min Carrots cook for 20 minutes. (2)

Because a qualitative algebra is used, metric information must be specified with
additional knowledge:

2 min ?< 18 min 2 minutes are shorter than 18.
18 min ?< 20 min 18 minutes are shorter than 20.

(3)

Whenever adaptation is actually necessary, though, this will be because there
is a contradiction between the retrieved recipe and the domain knowledge, and
so there will be no conjunction. In the example given, replacing mushrooms with
6 http://wikitaaable.loria.fr



6 Valmi Dufour-Lussier and Jean Lieber

carrots will expose a contradiction between “cook mushrooms carrots ?= 2 min”
from (1) and “cook carrots ?= 20 min” from (2).

The workaround is to use belief revision theory [2] to make minimal modifi-
cations to the recipe in such a way that it becomes consistent with the domain
knowledge, an approach that has already been used successfully for adaptation
in CBR [6]. In the example this would, among other things, replace the last
constraints of (1) with

cook mushrooms carrots {fi>} cook rice Carrots start cooking before
rice and finish at the same time.

(4)

The implementation of a belief revision operator is a search algorithm that
looks through the possible interpretations of the set of qualitative constraints
that come from the domain knowledge to find those closest to the constraints
of the source case. A set of constraints has an exponential amount of possible
interpretations with respect to the number of intervals used in the case repre-
sentation, therefore the search takes exponential time. We were able, though, to
implement an approximation algorithm that reuses modified constraint satisfac-
tion problem algorithms algorithms to obtain satisfactory results in polynomial
time.

4.4 Text adaptation

Once the formal constraints have been adapted, the text must be modified to
reflect the changes. The easiest solution, given that annotation rules exist that
associate linguistic features to algebraic constraints, would be to use the inverse
of those rules: given a constraint change, find the set of linguistic features that
would have generated this constraint, and change the actual linguistic features
of the text to reflect those. If the set of annotation rules were a bijection between
the set of sets of possible linguistic features and the possible algebraic relations,
this would be straightforward. But it is not, and therefore specific strategies are
used to make approximate changes in text, with the objective always being to
make the smallest possible changes, to limit the risk of introducing mistakes or
diminishing the quality of the text.

Additionally, the implementation favours moving events such that they ap-
pear in the text in the order in which they begin, which minimises changes inside
the sentences at the expense of maximising the movement of whole sentences.

With respect to the change described in (4), Craqpot makes the following
modifications:

Add the onion and cook until soft, about one minute. Meanwhile, slice the
mushrooms carrots. Add them two minutes before the end. Add the rice
and cook for two minutes, then add a glass of wine. Once the wine is
evaporated, start adding broth, one ladleful at a time. a

Observe that, because a qualitative algebra is used, it is not possible for the sys-
tem to know, and therefore indicate, that the rice should be added two minutes
after the carrots. This is a tradeoff for the algorithmic feasibility of the approach.



Evaluating a textual adaptation system 7

5 Simulating domain knowledge

One benefit of revision-based adaptation is that it can use whichever amount of
domain knowledge is available. If no domain knowledge is available at all, the
system will still work but give a result equivalent to null-adaptation. If complete
domain knowledge is available, the system will give a result equivalent to a classic
planning system. Any intermediary level of available domain knowledge will be
used to improve the results of the adaptation.

The acquisition of domain knowledge for a case-based reasoning application
falls outside the scope of this work. On the other hand, in order to get meaningful
adaptation from Craqpot that makes it possible to evaluate the system, some
quantity of knowledge is needed. We have therefore created a system to simulate
domain knowledge on the fly.

While it would have been possible, for instance, to consider that the domain
knowledge about the cooking of carrots is the disjunction of all the ways that
carrots are cooked in our recipe base, this would have given little constrained
knowledge, resulting in limited adaptations. For instance, we may have a recipe
for a carrot salad in which the cooking time is 0 minutes, and one for a soup
in which the cooking time is 60 minutes, which would suggest that any cooking
time between 0 and 60 minutes is acceptable, with the effect that the mushroom
risotto recipe would not be modified at all. We considered it would be more
relevant for an evaluation of adaptation to use highly constrained knowledge,
which requires a high adaptation effort.

