
HAL Id: hal-01089745
https://hal.inria.fr/hal-01089745v3

Submitted on 19 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tetrys, an On-the-Fly Network Coding protocol
Jonathan Detchart, Emmanuel Lochin, Jérôme Lacan, Vincent Roca

To cite this version:
Jonathan Detchart, Emmanuel Lochin, Jérôme Lacan, Vincent Roca. Tetrys, an On-the-Fly Network
Coding protocol. 2015. �hal-01089745v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49501846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01089745v3
https://hal.archives-ouvertes.fr

NWCRG J. Detchart
Internet-Draft E. Lochin
Intended status: Experimental J. Lacan
Expires: January 7, 2016 ISAE
 V. Roca
 INRIA
 July 6, 2015

 Tetrys, an On-the-Fly Network Coding protocol
 draft-detchart-nwcrg-tetrys-02

Abstract

 This document describes Tetrys, an On-The-Fly Network Coding (NC)
 protocol that can be used to transport delay and loss sensitive data
 over a lossy network. Tetrys can recover from erasures within a RTT-
 independent delay, thanks to the transmission of coded packets. It
 can be used for both unicast, multicast and anycast communications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Detchart, et al. Expires January 7, 2016 [Page 1]

http://tools.ietf.org/pdf/bcp78
http://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
http://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 include Simplified BSD License text as described in Section 4 .e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1 . Requirements Notation 3
 2. Definitions, Notations and Abbreviations 3
 3. Architecture . 4
 3.1 . Use Cases . 4
 3.2 . Overview . 5
 4. Packet Format . 6
 4.1 . Common Header Format 6
 4.1.1 . Header Extensions 8
 4.2 . Source Packet Format 9
 4.3 . Coded Packet Format 10
 4.4 . Acknowledgement Packet Format 11
 5. The Coding Coefficient Generator Identifiers 12
 5.1 . Definition . 12
 5.2 . Table of Identifiers 12
 6. Tetrys Basic Functions 12
 6.1 . Encoding . 12
 6.1.1 . Encoding Vector Formats 13
 6.2 . The Elastic Encoding Window 16
 6.3 . Recoding . 17
 6.3.1 . Principle . 17
 6.3.2 . Generating a coded symbol at an intermediate node . . 17
 6.4 . Decoding . 17
 7. Security Considerations 17
 8. Privacy Considerations 17
 9. IANA Considerations . 17
 10. Acknowledgments . 18
 11. References . 18
 11.1 . Normative References 18
 11.2 . Informative References 18
 Authors’ Addresses . 18

1. Introduction

 This document describes Tetrys, a novel network coding protocol.
 Network codes were introduced in the early 2000s [AHL-00] to address
 the limitations of transmission over the Internet (delay, capacity
 and packet loss). While the use of network codes is fairly recent in
 the Internet community, the use of application layer erasure codes in
 the IETF has already been standardized in the RMT [RMT] and the
 FECFRAME [FECFRAME] working groups. The protocol presented here can
 be seen as a network coding extension to standards solutions. The

Detchart, et al. Expires January 7, 2016 [Page 2]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 current proposal can be considered as a combination of network
 erasure coding and feedback mechanisms [Tetrys].

 The main innovation of the Tetrys protocol is in the generation of
 coded packets from an elastic encoding window periodically updated
 with the receiver’s feedbacks. This update is done in such a way
 that any source packets coming from an input flow is included in the
 encoding window as long as it is not acknowledged or the encoding
 window did not reach a size limit. This mechanism allows for losses
 on both the forward and return paths and in particular is resilient
 to acknowledgement losses.

 With Tetrys, a coded packet is a linear combination over a finite
 field of the data source packets belonging to the coding window. The
 choice of the finite field of the coefficients is a trade-off between
 the best performance (with non-binary coefficients) and the system
 constraints (binary codes in an energy constrained environment) and
 is driven by the application.

 Thanks to the elastic encoding window, the coded packets are built
 on-the-fly, by using an algorithm or a function to choose the
 coefficients. The redundancy ratio can be dynamically adjusted, and
 the coefficients can be generated in different ways along a
 transmission. Compared to FEC block codes, this allows to reduce the
 bandwidth use and the decoding delay.

