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Deliverable 4.1 ANR-NSFC Joint project

Executive Summary

The goal of the Lindicle project is data interlinking. This problem can be solve using two
main types of techniques: (1) similarity-based techniques computing a similarity between
entities and considering as equal entities with high similarity; (2) key based-techniques find-
ing aligned combinations of properties identifying unique entities and generating links from
them. This deliverable is concerned with the latter approach.

We define link keys which extend the notion of a key to the case of different data sets.
They are made of a set of pairs of properties belonging to two different classes.

We develop an approach to extract weak link keys from a pair of data sets. A weak
link key holds between two classes if any resources having common values for all of these
properties are the same resources. There are many potential weak link keys between two
data sets. Hence we propose an algorithm that efficiently generates a small set of candidate
link keys.

The quality of such candidates link key must be evaluated in order to identify those with
the best properties. Depending on whether some of the, valid or invalid, links are known, we
define supervised and non supervised measures for selecting the appropriate link keys. The
supervised measures approximate precision and recall, while the non supervised measures
are the ratio of pairs of entities a link key covers (coverage), and the ratio of entities from
the same data set it identifies (discrimination).

We have experimented these techniques on two data sets, showing the accuracy and
robustness of both approaches.

This deliverable is a slightly extended version of [Atencia et al. 2014].

2 of 21



Lindicle

Document Information

Project number ANR-NSFC Joint project Acronym Lindicle

跨语言环境中语义链接关键技术研究
Full Title Linked data interlinking in a cross-lingual environment

Liage des données dans un environnement interlingue

Project URL http://lindicle.inrialpes.fr/

Document URL

Deliverable Number 4.1 Title
Language-independent link key-based data inter-
linking

Work Package Number 4 Title Cross-lingual data interlinking

Date of Delivery Contractual M18 Actual 2015-03-20

Status final final �
Nature prototype � report � dissemination �
Dissemination level public � consortium �
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Lindicle Data interlinking

1. Data interlinking

Linked (open) data is the publication of data by using semantic web technologies [Heath and
Bizer 2011]: data is expressed in RDF, eventually described by an ontology and linked to
other data sets through statements identifying equivalent resources. Usually, such statements
are asserted through triples between equivalent elements using the owl:sameAs predicate. We
call them sameAs links, or simply links. They are a very important part of linked data.

It is thus critical to be able to generate relevant links between data sources, what is called
data interlinking. We consider the setting in which users want to interlink data sets. They
are able to identify equivalent or overlapping classes of objects (this can also be provided
through an ontology alignment) and they may be able to provide some examples of correct
and incorrect links. Hence, we design algorithms which, from a pair of classes in two data
sets and optionally two sample sets of owl:sameAs and owl:differentFrom links, are able to generate
a set of owl:sameAs links.

Among the possible ways to produce links is the identification of keys: sets of properties
whose values characterize unique individuals. We consider here link keys, i.e., keys that
span across two data sets and which identify unique individuals only for the available data.
A link key between a pair of classes is characterized by pairs of corresponding properties
{〈p1, q1〉, . . . 〈pn, qn〉} which together identify unique entities. Weak link keys are required to
be keys only on the identified entities. A valid link key allows straightforwardly to generate
links since entities bearing common values for these properties are the same individual.

Our method first relies on generating all candidate link keys, i.e., maximal sets of property
pairs for which there is at least two instances sharing a value. Since there are several
candidate link keys, it is necessary to evaluate them and select the most promising ones. For
that purpose, we define measures of discriminability and coverage for non supervised link
key extraction and approximation of precision and recall for the supervised case. We show
through experiments that they are good approximations of precision and recall and that they
are robust to data alteration.

So, after defining some notation (§2) and discussing prior art (§3), we define more pre-
cisely the notion of a weak link key and provide an algorithm for generating candidate link
keys (§4). Such an algorithm is able to drastically reduce the number of candidate link keys.
Then we provide measures for assessing their quality (§5). We evaluate these measures and
their robustness through an experiment based on actual data (§6).
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2. Notation and problem statement

Consider that we want to link two data sets D and D′ complying to specific ontologies O
and O′, respectively. We assume that the ontologies are description logic TBoxes and the
data sets are ABoxes containing only c(a) and p(a, a′) axioms. The structure O = 〈O,D〉
will be called an ontology.

