
HAL Id: hal-01182407
https://hal.inria.fr/hal-01182407

Submitted on 31 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contracts for Schedulability Analysis
Philipp Reinkemeier, Albert Benveniste, Werner Damm, Ingo Stierand

To cite this version:
Philipp Reinkemeier, Albert Benveniste, Werner Damm, Ingo Stierand. Contracts for Schedulability
Analysis. 13th International Conference on Formal Modeling and Analysis of Timed Systems, FOR-
MATS 2015, Sriram Sankaranarayanan (University of Colorado at Boulder, USA); Enrico Vicario
(University of Florence, Italy), Sep 2015, Madrid, Spain. �hal-01182407�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49498295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01182407
https://hal.archives-ouvertes.fr

Contracts for Schedulability Analysis ?

Philipp Reinkemeier1, Albert Benveniste2, Werner Damm13, and Ingo Stierand3

1 Offis, Oldenburg, Germany
2 Inria-Rennes, France

3 Dept of Computer Sciences, University of Oldenburg, Germany

Abstract. In this paper we propose a framework of Assume / Guarantee con-
tracts for schedulability analysis. Unlike previous work addressing compositional
scheduling analysis, our objective is to provide support for the OEM / supplier
subcontracting relation. The adaptation of Assume / Guarantee contracts to schedu-
lability analysis requires some care, due to the handling of conflicts caused by
shared resources. We illustrate our framework in the context of Autosarmethod-
ology now popular in the automotive industry sector.

1 Introduction and Related Work

The focus of this work is the integration phase of a design process, where software
components are allocated to a hardware platform. We consider scenarios like the fol-

Fig. 1. Exemplary Integration Scenario using Resource Segregation

lowing. The bottom part of Figure 1 shows a target platform that is envisioned by, say,
an Original Equipment Manufacturer (OEM). It consists of two processing nodes (CPU1
and CPU2). Suppose the OEM wants to implement two applications, characterized by
contracts C1 and C2, on this architecture and delegates their actual implementation to
two different suppliers. Both applications share a subset of the resources of the target

? This work was partly supported by the Federal Ministry for Education and Research (BMBF)
under support code 01IS11035M, Automotive, Railway and Avionics Multicore Systems
(ARAMiS), and by the German Research Council (DFG) as part of the Transregional Col-
laborative Research Center Automatic Verification and Analysis of Complex Systems (SFB/TR
14 AVACS).

platform, e.g. tasks τ2 and τ4 are executed on CPU2 after integration. Furthermore, we
assume the system specification C shown in Figure 1 to be available from previous de-
sign phases. While some components together with their (local) contracts may also be
known (e.g. in case of reuse), the OEM generally has to negotiate proper specifications
with the suppliers, in our case the two contracts C1 and C2. In doing so, the schedul-
ing of the software components delegated to each supplier must yield a satisfactory
scheduling at system integration time, meaning that timing constraints are met given
the performance characteristics of the computing and communication resources, even
though the two designs compete for shared resources.

Quoted verbatim from [17] by Insup Lee et al.:4 Real-time systems could benefit
from component-based design, only if components can be assembled without violating
compositionality on timing properties. When the timing properties of components can
be analyzed compositionally, component-based real-time systems allow components to
be developed and validated independently and to be assembled together without global
validation. [17] develops a model of scheduling interface collecting the workloads, re-
sources, and scheduling policy, addressing the above quoted objectives. Specific classes
of hard real-time system scheduling problems are considered, namely periodic models
and bounded-delay models. This group of authors has further developed the same track
with the same techniques, making increasingly large classes of scheduling problems
amenable for compositional analysis. This significant body of work is nicely summa-
rized in the tutorial paper [3] and implemented through the CARTS tool for compo-
sitional analysis of real-time systems [14]. One interesting application case concerns
the scheduling of ARINC partitions [10]. Compositional schedulability analyses have
been proposed on top of the UPPAAL tool [6,5] with mixed scheduling policies and
probabilistic evaluations. In a different direction, Lothar Thiele and co-workers have
developed for real-time scheduling an algebraic framework called the Real-Time Cal-
culus (RTC) [21,22,13]. Components of the RT Calculus are linear transfer functions
in the max-plus algebra and interface behaviors are expressed as arrival curves, which
specify lower and upper bounds for event arrivals. [21,20] considers real-time interfaces
where assumptions and guarantees are expressed by means of arrival curves on inputs
and outputs, respectively. Refinement of such interfaces is characterized and a parallel
composition is defined; adaptive interfaces are proposed in which arrival curves are
propagated throughout the network of components, compositionally. The above very
elegant model captures timing and precedence constraints but does not consider con-
flicts due to shared resources. A blending of this model with timed automata is studied
in [11] together with a mapping of RTC-based real-time interfaces to timed automata.
The work [12] applies and develops similar techniques for distributed heterogeneous
time-triggered automotive systems.

