
HAL Id: inria-00166709
https://hal.inria.fr/inria-00166709

Submitted on 8 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic methods and arithmetic filtering for exact
predicates on circle arcs

Olivier Devillers, Alexandra Fronville, Bernard Mourrain, Monique Teillaud

To cite this version:
Olivier Devillers, Alexandra Fronville, Bernard Mourrain, Monique Teillaud. Algebraic methods and
arithmetic filtering for exact predicates on circle arcs. Computational Geometry, Elsevier, 2002, 22,
pp.119-142. �10.1016/S0925-7721(01)00050-5�. �inria-00166709�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49500986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00166709
https://hal.archives-ouvertes.fr

published in Computational Geometry: Theory and Applications 22, 2002, p.119–142.

Algebraic methods and arithmetic filtering for

exact predicates on circle arcs

Olivier Devillers Alexandra Fronville Bernard Mourrain

Monique Teillaud

Abstract

The purpose of this paper is to present a new method to design exact
geometric predicates in algorithms dealing with curved objects such as
circular arcs. We focus on the comparison of the abscissae of two inter-
section points of circle arcs, which is known to be a difficult predicate
involved in the computation of arrangements of circle arcs. We present
an algorithm for deciding the x-order of intersections from the signs of
the coefficients of a polynomial, obtained by a general approach based on
resultants. This method allows the use of efficient arithmetic and filtering
techniques leading to fast implementation as shown by the experimental
results.

1 Introduction

Implementing geometric algorithms is difficult because the decisions made by
such algorithms are taken on the basis of simple geometric questions, called
predicates, solved by the evaluation of continuous functions subject to rounding
errors, though the algorithms are basically of combinatorial and discrete nature.
For example, the sweep line paradigm is a combinatorial algorithm relying on
predicates such as x-comparisons.

The use of floating point arithmetic to evaluate predicates often produces
inconsistencies. For instance, plane sweep algorithms, which are basic tools in
computational geometry, are known to be very sensitive to numerical errors:
when computing arrangements of curves, a plane sweep algorithm needs to sort
intersection points between curves by x coordinates, and if, due to erroneous
numerical computations, the x comparison test is not transitive, the algorithm
may crash.

To cope with this problem, people may either work on the combinatorial
part and design new algorithms that support inconsistencies, or implement the

0INRIA, BP 93, 06902 Sophia Antipolis cedex, France. E-mail: First-
name.Lastname@sophia.inria.fr . This research was partially supported by the ESPRIT IV
LTR Project No. 28155 (GALIA).

1

predicates in an exact way so that the combinatorial algorithm may rely on
them safely. In this paper, we use the second approach and concentrate our
attention on predicates.

A predicate takes a continuous input (points, coefficients) and produces a
discrete result; in general the result has three possible values: two main values
(e.g. inside, outside) correspond to geometric situations where the answer re-
mains the same in a neighborhood of the input, and the third value (e.g. on the
boundary) is the situation, called degenerate, where the answer switches from
one to the other main values. The general methodology that we propose here
can be sketched as follows:

1. Determine the geometric configurations for which the input of the predi-
cate is in a degenerate situation (same abscissae, cocircular points, . . .).

2. Apply resultant techniques to compute a polynomial of the input param-
eters that characterizes these configurations.

3. Exploit the geometric meaning of this resultant polynomial in order to
optimize the computations.

4. Deduce from the signs of the roots of this resultant polynomial (as a
polynomial in one of the parameters) the value of the predicate.

5. Use efficient arithmetic and filtering techniques to get an efficient imple-
mentation of the predicate.

In this approach, the value of the predicate depends on a combination of signs
of polynomials. The robustness of a geometric algorithm is clearly connected
to the algebraic degrees of the polynomials involved in the predicates it uses.
The maximum of these degrees has been proposed as a measure for algorithms
[LPT99].

We study this degree in the case of algorithms computing the intersections
of curve segments.

Such algorithms are based on some of the following predicates [BS99]:
a) x−order of endpoints
b) endpoint above or below curve
c) curve intersection test
d) orientation of three endpoints
e) x−order of endpoint and intersection point
f) intersect in slab
g) order of intersections on curve
h) x−order of intersections.

Predicates a, b, c, e, h, basic for classical plane sweep algorithms, are represented
on Figure 1.

Recent researches have been performed to propose algorithms that use a
restricted subset of predicates of low degrees [BP00, BP97, BS99, BV99]. Typ-
ically, one of the goals is to avoid predicates e) and h) because their degree is

2

x

a

c

e

h

b

Figure 1: Basic predicates for plane sweep.

known to be higher than the degree of a). This is true in particular for the most
extensively studied case: the case of line segments.

We focus in this paper on the basic predicates a), e) and h) and show in
Section 2 that, in the case of circle arcs, for an appropriate representation of the
data, they are equivalent. We prove that it is possible to compare exactly and
efficiently the abscissae of two intersection points between circle arcs (predicate
h), without computing these intersections.

To this aim, we use a general method based on resultants that allows us to
find an algebraic expression of this predicate, involving polynomials of degree at
most 12 in the data. We use the multivariate Bezoutian, introduced in Section 3,
to construct this resultant [EM99, BEM00]. This computation is performed in
Section 5 with the maple package multires

1. The resultant polynomial that we
obtain corresponds to a geometric condition, which should be a function of basic
intrinsic quantities (as asserted by the first fundamental theorem of invariants
[Wey39]). Indeed, moving back from algebra to geometry and using invariant
theory [KR84, Stu93], we express in Section 6 this resultant polynomial in terms
of basic invariants, for which we give a geometric interpretation. This compact
representation reduces the arithmetic complexity of the expressions whose sign
must be evaluated and speeds up their numerical evaluation.

Then we develop in Section 7 a strategy to answer our predicate, from the

1http://www.inria.fr/saga/logiciels/multires.html

3

signs of the coefficients of this resultant seen as a polynomial in one param-
eter, without necessarily evaluating completely the resultant. We show that,
depending on the configuration of the data, computing the signs of polynomials
of degrees 5, 6 or more, but never greater than 12, is sufficient.

The practical impacts of this approach are twofold. First, we show experi-
mentally that our method, though more complicated to describe, substantially
improves on the existing method (Section 3) of evaluation of the predicate, using
the same kind of arithmetic. Second, this method allows us to use the most effi-
cient filtering techniques [Pio99a], which does not apply with the other method.
More precisely an implementation of an exact predicate usually requires two
(or more) steps. In a first step, a filter (Section 8) computes approximations
of the polynomials and if these values are far enough from 0, the signs of the
polynomials can be determined safely; the higher the algebraic degree is, the
more often the filter fails to conclude at this first step. In a second step, only in
close to 0 cases, an exact computation is performed. We apply this technique
here and report on the improvement that we obtain in Section 9. The different
possibilities that we consider have been implemented in C++ with the Cgal

library2 (Computational Geometry Algorithms Library) [CGA99].