Let us assume that the vocabularies of O and O′ are disjoint. We use the letters c, p,
and a, with sub- or super-scripts, to denote class and property expressions, and individuals
names of O, respectively, and we retain the letters d, q, b for those of O′.

The general task carried out by data interlinking is, given two data sets D and D′, to
find one set of relations between individuals of D and D′. We restrict ourselves to finding
equality statements between named individuals a and b from each data sets denoted by
〈a, owl:sameAs, b〉 or the pair 〈a, b〉. A set of such pairs is called a link set and denoted by L.

We consider the subproblem of finding a set of links L between instances of c and d from O
and O′, given a set of links L0 between D and D′ which does not contain links between c and
d. L0 is used for comparing property values of instances of c and d. Links may be generated
in an iterative way: first links are generated for classes having only owl:DatatypeProperties, then
the generated links may be used for generating links based on owl:ObjectProperties involving
these classes. In the following, p(a) ∩ q(b) means {x|O, L0 |= p(a, x) and O′, L0 |= q(b, x)}.
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3. Related works

There has been a lot of work recently on data interlinking [Ferrara et al. 2011] in part inspired
by the work on record linkage in databases [Elmagarmid et al. 2007].

Usually, one defines a similarity between resources based on their property values and
declares an owl:sameAs link between those which are highly similar [Ngonga Ngomo and Auer
2011]. The difficult part is to define the similarity and what is “highly”. So, some works
use machine learning in order to set similarity parameters and thresholds from sample links
[Ngonga Ngomo and Lyko 2012; Isele and Bizer 2013]. Similarities do not attempt at defining
what makes identity, but rather require that as many features as possible be close enough.
There is no explicit assertion of what makes identity.

Keys in databases are sets of attributes (columns in a table) such that two different
individuals cannot have the same values for these attributes. These are sufficient conditions
for being the same. Hence, interlinking may be based on keys.

In database, the extraction of keys has been mainly studied through the discovery of
functional dependencies. According to [Yao and Hamilton 2008] there are three kinds of
methods for finding functional dependencies in data: the candidate generate-and-test meth-
ods [Huhtala et al. 1999; Yao and Hamilton 2008; Novelli and Cicchetti 2001], minimal cover
methods [Flach and Savnik 1999; Wyss et al. 2001; Sismanis et al. 2006], and formal concept
analysis methods [Lopes et al. 2002; Baixeries 2004]. Methods following the first approach
use level-wise search for testing combinations of attributes. For each set of attributes, these
methods generate a partition of the instances into equivalence classes in which all instances
share the same values for the attributes. The search space is reduced using pruning rules
with differ according to the methods.

Two methods have been proposed for discovering keys in RDF data sets. KD2R [Pernelle
et al. 2013] is a method based on the Gordian algorithm [Sismanis et al. 2006] which derives
keys from the maximal non keys.

The pseudo-key extraction method proposed by [Atencia et al. 2012] follows the candidate
generate-and-test approach. Since it has been designed for RDF data, it differs from the
database methods, considering that properties in the RDF model are not total functions like
attributes in the relational model. This makes optimizations and pruning rules proposed by
[Huhtala et al. 1999] and [Yao and Hamilton 2008] not valid for RDF data.

So far, keys were extracted in each data set independently without considering their
interactions.
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4. Extracting candidate link keys

The approach presented here extracts directly what we call link keys. Link keys are adap-
tations of keys across different data sets. These link keys are used for generating links,
because, like keys, they find equivalent objects. In principle, there are many candidate link
keys. Hence we present algorithms for exploring them efficiently.

4.1 Weak link keys and candidate link keys

Like alignments, link keys [Euzenat and Shvaiko 2013] are assertions across ontologies and are
not part of a single ontology. They are sets of corresponding properties from both ontologies
which, for a pair of corresponding classes, identify equivalent individuals. Various sorts of
link keys may be defined by requiring that they be keys on some parts of the datasets. Weak
link keys do only have to be keys for the set of linked entities. Unlike keys, they do not
guarantee that the properties used for linking them identify a unique entity per initial class.
Hence, they may generate multiple links between entities.