Our work in this section has its roots in [19,15,16,18], which in turn are based upon
the ideas underlying the interfaces for control and scheduling proposed in [23,1,2].
Contrary to these scheduling interfaces, we consider multiple resources and take task
precedences into account. Our aim is different from the previous set of references and
complements it nicely. In our work we assume that a procedure performing global

4 The reader is referred to this paper for further discussion on related work from the real-time
scheduling community. We discuss here the references that are directly relevant to our work.

scheduling analysis is available, so our focus is not on specific classes of schedulability
analyses. Our aim is rather to lift such procedures to a contract framework supporting
OEM-supplier relations in a supply chain. We first provide support for decomposing
a system-level scheduling contract into sub-contracts for suppliers, while guaranteeing
safe system integration—this is different from the objectives of previous compositional
schedulability studies. Second, our contract framework provides support for fusing dif-
ferent viewpoints on the system using contract conjunction. The model of scheduling
components is presented in Section 2. Scheduling components capture implementations
and environments for our scheduling contracts, developed in Section 3. Our approach
is illustrated in Section 4 by an example in the context of the Autosar methodology.

2 Scheduling Components

2.1 Our approach: Building on top of Assume/Guarantee contracts

Recall that Assume/Guarantee contracts (A/G-contracts) are pairs of assumption and
guarantees: C = (A,G). In the basic A/G-contract framework [4], A and G are asser-
tions, i.e., sets of traces for system variables.5 Components capturing legal implemen-
tations or environments of contracts are also modeled by assertions. Component E is
a legal environment for C if E ⊆ A and component M is an implementation for C if
A×M ⊆ G. In this writing, ⊆ is simply set inclusion and component composition × is
by intersection of sets of traces (assuming that the underlying set of system variables is
universal and thus fixed): A×M =def A∩M. One key notion of A/G-contracts is satu-
ration: Contracts (A,G) and (A,G ∪ ¬A), where ¬ is set complement, possess identical
sets of legal environments and implementations, so we consider them equivalent. The
second one is called saturated and is a canonical form for the class of equivalent con-
tracts. Also, MC = G ∪ ¬A is the maximal implementation for this contract. Thus, we
need the operations ∪ and ¬, or at least we need the operation (A,G)→ G ∪¬A, which
is to be interpreted as “A entails G”. Then for C and C ′ two saturated contracts, refine-
ment C ′ � C holds iff A′ ⊇ A and G′ ⊆ G hold. The result of the composition C1 ⊗ C2
of two saturated contracts, is a contract ((A1 ∩ A2) ∪ ¬(G1 ∩G2),G1 ∩G2).

Thus, as a first step, we need the counterpart of assertions for our scheduling com-
ponent framework, with the associated algebra. Ingredients of scheduling problems are:
tasks with their precedence conditions reflecting data dependencies and resource allo-
cation. The sets of timed traces we are interested in are those satisfying the scheduling
constraints, plus quantitative properties such as period, deadline conditions, etc. We
call the resulting model concrete scheduling components. Unfortunately, no rich alge-
bra with the requested operators ⊆,×,∪,¬ exists for concrete scheduling components.

By abstracting away part of the description of task activities in traces, we slightly
abstract concrete scheduling components to so-called abstract ones. The idea is that we
keep only what is essential for capturing interactions of scheduling problems, namely:
1) trigger and release events for tasks, and 2) busyness of resources. The abstraction
map binds each concrete scheduling component to its abstraction and we will show
that this binding is faithful with respect to composition and refinement. The framework

5 These are typically specified using modeling tools such as Simulink/Stateflow.

of abstract scheduling components is simple enough so we manage to equip it with
the wanted operations ⊆,×,∩,∪,¬. A/G-contracts for abstract scheduling components
follow then easily. The rest of this section is devoted to the introduction of concrete and
abstract scheduling components. Then we study the relation between them.