2 Representation of circle arcs

Circles and also circle arcs can be defined in several ways. A circle can be
described as passing through three points, or by its center and radius, or by
its Cartesian equation. . . For circle arcs the possibilities are even larger, for
example an arc can be defined by its two endpoints and a third point on the arc
in between.

However, in the computation of an arrangement of circle arcs, we need to
construct new arcs having their endpoints defined as intersections of original
arcs, and to represent these resulting arcs in the same way as the data in order
to be able to use them for further computations. This implies some restrictions
on the possible representations: using explicitly the endpoints in the arc rep-
resentation would imply the possibility of computing exactly these endpoints.
These exact computations are only possible using an arithmetic able of dealing
with square roots, which would be very costly.

That is why we propose another representation for circle arcs, whose funda-
mental property is to be stable by the operation that consists in cutting arcs
with other arcs: we define an arc to be supported by a circle and limited by
two lines (with some additional orientation conditions to distinguish between
all the arcs defined on a circle by two lines). The two endpoints are implicitly
represented as intersections between the circle and two lines.

A circle C is defined by the coordinates of its center Ω = (α, β) and its
squared radius γ. Its equation is C(x, y) = 0 where

C(x, y) = (x − α)2 + (y − β)2 − γ.

2http://www.cs.uu.nl/CGAL/

4

A line L is given by its equation L(x, y) = 0 where

L(x, y) = p x + q y + s.

(Parameters are supposed to be chosen so that circles, lines, and arcs are well
defined.)

We assume the data to be represented exactly, for instance as fixed sized
integers. Referring to the notion of algebraic degree, α, β, p and q are of degree
one and γ and s are of degree two.

In order to define unambiguously one vertex as C ∩L, we choose it to be the
leftmost or the rightmost of the two intersection points (Figure 2).

Let the arc A′ be the result of cutting one data arc A supported by circle C
by two other data arcs A1 and A2 respectively supported by circles C1 and C2.
Then A′ has the following representation: A′ is supported by the same circle
C, one of its two endpoints is defined as one of the intersections between C and
the radical axis of C and C1, and its second endpoint is an intersection of C with
the radical axis of C and C2 (Figure 3).

Note that when two circles are given by their equations C(x, y) = (x−α)2 +
(y − β)2 − γ and C1(x, y) = (x − α1)

2 + (y − β1)
2 − γ1, then the equation of

their radical axis is simply C − C1, which has the important property that its
coefficients are of degree one in the data. In this way, it can be represented
exactly without increasing the degree of the coefficients.

C

L2

L1

C ∩ L1,left

C ∩ L2,right

Ω

A

C ∩ L1,right

C ∩ L2,left

Figure 2: Representation of vertices.

Thus, predicates a), e), and h) are equivalent with this representation.

5

C1

C2

C

C − C1

C − C2

A

A′

A1

A2

Figure 3: Stability of the representation.

3 Naive methods for x−comparison

Predicate h) consists in comparing the abscissa of vertex M1 (leftmost or right-
most) of an arc A1 with the abscissa of vertex M2 of A2. Mi, i = 1, 2 is defined
by Ci and Li as in Section 2. Thus, the abscissa of Mi is given by one (the
smallest or the largest) of the solutions of the following second degree equation,
obtained by eliminating y from Ci and Li:

(p2
i +q2

i)x2−2 (q2
i αi−pi qi βi−pi si)x+(s2

i +2 qi si βi+q2
i α2

i +q2
i β2

i −q2
i γi) = 0

(1)
To compare the two abscissae of M1 and M2, we can solve the two preceding

equations, choose for each equation the correct solution, and compare them.
The expressions of the solutions involve square roots.

This naive method will be compared in Section 9 with the new method that
we propose in the sequel.

To avoid the computation of square roots, a natural idea [BS99] consists in
squaring expressions. To evaluate the sign of an expression E(u) with square
roots, the idea is to write the equation E(u) = 0. Then one square root is
isolated on one side of the equality sign and both members of the equation
are squared. The process is repeated as many times as necessary to eliminate
all square roots and to obtain a polynomial P (u) = 0. Unfortunately, this
squaring process creates new roots, and the two formulations are not equivalent:
E(u) = 0 =⇒ P (u) = 0 but P (u) = 0 6=⇒ E(u) = 0 and consequently the sign

6

of P (u) is not directly related to the sign of E(u).
A correct and careful use of this squaring technique would require the in-

troduction of extra polynomials to guarantee that expressions corresponding to
square roots are actually non negative, which would make the naive method
turn less naive and less easy to use and implement. In fact, it would give re-
sults similar to ours. Our method is as simple and more general. Moreover the
resultant formulation systematizes this hand-made approach.

4 Resultants

In this section, we recall the basic results of resultant theory3 [EM99, BEM00].
The general situation of resultant theory is the case where we have a system

of polynomial equations fc(x) = 0 depending on parameters denoted by c.
Loosely speaking, the resultant is the necessary and sufficient condition (if it
exists) on the parameters c such that the system of equations fc(x) = 0 has a
root x in a variety X . We will detail the case where X is the projective space
Pn hereafter, but it should be noticed that in practice we may need to consider
other cases for X [BEM00]. In order to compute this resultant, we will introduce
Bezoutian matrices which yield a way to compute it on general varieties X .

Considering the N coefficients c of our system also as variables and denoting
by n the dimension of X , the system fc(x) = 0 can be seen as a set of polyno-
mial equations in a space of dimension N +n. The resultant is the condition on
the N coefficients c such that there exists a point (c,x) satisfying this system
of equations fc(x) = 0. In other words, the resultant eliminates the variables x.
This is why it was originally called polynme liminant [Mui60]. Geometrically
speaking, it is the equation of the projection of the set of solutions from the
space of dimension N + n to the space of coefficients of dimension N . That is
also the reason why it has many applications in Effective Algebraic Geometry
[EM99]. One of them is of course polynomial system solving by projecting the
set of solutions on a line and by solving a univariate polynomial (or equivalently
an eigenvalue problem). In this paper, we present yet another application of re-
sultants to computational geometry and more precisely to the design of certified
geometric predicates.