Definition 1 (Weak link key) A weak link key between two classes c and d of ontologies
O and O′, respectively, is a set of property pairs

{〈p1, q1〉, . . . , 〈pk, qk〉}

such that p1, . . . , pk are properties in O and q1, . . . qk are properties in O′, and ∀a;O |= c(a),
∀b;O′ |= d(b), if ∀i ∈ 1, . . . , k, pi(a) ∩ qi(b) 6= ∅, then 〈a, owl:sameAs, b〉 holds.

Link keys are defined here with respect to the sharing of a value for a property. They
may also rely on the equality between property values. The two notions are equivalent for
functional properties. Equality of property values can be seen as too restrictive, especially
across datasets. However, this problem can be partially solved by using methods such as
value clustering or normalization.

Because they are sufficient conditions for two instances to denote the same individual,
they can be used for generating links: any pairs of instances from the two classes which satisfy
the condition must be linked. We denote by LD,D′(r) the set of links that are generated by
a (candidate) link key r between data sets D and D′.

We present here a method to extract a superset of weak link keys instantiated on the
current data. Then, we show how to select the relevant ones by assessing their quality
through several selection criteria.

The approach generates all candidate link keys. We call candidate link key a set of
property pairs which is maximal for at least one link it would generate if used as a link key.

Definition 2 (Candidate link key) Given two ontologies O and O′, {〈p1, q1〉, . . . , 〈pk, qk〉}
is a candidate link key for the pair of classes 〈c, d〉 iff ∃a, b such that

– ∀i ∈ 1 . . . k, pi(a) ∩ qi(b) 6= ∅, and

– ∀〈p, q〉 6∈ {〈p1, q1〉, . . . , 〈pk, qk〉}, p(a) ∩ q(b) = ∅.

This simply means that we only consider as candidates sets of pairs of properties that
would generate at least one link that would not be generated by any larger set.

Table 4.1 shows an example of candidate link keys that hold between data sets D and D′.
For instance, the set {〈p2, q2〉} that would generate links 〈a1, b1〉, 〈a1, b2〉 and 〈a2, b2〉 is not a
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D D′ Candidate link keys

〈a1, p1, v1〉 〈a2, p2, v4〉 〈b1, q1, v1〉 〈b2, q2, v2〉 {〈p1, q1〉, 〈p2, q2〉}
〈a1, p2, v2〉 〈a2, p3, v5〉 〈b1, q2, v2〉 〈b2, q2, v4〉 {〈p2, q2〉, 〈p3, q3〉}

〈a2, p1, v3〉 〈b2, q1, v1〉 〈b2, q3, v5〉

Table 4.1: Two sets of triples and the corresponding candidate link keys.

indexDataset(D): indexDataset(D′): PropertyAgreement
v1 : {〈a1, p1〉} v1 : {〈b1, q1〉, 〈b2, q1〉} 〈a1, b1〉 → {〈p1, q1〉, 〈p2, q2〉}
v2 : {〈a1, p2〉} v2 : {〈b1, q2〉, 〈b2, q2〉} 〈a1, b2〉 → {〈p1, q1〉, 〈p2, q2〉}
v3 : {〈a2, p1〉}
v4 : {〈a2, p2〉} v4 : {〈b2, q2〉} 〈a2, b2〉 → {〈p2, q2〉, 〈p3, q3〉}
v5 : {〈a2, p3〉} v5 : {〈b2, q3〉}

Table 4.2: Indexes computed by Algorithms 1 and 2 on the example of Table 4.1.

candidate link key because these links can also be generated by supersets {〈p1, q1〉, 〈p2, q2〉}
and {〈p2, q2〉, 〈p3, q3〉}. Instead of the 23×3 = 512 possible sets of property pairs, there are
only 2 candidate link keys.

Generating and checking all combinations of sets of property pairs is not suitable due
the exponential size of search space. In order to extract them efficiently, we rely on several
indexation steps.

4.2 Extraction algorithms

The extraction procedure is given by Algorithm 2. It first indexes, for each data set, the set
of subject-property pairs sharing at least one value. Then it calls Algorithm 1 which iterates
over these indexes in order to generate another index associating each pair of subjects to
the maximal sets of properties on which they agree. From the values contained in this last
index, we can easily derive the set of candidate link keys and count their occurrence.

