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Abstract. Numerical simulations using supercomputers are producing an
ever growing amount of data. Efficient production and analysis of these
data are the key to future discoveries. The in situ paradigm is emerging as
a promising solution to avoid the I/O bottleneck encountered in the file sys-
tem for both the simulation and the analytics by treating the data as soon
as they are produced in memory. Various strategies and implementations
have been proposed in the last years to support in situ treatments with
a low impact on the simulation performance. Yet, little efforts have been
made when it comes to perform in situ analytics with hybrid simulations
supporting accelerators like GPUs. In this article, we propose a study of
the in situ strategies with Gromacs, a molecular dynamic simulation code
supporting multi-GPUs, as our application target. We specifically focus
on the computational resources usage of the machine by the simulation
and the in situ analytics. We finally extend the usual in situ placement
strategies to the case of in situ analytics running on a GPU and study
their impact on both Gromacs performance and the resource usage of the
machine. We show in particular that running in situ analytics on the GPU
can be a more efficient solution than on the CPU especially when the CPU
is the bottleneck of the simulation.

Keywords: In situ Analysis; FlowVR; Graphics Processing Units; Gro-
macs.

1 Introduction

Large scale simulations are an important tool for scientists in various domains
such as biology, fluid dynamic, material science or astrophysics. Yet, it is be-
coming more and more challenging to analyze the ever growing amount of data
produced by these simulations. In 2010 already, a turbulence simulation (GTC
[13]) was producing 260GB of data every 2 minutes using only 16384 cores [33].
More recently, in biology, the complete atomistic model of the HIV capsid has
been determined [32]. Several simulations, each producing about 50TB of data for
a total of 1PB, were required to build this model.

In the Exascale era, it is estimated that less than 1% of the data produced by
simulation will be saved because of bandwidth constraints [19]. Writing raw data
to disks will no longer be viable because of the resulting loss of information.

The in situ paradigm is emerging as one promising solution to this problem.
The principle is to process data as close as possible to their source while data
still reside in memory [31]. Both the simulation and analytics benefit from this
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approach since they do not have to write/read to/from the file system. Although
this approach was initially designed for I/O, numerous applications are possible:
live visualization, statistics generation, feature tracking, simulation monitoring,
etc. However, setting up such analysis can be challenging. As both simulation
and analysis run concurrently, contention for the computational and network re-
sources can lead to significant degradations of the simulation performance. Several
strategies and systems have been proposed to mitigate this penalty in the last few
years.

Another benefit from in situ processing is to improve the global resource usage
of the machine. Usually, simulation codes cannot fully use and scale with all the
computational resources available on large parallel machines [35]. For instance,
running the GTS code on 512 cores using only 3 out of 4 cores per socket reduces
the simulation performances by only 2.7% compare to using all the available cores
[36]. For these cases, it can be more efficient to use the fourth core to run in
situ analytics to accelerate the analysis phase and therefore shorten the time to
discovery.

Efficiently using hybrid computational resources such as CPUs and accelerators
is even more challenging for simulation codes. In the last years, various leadership
parallel machines such as Tianhe-2 or BlueWaters have integrated accelerators
(GPUs, Xeon PHI). The future 150+ petaflop machine Summit at Oak Ridge Na-
tional Laboratory will also integrate GPUs in its architecture. These accelerators
offer a high Flops/Watt ratio that is required to reach Exascale. Several codes such
as NAMD [20] or Gromacs [11] have been adapted to benefit from these accelera-
tors and lead to significant speedups.Yet, in most cases, not all the computations
are performed on the accelerator. Consequently, there are some periods during the
simulation execution where the accelerator is idle leading to underused resources.

Significant efforts have been made by the community to propose in situ systems
with a low impact on the simulation performance. Yet, most of them focused on
simulations and analytics running only on CPUs [5, 7, 29, 35]. In this article, we
study current in situ strategies applied to hybrid simulations. Gromacs, a well
established molecular dynamics simulation package supporting multi-GPUs, is our
application target. We first study the usage of the computational resources by
Gromacs native during classical runs. Then we study the resource usage when in
situ analytics are running on the CPU using asynchronous time-partitioning and
helper core strategies. We rely on FlowVR [3, 7], a middleware for asynchronous in
situ/in transit applications, to implement these strategies. Finally, we adapt these
two strategies for in situ analytics running on GPUs and analyze the resource
usage. We show in particular that running in situ analytics on the GPU can be a
more efficient solution than on the CPU especially when the CPU is the bottleneck
of the simulation.