1.1 . Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Definitions, Notations and Abbreviations

 The terminology used in this document is presented below. It is
 aligned with the FECFRAME terminology as well as with recent
 activities in the Network Coding Research Group.

 Source symbol: a symbol that has to be transmitted between the
 ingress and egress of the network.

 Coded symbol: a linear combination over a finite field of a set of
 source symbols.

 Source symbol ID: a sequence number to identify the source
 symbols.

 Coded symbol ID: a sequence number to identify the coded symbols.

Detchart, et al. Expires January 7, 2016 [Page 3]

http://tools.ietf.org/pdf/rfc2119

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 Encoding coefficients: elements of the finite field characterizing
 the linear combination used to generate a coded symbol.

 Encoding vector: set of the encoding coefficients and input source
 symbol IDs.

 Source packet: a source packet contains a source symbol with its
 associated IDs.

 Coded packet: a coded packet contains a coded symbol, the coded
 symbol’s ID and encoding vector.

 Input symbol: a symbol at the input of the Tetrys Encoding
 Building Block.

 Output symbol: a symbol generated by the Tetrys Encoding Building
 Block. For a non systematic mode, all output symbols are coded
 symbols. For a systematic mode, output symbols can be the input
 symbols and a number of coded symbols that are linear combinations
 of the input symbols.

 Feedback packet: a feedback packet is a packet containing
 information about the decoded or received source symbols. It can
 also bring additional information about the Packet Error Rate or
 the number of various packets in the receiver decoding window.

 Elastic Encoding Window: an encoder-side buffer that stores all
 the non-acknowledged source packets of the input flow that are
 involved in the coding process.

 Coding Coefficient Generator Identifier: a unique identifier that
 define a function or an algorithm allowing to generate the
 encoding vector.

 Code rate: Define the rate between the number of input symbols and
 the number of output symbols.

3. Architecture

 -- Editor’s note: The architecture used in this document should be
 aligned with the future NC Architecture document [NWCRG-ARCH]. --

3.1 . Use Cases

 Tetrys is well suited, but not limited to the use case where there is
 a single flow originated by a single source, with intra stream coding
 that takes place at a single encoding node. Note that the input
 stream can be a multiplex of several upper layer streams.

Detchart, et al. Expires January 7, 2016 [Page 4]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 Transmission can be over a single path or multiple paths. In
 addition, the flow can be sent in unicast, multicast, or anycast
 mode.

3.2 . Overview

+----------+ +----------+
App		App
+----------+ +----------+
 | ^
 | source source |
 | symbols symbols |
 | |
 v |
+----------+ +----------+ +----------+
	output packets		output packets	
Tetrys	----------------->	Tetrys	----------------->	Tetrys
Encoder	feedback packets	Recoder	feedback packets	Decoder
	<-----------------		<-----------------	
+----------+ +----------+ +----------+

 Figure 1: Tetrys Architecture

 The Tetrys protocol features several key functionalities:

 o On-the-fly encoding;

 o Recoding;

 o Decoding;

 o Signaling, to carry in particular the symbol identifiers in the
 encoding window and the associated coding coefficients when
 meaningful, in a manner that was previously used in FEC;

 o Feedback management;

 o Elastic window management;

 o Channel estimation;

 o Dynamic adjustment of the code rate and flow control;

 o Congestion control management (if appropriate);

 -- Editor’s note: must be discussed --

Detchart, et al. Expires January 7, 2016 [Page 5]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 o Tetrys packet header creation and processing;

 o -- Editor’s note: something else? --

 These functionalities are provided by several building blocks:

 o The Tetrys Building Block: this BB is used during encoding,
 recoding and decoding processes. It must be noted that Tetrys
 does not mandate a specific building block. Instead any building
 block compatible with the elastic encoding window feature of
 Tetrys can be used.

 o The Window Management Building Block: this building block is in
 charge of managing the encoding encoding window at a Tetrys
 sender.

 -- Editor’s note: Is it worth moving it in a dedicated BB? To
 be discussed --

 o Other ?

 In order to enable future components and services to be added
 dynamically, Tetrys adds a header extension mechanism, compatible
 with that of LCT, NORM, FECFRAME [REFS].