In the worst case, if all subjects have the same predicate-object pairs, time complexity
is O(n2). In any case, we have to browse the whole datasets which is in O(n). The practical
complexity depends on the number of subject-predicate pairs per object. Space complexity
is O(n), i.e., the sum of the triples in both datasets.
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Algorithm 1 Maximal property pairs agreement.

Input: Two o→{sp} indexes, idx and idx′

Output: An 〈s, s′〉 → {〈p, p′〉} index, i.e., the maximal agreeing property pairs for each
subject pair
function propertyAgreement(idx, idx′)

residx← ∅
for all k belonging to both idx and idx′ keys do

for all 〈s, p〉 ∈ idx[k] do
for all 〈s′, p′〉 ∈ idx′[k] do

residx[〈s, s′〉] = residx[〈s, s′〉] ∪ {〈p, p′〉}
end for

end for
end for
return residx

end function

Algorithm 2 Candidate link key extraction.

Input: Two data sets D and D′

Output: The set of candidate link keys instanciated between D and D′ and their occurency
function candidateLinkkeyExtraction(D,D′)

idx← indexDataset(D)
idx′ ← indexDataset(D′)
agreementIdx← propertyAgreement(idx, idx′)
for all {〈p1, p′1〉, ..., 〈pn, p′n〉} ∈ agreementIdx values do

linkkeys[{〈p1, p′1〉, ..., 〈pn, p′n〉}] + +
end for
return linkkeys

end function
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5. Weak link key selection measures

Algorithm 2 extracts candidate link keys. These candidates are not necessarily valid link
keys. In order to compare candidates, we propose measures for assessing their quality. Two
important and classical quality criteria are the correctness and the completeness of the links
that a candidate link key generates.

A good measure for assessing correctness a priori should approximate the ranking of
candidate link keys given a posteriori by its precision. In the same manner, a good measure
for completeness should approximate that of candidate link keys given by recall.

In the following, we propose measures that assess these two criteria according to two
scenarios: supervised and non supervised.

5.1 Measures for supervised selection: exploiting owl:sameAs and owl:differentFrom

links

In the supervised case, it is possible to directly approximate precision and recall on the
examples. In some cases, some owl:sameAs and/or owl:differentFrom links across the two data
sets are available. This can be used to compute estimations of precision and recall. Let
be L+, a set of owl:sameAs links (positive examples) and L−, a set of owl:differentFrom links
(negative examples), the set L+ ∪ L− can be considered as a sample. Hence, it is possible
to evaluate the behavior of LD,D′(r) on this sample, i.e., compute the precision and recall of
LD,D′(r) ∩ (L+ ∪ L−) with respect to L+.

The quality of a candidate link key r can be evaluated by the two classical correctness
and completeness measures restricted to the sample. They are defined as follows:

Definition 3 (Relative precision and recall)

̂precision(r, L+, L−) =
|L+ ∩ LD,D′(r)|

|(L+ ∪ L−) ∩ LD,D′(r)|

r̂ecall(r, L+) =
|L+ ∩ LD,D′(r)|

|L+|

When the sample only consists of owl:sameAs links, i.e., L− = ∅, ̂precision is not relevant.
In that situation, we can artificially generate owl:differentFrom links by partially closing the
owl:sameAs links. To that extent the following rule can be used: for each 〈a, b〉 ∈ L+, we
assume 〈a, x〉 ∈ L− for all x such that 〈a, x〉 6∈ L+ and O′ 6|= 〈b, owl:sameAs, x〉, and 〈y, b〉 ∈ L−

for all y such that 〈y, b〉 6∈ L+ and O 6|= 〈a, owl:sameAs, y〉.
Given precision and recall, F-measure may be computed in the usual way (F = 2PR

P+R).

5.2 Measures for unsupervised selection

In case no sameAs link across data sets is available, we can only rely on local knowledge for
assessing the correctness of potentially generated links.