2.2 Concrete Scheduling Components

For our model of scheduling components we assume the following:

– A slotted model of real-time, in which the real line R+ is divided into successive
discrete time slots of equal duration. Successive slots are thus indexed by using
natural numbers 1, 2, 3, . . . , n, . . . ∈ N.

– An underlying set T of tasks, generically denoted by the symbol τ. To describe
events of interest for tasks, we consider the following alphabets: The control alpha-
bet Σc = {i, o, io, aw, sl} collects the trigger, completion, trigger-and-completion,
awake, and sleeping events, for a task; this alphabet describes the triggering and
completion of tasks; since we follow a slotted model of time, triggering and com-
pletion can occur within the same slot, which is indicated by the event io; The
busyness alphabet Σb = {∗,⊥} collecting the busy and idle events; this alphabet
indicates, for a task τ , its status busy/idle at a given time slot. On top of these
alphabets, we build:

Στ =def { (c, b) ∈ Σc × Σb | c=sl ⇒ b=⊥} (1)

reflecting that task τ can only be busy when it is not sleeping. The status of a task
τ in each time slot is expressed by using alphabet Στ.
In addition, each task τ comes equipped with a pair (pt(τ), pc(τ)) ∈ P×P of trigger
and completion ports, where P is an underlying set of ports. For T a set of tasks,
we will consider the set PT =def

{
pt(τ), pc(τ) | τ ∈ T

}
.

– An underlying set R of resources, generically denoted by the symbol r. A resource
can be either available or busy with executing a given task at a given time slot.
Resources can run in parallel. Each resource r ∈ R is assigned the alphabet Σr ⊆

T ∪ {0} of the tasks it can run, where the special symbol 0 indicates that r is idle.

Definition 1. A concrete scheduling component is a tuple M = (K, L), where:

– K = (T,R, ρ) is the sort of M, where: T ⊆ T is the set of tasks, R ⊆ R is the set
of resources, and ρ : T → R, the resource allocation map, is a partial function
satisfying τ ∈ Σρ(τ).
Say that tasks τ1 and τ2 are non-conflicting if they do not use the same resource:
τ1 ‖K τ2 if ρ(τ1) is undefined, or ρ(τ2) is undefined or ρ(τ1) , ρ(τ2).

– For τ1, τ2 ∈ T, say that τ1 precedes task τ2, written τ1−→◦ τ2, if the completion port
of τ1 coincides with the start port of τ2: pc(τ1) = pt(τ2).
We require that this relation is cycle free and we denote by � the partial order on
T obtained by taking transitive closure of −→◦ and we call � the precedence order.
The dual order between ports will also be needed: for p1, p2 ∈ PT , say that p1
precedes p2, written p1−→� p2, if there exists τ ∈ T such that p1 = pt(τ) and pc(τ) =

p2; relation −→� is cycle free if so was −→◦ and, with no risk of confusion, we also
denote by � the precedence order on PT generated by −→� .

– L ⊆ ΣωT is the language of M, where ΣT =def T → Στ, and Aω denotes the set of
all infinite words over alphabet A. Due to the decomposition (1) of Στ, every word
w ∈ L can be equivalently seen as a pair of words w = (wc,wb) describing the
control and busyness history of w.

Since a word w∈L yields a history for each task, it induces, by picking the resource
running that task, a corresponding resource word wR, such that

wR is the tuple collecting the wr for r ∈ R, such that, for every slot n:
wr(n) = {τ ∈ T | ρ(τ) = r and w(τ, n) = (c, b) satisfies b = ∗}

(2)

i.e., wr(n) returns the set of tasks that resource r runs at slot n. This set is not a singleton
if and only if a conflict occurs at slot n regarding resource r.

Whenever convenient, we will denote by TK or T K the set of tasks of sort K, and
similarly for the other constituents of a sort. The events of a task τ will be denoted by
iτ, oτ, etc. For w a word of ΣωK , T ′ ⊆ T , and R′ ⊆ R, we denote by

wT ′ the T ′-word of w, and by wR′ the R′-word of w, (3)

obtained by projecting w to the sub-alphabet ΣT ′ and projecting the induced word wR to
the sub-alphabet ΣR′ , respectively.