4.1 Resultant over Pn

The situation that we will need to consider is the classical case of resultant over
the projective space. We consider the n + 1 homogeneous polynomials:

fc(x) =

f0(x) =
∑

|α|=d0
c0,αxα

...
fn(x) =

∑

|α|=dn
cn,αxα

(2)

where

3The reader who is not familiar with this subject may skip this part, but he must be aware
that sooner or later he may have to come across it again.

7

• c = (ci,α)i,α are parameters,

• x = (x0, . . . , xn) is a point of the projective space Pn of dimension n.

• for α = (α0, . . . , αn) ∈ Nn, xα denotes xα0

0 · · ·xαn

n and |α| = α0+ · · ·+αn,.

Definition 1 The projective resultant ResPn(fc) is the necessary and sufficient
condition on c such that the homogeneous polynomials f0, . . . , fn have a common
root in Pn.

It is a multi-homogeneous polynomial of degree
∏

j 6=i dj in the coefficients of
each fi.

The computation of resultants typically relies on obtaining matrices whose
determinant is either the exact resultant polynomial or, more generally, a non-
trivial multiple of it. In addition, for solving polynomial systems these matrices
are sufficient, since they reduce the given nonlinear problem to a question in
linear algebra. In the next section, we present one construction of such matrices,
which has the advantage to apply for a large class of resultants.

4.2 Multivariate Bezoutians

The multivariate Bezoutian gives a method to compute the resultant over Pn

as explained now. One of the advantages of this tool, compared with Macaulay
or the Toric formulations is that it can be generalized easily to a wide range of
varieties [BEM00]. We recall here its definition, which generalizes the univariate
case considered by Bzout [EM98].

Definition 2 Let f̃0, f̃1, . . . , f̃n be n+1 polynomials in the variables x̃ = (x1, . . . , xn)
with coefficients in a ring K. Their Bezoutian Θf̃0,f̃1,...,f̃n

is the polynomial in
x̃ and ỹ defined by:

Θf̃0,f̃1,...,f̃n
(x̃, ỹ) =

∣

∣

∣

∣

∣

∣

∣

f̃0(x̃) Θ1(f̃0)(x̃, ỹ) . . . Θn(f̃0)(x̃, ỹ)
...

...
...

f̃n(x̃) Θ1(f̃n)(x̃, ỹ) . . . Θn(f̃n)(x̃, ỹ)

∣

∣

∣

∣

∣

∣

∣

,

where

Θi(f̃j)(x̃, ỹ) =
f̃j(y1, . . . , yi−1, xi, . . . , xn) − f̃j(y1, . . . , yi, xi+1, . . . , xn)

xi − yi

for i = 1, . . . , n and j = 0, . . . , n.
Let Θf̃0,f̃1,...,f̃n

(x̃, ỹ) =
∑

λα,β x̃αỹβ , λα,β ∈ K be the decomposition of the
Bezoutian. We order the monomials that appear in Θf̃0,f̃1,...,f̃n

. The Bezoutian

matrix of f̃0, . . . , f̃n is the matrix Bf̃0,...,f̃n
= (λα,β)α,β. Its entries are in K.

The Bezoutian was used by Bzout to construct the resultant of two polynomials
in one variable. It is possible to recover the general resultant of n + 1 homo-
geneous polynomials f0, . . . , fn over Pn, from the Bezoutian matrices, as shown
by the next theorem.

8

Theorem 3 For i = 0, . . . , n, let f̃i(x1, . . . , xn) = fi(1, x1, . . . , xn). Any maxi-
mal non-zero minor of the Bezoutian matrix Bf̃0,...,f̃n

is divisible by the resultant
ResPn(f0, . . . , fn).

Proof: The proof is a particular case of theorem 3.4 of Bus et al.[BEM00]. (We
use the polynomial map σ : Kn → Pn such that (t1, . . . , tn) 7→ (1 : t1 : . . . : tn).)

In practice, in order to compute a maximal minor of Bf̃0,...,f̃n
, we apply the

fraction-free Gaussian elimination [GCL92] also known as Bareiss method. This
method gives a matrix in a triangular form whose coefficients in the last non-
zero line are maximal minors of the original matrix. By computing the GCD of
the non-zero elements of this last line, we get a multiple of the resultant.

We illustrate this construction by a small example, worked out in Maple
with the package multires

> read multires;

> f0 := u[0]+u[1]*x[1]+u[2]*x[2];

> f1 := 13*x[1]^2+8*x[1]*x[2]+4*x[2]^2-8*x[1]-8*x[2]+2;

> f2 := x[1]^2+x[1]*x[2]-x[1]-1/6;

> Theta([f0,f1,f2],[x[1],x[2]]);

Here is the polynomial in x̃ and ỹ:

−4u0y1y2 + 5 u0y1

2 +

„

4u0 −
2

3
u1

«

y2 +

„

8u0 −
10

3
u1 +

25

6
u2

«

y1 +

„

4

3
u1 − 8u0 −

10

3
u2

«

+
`

−4u1y1y2 + 5 u1y1
2
− 4u0y2 + (8 u1 + 5 u2 + 5 u0) y1 +

`

8u0 + 25

6
u2

´´

x1

+
`

−4u2y1y2 + 5 u2y1
2 + (4u2 − 4u0) y2 + (8u1 − 4u0) y1 +

`

10

3
u2 + 12 u0 −

2

3
u1

´´

x2

+ (−4u2y2 − 4u1y1 − 4u0) x1x2 + (−4u2y2 − 4 u1y1 − 4u0)x2
2

and the corresponding Bezoutian matrix:
> mbezout([u[0]+u[1]*x[1]+u[2]*x[2],f1,f2],[x[1],x[2]]);

2

6

6

6

6

6

6

6

6

4

−4u0 5u0 4 u0 −
2

3
u1 8u0 −

10

3
u1 + 25

6
u2 4/3 u1 − 8u0 −

10

3
u2

−4u1 5u1 −4u0 8u1 + 5 u2 + 5 u0 8u0 + 25

6
u2

−4u2 5u2 −4u0 + 4 u2 8u1 − 4 u0 −
2

3
u1 + 10

3
u2 + 12 u0

0 0 −4u2 −4u1 −4u0

0 0 −4u2 −4u1 −4u0

3

7

7

7

7

7

7

7

7

5

One of its non-zero maximal minors is:
> factor(det(submatrix(",1..4,2..5)));

5

11664

„

u0 +
1

3
u1 +

7

6
u2

«2 „

u0 −
1

3
u1 +

5

6
u2

«2

(3)

In this particular case, the vanishing of this polynomial is the necessary and
sufficient condition on the parameters u such that f0, f1, f2 have a common
root. Indeed the geometric picture for the polynomials f1, f2 is as follows:

9

-1

0

1

2

3

y

-2 -1 1 2
x

Their common points are (1
3
, 7

6
), (− 1

3
, 5

6
) with multiplicity 2 and the polynomial

(3) is just the condition that the linear form f0 passes through one of these
points, taking into account their multiplicities.