Therefore, we have developed a system for on-the-fly extraction of relevant
domain knowledge. This method can be seen as an additional retrieval stage,
during which more cases are retrieved to be used in guiding adaptation. Given
a recipe Source and a substitution p q, a new recipe KnowledgeSource con-
taining q is retrieved, such that ingredient q in this recipe is treated as much as
possible in a similar way as ingredient p in Source.

For instance, if the user requests a carrot risotto recipe and a mushroom
risotto recipe is retrieved, the system will attempt to retrieve some recipe with
carrot and obtain carrot knowledge from it. Suppose that three recipes with
carrots exist: a soup recipe in which carrots are cooked for one hour until they
decompose in the broth, a salad recipe in which carrots are shredded and used
raw, and a Asian recipe for sauteed pasta and vegetables. The system will retrieve
the recipe in which carrots are cooked in the way most similar to how mushrooms
are cooked in the mushroom risotto, which will be the Asian recipe. The way
the carrot is used in this recipe, e.g. how it is cut and how long it is cooked, will
become the carrot knowledge used to perform this adaptation, which is referred
to in (2).

In our implementation, the distance function used is a Hamming distance:
the distance between the recipe Source containing ingredient p and a candidate
KnowledgeSource recipe containing ingredient q is the amount of actions applied
to p in Source that are not applied to q in the KnowledgeSource candidate,
plus the amount of actions applied to q in the KnowledgeSource candidate that
are not applied to p in Source. An unweighted Hamming distance was chosen



8 Valmi Dufour-Lussier and Jean Lieber

because it makes the retrieval engine simple, but a different distance function
may be desirable if not all actions or action substitutions are considered to be
of equivalent importance.

Using this type of overly constrained domain knowledge can affect the out-
come of the adaptation both positively and negatively. For instance, if the carrot
recipe most similar to the mushroom risotto is in fact a carrot soup, it may be
that our domain knowledge will demand for carrots to be cooked for one hour,
and the adaptation result will suffer from this. On the other hand, the alterna-
tive, under-constrained approach could result in accepting a two-minute cooking
time for carrots on the basis, for instance, of a carrot salad recipe in which
carrots are not cooked at all.

6 Evaluation framework

This section presents the evaluation methodology we propose for adaptation in
textual CBR. It is a comparative, blind, user-based approach: a user makes a
query, and is shown a result obtained from one of various different adaptation
techniques available. They are then asked to evaluate the result based on a set
of criteria.

This type of evaluation is less time-consuming than an evaluation based on
combinations of test queries and expected results, and we also think it is more
accurate because it does justice to the creativity of the system, which may be
able to provide results that did not occur to the designers of the test cases
yet fully satisfy the users. With respect to user-based evaluation of workflow
adaptation systems, it is also very advantageous in that the users need not be
fluent in the formalism underlying the adaptation in order to be able to evaluate
the system. As all user-based evaluation methodologies though, this evaluation
is by definition a black box type evaluation: while we can know, for a given
query–result pair, whether it gave satisfaction to the user, there is no automatic
way to determine what went wrong in case it doesn’t.

In the next subsections, the evaluation interface, the compared methods, and
the evaluation criteria are shown.

6.1 Interface

A new user first needs to create an account, which is automatic if they are
accessing the application from Facebook. They can then immediately make a
query, as shown in figure 2.

6.2 Presentation of the adaptation methods

A method is selected randomly between the two control methods and the ex-
perimental method, and the query is processed with this method. If processing
fails—which is theoretically possible only with the retrieval method—processing
is transferred to another method.

The system has access to two control methods to answer requests:



Evaluating a textual adaptation system 9

Fig. 2. Craqpot query interface.

– A retrieval-only method that performs no adaptation and fails when it is
not possible to find a recipe that corresponds exactly to the query. Since
Craqpot uses the same textual case base, the retrieval system defines the
maximum possible scores that could be obtained in text and recipe quality:
our proposal is not expected to adapt recipes in such a way that the result
is better than the original.

– A method based on a reimplementation of CookIIS text adaptation, which
performs a smart string replacement [21]. This provides a baseline: given the
simplicity and efficiency of CookIIS text adaptation, our proposal would
be difficult to justify if it did not offer better quality.