Assuming that, in each data set, instances are distinct, then there should not be more
than one link involving one instance. So, a first measure of quality is the capability of
discriminating between instances, i.e., that the link set is one-to-one. We then propose to
measure the correctness of a candidate link key by its discriminability which measures how
close the links generated by a candidate link key are to a one-to-one mapping.
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Definition 4 (Discriminability)

disc(r) =
min(|{a|〈a, b〉 ∈ LD,D′(r)}|, |{b|〈a, b〉 ∈ LD,D′(r)}}|)

|LD,D′(r)|

It is equal to 1, when links are a perfect one-to-one mapping and is lower-bounded by
(|{a|〈a, b〉 ∈ LD,D′(r)} × {b|〈a, b〉 ∈ LD,D′(r)}|.

For assessing the completeness of a candidate link key, we rely on the intuition that the
more instances linked by a candidate link key, the more complete the candidate link key is.
Then, the coverage of a candidate link key is defined as the proportion of instances of both
classes that could be linked.

Definition 5 (Coverage)

cov(r,D,D′) =
|{a|〈a, b〉 ∈ LD,D′(r)} ∪ {b|〈a, b〉 ∈ LD,D′(r)}|

|{a|c(a) ∈ D} ∪ {b|d(b) ∈ D′}|

The coverage measure always favors the most general link key candidates: if r′ ⊆ r, then
LD,D′(r) ⊆ LD,D′(r′), so cov(r′, D,D′) ≥ cov(r,D,D′). In particular, when we have two
candidates link keys r and r′ such that r′ ⊆ r, r has a greater coverage value than r′, even
if there is only few links specifically generated by r but not by r′.

Using both coverage and discriminability strikes a balance between the completeness and
generality of candidate link keys. They can be aggregated by harmonic means just like
F-measure does for precision and recall.
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6. Experimental evaluation

The accuracy and robustness of the proposed quality measures have been experimentally
evaluated1. Our goal is to assess that proposed measures help to select the best candidate link
keys in term of precision and recall. To that extent, we performed two series of experiments
evaluating discriminability and coverage on the one hand, and partial precision and recall
on the other hand. Both series of experiments use on the same data sets.

6.1 Data sets

We have experimented with geographical data from INSEE and GeoNames data sets2. IN-
SEE comprehends data about French geography, economy and society, whereas GeoNames
is a world-wide geographical database. We have concentrated on the fragment of INSEE
which corresponds to geographical data (available as an RDF dump), and the fraction of
GeoNames corresponding to French geographical data (retrieved by querying in the whole
data set individuals with FR as value for the property countryCode),3 for which there exist
owl:sameAs links to INSEE. The INSEE data set covers 36700 instances; GeoNames contains
36552 instances. The reference link set maps each instance of commune in GeoNames to one
and only one commune in INSEE. So, 448 INSEE instances are not linked.

Our objective is to extract candidate link keys between classes representing the French
municipalities of these two data sets and evaluate them according to the different selection
criteria.

Our objective is to automatically reproduce these links by exploiting keys and an align-
ment between INSEE’s and GeoNames’ ontologies computed manually.

In both data sets, these instances are also described as part of broader administrative
regions which are themselves described within each data set. In the experiments, links
between these administrative regions are part of L0.

6.2 Experimental protocol

Two series of test are performed respectively for the unsupervised and supervised selection
measures.

1All the material allowing to reproduce experiments is available at http://melinda.inrialpes.fr/

linkkey/
2http://www.insee.fr/, http://www.geonames.org/
3 This restriction was made due to time constraints and are not expected to change the results. They

enter in our setting where users identify the two classes to be compared. We omit to use prefixes as the two
data sets are written in distinct languages (French and English).

Entities INSEEGEO GeoNamesFR

Datatype properties 3 9

Object properties 5 14

Instances 36,700 36,552

Table 6.1: Number of instances and properties of the fragments of INSEE and GeoNames
considered in our experiments.
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Figure 6.1: The set of candidate link keys. This is a subset of the powerset lattice 〈2P×P ′
,⊆〉,

but not a lattice.

For the the first series, candidate link keys between the two data sets are extracted with
the given algorithm and the ranking given by discriminability and coverage are compared to
those given by precision and recall.