4. Packet Format

4.1 . Common Header Format

 All types of Tetrys packets share the same common header format (see
 Figure 2).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | V | C |S| Reserved | HDR_LEN | Packet Type |
 +-+
 | Congestion Control Information (CCI, length = 32*C bits) |
 | ... |
 +-+
 | Transport Session Identifier (TSI, length = 32*S bits) |
 +-+
 | Header Extensions (if applicable) |
 | ... |
 +-+

 Figure 2: Common Header Format

Detchart, et al. Expires January 7, 2016 [Page 6]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 -- Editor’s note: this format inherits from the LCT header format
 (RFC 5651) with slight modifications. --

 o Tetrys version number (V): 4 bits. Indicates the Tetrys version
 number. The Tetrys version number for this specification is 1.

 o Congestion control flag (C): 2 bits. C=0 indicates the Congestion
 Control Information (CCI) field is 0 bits in length. C=1
 indicates the CCI field is 32 bits in length. C=2 indicates the
 CCI field is 64 bits in length. C=3 indicates the CCI field is 96
 bits in length.

 -- Editor’s note: version number and congestion control to be
 discussed --

 o Transport Session Identifier flag (S): 1 bit. This is the number
 of full 32-bit words in the TSI field. The TSI field is 32*S bits
 in length, i.e., the length is either 0 bits or 32 bits.

 o Reserved (Resv): 9 bits. These bits are reserved. In this
 version of the specification, they MUST be set to zero by senders
 and MUST be ignored by receivers.

 o Header length (HDR_LEN): 8 bits. Total length of the Tetrys
 header in units of 32-bit words. The length of the Tetrys header
 MUST be a multiple of 32 bits. This field can be used to directly
 access the portion of the packet beyond the Tetrys header, i.e.,
 to the first other header if it exists, or to the packet payload
 if it exists and there is no other header, or to the end of the
 packet if there are no other headers or packet payload.

 o Packet Type: 8 bits. Type of packet.

 o Congestion Control Information (CCI): 0, 32, 64, or 96 bits Used
 to carry congestion control information. For example, the
 congestion control information could include layer numbers,
 logical channel numbers, and sequence numbers. This field is
 opaque for the purpose of this specification. This field MUST be
 0 bits (absent) if C=0. This field MUST be 32 bits if C=1. This
 field MUST be 64 bits if C=2. This field MUST be 96 bits if C=3.

 o Transport Session Identifier (TSI): 0 or 32 bits. The TSI
 uniquely identifies a session among all sessions from a particular
 sender. The TSI is scoped by the IP address of the sender, and
 thus the IP address of the sender and the TSI together uniquely
 identify the session. Although a TSI in conjunction with the IP
 address of the sender always uniquely identifies a session,
 whether or not the TSI is included in the Tetrys header depends on

Detchart, et al. Expires January 7, 2016 [Page 7]

http://tools.ietf.org/pdf/rfc5651

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 what is used as the TSI value. If the underlying transport is
 UDP, then the 16-bit UDP source port number MAY serve as the TSI
 for the session. If the TSI value appears multiple times in a
 packet, then all occurrences MUST be the same value. If there is
 no underlying TSI provided by the network, transport or any other
 layer, then the TSI MUST be included in the Tetrys header.

4.1.1 . Header Extensions

 Header Extensions are used in Tetrys to accommodate optional header
 fields that are not always used or have variable size. The presence
 of Header Extensions can be inferred by the Tetrys header length
 (HDR_LEN). If HDR_LEN is larger than the length of the standard
 header, then the remaining header space is taken by Header Extension
 fields.

 If present, Header Extensions MUST be processed to ensure that they
 are recognized before performing any congestion control procedure or
 otherwise accepting a packet. The default action for unrecognized
 Header Extensions is to ignore them. This allows the future
 introduction of backward-compatible enhancements to Tetrys without
 changing the Tetrys version number. Non-backward-compatible Header
 Extensions CANNOT be introduced without changing the Tetrys version
 number.