Applying the query from the running example (a carrot risotto) to the
retrieval-only method would fail—the query would then be handled by one of
the other methods. Applying the same to the CookIIS method would work, but
the instructions would only be modified insofar as the word “mushrooms” would
be replaced with the word “carrots”, resulting in a two minute cooking time for
carrots: “Meanwhile, slice the mushrooms carrots. Add them two minutes before
the end.”

6.3 Evaluation questions

The result is then presented to the user, as shown in figure 3. The user has no
way of knowing which method was used to process their query.

Before the user can make a new query, they are asked to tell how much they
agree with the following statements:

– “This recipe seems tasty.” We postulate that this provides the most relevant
indicator to evaluate the quality of the content adaptation of the recipe—
independantly of the way it is written.

– “This text is well written.” We postulate that this provides the most relevant
indicator to evaluate the quality of the textual adaptation of the recipe.

– “This recipe fits my query.” We postulate that this provides a general indi-
cator as to whether the adaptation approach used was appropriate.

Users rate their degree of agreement on a 4-point Likert scale—where 1 indicates
strong disagreement and 4 indicates strong agreement.

The hypotheses we made are:



10 Valmi Dufour-Lussier and Jean Lieber

Fig. 3. Craqpot response and evaluation interface. This screenshot shows a recipe
that was adapted by the CookIIS method.



Evaluating a textual adaptation system 11

H1 Craqpot and CookIIS will output lower text and recipe quality, and lower
fitness—i.e. lower score on the third criterion—than simple retrieval.

H2 Craqpot will output higher recipe quality than CookIIS.
H3 Craqpot and CookIIS will output a similar text quality.
H4 Craqpot will leave its users with a better impression that the answer fits

the query than CookIIS.

We postulate H1 because of the inherent risk of automatic adaptation, H2 be-
cause Craqpot, unlike CookIIS, integrates domain knowledge, H3 because the
risk of adaptation is mitigated by finer linguistic processing, and H4 because the
adaptation is less superficial. The null hypothesis H0 is that all three systems
are comparable and any difference in score would be the result of chance.

7 Results

Raw results based on 9 users performing 50 queries are shown in figure 4.
Wilcoxon signed-rank tests were performed for each criterion to compare meth-
ods pairwise and measure the probability that the observed differences in scores
are the result of chance. The resulting p-values thresholds are shown in table 1.
It is commonly assumed that p-values between .05 and .1 offer a weak presump-
tion against H0, whereas p-values below .05 offer a strong presumption against
H0. Values below .01 offer a very strong presumption.

Text quality Recipe quality Fitness
CookIIS Craqpot CookIIS Craqpot CookIIS Craqpot

Retrieval < .05 < .1 < .01 < .05 < .001 > .5
Craqpot > .5 < .5 < .001

Table 1. Significance of the pairwise method comparisons. For instance, “< .05” at the
intersection of “Retrieval” and “CookIIS” below “Text quality” means that the differ-
ence in text quality between the retrieval and the CookIIS method has a probability
p ≤ 5% of being due to chance. The table is arranged in such a way that the system
named in the row header systematically gives better results than the one named in the
column header.

In all three indicators, retrieval ranked first, and Craqpot ranked second.
As expected, Craqpot’s and CookIIS overall performance is worse than simple
retrieval, partially validating H1. This is mitigated, though, by the fact that sim-
ple retrieval was able to process only 46% of the queries assigned to it. In recipe
quality, retrieval performed significantly better than Craqpot and strongly sig-
nificantly better than CookIIS, but the score difference between Craqpot and
CookIIS, while important, was not significant: the exact p-value is .30. This
indicates a 30% chance that Craqpot’s better scores with respect to CookIIS
were the effect of chance, and therefore H2 is not supported by the results. Fur-
ther evaluations may change this. In text quality, retrieval performed strongly



12 Valmi Dufour-Lussier and Jean Lieber

−100 −75 −50 −25 0 25 50 75 100

Retrieval

CookIIS

Craqpot

%
−100 −75 −50 −25 0 25 50 75 100

Retrieval

CookIIS

Craqpot

%strongly disagree disagree agree strongly agree

(a) Results for criteria: “This text is well written.”

−100 −75 −50 −25 0 25 50 75 100

Retrieval

CookIIS

Craqpot

%
−100 −75 −50 −25 0 25 50 75 100

Retrieval

CookIIS

Craqpot

%strongly disagree disagree agree strongly agree

(b) Results for criteria: “This recipe seems tasty.”