The rest of the article is organized as follow: we first discuss the related work
(Sec. 2); then, we present Gromacs and the framework used to perform our exper-
iments (Sec. 3). We present our experimental results (Sec. 4) and summarize our
findings (Sec. 5).

2 Related Work

In this section, we first present the systems and strategies to perform in situ
treatments. Then we present some use cases of treatments with GPUs in the
context of in situ or off-line processing.
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2.1 In situ Systems

One key design decision for in situ systems is the placement of analytics processing.
The most direct approach is to host the simulation and the analytics on the

same computational resources. This strategy, called time-partitioning, is usually
the easiest to implement. It can also enable the simulation and the analytics to
share data structures leading to a reduced memory footprint. Ma et al. [31] inte-
grated a volume rendering engine directly into the code of a turbulence simulation.
About 10% of the total execution time is spent in the rendering step. Common
visualization tools like Visit [30] or Paraview [9] have lightweight libraries to in-
strument the simulation. Their main purpose is to convert the simulation data
format to the VTK format before executing an analysis pipeline. Tu et al. [28]
propose a fully integrated solution with an earthquake simulation and the Her-
cules framework to perform in situ visualization. The only output is a set of JPEG
images. For these systems, the time spent running the analytics is directly added
to the simulation time. This approach can be very costly in both time and mem-
ory. A study has been proposed with Catalyst [18] on industrial simulations. With
commonly used analysis scenarios, they observed up to 30% of increased execution
time and up to 300% increased memory consumption because of data conversion
requirements. Goldrush [35] tackles the problem of the global execution time by
making the treatments asynchronous. To limit the impact of the asynchronous
treatments on the simulation run time, the treatments are scheduled when the
simulation is not using all the available cores (outside of an OpenMP section).The
goal is to improve the global resource usage of the machine by scheduling the
analysis when the resources are underused.

Other works propose dedicated resources to perform in situ analytics. This ap-
proach, called space-partitioning, allows asynchronous in situ analytics execution,
avoids some contention on the computational resource but requires at least one
data copy. Some systems, like Damaris [5], use dedicated cores (called helper cores)
on each simulation node to execute asynchronously the in situ analytics. Data are
copied from the simulation into a shared-memory space. Analytics can then read
and process data from this space asynchronously. Applications such as I/O or sci-
entific visualization with Visit [6] are then possible. The helper core strategy has
also been used by Functional Partitioning [16] and GePSeA [22] mainly to focus
on I/O operations.

Other systems propose to use a separate set of nodes (called staging nodes)
to execute analytics (called in transit analytics). PreData [33] is built within the
ADIOS framework [17] and allows to execute lightweight in situ operations before
moving the data to staging nodes. Data are then processed in transit using a
Map/Reduce like model. DataTap is used to schedule the data transfer when the
simulation is in a computation phase and is not using the network card extensively.
HDF5/DMS [23] uses the HDF5 interface to capture the data and store them in a
distributed shared memory space. Other applications can then read the data with
the read HDF5 API usually on a different set of nodes. DataSpaces [4] implements
a distributed publish/subscribe system. The simulation pushes data in a indexed
distributed space and other treatments retrieve the necessary data.

More recently, hybrid systems combining both in situ (synchronous or not)
and in transit treatments have emerged. Fheng et al. [34] highlight the necessity
of placement flexibility of analytics and propose an analytical model to evalu-
ate the cost of the placement strategies. Glean [29] allows synchronous in situ
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treatments and asynchronous in transit treatments. FlexIO [36] is built on top
of ADIOS and allows asynchronous in situ treatments on dedicated cores and
asynchronous in transit treatments.The system monitors the performance of the
simulation and can migrate the analytics at runtime or slow them down if they are
impacting too much the simulation performance. FlowVR [3, 7] allows describing
a data-flow between components (simulation, analysis modules). Treatments are
performed asynchronously from the simulation. The user can specify the location
of the treatments: on a set of helper cores, staging nodes, or on the same resources
as the simulation.

Our work in this paper follows the work done on helper core approaches and
asynchronous time-partitioning approaches. We extend these works to the domain
of multi-GPU simulations and in situ analytics using GPUs. To implement our
approach, we rely on the FlowVR middleware to host and coordinate the in situ
analytics execution.