5 Application of resultants to x−comparison of

intersections

We now illustrate the use of resultants for the arrangement of circle arcs. This
method can be generalized to many other situations involving algebraic objects
(for instance conics). The predicate that we are considering is the relative
position of the abscissae of the vertices of two circle arcs. The primal idea
is that the relative position of the vertices can be decided from the sign of a
polynomial in the input parameters which vanishes when two of these points
have the same abscissae. In fact, this idea does not yield directly the required
polynomial and needs to be elaborated a little more as follows: we introduce a
new parameter of translation t along the x-axis as one of the input parameters.
Then, we compute the resultant of the polynomial equations corresponding to
equal abscissae using the Bezoutian formulation, and we obtain a polynomial
P (t) whose coefficients are polynomials in the parameters of the circle arcs.

As we will see, this polynomial is of degree 4 with 4 reals roots, which is not
surprising since there are obviously 4 translations such that one of the abscissae
of one arc coincides with one of the abscissae of the second arc. The signs of the
roots of this polynomial will give us the relative configurations of the two arcs.
We will use the sign of the coefficients of this polynomial in t to determine the
signs of the roots and thus the configuration of these two circle arcs.

This yields a method for x−comparison, in which the signs of some poly-
nomial coefficients must be evaluated. This method, which seems to be more
complicated than the naive one (section 3), allows us to use static and semi-
static filters and thus to speed up the computation as we will see. Moreover it
can be generalized to higher degree curves.

As explained previously, we must compare the abscissae of two vertices of the
circle arcs A1 and A2. Since a vertex is chosen on each arc, we can consider only
one line per arc: the line defining the vertex we are interested in. The vertex is
thus defined as the leftmost or rightmost intersection of circle Ci(x, y) = 0 and
line Li(x, y) = 0. More precisely, M l

i (resp. M r
i) denotes the leftmost (resp.

10

t

At
2

l2 r2

M l t
2

A1

L1

M l
1

M r
1

A2

L2

l1 r1

M l
2

M r
2

Figure 4: Translation

11

rightmost) intersection between Ci and Li, for i = 1, 2, and li (resp. ri) denotes
the abscissa of M l

i (resp. M r
i) (see Figure 4).

We translate the arc A1 by t in the x direction. The endpoints of this
translated arc At

1 are defined by the equations C1(x+t, y) = 0 and L1(x+t, y) =
0. We remark that two of the abscissae of the vertices of At

1 and A2 coincide if
and only if the system

C1(x + t, y) = 0
L1(x + t, y) = 0
C2(x, z) = 0
L2(x, z) = 0

has a solution in x, y, z. It is a system of 4 equations in 3 unknowns, for which
the resultant theory over Pn can be applied (see section 3). To compute this
resultant, we first compute the Bzout matrix with Maple using the multires

package.
> C1:= (x+t-alpha1)^2 + (y-beta1)^2 - gamma1:

> L1:= p1*(x+t) + q1*y + s1:

> C2:= (x-beta2)^2 + (z-beta2)^2 - gamma2:

> L2:= p2*x + q2*z + s2:

> Bez:= mbezout([C1,L1,C2,L2],[x,y,z]);

Bez is a 7×7 matrix in the parameters (α1, β1, α2, β2, γ1, γ2, p1, p2, q1, q2, s1, s2),
on which we apply fraction-free Gaussian elimination.
> Gau:= ffgausselim(Bez);

The matrix Gau has the following form:

∗ ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
...

...
. . .

...
...

0 0 0 Gn,n ∗
0 0 0 0 0

The element Gn,n is a maximal minor of the Bzout matrix and therefore a mul-
tiple of the resultant. Factoring out Gn,n and removing the extraneous factors,
we get an irreducible polynomial P (t), which is of degree 4 in t. Consequently
it is the resultant of the polynomial system.

P (t) = P0t
4 + P1t

3 + P2t
2 + P3t + P4.

P0, . . . , P4 are polynomials of respective degrees 8, 9, 10, 11 and 12, in the
parameters α1, β1, α2, β2, γ1, γ2, p1, p2, q1, q2, s1, s2 where γ1, γ2, s1, and s2

are considered of degree 2 (see Section 2). The expansion of P contains 659
monomials. It is not given here.

Remark: Another approach would have consisted in computing the quadratic
equation giving the abscissae of the vertex for each circle arc, as in Section 3. It

12

is obtained by elimination of y in the equations Ci(x, y) = 0 and line Li(x, y) = 0,
using the classical Sylvester resultant, which yields two equations of the form

Qi(x, 1) = 0, i = 1, 2

(see Equation (1) in Section 3) where

Qi(v, w) = Ai v2 − 2 Bi v w + Ci w2, i = 1, 2. (4)

Eliminating x in these two quadratic equations (again using Sylvester re-
sultant) also yields a multiple of the polynomial P . Though this approach
is conceptually simpler to understand, it does not apply for general geomet-
ric predicates. On the contrary the methodology that we describe here, which
eliminates the variables in one step, can be generalized to other cases, which
explains why we presented these general tools.

6 Reducing the degrees

In this section, we show that classical invariant theory considerations allow us
to rewrite the polynomials Pi, i = 0, . . . , 4 in a simpler way.

The resultant is known to be the polynomial in the input parameters having
minimal degree among the polynomials giving conditions so that the endpoints
abscissae are equal. However, its coefficients can be expressed in a more compact
form. We will see in Section 7 that the signs of the coefficients play a central
role in the method. These signs will be trivially deduced from the signs of the
factors.