Definition 2 (Semantics of concrete scheduling components). Call behavior of sort
K any infinite word w ∈ ΣωT satisfying the following three scheduling conditions:

1. For each task τ ∈ T, the control word wc belongs to the language (sl∗.(io+i.aw∗.o))ω,
where a∗ =def ε+a+a.a+a.a.a+ . . . is the Kleene closure starting at the empty word.
Informally, the two events i and o alternate in w, with i occurring first; io is inter-
preted as the immediate succession of two i and o events at the same time slot.

2. τ1 � τ2 implies that, for every n≥1, the nth occurrence of event oτ1 must have
occurred in w strictly before iτ2 (in words, τ2 can only start after τ1 has completed);

3. w is non-conflicting: for any two conflicting tasks τ1 and τ2 belonging to T (cf.
Definition 1), it never happens that wτ1 and wτ2 are non-idle at the same time slot.

The semantics of M is the sub-language [[M]] ⊆ L consisting of all behaviors of K
belonging to L. Say that M is schedulable if [[M]] , ∅.

Due to the above Condition 2, tasks related by precedence conditions possess identical
logical clocks—in particular, if they are specified periodic, their periods must be equal.
This is not required for tasks not related by precedence conditions.

Comment 1 The pair M = (K, L) can be seen as the specification of a global scheduling
problem. The sort K fixes the set of tasks and their precedence conditions, the set of
resources, and the allocation of tasks to resources. The language L can serve to specify
additional aspects of this scheduling problem, including task durations and/or minimum
time interval between successive activation calls for a task. Semantics [[M]] can be seen
as the maximally permissive solution of the scheduling problem stated by M.

Definition 3. Say that M1 and M2 are composable if their allocation maps ρ1 and ρ2
coincide on T1∩T2 and the relation −→◦ 1 ∪ −→◦ 2 on T1∪T2 is cycle free. If M1 and M2
are composable, their composition M1 ×M2 =def ((T,R, ρ), L) is defined as follows:

T = T1 ∪ T2 , R = R1 ∪ R2 , ∀τ∈T : ρ(τ) = if τ ∈ T1 then ρ1(τ) else ρ2(τ)
L = pr−1

T→T1
(L1) ∩ pr−1

T→T2
(L2)

where prT→Ti
, i = 1, 2, denotes the projection from T to Ti and pr−1 is its inverse.

Of course, the key to understand the meaning of composition × is the construction of
the semantics [[M1 ×M2]]. In the following lemma, for M = ((T,R, ρ), L) a scheduling
component, we identify its semantics [[M]] (which is a language) with the scheduling
component ((T,R, ρ), [[M]]). This gives a meaning to the expression [[M1]]× [[M2]].

Lemma 1. If M1 and M2 are composable, then [[M1 ×M2]] = [[[[M1]]× [[M2]]]].

As announced in the introductory discussion of Section 2, the model of concrete schedul-
ing components is too complex and detailed as a model of components on top of which
contracts can be built. We are unable to define the operations we need on components,
particularly ⊆ and ∪¬ (in turn, parallel composition × was easy to define as we have
seen). The notion of abstract scheduling component we develop in the forthcoming
section will overcome these difficulties. Abstract scheduling components capture the
architecture aspect of Figure 1, namely: ports carrying start and completion events of
tasks, and resources—tasks themselves are, however, ignored.

2.3 Abstract Scheduling Components

Definition 4. An abstract scheduling component is a language M ⊆ Vω, where
V =def

({
0, 1

}P)
×

(∏
r∈R Σr

)
.

Recall that Σr is the alphabet of tasks that can be executed by resource r, see the begin-
ning of Section 2.2. Symbol “1” indicates the occurrence of an event at the considered
port. Abstract scheduling components come equipped with the following algebra:

– The Boolean algebra ∩,∪,¬, and the inclusion ⊆ on sets;
– A parallel composition by intersection: M1 × M2 =def M1 ∩ M2.

Thus, abstract scheduling components offer all the algebra required for a universe of
components on top of which A/G-contracts can be built. It is therefore interesting to
map concrete to abstract scheduling components.