Then, a set of derivative tests simulating perturbed interlinking scenarios are performed.
They extract and evaluate candidates on altered versions of the data sets. Different kinds
of alterations are performed: (1) triples removal: we randomly suppress some triples; (2)
values scrambling: we randomly scramble the object of some triples; (3) instance removal:
instances are randomly removed by suppressing all triples involving them. For each series of
tests, the probability of degradation varies from 0 to 0.9 by step of 0.1.

The second series of tests evaluates the behavior of supervised selection measures when
the size of the positive examples varies. To that extent, the probability that a owl:sameAs

link from the reference be in L+ varied from 0 to 0.9 by step of 0.1. L− is generated from
owl:sameAs links according to Section 5.1.

For both series, 10 runs are performed and their results averaged.

6.3 Results

Unsupervised selection measures There are 7 property pairs that have been found in
candidate link keys. They are:

P5 = 〈codeINSEE, population〉 P1 = 〈nom, name〉
P6 = 〈codeCommune, population〉 P2 = 〈nom, alternateName〉
P3 = 〈subdivisionDe, parentFeature〉 P7 = 〈nom, officialName〉
P4 = 〈subdivisionDe, parentADM3〉

The algorithms extracted eleven candidate link keys which are detailed in Table 6.2. Their
relations are provided in Figure 6.1

Among the 11 candidate link keys, 8 have a precision greater or equals to 0.8. These
candidates are k1 and its specializations and k8. Three have good recall, for all the others
recall is very low, i.e., less than 0.3%. Only k1 and k7 have a good F-measure, with a clear
superiority of the last one. The first candidate does not have a perfect precision because
there are different communes in France with the same name, but these communes can be
distinguished by the arrondissement they belong to. As an example, Bully may refer to three
communes: Bully in Dieppe, Bully in Lyon, and Bully in Roanne4.

Coverage values are strongly correlated to those given by recall. This confirms our
expectation. There is also a good correlation between discriminability and precision, except

4Here we refer to the arrondissements, and not the homonymous cities.
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Candidate link keys Quality estimators Reference 10% of reference

name pairs # links disc. hmean cov. prec. F-m. rec. prec. F-m. rec.

k1 {P1} 45 654 0.801 0.889 0.998 0.8 0.889 1 0.68 0.809 0.999

k2 {P2} 19 0.79 0.002 0.001 0.579 0.002 0.001 0.434 0 0

k3 {P3, P4} 5 331 816 0.007 0.014 0.975 0.007 0.014 0.977 0.004 0.008 0.978

k4 {P5, P6} 354 0.984 0.02 0.01 0 0 0 0 0 0

k5 {P7, P1} 44 0.887 0.004 0.002 0.887 0.004 0.002 0.918 0.002 0.001

k6 {P2, P1} 11 0.819 0.002 0.001 0.819 0.002 0.001 0.778 0 0

k7 {P3, P4, P1} 35 689 1 0.987 0.975 1 0.988 0.976 1 0.988 0.977

k8 {P3, P2, P4} 11 1 0.002 0.001 1 0.002 0.001 1 0 0

k9 {P3, P2, P4, P1} 9 1 0.002 0.001 1 0.002 0.001 1 0 0

k10 {P3, P7, P4, P1} 39 1 0.004 0.002 1 0.004 0.002 1 0.002 0.001

k11 {P3, P7, P2, P4, P1} 2 1 0 0 1 0 0 1 0 0

Correlations to the reference

Pearson ρ 0.645 1 1 0.99 0.999 1

Kendall τb (all p-values < 0.01) 0.778 0.695 0.723 1 0.911 0.911

Table 6.2: Candidate link keys and quality estimation in the non supervised case and the
supervised case with 10% links.

for the candidate k4 = {〈codeINSEE,population〉, 〈codeCommune,population〉}. Indeed, codeINSEE

and codeCommune are two equivalent identifiers of French communes. They are obviously
not related to the population property which is the number of inhabitants, but 354 pairs of
instances share the same values for this properties. This candidate link key has a good
discriminability because its properties are themselves discriminant. This shows that the
discriminability alone is not sufficient.