2.2 Treatments with GPU

An implementation of in situ systems using GPUs is the work presented by R.
Hagan et al. [10] who propose a load balancing method for in situ visualization
in a multiGPU system. This method is based on an asynchronous space sharing
strategy where N/2 GPUs are used as dedicated GPUs for visualization, N being
the number of GPUs in the system. The other N/2 GPUs perform the N-body
simulation and transfer the data processed to RAM. Once in the memory, the
data are transferred to the dedicated GPU to perform rendering task through a
ray tracing visualization algorithm. Each GPU is managed with separate buffers
on the CPU side in order to write/read the data to/from memory asynchronously.

Performing off-line processing on GPUs is a growing field of interest. VMD [12]
is a widely used tool for visualization and analysis of biological systems such as
proteins and nucleic acids. Over the last years, many visualizations and analytics
have been adapted to support GPUs using CUDA. The Quicksurf algorithm [14],
for instance, has been proposed to visualize molecular surfaces of large ensembles
of atoms. It has been recently used to visualize the full model of the HIV capsid
on BlueWaters [27]. Other analysis such as radial distribution functions [15], fit-
ting [26] and many others [24] are accelerated with GPUs. Although VMD does
not have a full support for in situ analysis, some interactive applications com-
bining simulation and live visualization are possible such as Interactive Molecular
Dynamic simulations [25].

3 Framework Description

3.1 Gromacs

We describe here the features of Gromacs that are needed to understand its behav-
ior and performance. The reader can refer to [11, 21] for complementary details.

Gromacs is a commonly used parallel molecular dynamics simulation pack-
age. It is able to scale to several millions of atoms on several thousands of cores
by using MPI, OpenMP, and CUDA. The internal organization of Gromacs is a
master/slave approach. The master process is responsible for maintaining a global
state when necessary and performing the I/O operations.
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Atoms are distributed in a irregular grid where each cell of the grid is managed
by one MPI process. We call home atoms of an MPI process the atoms belong-
ing to its cell. The cell sizes of the grid are adjusted at runtime by a dynamic
load-balancing system. The main computation part is that of the forces: bonded
interactions between atoms sharing a link and non-bonded interactions for the
distant atoms. Non-bonded interactions are the most computationally expensive
operations because they require N-to-N communications. Performance timings are
monitored during this phase to load-balance the simulation.

Since version 4.6, Gromacs supports GPUs with CUDA, where no bond inter-
actions are transferred to the GPUs while the bonded-interactions are executed in
parallel on the CPU. Gromacs also supports multi-GPUs: each GPU is assigned
to an MPI process; OpenMP is used to fill the rest of the cores when more cores
than GPUs are available on a node. Since the bonded and non-bonded compu-
tations are performed concurrently, a balance must be found between CPU and
GPU computations. The dynamic load-balancing system monitors the difference of
computation time between the CPU and the GPU and adjusts the grid dimensions
accordingly.

3.2 FlowVR

FlowVR [7] is our middleware to create asynchronous in situ applications. It allows
describing an application as a graph, where nodes are data operations and edges
are communication channels. A node is called a module and is equipped with input
and output ports. A module runs an infinite loop. At each iteration, a module can
receive data, process them, and send computed data to the rest of the application.
The loop is implemented with three main functions: wait, get, and put. Wait blocks
the module until there is at least one message in all input ports. Get returns the
oldest message from an input port’s queue. Put sends a message to an output
port. Both Get and Put functions are nonblocking.

A module has no knowledge of the data source and destination. The data
channels are described in a Python script that declares the global application and
creates the links between the modules. Each module is assigned to a host and
possibly to a set of cores on the host. A daemon is hosted on each node in the
application. It hosts a shared memory segment in which the modules are reading
and writing their data. If two modules are on the same host, the daemon does
a simple exchange of pointers in the shared memory space. Otherwise, the local
daemon sends the message to the daemon hosting the remote module, which will
write the data in its shared memory space and pass the pointer to its module.

FlowVR does not impose any restrictions on the resources used by a module.
Any module is free to use OpenMP or GPUs to accelerate its treatment. How-
ever, FlowVR does not provide any protections in case several modules are using
intensively the same resources.

For more details, the reader can refer to [7].