Recall that, for K = (T,R, ρ) a sort, we denote by PT =def pt(T)]pc(T) ⊆ P the set
of ports used by T , see the beginning of Section 2.2. Then, we set

VK =def
({

0, 1
}PT)

×
(∏

r∈R Σr
)

(4)

Definition 5 (Mapping concrete to abstract scheduling components). Each concrete
scheduling component M = (K, L) is mapped to a unique abstract scheduling compo-
nent [[M]]A called its abstract semantics, defined as follows:

1. Pick any behavior w ∈ [[M]], see Definition 2;
2. Denote by πT (w) the word over {0, 1}PT obtained from w as follows. For every p ∈

PT , define •p =
{
τ ∈ T | pc(τ) = p

}
and p• =

{
τ ∈ T | pt(τ) = p

}
, the sets

of anterior and posterior tasks of p. The nth event of p is put nondeterministically
after the n−1st event of p, when or after every task belonging to •p has completed
for the nth time in w, and strictly before every task belonging to p• has started for
the nth time in w. If •p=∅, then the first condition is not considered and similarly if
p•=∅.

3. Denote by πR(w) the word over alphabet
∏

r∈R Σr defined as follows: For every time
slot n and every resource r ∈ R, set

πR(w)(r, n) = τ if and only if w(τ, n) = (c, b) satisfies b = ∗ and ρ(τ) = r.
This part of word πR(w) represents the “positive history” of w, i.e., the use of the
resources belonging to R by tasks belonging to T; We complement πR(w) by describ-
ing the “negative history” of w, consisting of a description of all the possibilities
left, for tasks not belonging to T , in using resources from R:

in all slots of πR(w)(r, n) that are still idle, we set πR(w)(r, n) = τ′ where
τ′ ∈ Σr, τ

′ < T is chosen nondeterministically.
Then, with reference to the sort K = (T,R, ρ) of M, we set:

ηK(w) =def (πT (w), πR(w)) ∈ Vω
K

4. Finally, we define
[[M]]A =def pr−1

Vω→Vω
K

({
ηK(w)i

∣∣∣ w ∈ [[M]]
})
⊆ Vω

where the quantification ranges over w ∈ [[M]] and all instances of nondeterminis-
tic choices in step 2, and prVω→Vω

K
denotes the projection, fromVω toVω

K .

Step 2 is sound since w is a behavior in the sense of Definition 2. Step 2 is the key
step since it transforms a max-plus type of parallel composition (every task waits for all
its preceding tasks having completed before starting) into a dataflow connection where
data are communicated through the shared ports. The data communicated are the events
carried by the ports. These events occur nondeterministically after all preceding tasks
have completed for the nth time and before all succeeding tasks start for the nth time.

Step 3 complements the actual history of each task of M by an explicit descrip-
tion of all possibilities that are left to other scheduling components in using resources
shared with M. The reason for doing this is that this allows to capture the interleaved
use of shared resources by different components, by a simple parallel composition by
intersection.

The above construction is illustrated in Figure 2. When hiding the tasks sitting inside
the boxes, the architecture shown on Figure 1 is a dataflow representation of [[M]]A: in
interpreting this figure, one should consider that each task is free to start any time after
it has received its triggering event, and free to wait for some time before emitting its
completion event.

Lemma 2. The mapping M → [[M]]A satisfies the following properties: 1) Schedula-
bility is preserved in that [[M]] , ∅ if and only if [[M]]A , ∅; 2) For every r < R, the set{
v(r)

∣∣∣ v ∈ [[M]]A }
is the free language (T − T)ω.

The special property 2) is not preserved under the Boolean set algebra. Therefore, the
mapping M→ [[M]]A is not surjective.

o3

o2

o1

i1

CPU1

CPU2

o2 o2 o2

o3 o3 o3

τ3

i1 i1 i1
τ1

o1 o1 o1

τ2

τ3
τ2

τ1 τ1 τ1 τ3 τ1 τ1 τ1 τ3 τ1 τ1 τ1
τ2 τ2 τ2τ2 τ2

τ1,τ3 are assigned to CPU1
τ2 is assigned to CPU2

Fig. 2. Showing a concrete behavior of M (left, with reference to Figure 1) and a corresponding
abstract behavior of [[M]]A (right), by using P =

{
i1, o1, o2, o3

}
as underlying alphabet of ports.