 There are two formats for Header Extension fields, as depicted in
 Figure 3. The first format is used for variable-length extensions,
 with Header Extension Type (HET) values between 0 and 127. The
 second format is used for fixed-length (one 32-bit word) extensions,
 using HET values from 128 to 255.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET (<=127) | HEL | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 . .
 . Header Extension Content (HEC) .
 +-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HET (>=128) | Header Extension Content (HEC) |
 +-+

 Figure 3: Header Extension Format

Detchart, et al. Expires January 7, 2016 [Page 8]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 o Header Extension Type (HET): 8 bits The type of the Header
 Extension. This document defines a number of possible types.
 Additional types may be defined in future versions of this
 specification. HET values from 0 to 127 are used for variable-
 length Header Extensions. HET values from 128 to 255 are used for
 fixed-length 32-bit Header Extensions.

 o Header Extension Length (HEL): 8 bits The length of the whole
 Header Extension field, expressed in multiples of 32-bit words.
 This field MUST be present for variable-length extensions (HETs
 between 0 and 127) and MUST NOT be present for fixed-length
 extensions (HETs between 128 and 255).

 o Header Extension Content (HEC): variable length The content of the
 Header Extension. The format of this sub-field depends on the
 Header Extension Type. For fixed-length Header Extensions, the
 HEC is 24 bits. For variable-length Header Extensions, the HEC
 field has variable size, as specified by the HEL field. Note that
 the length of each Header Extension field MUST be a multiple of 32
 bits. Also note that the total size of the Tetrys header,
 including all Header Extensions and all optional header fields,
 cannot exceed 255 32-bit words.

4.2 . Source Packet Format

 A source packet is the encapsulation of a source symbol, a source
 symbol ID and a Common Packet Header. The source symbols can have
 variable sizes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 / Common Packet Header /
 | |
 +-+
 | Source Symbol ID |
 +-+
 | |
 / Payload /
 | |
 +-+

 Figure 4: Source Packet Format

 Common Packet Header: a common packet header where Packet Type=0.

 Source Symbol ID: the sequence number to identify a source symbol.

Detchart, et al. Expires January 7, 2016 [Page 9]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 Payload: the payload (source symbol)

4.3 . Coded Packet Format

 A coded packet is the encapsulation of a coded symbol, a coded symbol
 ID, the associated encoding vector and the Common Packet Header. As
 the source symbols CAN have variable sizes, each source symbol size
 need to be encoded, and the result must be stored in the coded packet
 as the Encoded Payload Size (16 bits): as it is an optional field,
 the encoding vector MUST signal the use of variable source symbol
 sizes with the field V (see Section 6.1.1.2).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 / Common Packet Header /
 | |
 +-+
 | Coded Symbol ID |
 +-+
 | |
 / Encoding Vector /
 | |
 +-+
 | Encoded Payload Size | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 / Payload /
 | |
 +-+

 Figure 5: Coded Packet Format

 Common Packet Header: a common packet header where Packet Type=1.

 Coded Symbol ID: the sequence number to identify a coded symbol.

 Encoding Vector: an encoding vector to define the linear combination
 used (coefficients, and source symbols).

 Encoded Payload Size: the coded payload size used if the source
 symbols have variable size (optional, Section 6.1.1.2)).

 Payload: the coded symbol.

Detchart, et al. Expires January 7, 2016 [Page 10]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

4.4 . Acknowledgement Packet Format

 A Tetrys Decoding Building Block or Tetrys Recoding Building Block
 MAY send back to another building block some Acknowledgement packets.
 They contain information about what it is received and/or decoded,
 and other information such as a packet loss rate or the size of the
 decoding buffers. The acknowledgement packets are OPTIONAL hence
 they could be omitted or lost in transmission without impacting the
 basic protocol performance.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 / Common Packet Header /
 | |
 +-+
 | Nb of missing source symbols |
 +-+
 | Nb of not already used coded symbols |
 +-+
 | First Source Symbol ID |
 +-+
 | SACK size | |
 +-+-+-+-+-+-+-+-+ +
 | |
 / SACK Vector /
 | |
 +-+

 Figure 6: Acknowledgement Packet Format

 Common Packet Header: a common packet header where Packet Type=2.

 Nb missing source symbols: the number of missing source symbols in
 the receiver.

 Nb of not already used coded symbols: the number of not already used
 coded symbols in the receiver that have not already been used for
 decoding. Meaning the number of linear combinations containing at
 least 2 unknown source symbols.

 First Source Symbol ID: ID of the first source symbol to acknowledge.

 SACK size: the size of the SACK vector in 32-bit words. For
 instance, with value 2, the SACK vector is 64 bits long.