3.3 Gromacs-FlowVR Interaction

We have instrumented the simulation code Gromacs with a similar method than
our previous works [7, 8]. For each MPI process, we declare one module with one
output port to extract the atom positions. This approach allows us to preserve the
same level of parallelism of the data, which can be used later by in situ analytics.
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We modified the main loop of Gromacs to periodically extract the atom posi-
tions. Every x iterations, with x a user-defined parameter, each module performs
a FlowVR wait(), copies the positions of the home atoms inside a FlowVR mes-
sage, and puts the message. The atom positions are then sent to the rest of the
application, if the output ports of the modules are connected to other modules
such as in situ analytics. Otherwise, the data are erased because they are not used
anymore by any module. Note that because the Gromacs modules do not have any
input ports, the wait() will return immediately and not block the simulation. In
order to minimize any noise in the simulation performance, we have also disabled
the native writing system of Gromacs.

3.4 Benchmark Framework Description

We implemented a framework to perform in situ analytics based on two different
placement strategies: helper core and overlapping. For all strategies, the simulation
and the in situ analytics have the possibility to use GPUs.

The helper core strategy reserves one core per node to perform in situ analytics
(see Figure 1(a)). Data are gathered on each node asynchronously and sent to one
or several in situ tasks hosted on the helper core. We assigned one GPU per
simulation process and one GPU for the analytics.

The overlapping strategy runs on the same resources as the simulation (see
Figure 1(b)). In our case, we instantiated as many in situ tasks as there are MPI
processes per node. Therefore, each MPI process of the simulation sends the data
to the in situ task located on the same core as the MPI process. Note that the in
situ tasks are running asynchronously with the simulation. Each GPU is shared
between one simulation process and one in situ task. At runtime, both simulation
and analytics kernels run concurrently on each GPU.

(a) (b)

Fig. 1. (a) Helper core strategy. A dedicated core is allocated for in situ analytics. Data
are gathered by the node and sent asynchronously to the in situ tasks (b) overlapping
strategy. One in situ task is instantiated for each MPI process of the simulation.

The in situ analytics are triggered each time the simulation outputs data. The
different analytics used are described in the next section. In these two particular
setups, the communication channels are simple FIFO channels between the sim-
ulation and analytics modules. Overflows can occur if the analytics do not follow
the pace of the simulation. For this framework, this is an acceptable situation since
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the data produced are relatively small and just a few output steps are performed.
For real application scenarios, special components can be added to sample the
output data from the simulation. It is also possible to block the simulation at the
next output step if the previous output step has not been analyzed yet.

3.5 Benchmarks

We designed this framework to evaluate the impact of in situ CPU/GPU tasks
on Gromacs performance and the resource usage of the machine. We adopted
the same approach as in [35]. We implemented several micro benchmarks, each
designed to stress specific parts of a multi-GPU parallel machine. Each of these
benchmarks is available for overlapping and helper core strategies.

PI (CPU) The PI benchmark, used by Zheng et al. in [35], stresses the floating
point units of the processors. When PI is triggered, x iterations, with x an user-
defined parameter, are performed to estimate the value of π. For both strategies,
overlapping and helper core, we execute the same total number of PI iterations.
With the helper core strategy, only one in situ process computes all the iterations
(x). In the case of the overlapping strategy, N in situ processes are used. The x
iterations are then distributed evenly among all the in situ tasks (x/N).

This benchmark perturbs the CPU while both the CPU and GPU are inten-
sively used by the simulation. The simulation load-balances both the CPU and
GPU computations. Therefore, perturbing the CPU should impact both the CPU
and GPU computations from the simulation.

Bandwidth (GPU) The bandwidth Nvidia CUDA kernel stresses the commu-
nications between the CPU and the GPU by sending and receiving data packages
several times. The message sizes s are user-defined. For the helper core strategy,
one GPU receives messages of size s. In the case of the overlapping strategy, each
of the N GPUs receives messages of size s/N .

Data exchanges are frequently performed between the CPU and the GPU
during the simulation. Perturbing the GPU data transmission can delay the GPU
computations of the simulation waiting for their data transfers.

Matrix Multiplication (GPU) The multMatrix Nvidia CUDA kernel is a
compute-intensive kernel multiplying 2 matrices several times. The sizes of the
two matrices are 640x320 and 320x320, respectively. The number of multiplica-
tions y performed during one iteration of the benchmark is user defined. With the
helper core strategy, one in situ process does all the matrix multiplications (y). In
the case of the overlapping strategy, N in situ processes performed y/N .