On the second diagram, blanks figure the slots left free for any external task to run on the referred
resource. The yellow rectangles indicate the room for nondeterministic choices; bounds of these
rooms are figured by pointing arrows; where such arrow is missing, the corresponding rectangle
is unbounded on that side.

2.4 Faithfulness of the mapping

Consider two concrete scheduling components M1 and M2, where Mi = (Ki, Li) and
Ki = (Ti,Ri, ρi). It is difficult and generally undecidable to compare their abstract se-
mantics: [[M1]]A ⊆ [[M2]]A. We will, however, need such checks in the sequel. We thus
propose some effective sufficient conditions ensuring the inclusion of abstract seman-
tics.

Lemma 3. The following conditions on the pair (M′,M) imply [[M′]]A ⊆ [[M]]A:

1. There exists a surjective total map ψ : T ′ → T, such that:
(a) For every τ ∈ T: pt(τ) = minψ(τ′)=τ pt(τ′) and pc(τ) = maxψ(τ′)=τ pc(τ′), where

min and max refer to the order �′ generated by the precedence relation −→◦ on
ports of M′, see Definition 1;

(b) The following holds, for every 4-tuple of tasks (τ′1, τ
′
2, τ1, τ2) ∈ T ′2 × T 2:

ψ(τ′1)=τ1 and ψ(τ′2)=τ2
′

together entail τ′1 ‖
′

τ′2 ⇒ τ1 ‖ τ2.
2. For each task τ ∈ T, there exists an injective total map χτ : Στ →

⊎
τ′ ∈ψ−1(τ) Στ′ ,

where the Στ′ are copies, for each referred task τ′, of the alphabet defined in (1);
set χ =def

⊎
τ ∈T χτ. The language L is defined through some temporal property

Timing_Prop on the events from alphabet
⊎
τ ∈T Στ, and, replacing, in Timing_Prop,

every event e by its image χ(e) defines a language L′′ such that L′′ ⊇ L′.

Say that M′ vM when the above three conditions hold.

Observe that Conditions 1 involve only the sorts K1 and K2 of M1 and M2. Condition 2
formalizes the situation in which the language L2 is specified through timing properties
relating certain events of interest for tasks of M2 (duration between trigger and comple-
tion, end-to-end duration when traversing a set of successive tasks, etc.). The considered
events are then mapped to some events of M1 and the timing property remains the same
or is strengthened. The following results hold:

Lemma 4. If M1 and M2 are composable, then [[M1 ×M2]]A = [[M1]]A × [[M2]]A.

Lemma 5. Let (A,G) be a composable pair of concrete scheduling components such
that RA = ∅. Then, the following formulas define a concrete scheduling component M =

((T,R, ρ), L) such that [[M]]A = [[G]]A ∪ ¬[[A]]A :

T = TA ∪ TG , R = RG , ρ(τ) = if τ ∈ TA then ρA(τ),
L = pr−1

T→TG
(LG) ∪ pr−1

T→TA
(¬LA)

3 Scheduling Contracts

As recommended in Section 2.1, we first define what components are, and then we
define contracts. Regarding components, the notations used here refer to the operations
⊆,∩,∪,¬,× introduced for abstract scheduling components in Section 2.3.

Definition 6 (Scheduling contracts). A scheduling contract is a pair C = (A,G) of
abstract scheduling components, called the assumptions and the guarantees.

The set EC of the legal environments for C collects all abstract scheduling compo-
nents E with non-empty semantics such that E ⊆ A. The setMC of all implementations
of C consists of all abstract scheduling components M with non-empty semantics such
that A×M ⊆ G.

Each scheduling contract can be put in its equivalent saturated form C =(A,G∪¬A),
possessing the same sets of legal environments and implementations. Scheduling con-
tract C is compatible if and only if A , ∅ and consistent if and only if G ∪ ¬A , ∅. Say
that scheduling contract C = (A,G) is schedulable if A ∩G , ∅.

The background theory of A/G-contracts applies. Note that A∩G = A∩(G∪¬A), hence
checking schedulability does not require the contract to be saturated. The justification
of this notion of schedulability for contracts is given in the next section.