Detchart, et al. Expires January 7, 2016 [Page 11]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 SACK vector: bit vector indicating the acknowledged symbols following
 the first source symbol ID. The "First Source Symbol" is not
 included in this bit vector. A bit equal to 1 at position i means
 that the source symbol of ID equal to "First Source Symbol ID" + i +
 1 is acknowledged by this acknowledgment packet.

5. The Coding Coefficient Generator Identifiers

5.1 . Definition

 The Coding Coefficient Generator Identifier defines a function or an
 algorithm to build the coding coefficients used to generate the coded
 symbols. They MUST be known by all the Building Blocks.

5.2 . Table of Identifiers

 0000: GF256 Vandermonde based coefficients. Each coefficient is
 build as alpha^((source_symbol_id*coded_symbol_id) % 255).

 0001: GF16 Vandermonde based coefficients. Each coefficient is build
 as alpha^((source_symbol_id*coded-symbol_id) % 15).

 0010: SRLC.

 Others: To be discussed.

6. Tetrys Basic Functions

6.1 . Encoding

 At the beginning of a transmission, a Tetrys Encoding Building Block
 MUST choose an initial code rate (added redundancy) as it doesn’t
 know the packet loss rate of the channel. In steady state, the
 Tetrys Encoding Building Block generates coded symbols when it
 receives some information from the decoding or recoding blocks.

 When a Tetrys Encoding Building Block needs to generate a coded
 symbol, it considers the set of source symbols stored in the Elastic
 Encoding Window. These source symbols are the set of source symbols
 which are not yet acknowledged by the receiver.

 A Tetrys Encoding Building Block SHOULD set a limit of the Elastic
 Encoding Window size. This allows to reduce the complexity by
 considering less source symbols. It also provides a coping mechanism
 if all the acknowledgment packets are lost.

 At the generation of a coded symbol, the Tetrys Encoding Building
 Block generates an encoding vector containing the IDs of the source

Detchart, et al. Expires January 7, 2016 [Page 12]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 symbols stored in the Elastic Encoding Window. For each source
 symbol, a finite field coefficient is determined using a Coding
 Coefficient Generator. This generator CAN take as input the source
 symbol ID and the coded symbol ID and CAN determine a coefficient in
 a deterministic way. A classical example of such deterministic
 function is a generator matrix where the rows are indexed by the
 source symbol IDs and the columns by the coded symbol IDs. For
 example, the entries of this matrix can be built from a Vandermonde
 structure, like Reed-Solomon codes, or from a sparse binary matrix,
 like Low-Density Generator Matrix codes. Finally, the coded symbol
 is the sum of the source symbols multiplied by their corresponding
 coefficients.

6.1.1 . Encoding Vector Formats

 The encoding vectors are sent in each coded symbols. They CAN
 contain the source symbol IDs and/or the coefficients.

 To avoid the overhead of transmitting all the source symbol IDs, the
 following algorithm is used to compress them.

6.1.1.1 . Transmitting the source symbol IDs

 The source symbol IDs are organized as a sorted list of 32-bit
 integers. Instead of sending the full list, a differential transform
 to reduce the number of bits needed to represent an ID is used.

6.1.1.1.1 . Compressing the Source symbol IDs

 Assume the symbol IDs used in the combination are:
 [1..3],[5..6],[8..10].

 1. Keep the first element in the packet as the first_source_id: 1.

 2. Apply a differential transform to the others elements
 ([3,5,6,8,10]) which removes the element i-1 to the element i,
 starting with the first_source_id as i0, and get the list L =>
 [2,2,1,2,2]

 3. Compute b, the number of bits needed to store all the elements,
 which is ceil(log2(max(L))): here, 2 bits.

 4. Write b in the corresponding field, and write all the b * [(2 *
 NB blocks) - 1] elements in a bit vector, here: 10 10 01 10 10.