This benchmark occupies the processing units of the GPU. The kernels of
the simulation will have less multiprocessors available to be scheduled leading to
delays of the simulation computations.

The impact of the benchmarks on the simulation performance depends not only
on the benchmark but also on the balance of GPU/CPU computations adopted
by the simulation. If the CPU is the limiting factor of the simulation, the GPU
benchmark should be less damaging and vice versa if the GPU is the limiting
factor.
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Fig. 2. Native Gromacs performance and GPU utilization when increasing the number
of MPI process

4 Experiments

4.1 Experimental context

We ran our experiments on the cluster GUANE-1 (GpUs Advanced eNviromEnt)
at Universidad Industrial de Santander. Each node is a 8-core Intel R© Xeon R© CPU
E5640 @ 2.67 GHz (two sockets with 4 cores each one) with hyper-threading ac-
tivated (16 logical cores), 103 GB of RAM and 8 Nvidia Tesla M2050 GPUs (448
cores each). Interprocess communication is done through a 1 GB Ethernet net-
work. For all experiments, Gromacs runs a Martini simulation (simulation of atom
aggregates) with a patch of 54000 lipids representing about 2.1 million particles
in coarse grain [1]. Gromacs is very sensitive to the quality of the network due
to its high frequency [2]. Therefore, we preferred to avoid intranode communica-
tions and used only one node for our experiments. For all experiments, the native
writing method of Gromacs is disabled.

We measured both the simulation performance and the GPU utilization for
each experiment. The performance metric is iterations per second (higher is bet-
ter). Each simulation lasted at least 1000 iteration steps to avoid performance
jittering due to the dynamic load-balancing at the initialization phase. The GPU
utilization is measured with the tool nvidia-smi4 from Nvidia. The GPU utiliza-
tion indicates the percent of time over the past second during which one or more
kernel were executed on each GPU. We took the highest GPU utilization that we
found from every experiment (five measures with nvidia-smi per experiment).

4.2 Gromacs native

We first benchmarked Gromacs stand alone (no code modification) to determine
which configuration (number of threads, MPI processes, GPUs) provides the best
performance on our node.

Figure 2 presents the results for Gromacs running on the CPU only and in
hybrid mode using GPUs. As a reminder we use 1 GPU for each MPI process. For

4 https://developer.nvidia.com/nvidia-system-management-interface
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both cases, we used 2 OpenMP threads per MPI process with the 2 threads mapped
to the same physical core (hyperthreading). The hybrid version outperforms the
CPU version in all cases by a factor from 3.2 for 8 MPI processes to 4.38 for 2
MPI processes.

During the simulation, CPU and GPU computations are performed concur-
rently. The computations are balanced at runtime by Gromacs. According to Gro-
macs internal logs, for each hybrid configuration, the CPU is not waiting for the
GPU. This can indicate that the GPU is idle while the CPU completes its com-
putation.

The GPU utilization of Figure 2 indicates the maximum percentage of time
where at least one CUDA kernel is active. In the best case, for 2 MPI processes,
the GPU is used at most only 38% of the time. Moreover, when the simulation
kernels are running, the GPU occupancy is only of 60%5.

Although Gromacs greatly benefits from using multiple GPUs, these resources
are underused by the simulation. These results indicate that, in the case of Gro-
macs, the CPU is the limiting factor in the computation.

4.3 Gromacs Instrumented with FlowVR

We measured the performances of both the native Gromacs and our FlowVR-
instrumented version. For each MPI process, we allocate 2 OpenMP threads and
1 GPU as previously. For the FlowVR-instrumented version, we extracted the data
every 100 simulation iterations.

At most, our instrumentation cost increases the simulation time by 0.5% in
the case of 2 MPI processes. The impact on the GPU utilization is also negligible.
These results demonstrate that our instrumentation method does not impact the
simulation behavior. This cost is significantly lower than our previous report [7].
This is explained by a much lower output frequency. Previously, we extracted
data every 10 ms. For this study, we only extract the data every 6 seconds. As
the instrumentation blocks the simulation for about 0.2 ms at each output step
(Wait() and copy of the atom positions), the cost of instrumentation is negligible

4.4 Gromacs with CPU analytics

We measured the performances of Gromacs while running asynchronous in situ
analytics on the CPU. We used the PI benchmark described in Section 3.5 in both
helper core and overlapping strategies. Gromacs outputs data every 100 simulation
iterations. For each Gromacs output, we triggered y iterations of PI in total.
Figure 3 shows the simulation performance and GPU utilization for both strategies
while varying y.