Using Maple, we can simplify the expressions of the coefficients Pi, i =
0, . . . , 4:

P0 = A2
1 A2

2

P1 = 4 A1 A2 J

P2 = 4 J2 + 2 A1 A2 K

P3 = 4 J K

P4 = K2 − 4 I1 I2 = −4JJ ′ + J ′′2

where:
−1− A1 = p2

1 + q2
1

A2 = p2
2 + q2

2

−2− B1 = q2
1 α1 − p1 s1 − p1 q1 β1

B2 = q2
2 α2 − p2 s2 − p2 q2 β2

−3− C1 = s2
1 + 2 q1 s1 β1 + q2

1 α2
1 + q2

1 β2
1 − q2

1 γ1

C2 = s2
2 + 2 q2 s2 β2 + q2

2 α2
2 + q2

2 β2
2 − q2

2 γ2

are the coefficients of the two binary forms Q1(v, w) and Q2(v, w) defined by
Equation 4 in Section 5, and:

13

−4− I1 = B2
1 − A1 C1

I2 = B2
2 − A2 C2

−5− J = A1 B2 − A2 B1

J ′ = B1 C2 − B2 C1

J ′′ = A1 C2 − A2 C1

−6− K = C1 A2 + A1 C2 − 2 B1 B2.

The polynomials I1, I2 and K are the classical invariants [Dix90, MS93,
Stu93] by the action of SL2(C) (subgroup of GL(C2) of matrices of determinant
1) of Q1(v, w) and Q2(v, w).

The polynomial J (resp. J ′) is an invariant of the same forms by translations
(v, w) 7→ (v+aw, w) (resp. (v, w) 7→ (v, w+bv)). Though J ′′ is not an invariant,
this notation is used because of the similarity of its expression with those of J
and J ′.

With this representation, we now need 80 arithmetic operations in order to
evaluate P (t) instead of 659 × 13 = 9048 arithmetic operations for the initial
monomial expansion.

Geometric interpretation of the algebraic expressions

Though these expressions are obtained by algebraic methods, they still have a
geometric meaning.

−1− Interpreting Ai, i = 1, 2 is straightforward: it is the squared norm of
the vector (pi, qi) orthogonal to line Li.

−2, 3− As already noticed, Qi(x, 1) = Ai x2 − 2 Bi x + Ci is the polynomial
whose roots are the abscissae li and ri. So, we get trivially:

Bi/Ai =
li + ri

2

and
Ci/Ai = li · ri.

Looking back to the data, Bi/Ai can also be seen as the abscissa of the
projection of the center Ωi of Ci onto Li.

It is interesting to notice that Ci/Ai is related to the power of the point Pi,
intersection between Li and the y axis, with respect to circle Ci. Indeed, with
the notation defined in Figure 5, we have

Ci/Ai = li · ri

= ‖PiM
r
i ‖ · ‖PiM

l
i‖ · cos2 θi

= ‖PiM
r
i ‖ · ‖PiM

l
i‖ ·

q2
i

p2
i + q2

i

thus
Ci = power (Pi, Ci) · q2

i ,

14

which can also be written as

Ci = ‖PiTi‖2 · q2
i

if Pi is outside circle Ci.

Pi

M l
i

M r
i

Li

Ci

θi

li ri
li+ri

2

y

x

Ti

Ωi

Figure 5: Notation

−4− Let us now examine the invariants Ii = B2
i − Ai Ci, i = 1, 2. They

depend respectively on one circle arc: Ii is the discriminant of Qi. Let d(Ωi,Li)
be the distance from the center Ωi = (αi, βi) of Ci to Li. We have

d(Ωi,Li)
2 =

(pi αi + qi βi + si)
2

p2
i + q2

i

.

The reader will easily check that

Ii = (γi − d(Ωi,Li)
2)Ai q2

i

from which it is clear that Ci and Li intersect if and only if Ii > 0 (remember
that γi is the squared radius of Ci) which is necessary for the circle arc to be
defined. We also notice that Ii = 0 if and only if Li is tangent to Ci, ie. M l

i = M r
i

or ri = li, which appears clearly in the following expression:

√

Ii/Ai =
ri − li

2
.

−5− The polynomial J is an invariant relating the two forms Q1 and Q2.

J = A1 B2 − A2 B1

15

= A1 A2

(

B2

A2

− B1

A1

)

= A1 A2

(

l2 + r2

2
− l1 + r1

2

)

.

Thus J/(A1 A2) is the signed distance between the respective projections of the
midpoints of [M l

1, M
r
1] and [M l

2, M
r
2] onto the horizontal axis.

The invariant J ′ is obtained from Q1(v, w) and Q2(v, w) in the same way as
J , exchanging the roles of v and w. So,

J ′ = C1 C2

(

1
l1

+ 1
r1

2
−

1
l2

+ 1
r2

2

)

= A1 A2 l1r1l2r2

(

1
l1

+ 1
r1

2
−

1
l2

+ 1
r2

2

)

.

Though J ′′ is not an invariant, it can be easily expressed in terms of the
abscissae of the arcs endpoints.

J ′′ = A1 C2 − A2 C1

= A1 A2 (C2/A2 − C1/A1)

= A1 A2 (l2 r2 − l1 r1).

−6− Finding a simple geometric meaning for K is more tricky. As J , K
depends on both Q1 and Q2.

K = C1 A2 + A1 C2 − 2 B1 B2

= A1 A2

(

C1

A1

+
C2

A2

− 2
B1

A1

B2

A2

)

= A1 A2

(

l1r1 + l2r2 − 2
l1 + r1

2

l2 + r2

2

)

It can be noticed [Dix90] that K = 0 if and only if the points (l1, r1, l2, r2) on
the x axis form an harmonic division. Indeed, if we denote by [l1, r1; l2, r2] the
cross ratio of the four points in this order, the reader will easily check that

[l1, r1; l2, r2] =
(l2 − l1)(r2 − r1)

(l2 − r1)(r2 − l1)
(definition)

=
K + 2

√
I1 I2

K − 2
√

I1 I2

which gives
K = 0 ⇐⇒ [l1, r1; l2, r2] = −1

It is worth noticing that, since P4 = K2 − 4 I1 I2, the sign of P4 is the same
as the sign of [l1, r1; l2, r2]. So, the sign of P4 can be interpreted in terms of the
ordering of the points l1, r1, l2, r2 on the x-axis.

16

L1C1

B1

A1

y

x

√

C1

q2

1

√
I1

A1

J
A1 A2

C2
L2

Figure 6: Geometric interpretation

17

7 Resultant and comparison of abscissae

We are now given a polynomial P whose four roots give the translations that
make the abscissae of an endpoint of A1 and an endpoint of A2 coincide.