Detchart, et al. Expires January 7, 2016 [Page 13]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

6.1.1.1.2 . Decompressing the Source symbol IDs

 When a Tetrys Decoding Building Block wants to reverse the
 operations, this algorithm is used:

 1. Rebuild the list of the transmitted elements by reading the bit
 vector and b: [10 10 01 10 10] => [2,2,1,2,2]

 2. Apply the reverse transform by adding successively the elements,
 starting with first_source_id: [1,1+2,(1+2)+2,(1+2+2)+1,...] =>
 [1,3,5,6,8,10]

 3. Rebuild the blocks using the list and first_source_id:
 [1..3],[5..6],[8..10].

6.1.1.2 . Encoding Vector Format

 The encoding vector CAN be used to store the source symbol IDs
 included in the associated coded symbol, the coefficients used in the
 combination, or both. It CAN be used to send only the number of
 source symbols included in the coded symbol.

 If the source IDs are stored, the nb of blocks MUST be different from
 0.

 The encoding vector format uses a 4-bit Coding Coefficient Generator
 Identifier to identity the algorithm to generate the coefficients,
 and contains a set of blocks for the source symbol IDs used in the
 combination. In this format, the number of blocks is stored as a
 8-bit unsigned integer. To reduce the overhead, a compressed way to
 store the symbol IDs is used: the IDs are not stored as themselves,
 but stored as the difference between the previous.

Detchart, et al. Expires January 7, 2016 [Page 14]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | EV_LEN | CCGI |I|C|V| | NB_BLOCKS | NB_COEFS |
 +-+
 | FIRST_SOURCE_ID |
 +-+
 | b_id | |
 +-+-+-+-+-+-+-+ id_bit_vector +-+-+-+-+-+-+-+
 | | Padding |
 +-+
 | b_coef | |
 +-+-+-+-+-+-+-+ coef_bit_vector +-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Figure 7: Encoding Vector Format

 o Encoding Vector Length (EV_LEN): size in units of 32-bit words.

 o Coding Coefficient Generator Identifier (CCGI): 4-bit ID to
 identify the algorithm or the function used to generate the
 coefficients (see Section 5). As a CCGI is included in each
 encoded vector, it can dynamically change between the generation
 of 2 coded symbols.

 o Store the IDs flag (I): 1 bit to know if an encoding vector
 contains the list of the IDs used. MUST be 1 if the Encoding
 Vector stores the source symbol IDs.

 o Store the coefficients flag (C): 1 bit to know if an encoding
 vector contains information about the coefficients used.

 o Having source symbols with variable size flag (V): set V to 1 if
 the combination which refers the encoding vector is a combination
 of source symbols with variable sizes. In this case, the coded
 packets MUST have the ’Encoded Payload Size’ field.

 o Number of blocks used to store the source symbol IDs (NB_BLOCKS):
 the number of blocks used to store all the source symbol IDs.

 o Number of coefficients (NB_COEFS): The number of the coefficients
 used to generate the associated coded symbol.

 o The first source Identifier (FIRST_SOURCE_ID): the first source
 symbol ID used in the combination.

Detchart, et al. Expires January 7, 2016 [Page 15]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 o Number of bits for each edge block (b_id): the number of bits
 needed to store the edge (see Section 6.1.1.1).

 o The compressed edge blocks (id_bit_vector): equal to b_id *
 (NB_BLOCKS * 2 - 1).

 o Number of bits needed to store each coefficient (b_coef): the
 number of bits used to store the coefficients.

 o The coefficients (coef_bit_vector): The coefficients stored (as a
 vector of b_coef * NB_COEFS).

 o Padding: padding to have an Encoding Vector size multiple of
 32-bit (for the id and coefficient part).

6.2 . The Elastic Encoding Window

 When an input source symbol is passed to a Tetrys Encoding Building
 Block, it is added to the Elastic Encoding Window. This window MUST
 have a limit set by the encoding building Block (depending of the use
 case: unicast, multicast, file transfer, real-time transfer, ...).
 If the Elastic Encoding Window reached its limit, the window slides
 over the symbols: the first (oldest) symbols are removed. Then, a
 packet containing this symbol can be sent onto the network. As an
 element of the coding window, this symbol is included in the next
 linear combinations created to generate the coded symbols.

 As explained below, the receiver or the recoder sends periodic
 feedback indicating the received or decoded source symbols. In the
 case of a unicast transmission, when the sender receives the
 information that a source symbol was received and/or decoded by the
 receiver, it removes this symbol from the coding window.