The overlapping strategy gives the best performance as long as the extra com-
putations are not intense. For less than 108 PI iterations, the simulation is slowed
by less than 4% while the GPU utilization stays at the same level as Gromacs
native. However, for a larger number of PI iterations, the simulation performance
is dropping as y is increasing. For 109 iterations, the performance degradation is
higher than 30% while the GPU utilization drops by 3%. For 1010 iterations, the
degradation of both simulation performance and GPU utilization is even higher.

5 measured with nvprof
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Fig. 3. Helper core (HC) and overlapping (Ov) strategies when increasing the number
of PI iterations performed per Gromacs iteration.

The helper core strategy displays a more stable behavior. The initial cost with
a low number of PI iterations is higher than the overlapping strategy. This is ex-
pected since one core and one GPU are removed from the simulation resources.
However, as the in situ tasks are not hosted on the same resources as the simu-
lation, the increasing computational charge is not affecting the simulation perfor-
mance. Figure 3 shows that between 108 and 109 iteration, the helper core strategy
becomes more efficient than the overlapping strategy.

The GPU utilization is reduced by the in situ analytics although the PI bench-
mark does not use the GPU. For the helper Core strategy, 1 GPU is not being
used during all the simulation whereas for overlapping, the GPU utilization is
lower than 36% for all the tests. Gromacs balances its computations between the
CPU and GPU. However, previous results (Sec.4.2) showed that the CPU is the
bottleneck of the simulation. As the PI benchmark stresses the CPU, Gromacs
requires more time to launch the GPU kernels, leading to more idle time on the
GPU with the overlapping strategy.

In summary, traditional in situ analytics running on the CPU fail to improve
the global resource usage of Gromacs in hybrid mode. With the helper core strat-
egy, one GPU is not used. With the overlapping strategy, the bottleneck of the
simulation is more stressed by the analytics leading to more idle time on the GPUs.
Others strategies are necessary to improve the global usage of resource.

4.5 Gromacs with GPU analytics

Rather than stressing the CPU, which is already the bottleneck of our simulation,
we propose to perform in situ analytics on the GPU. We first used the multMatrix
benchmark described in Section 3.5. As previously, Gromacs outputs data every
100 iterations. For each Gromacs output, y matrix multiplications are performed
in total.

Figure 4 shows the simulation performance and GPU utilization for both
strategies. As for the CPU benchmark, the overlapping strategy is more efficient
for light computations. For less than y=3120 matrix multiplications per Gromacs
output, the simulation frequency is reduced by less than 12%, while the GPU uti-
lization stays at the same level as Gromacs native. However, for larger numbers
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Fig. 4. Helper core (HC) and overlapping (Ov) strategies when increasing the number y
of matrix multiplications perform per Gromacs Iteration. The GPU utilization for helper
core strategy is split in two curves. GPU Utilization Max Sim indicates the maximum
utilization of the 7 GPUs used by the simulation. GPU Utilization Max Ana is the GPU
utilization for the GPU used by the in situ multMatrix.

of multiplications, the performance drops up to 20%, but the GPU utilization is
increasing up to 99%.

The helper core strategy (referred as HC), displays stable behavior like the
CPU benchmark. The initial cost with a low number of matrix multiplications
is higher than the overlapping strategy. because the in situ tasks are not hosted
on the same resources as the simulation, however the increasing computational
charge is not affecting the simulation performance further. Figure 4 shows that
between 6,240 and 12,480 matrix multiplications, the helper GPU strategy keeps
a fixed cost and outperforms the overlapping strategy. This strategy also allows
the GPU utilization to increase up to 99%.

We observe the following general trends. First, overlapping and helper core
have similar behavior with CPU and GPU in situ analytics. The overlapping cost
increases with a growing number of in situ computations. The helper core strategy
has a higher initial cost for a small number of multiplications but does not fur-
ther impact the simulation performance for higher computational cost. Secondly,
performing in situ analytics on the GPU improves the GPU utilization. Because
the simulation does not fully use the GPUs, other kernels can be launched with a
limited impact on the simulation performance.