We classify here the different possible configurations of the two arcs (see
Figure 7) and relate them with the number of positive roots of P .

r2

r2

case 1 case 2 case 3a

case 3b case 4 case 5

l1

r1

l1

r1

l1

r1

l1

r1

l1

r1

l2

r2

l2 l2
l1

r1

l2

r2

l2

r2

l2

r2

Figure 7: All the configurations

Case 1 l1 < r1 < l2 < r2 4 positive roots
Case 2 l1 < l2 < r1 < r2 3 positive roots
Case 3a l1 < l2 < r2 < r1 2 positive roots
Case 3b l2 < l1 < r1 < r2 2 positive roots
Case 4 l2 < l1 < r2 < r1 1 positive root
Case 5 l2 < r2 < l1 < r1 0 positive root

Thus, except for the cases 3a and 3b, the number of positive roots of P gives
all the necessary information on the x-order of the endpoints of the arcs.

We now remark that we are only interested in comparing two abscissae, say
l1 and l2, so, the complete determination of the case is not necessary, since
l1 < l2 if we are in Cases 1, 2 or 3a and l2 < l1 otherwise.

Descartes rule specifies that the number of sign changes in the coefficients
P0, P1, P2, P3 and P4 of P is an upper bound for the number of positive roots of
P [Usp48]. In the case where all the roots of P are real, Descartes rule gives in
fact the exact number of positive roots. Indeed, if the number of sign changes is
σ, by applying the Descartes rule to P (−t), we get that the number of negative
roots is less than degree(P)−σ, and thus if all the roots of P are real, Descartes
rule gives exactly the number of positive and negative roots.

We thus summarize in the following table the different possibilities of sign
sequences in the coefficients of P . Some sign sequences are impossible: more
precisely, we know that P0 > 0, and if P2 < 0 then we can deduce that K < 0 and
thus that P1 and P3 have opposite signs. Thus only 12 possible sign sequences

18

can occur. The second row of the table gives polynomials having the same sign
as Pi.

P0 P1 P2 P3 P4 sign changes config
J K + (. . .)2 JK −JJ ′ + (. . .)2

+ + + + + 0 1
+ + + + − 1 2
+ + + − − 1 2
+ + − − − 1 2
+ + + − + 2 3
+ + − − + 2 3
+ − + + + 2 3
+ − − + + 2 3
+ − + + − 3 4
+ − + − − 3 4
+ − − + − 3 4
+ − + − + 4 5

To distinguish between Cases 3a and 3b, which both correspond to two
positive roots for P , we can compute the difference between the horizontal
squared lengths of the segments.

D =
1

4
A2

1A
2
2

(

(r1 − l1)
2 − (r2 − l2)

2
)

= I1 A2
2 − I2 A2

1.

As noticed above, we are not interested in the whole order on the four
endpoints of A1 and A2 but in comparing a given endpoint of A1 with one of
A2. To make this comparison, computing the signs of all the coefficients of P
is not always necessary. We use the following observations:

• P0 is positive,

• P1 has the same sign as J (which is simpler),

• when J has been computed, knowing the sign of P3 is equivalent to know-
ing the sign of K,

• if K is is positive then P2 is necessarily positive,

• if J ′ and J have opposite signs, then P4 is positive.

Using these facts, Figure 8 describes an evaluation strategy for comparing r1

and l2, using if possible only the evaluation of small degree expressions. Com-
paring l1 and r2 is similar. Figure 9 deals with the comparison of l1 and l2 which
is similar to comparing r1 with r2. In both figures, for each new polynomial to
evaluate, we give its degree and the number of arithmetic operations (additions,
multiplications) needed to evaluate it; of course this number of operations de-
pends on the number of expressions that were previously computed and that
are reused. These numbers measure respectively the time and the precision of
the computation.

19

J

+−
P1 > 0

K

+− P2, P3 > 0

Case 1,2,3

Case 1,2

P3 < 0

Case 2,3

+−
P4 > 0

+−
P4

r1 < l2

Case 1,2Case 1

Case 1Case 2

r1 > l2

r1 > l2

r1 < l2

P1 < 0

r1 > l2

Case 3,4,5

Z

+−

degree of Z

nb of operations to get Z

521

28 6

3 7

7 12

J
′

Figure 8: Strategy of predicate evaluation for comparing r1 and l2

20

J

+−
P1 > 0

Case 1,2,3

P1 < 0

Case 3,4,5

K

+−
P3 > 0

Case 3,4

D

+−

P2 > 0; P3 < 0

Case 4,5

Case 3b4

+−
P4 > 0

l1 > l2

Case 3a

+−

Case 4

P4

Case 3a,4

l1 > l2

l1 < l2

l1 > l2

K

+−
P2, P3 > 0

l1 < l2

Case 1,2

D

+−

P3 < 0

Case 2,3

l1 < l2

Case 2,3a

+−
P4 > 0

l1 > l2

Case 3b

+−

Case 3bCase 2

P4

Case 2,3b

l1 > l2l1 < l2l1 < l2

Case 3a

21 5

28 6

13 10

3 7

4 12

6

10

7

12

28

13

3

4

J ′J ′

Figure 9: Strategy of predicate evaluation for comparing l1 and l2

21

8 Arithmetic filters

To implement the predicates described in the previous section, we need to be
able to compute the signs of various polynomial expressions exactly.

If we assume, as in Section 2, that the data are fixed sized integers, these
computations can be done exactly using some library for exact computation on
integers or other suitable number types. However, computing the exact value of
an expression with many digits when we are only interested in its sign appears
to be a waste in many cases.

A filtering strategy for the evaluation of such predicates [Yap97] has been
developed in geometric computing and is detailed in the sequel. Let us assume
that the sign of a polynomial expression Z(u) must be evaluated (in our case
Z is one of our polynomials, J for example), where u denotes its parameters,
(u = (α1, β1, p1, q1, s1, α2, β2, p2, q2, s2) in the case of J). The basic idea is

to compute an approximate value Ẑ(u) together with a certified error ε(Z,u)

on this approximation, which is cheap. If |Ẑ(u)| ≥ ε(Z,u), then the signs of

Z(u) and Ẑ(u) are guaranteed to be the same and the predicate answers safely;
otherwise exact computation is performed.

Different kinds of filters can be used, depending on the kind of error compu-
tation used.

8.1 Static filter

If an upper bound is known on the input u of the predicate Z, it is possible
to compute a worst case error which does not depend on u. This error can be
computed in advance and only once for all possible calls of the predicate, we
call it the static error and denote it by ε(Z).

In our implementation, we will assume that our parameters are integers such
that |αi|, |βi| ≤ 222, |pi|, |qi| ≤ 224, |γi| ≤ 244 and |si| ≤ 247. These numbers
are stored as double according to IEEE 754 standard [IEE85] and rounded

computation is used to compute Ẑ(u). With such hypotheses we can compute,
for any polynomial expression Z, an upper bound M(Z) and a maximal error
ε(Z).