−100 −75 −50 −25 0 25 50 75 100

Retrieval

CookIIS

Craqpot

%
−100 −75 −50 −25 0 25 50 75 100

Retrieval

CookIIS

Craqpot

%strongly disagree disagree agree strongly agree

(c) Results for criteria: “This recipe fits my query.”

Fig. 4. Detailed user evaluations.



Evaluating a textual adaptation system 13

significantly better than Craqpot and very strongly significantly better than
CookIIS. Although the evaluations surprisingly show that Craqpot did better
than CookIIS, the difference is not statistically significant, confirming H3. In
fitness, Craqpot performed just as well as retrieval, and both methods were
very strongly significantly better than CookIIS, confirming H4.

The few available evaluations make it possible to claim that H3 and H4 are
verified, and that H1 is partially verified. H2 is not verified but more evaluations
will be necessary.

8 Conclusion

We have presented Craqpot, a CBR system that retrieves and adapts processes
represented as instruction texts and the evaluation methodology we developed
to evaluate it.

The evaluation approach we propose has many benefits with respect to ex-
isting approaches used in textual and process-oriented CBR. Compared to sets
of queries–expected results that are often used, it is much less labour-intensive
to put in place, and it gives value to creative solutions proposed by a system.
Additionally, because we provide the results as text, we can rely on domain ex-
perts that are not fluent in the formalism to provide evaluations. Yet, we are
able to obtain a separate evaluation for the textual and for the underlying for-
mal case adaptation. Certain details about the evaluation process are specific
to the adaptation of processes, but we believe with further work it would be
easy to redefine our methodology in a more generic way for various textual CBR
applications.

The evaluation results for our application, Craqpot, were mostly satisfac-
tory, although more evaluations would be needed to obtain stronger statistical
significance. There are many benefits from developing Craqpot as a Facebook
application that have been left as future work: for instance, the possibility of
using the user’s timeline in order to advertise for the application, and even ob-
tain multiple evaluations for the same query, using the different methods, by
appealing to their network.

We also proposed a system based on case-based retrieval for on-the-fly ex-
traction of relevant knowledge. This system made it possible to evaluate our ap-
plication without having to specify complete domain knowledge. We also think
that, given further study to make it more generic, this approach could actually
be developed into a fully adequate way of integrating the experience of many
cases in order to adapt a source case.

References

1. Adeyanju, I., Wiratunga, N., Lothian, R., Sripada, S., Lamontagne, L.: Case
retrieval reuse net (CR2N): An architecture for reuse of textual solutions. In
McGinty, L., Wilson, D.C., eds.: Case-Based Reasoning Research and Develop-
ment. Volume 5650 of Lecture Notes in Computer Science. Springer (2009) 14–28



14 Valmi Dufour-Lussier and Jean Lieber

2. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. The Journal of Symbolic Logic
50(2) (1985) 510–530

3. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11) (1983) 832–843

4. Badra, F., Cojan, J., Cordier, A., Lieber, J., Meilender, T., Mille, A., Molli, P.,
Nauer, E., Napoli, A., Skaf-Molli, H., Toussaint, Y.: Knowledge acquisition and
discovery for the textual case-based cooking system WikiTaaable. In Delany, S.J.,
ed.: ICCBR 2009 Workshop Proceedings. (July 2009) 249–258

5. Brill, E.: A simple rule-based part of speech tagger. In: Workshop on Speech and
Natural Language, Association for Computational Linguistics (1992) 112–116

6. Cojan, J., Lieber, J.: Applying belief revision to case-based reasoning. In: Com-
putational Approaches to Analogical Reasoning: Current Trends. Springer (2014)
133–161

7. Cordier, A., Dufour-Lussier, V., Lieber, J., Nauer, E., Badra, F., Cojan, J., Gail-
lard, E., Infante-Blanco, L., Molli, P., Napoli, A., Skaf-Molli, H.: Taaable: a Case-
Based System for personalized Cooking. Studies in Computational Intelligence. In:
Successful Case-based Reasoning Applications. Springer Berlin Heidelberg (2013)
In press.