The multMatrix benchmark performs computations but does not transfer data
between the CPU and GPU. Only the computational units are stressed. However,
when performing data intensive analytics, data transfers must also be considered.

On our nodes, the 8 GPUs are connected to 3 PCI express ports. They share the
same bus to transfer data from/to the GPU. We used the Bandwidth benchmark
described in Section 3.5 to evaluate the impact of intensive in situ data analytics
on the simulation performance. As previously, Gromacs outputs data every 100
iterations. For each Gromacs output, five rounds of data transfers are performed
each with a given message size.

Figure 5 shows the simulation performance for both strategies. For this bench-
mark, we do not indicate the GPU utilization since the benchmark does not use
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Fig. 5. Helper core and overlapping strategies when increasing the size of the message
transferred.

the GPU. The overlapping strategy’s impact on the simulation performance is
less noticeable when the size of the message transferred is smaller than 32 MB.
However, for a bigger message size, the performance drops up to 85% for mes-
sage sizes of 1GB. The helper core strategy preserves a good isolation between
the simulation and the in situ analytics and keeps a fixed cost. Two factors can
explain this result. First, our GPUs are connected in a 3-3-2 pattern on the PCI
express buses. We placed the dedicated GPU on the third bus which only hosts
2 GPUs. Therefore, the in situ analytics only disturb one GPU of the simulation
on the bus which is the less stressed. Secondly, molecular dynamics codes are not
data-intensive codes. The full molecular model represents only a few MB of data
to transfer to/from the GPU. This leaves room on the buses to transfer data for
other tasks.

4.6 Discussion

With these experiments, we have shown that we can apply the same placement
strategies for GPU in situ analytics as for CPU strategies and observe similar
behaviors. Moreover, in the case of Gromacs, using the GPUs for in situ analytics
improves the GPU utilization while keeping a cost similar to the CPU strategies.
This is possible for two reasons. First, the bottleneck of Gromacs is the CPU in our
setup. This leaves more room on the GPU than on the CPU. Second, Gromacs
is not a data-intensive application which makes it less sensitive to other data
transfer.

Our goal in this article is to show that, in the case of hybrid simulations,
there is also a need for placement flexibility to compute in situ analytics. For a
pure CPU simulation, the placement strategy generally depends on the cost of the
computation and the nature of the analytics. However, for a hybrid simulation,
the balance of CPU/GPU computation is another parameter to take into account.
Depending of whether the CPU or the GPU is the simulation bottleneck, in situ
analytics should be performed on the less loaded resource if possible.

The simulation setup presented here leaves the GPUs idle a significant amount
of time. This allows us to schedule heavy computational in situ tasks on the GPUs
with the Overlapping strategy for a limited cost. However, other types of simula-
tion might use the GPUs more intensively. For such scenarios, it is likely that for
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the same computational in situ tasks, the helper core strategy becomes more effi-
cient. We expect that, as the utilization of the GPUs by the simulation increases,
the computational charge manageable at a reasonable cost by the Overlapping
strategy would decrease in favor of the Helper core strategy.

5 Conclusion

We presented a study of the impact of in situ analytics in the case of the Gromacs
simulation running with GPUs. We first showed that Gromacs is not natively
able to fully use the available GPUs leading to underused resources. Then we
showed that common in situ placement strategies such as using a dedicated core
or asynchronous time-partitioning can amplify this phenomenon in the case of
Gromacs. As an alternative approach, we used the GPUs to process analytics and
applied the same placement strategies as for the CPU in situ analytics. CPU and
GPU in situ analytics impact the simulation performance in a similar way with
the same placement strategy. However, GPU analytics improve the global GPU
utilization. We showed that, when considering hybrid simulation using GPUs, the
balance between CPU and GPU computation should be taken into account when
selecting a placement strategy for in situ analytics.

Our future work will focus on building real-case applications combining an
hybrid simulation with hybrid in situ analytics. Tools such as VMD are available
to perform analytics on the GPU. We will also extend this study to the case
of In-Transit analytics. Some supercomputers such as BlueWaters have hybrid
architectures combining CPU nodes and GPU nodes that can bring new trade-
offs in the analytics placement. We will also study the recent feature in GPUs with
compute capability 4.0 to launch CUDA kernels with a priority level. This feature
can bring new opportunities especially for Overlapping strategies to perform in
situ analytics at a lower priority than the simulation.
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