More formally, we apply the rules:

• M(Z⊥Z ′) = M(Z)⊥M(Z ′) and

• ε(Z⊥Z ′) = ε(Z)ε(Z ′)⊥ 2−54 ⌈⌈M(Z⊥Z ′)⌉⌉

where ⊥ is either the addition or the multiplication and ⌈⌈V ⌉⌉ denotes the
smallest power of two that is greater than V .

We get in this way an upper bound and an error depending only on Z:

∀u, |Z(u)| ≤ M(Z) and |Z(u) − Ẑ(u)| ≤ ε(Z).
The table of Section 8.2 gives the degree d(Z), the upper bound M(Z) and

the static error ε(Z) for all the polynomials Z involved in our predicates. Such

22

Z J K J ′ D P4=K2
− 4I1I2 P4=−4JJ ′ + J ′′2

d(Z) 5 6 7 10 12 12
M(Z) 5.32 1036 1.12 1044 5.62 1050 3.54 1073 1.65 1088 2.48 1088

ε(Z) 1.26 1021 3.97 1028 2.26 1035 1.53 1058 1.28 1073 2.01 1073

τ(Z) 4.5 10−16 7.8 10−16 1.0 10−15 6.7 10−16 1.5 10−15 1.8 10−15

a static filter, when it succeeds, introduces no extra cost with respect to the
rounded computation since the errors are computed off line.

8.2 Semi-static filter

The static filter fails when |Ẑ(u)| is small. This occurs either when the config-
uration is almost degenerate or when the known upper bound on the input u

was over-estimated. Then, another error bound on the approximation Ẑ(u) will
be computed, not using this bound on u. In the case when the configuration
is very close to degenerate, this error will still not allow us to conclude on the
sign of Z(u), and this filter will also fail.

One way for computing a semi-static error consists in computing a polyno-
mial Z such that applying Z to the absolute value |u| of the input yields an
upper bound Z(|u|) on Z(u), tighter than M(Z). This new polynomial can
be used to get an error bound τ(Z)Z(|u|) better than ε(Z), where the relative
error τ(Z) is computed off line and depends only on Z. Using the similarity
between Z and Z often allows a fast computation of Z(u) and Z(u).

More formally we have:

• Z + Z ′ = Z + Z ′, Z − Z ′ = Z + Z ′, Z · Z ′ = Z · Z ′,

• and using IEEE 754 standard: τ(Z+Z ′) = τ(Z−Z ′) = max (τ(Z), τ(Z ′))+
2−53 and τ(Z · Z ′) = τ(Z) + τ(Z ′) + 2−53.

The table gives the values of τ for the different polynomials involved in our
predicates.

8.3 Dynamic filter

The above techniques can be used only for polynomial expressions on integers
bounded by some constants known in advance. A simpler technique consists
in using some interval arithmetic package to perform the evaluation of Z(u).

Then the result Ẑ(u) comes in the form of an interval which is guaranteed to

contain the exact value Z(u). Thus, if 0 6∈ Ẑ(u), the predicate can answer
safely, otherwise some exact computation must be performed.

These kind of error computation is more expensive than the previous ones
but gives also a tighter evaluation of Z(u) and thus the number of cases filtered
out should be greater. This dynamic filtering can be used in case of failure of
the static filter.

23

9 Benchmarks

Arithmetics

We tested our strategy and the naive method of Section 3. To this aim we used
different kinds of arithmetics and filters:

double means rounded computation of the computer. Times are given
as reference, but in difficult situations, the result of the predi-
cate is doubtful.

real stands for the leda real type provided in the LEDA library.
It supports the four operations and square root. It contains
its own filter which makes some error computation and can
evaluate signs exactly.

GMP or Gnu Multi-precision Package provides exact integer arith-
metic.

Interval is the interval arithmetic package available in Cgal library [Pio99a,
Pio99b].

static means static filtering as described in Section 8 assuming bounds
on the input data.

semi-static means semi-static filtering, described in Section 8 too.

Since the expression of the naive predicate contains division and square root,
when no algebraic manipulation is performed on it, it can be evaluated only with
“Interval” and “real”.

The polynomial method can be used with all the arithmetics above. When
some filter fails to certify the answer, we switch to another technique.

Input data

We have tested several kinds of data generated as follows:

rnd22 We pick at random in [−M, M]2 three points Γ, Γ′ and P with
M = 222, and construct one of the two arcs defined by the
circle of center Γ passing through P and by the radical axis of
the two circles respectively centered at Γ and Γ′ and passing
through P . Then, we test if P is the right or left endpoint of
the arc and we keep the arc if it matches our needs.

The two arcs involved in the predicate are generated indepen-
dently.

rnd16 Same as above with M = 216. Such an example gives evidence
of the efficiency of the semi-static filter in situations where the
upper bounds on data are not tight.

degenerate Same as above (with M = 222), except that the two arcs are
not independent, the two points “P” have the same abscissa.

24

almost Same as the previous one except that the squared radius of the
first circle is incremented by one. Thus one of the arc does not
end at P but near P .

Results

Time performances have been measured with the Unix command clock. We
have used a PC-Linux with Pentium-III 500MHz (the compiler is g++ 2.95.1

with option -O2 -mcpu=pentiumpro -march=pentiumpro). Times are given
in µs per predicate evaluation. We also give the percentage of success of the
different kinds of filters.

The time for computing with double numbers is given as a reference, but of
course the results are false in the case of difficult input. We give the percentage
of exactness of the predicate with double. Since this double version of the
predicate obviously does not allow to know if a given evaluation is exact or not,
we used an exact version to determine this percentage of success.

We give also the percentage of success of the different filtering techniques.

25

Naive method

Times
Data double real Interval

+real

µs µs µs
rnd22 0.60 23.8 2.48

l1 ≤ r2? rnd16 0.60 23.1 2.48
almost 0.60 136. 67.
degenerate 0.60 2140. 2170.
rnd22 0.60 23.2 2.45

l1 ≤ l2? rnd16 0.60 22.6 2.45
almost 0.60 124. 38.1
degenerate 0.60 2145. 2180.