8. Dojat, M., Ramaux, N., Fontaine, D.: Scenario recognition for temporal reasoning
in medical domains. Artificial Intelligence in Medicine 14(1–2) (1998) 139–155
Selected Papers from AIME ’97.

9. Dufour-Lussier, V.: Spatial-temporal qualitative reasoning from textual cases. PhD
thesis, Université de Lorraine (2014)

10. Dufour-Lussier, V., Le Ber, F., Lieber, J., Martin, L.: Adapting spatial and tem-
poral cases. In Agudo, B., Watson, I., eds.: Case-Based Reasoning Research and
Development (ICCBR 2012). Volume 7466 of Lecture Notes in Computer Science.
Springer (2012) 77–91

11. Dufour-Lussier, V., Le Ber, F., Lieber, J., Nauer, E.: Automatic case acquisition
from texts for process-oriented case-based reasoning. Information Systems (mar
2014) 153–167

12. Gaillard, E., Infante-Blanco, L., Lieber, J., Nauer, E.: Tuuurbine: A generic CBR
engine over RDFS. In: Case-Based Reasoning Research and Development. Springer
(2014) 140–154

13. Gervás, P., Hervás, R., Recio-García, J.A.: The role of natural language generation
during adaptation in textual CBR. In: 4th Workshop on Textual Case-Based
Reasoning: Beyond Retrieval (ICCBR 2007). (2007) 227–235

14. Lamontagne, L., Lapalme, G.: Textual reuse for email response. In Funk, P.,
González Calero, P.A., eds.: Advances in Case-Based Reasoning. Volume 3155 of
Lecture Notes in Computer Science. Springer (2004) 242–256

15. Ma, J., Knight, B.: A framework for historical case-based reasoning. In Ashley,
K.D., Bridge, D.G., eds.: Case-Based Reasoning Research and Development. Vol-
ume 2689 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2003)
246–260

16. Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of
workflows. In Bichindaritz, I., Montani, S., eds.: Case-Based Reasoning. Research
and Development. Volume 6176 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2010) 421–435

17. Minor, M., Islam, M., Schumacher, P.: Confidence in workflow adaptation. In
Agudo, B., Watson, I., eds.: Case-Based Reasoning Research and Development.



Evaluating a textual adaptation system 15

Volume 7466 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 255–268

18. Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based reasoning.
Information Systems 40(0) (2014) 103–105

19. Minor, M., Schmalen, D., Bergmann, R.: XML-based representation of agile work-
flows. In Bichler, M., Hess, T., Krcmar, H., Lechner, U., Matthes, F., Picot, A.,
Speitkamp, B., Wolf, P., eds.: Multikonferenz Wirtschaftsinformatik, GITO-Verlag
Berlin (2008) 439–440

20. Müller, G., Bergmann, R.: Workflow streams: A means for compositional adapta-
tion in process-oriented CBR. In: Case-Based Reasoning Research and Develop-
ment. Springer (2014) 315–329

21. Newo, R., Bach, K., Hanft, A., Althoff, K.D.: On-demand recipe processing based
on CBR. In: ICCBR 2010 Workshop Proceedings. (2010) 209–218

22. Pujari, A.K., Kumari, G.V., Sattar, A.: INDU: An interval & duration network.
In Foo, N., ed.: Advanced Topics in Artificial Intelligence. Volume 1747 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (1999) 291–303

23. Schumacher, P., Minor, M., Schulte-Zurhausen, E.: On the use of anaphora reso-
lution for workflow extraction. In Bouabana-Tebibel, T., Rubin, S.H., eds.: Inte-
gration of Reusable Systems. Volume 263 of Advances in Intelligent Systems and
Computing. Springer International Publishing (2014) 151–170

24. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: Questioning the similarity
assumption in reasoning. Artificial Intelligence 102(2) (1998) 249–293

25. Sánchez-Marré, M., Cortés, U., Martínez, M., Comas, J., Rodríguez-Roda, I.: An
approach for temporal case-based reasoning: Episode-based reasoning. In Muñoz-
Ávila, H., Ricci, F., eds.: Case-Based Reasoning Research and Development. Vol-
ume 3620 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2005)
465–476

26. Weber, R.O., Ashley, K.D., Brüninghaus, S.: Textual case-based reasoning. Knowl-
edge Engineering Review 20(3) (2005) 255–260