Thus, the best link key given by F-measure is not one of the most simple rule like k1, but
one with an intermediate position in the graph of Figure 6.1: k7. This is correctly predicted
by the harmonic means of coverage and discrimination. Here again, Pearson value correlation
is optimal, while the Kendall rank correlation is hurt by k4’s high rank in discriminability.
k7 generates 35689 links out of the 36546 expected links and all these links are correct. The
missing links are due to missing links between parent regions in L0 and differences in spelling,
e.g., Saint-Étienne-de-Tulmont vs. Saint-Etienne-de-Tulmont. This could be improved by
using a priori normalization or less strict constraints than inclusion.
Robustness The number of generated link key candidates is stable when instances are
removed or triples are scrambled5 but it increases when triples are removed. It reaches
a maximum of 33 candidates at 30% of triple removed, then it decreases. Indeed, when
triples are removed some pairs of instances agree on less properties and then more general
candidates are generated. The majority of these candidates still have a very low coverage
(and recall).

Figure 6.2 shows that when alterations increase, the discriminability remains stable for
the majority of link keys candidates. Candidates showing less smooth curves are candidate
link keys generating few links, i.e., with low coverage. For candidates k1 and k3, two candi-
dates having good recall but not perfect precision, we observe that discriminability increases
more rapidly when removed triples or instances increase. These two candidates have more
stable discriminability values when objects of triples are scrambled. For candidates having
not a very low coverage, these tests show that discriminability is robust until at least 50%
of alterations.

Coverage is less robust to alterations. When link key candidates generate one-to-one link
sets, the coverages values decreases when alterations increase. On the instance removal test,

5In that last case, only one more candidate is generated.
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we observe a linear decrease for candidate link keys which generates one-to-one mapping.
For k3 which tends to a many-to-many mapping, the coverage curve is stable. This is in line
with Definition 5 (coverage). Indeed, if a link key is one-to-one, each time one instance is
suppressed, one link will be suppressed. Hence the numerator is decreased of two units while
the denominator is decreased by only one unit. In the case of the cartesian product, these
two quantities will decrease at the same speed. In the case of triple removal or scrambling,
the probability that an alteration removes a link is higher than that it removes an instance.
Then, the coverage measure decreases even faster when the probability of alteration increases.

However, we observe that the order of link key candidates given by coverage is preserved
in most of the cases. For instance, rule k1 has always better coverage than k7. This behaviour
shows that coverage is a good estimator of the link key candidates ranking given by recall.
Supervised selection measures When the amount of reference owl:sameAs links varies, the
precision value is constant for the majority of link key candidates (7/11) (see Figure 6.3).
These candidates are those having extreme precision value, i.e., either 1 or 0. For the other
four candidates, the precision slowly and linearly decreases from 100% to 50% of owl:sameAs.
Under 50% of reference links, three of these candidates do not have a stable trend anymore.
This is caused by the low number of links they generate. The last candidate, k1, which
generates much more links, has a more stable precision. The recall values are perfectly
robust to the variation of sample links.

The rankings given by precision and recall remain the same when the sample links de-
crease. It is thus possible to select good link key candidates when we have only a sample of
reference owl:sameAs links (Table 6.2 provides the estimation with 10%). This behavior has
also been shown in ontology matching [Ritze and Paulheim 2011]
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Figure 6.2: Evolution of discriminability and coverage measures in function of the degra-
dation of data sets. A curve stops when the confidence is not computable, i.e., there is no
owl:sameAs link generated by the candidate link key. When less instances are available, more
candidates are generated.
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Figure 6.3: Evolution of precision and recall measures in function of the ratio of owl:sameAs

links in L+. A curve stops when confidence is not computable, i.e., there is no owl:sameAs link
generated by the candidate link key (Legend as of Figure 6.2).
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7. Conclusions and perspectives

Link keys are sets of pairs of properties characterizing equivalence. They can be used for
generating links across RDF data sets. We provided an algorithm for enumerating a restricted
number of link key candidates and provided measures for evaluating the quality of these
candidates. We experimentally observed that these measures select the best candidate in
both the supervised and non supervised case. They are also robust to mistakes in the data
sets and sample links.

Other measures, such as consistency, may be used in addition but they require expressive
alignments which are not often available.

This setting is well suited for finding one-to-one linksets. Establishing similar measures
for many-to-many correspondences is an open question.
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