Polynomial method

Times
double real GMP Interval Interval static static static static

+ + + + + +
real GMP Interval semi-static semi-static semi-static

Data + + + +
real Interval Interval naive Interval

+ + +
real GMP GMP

µs µs µs µs µs µs µs µs µs

rnd22 0.25 20 82 1.50 1.50 0.35 0.36 0.36 0.36
l1 ≤ r2? rnd16 0.25 19 78 1.50 1.50 1.40 0.41 0.41 0.41

almost 0.25 320 115 229. 25. 230. 227. 24.3 6.80
degenerate 0.25 1880 115 1890. 129. 1900. 1900. 129. 128.

rnd22 0.28 27 107 1.92 1.92 0.70 0.45 0.46 0.44
l1 ≤ l2? rnd16 0.28 27 102 1.92 1.92 2.11 0.57 0.56 0.56

almost 0.28 176 130 104. 12.4 105. 105. 13. 5.64
degenerate 0.28 2240 130 2250. 150. 2262. 2250. 148. 144.

Naive method Polynomial method

Exactness Success Exactness Success
Data double Interval exact double static semi-static Interval exact

% % % % % % % %
rnd22 100 100 100 100 99 100 100 100

l1 ≤ r2? rnd16 100 100 100 100 40 100 100 100
almost 99 96 100 78 0 60 82 100
degenerate 8 0 100 17 0 0 0 100
rnd22 100 100 100 100 84 100 100 100

l1 ≤ l2? rnd16 100 100 100 100 7 100 100 100
almost 99 98 100 99 0 75 93 100
degenerate 7 0 100 5 0 0 0 100

The tables show clearly that the polynomial method gives better running
times than the naive method even if we use the same arithmetic. Furthermore,

26

the polynomial method allows us to use faster filtering techniques and integer
arithmetic for exact computation.

If we compare the static + semi-static + interval + GMP scheme in the
polynomial method with the interval + real combination in the naive method,
we are 6 times faster in general situations and 15 times faster in degenerate
situations. If we compare our strategy to the hazardous double evaluation, the
time penalty is really small and even an exact evaluation with our strategy is
cheaper than an unsafe one using the naive method.

In almost degenerate cases, the dynamic filter using interval arithmetic has
a better success rate in the naive method than in the polynomial one. Thus
the best strategy is to use static and semi-static filtering to filter out easy cases
using the polynomial method, then to use interval arithmetic together with the
naive method, and in really difficult cases to use the polynomial method with
integer arithmetic.

10 Conclusion

In this paper we studied in detail a geometric predicate needed in the sweep
line algorithm for arrangement of circle arcs.

We have shown that techniques from algebraic geometry such as resultant
and Bezoutian provide polynomial formula for such predicates. These formulas
have been converted in an efficient algorithm for the predicate evaluation which
compared favorably to the usual naive evaluation of the predicate. Furthermore,
these formulas, as opposed to the naive ones, allow the use of more efficient filters
and arithmetics, which results in exactness and efficiency.

In this paper, we only benchmarked isolated predicates. In practice, the
predicates would be executed as a part of a whole algorithm. In a concrete
implementation, intersection points computed once with the naive method could
be stored and reused for several comparisons. However, dealing with robustness
issues would then require either computing every intersection point with an
exact number type such as real, in order to ensure that all comparisons will be
performed exactly, or other complex techniques such as filtered constructions
[FM00].

Acknowledgments. The authors would like to thank Sylvain Pion for helpful
discussions on arithmetic filters.

References

[BEM00] L. Busé, M. Elkadi, and B. Mourrain. Generalized resultant over
unirational algebraic varieties. J. of Symbolic Computation, 2000.

[BP97] J-D. Boissonnat and F. P. Preparata. Robust plane sweep for inter-
secting segments. Research Report 3270, INRIA, Sophia Antipolis,
September 1997.

27

[BP00] J.-D. Boissonnat and F. P. Preparata. Robust plane sweep for inter-
secting segments. SIAM J. Comput., 29(5):1401–1421, 2000.

[BS99] J-D. Boissonnat and J. Snoeyink. Efficient algorithms for line and
curve segment intersection using restricted predicates. In Proc. 15th
Annu. ACM Sympos. Comput. Geom., pages 370–379, 1999.

[BV99] J-D. Boissonnat and A. Vigneron. Elementary algorithms for report-
ing intersections of curve segments. Rapport de recherche, INRIA,
1999. to appear.

[CGA99] The CGAL Reference Manual, 1999. Release 2.0.

[Dix90] J. Dixmier. Quelques aspects de la théorie des invariants. Gazette des
mathématiques, 43:39–64, 1990.

[EM98] M. Elkadi and B. Mourrain. Some applications of bezoutians in effec-
tive algebraic geometry. Rapport de Recherche 3572, INRIA, 1998.

[EM99] I.Z. Emiris and B. Mourrain. Matrices in Elimination Theory. J. of
Symbolic Computation, 28(1&2):3–44, 1999.

[FM00] Stefan Funke and Kurt Mehlhorn. Look: A lazy object-oriented ker-
nel for geometric computation. In Proc. 16th Annu. ACM Sympos.
Comput. Geom., pages 156–165, 2000.

[GCL92] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer
Algebra. Kluwer Academic Publishers, Norwell, Massachusetts, 1992.

[IEE85] IEEE Standard for binary floating point arithmetic, ANSI/IEEE Std
754 − 1985. New York, NY, 1985. Reprinted in SIGPLAN Notices,
22(2):9–25, 1987.

[KR84] J. P.S. Kung and G-C. Rota. The invariant theory of binary
forms. Bulletin (New Series) of the American Mathematical Society,
10(1):27–85, 1984.

[LPT99] G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity
queries: An illustration of degree-driven algorithm design. SIAM J.
Comput., 28(3):864–889, 1999.

[MS93] B. Mourrain and N. Stolfi. The Hilbert series of invariants of Sln.
In G. Jacob, N.E. Oussous, and S. Steinberg, editors, IMACS SC’93,
pages 89–96, Lille (France), June 1993.

[Mui60] T. Muir. History of determinants. Dover reprints, 1960. 5 volumes.

[Pio99a] S. Pion. De la géométrie algorithmique au calcul géométrique. Thèse
de doctorat en sciences, Université de Nice-Sophia Antipolis, France,
1999.

28

[Pio99b] S. Pion. Interval arithmetic: an efficient implementation and an ap-
plication to computational geometry. In Workshop on Applications of
Interval Analysis to systems and Control, pages 99–110, 1999.

[Stu93] B. Sturmfels. Algorithms in Invariants Theory. RISC Series on Sym-
bolic Computation. Springer Verlag, Vienna, 1993.

[Usp48] J.Y. Uspensky. Theory of equations. Mac Graw Hill, 1948.

[Wey39] H. Weyl. The Classical Groups, their invariants and representations.
Princeton University Press, 1939.

[Yap97] C. Yap. Towards exact geometric computation. Comput. Geom. The-
ory Appl., 7(1):3–23, 1997.

29