 In a multicast transmission:

 o If the acknowledgement packets are not enabled, the coding window
 grows up to a limit. When the limit is reached, the oldest
 symbols are removed from the coding window.

 o If the acknowledgement packets are enabled, a source symbol is
 removed from the coding window when all the receivers have
 received or decoded it or when the coding window reaches its
 limit.

Detchart, et al. Expires January 7, 2016 [Page 16]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

6.3 . Recoding

6.3.1 . Principle

 A Tetrys Recoding Block maintains a list of the ID of the source
 symbols included in the Elastic Coding Window of the sender. It also
 stores a set of received source and coded symbols able to regenerate
 the set or a subset of the symbols of the Elastic Coding Window. In
 other words, if R1, ..., Rt represent t received symbols and S1, ...,
 Sk represent the set or a subset of the source symbols of the Elastic
 Coding Window, there exists a t*k-matrix M such that (R1, ..., Rt).M
 = (S1, ..., Sk).

6.3.2 . Generating a coded symbol at an intermediate node

 At the generation of a coded symbol, the Tetrys Recoding Building
 Block generates an encoding vector containing the IDs of the source
 symbols stored in the Elastic Encoding Window or in the subset of the
 Elastic Encoding Window that it is able to regenerate. The Tetrys
 Recoding Building Block then generates a new coded symbol ID
 different from the received coded symbol IDs. From this coded symbol
 ID and the source symbol IDs of (S1, ..., Sk), a vector of
 coefficients is determined using a Coding Coefficient Generator. Let
 (a1, ...,ak) denote the obtained coefficients. To compute the linear
 combination (s1, ..., Sk).transpose(a1, ..., ak) the Tetrys Recoding
 Building block computes the vector v = (a1, ...,ak).transpose(M) and
 then computes the coded symbol R = (R1, ..., Rt).transpose(v). It
 can be verified that the new coded symbol is obtained without any
 decoding operation.

6.4 . Decoding

 A classical matrix inversion is sufficient to recover the source
 symbols.

7. Security Considerations

 N/A

8. Privacy Considerations

 N/A

9. IANA Considerations

 N/A

Detchart, et al. Expires January 7, 2016 [Page 17]

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

10. Acknowledgments

 N/A

11. References

11.1 . Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 , March 1997.

11.2 . Informative References

 [AHL-00] Ahlswede, R., Ning Cai, , Li, S., and R. Yeung, "Network
 information flow", IEEE Transactions on Information Theory
 vol.46, no.4, pp.1204,1216, July 2000.

 [FECFRAME]
 Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", Request for Comments 6363,
 October 2011.

 [NWCRG-ARCH]
 NWCRG, , "Network Coding Architecture", TBD TBD.

 [RMT] Vicisano, L., Gemmel, J., Rizzo, L., Handley, M., and J.
 Crowcroft, "Forward Error Correction (FEC) Building
 Block", Request for Comments 3452, December 2002.

 [Tetrys] Lacan, J. and E. Lochin, "Rethinking reliability for long-
 delay networks", International Workshop on Satellite and
 Space Communications 2008 (IWSSC08), October 2008.

Authors’ Addresses

 Jonathan Detchart
 ISAE
 10, avenue Edouard-Belin
 BP 54032
 Toulouse CEDEX 4 31055
 France

 Email: jonathan.detchart@isae.fr

Detchart, et al. Expires January 7, 2016 [Page 18]

http://tools.ietf.org/pdf/bcp14
http://tools.ietf.org/pdf/rfc2119

Internet-DraftTetrys, an On-the-Fly Network Coding protocol July 2015

 Emmanuel Lochin
 ISAE
 10, avenue Edouard-Belin
 BP 54032
 Toulouse CEDEX 4 31055
 France

 Email: emmanuel.lochin@isae.fr

 Jerome Lacan
 ISAE
 10, avenue Edouard-Belin
 BP 54032
 Toulouse CEDEX 4 31055
 France

 Email: jerome.lacan@isae.fr

 Vincent Roca
 INRIA
 655, av. de l’Europe
 Inovallee; Montbonnot
 ST ISMIER cedex 38334
 France

 Email: vincent.roca@inria.fr
 URI: http://privatics.inrialpes.fr/people/roca/

Detchart, et al. Expires January 7, 2016 [Page 19]

http://privatics.inrialpes.fr/people/roca/