In practice the designer will specify scheduling contracts using concrete, not ab-
stract, scheduling components:

Definition 7 (Concrete scheduling contracts). Call concrete scheduling contract (or
concrete contract) a pair C = (A,G) of composable concrete scheduling components
called its assumptions and guarantees.

See Definition 3 for the notion of composability. To contrast with concrete contracts, we
will sometimes call abstract scheduling contracts, or abstract contracts, the scheduling
contracts of Definition 6. The mapping from concrete to abstract scheduling compo-
nents developed in Section 2.3 allows mapping concrete scheduling contracts to abstract
ones:

C = (A,G) 7→ C(A,G) =def ([[A]]A, [[G]]A)
Say that C is consistent, compatible, schedulable, or in saturated form, if so is C(A,G).

Lemma 6 (Checking for contract refinement). The following conditions imply re-
finement C(A,G) �

(∧
j∈J C(A j,G j)

)
: for every j ∈ J, A j is composable with G and the

following two conditions hold: A j ×G v G j and A j v A.

3.1 Getting sub-contracts in the Autosar development process

In this section we develop techniques in support of the following design steps, which
are advocated by the Autosar methodology [7,8]:

Process 1 (Autosar development process)

1. Start with a top-level, system wide, contract. At this level, only functions are con-
sidered whereas computing resources are ignored. Functions are abstracted as sys-
tems of tasks with their precedence constraints.

2. To prepare for subcontracting to different suppliers, decompose this functional top-
level contract into functional sub-contracts.

3. At this step the computing resources are now taken into account. Perform system
wide (global) schedulability analysis, thus inferring resource budgets.

4. Derive resource aware sub-contracts and submit them to the supplier.

This process is rather informal. It is thus tempting to interpret the above tasks as re-
finement steps, for scheduling contracts. With this in mind, Steps 1 and 2 exhibit no
particular difficulty. Step 3, however, raises a problem. Adding the consideration of re-
sources to a resourceless contract cannot be a refinement step. This can be seen from
Lemma 3, which gives sufficient conditions for concrete contract refinement: referring
to this lemma, there is no way that the resulting contracts C′ = (A′,G′) can refine C
since [[A′]]A ⊇ [[A]]A is not possible when resources are added, from A to A′. This is
no surprise in fact, since one cannot independently add shared resources to different
contracts, and at the same time expect to be able to develop independently.

Of course, from a theoretical standpoint, there is an easy solution to this problem.
One could argue that not considering resources and budgeting them from the very begin-
ning is a mistake and cannot work. Following this argument we would need to consider
resources already in the top-level contracts, and address budgeting right from the be-
ginning. Unfortunately, this is in total disagreement with the Autosar approach, which
advocates at early stages the specification of software architectures consisting of soft-
ware components, regardless of resources.

To overcome this difficulty, our approach is: 1) to precisely characterize the “ille-
gal” development steps we perform that violate contract refinement, and 2) to precisely
identify the resulting risks for later system integration. To this end we will use the
weaker notion of port-refinement, for concrete contracts. Decompose the alphabet V
introduced in Definition 4:

V =
({

0, 1
}P)
×

(∏
r∈R Σr

)
= VP ×VR

For M = ((T,R, ρ), L) a concrete scheduling component, define

[[M]]P =def prVP
(
[[Mρ/ε]]A

)
, where Mρ/ε =def ((T, ∅, ε), L),

and ε is the allocation map with empty domain. In words, we first ignore the possible
conflicts due to shared resources (replacing M by Mρ/ε), we then take the abstract se-
mantics [[Mρ/ε]]A, and we finally project the resulting abstract semantics over the ports
only (taking prVP (...)). [[M]]P captures the scheduling aspect of M while discarding the
resource aspect of it. Observe that [[M]]P contains the language obtained by project-
ing [[M]]A over the ports; this inclusion is generally strict. For C = (A,G) a concrete
scheduling contract, define

[[C]]P =def ([[A]]P, [[G]]P) the port-contract associated with C.

Despite the boldface notation used, port-contracts are abstract contracts. For C and C′
two concrete contracts, say that

C′ port-refines C, written C′ �P C if [[C′]]P � [[C]]P.

We will restrict the illegal steps of Process 1 to the following situation, which does
not contradict the Autosar methodology. Assume, from early design stages on, prior
knowledge of the following property about a given set T of tasks—this does not require
detailed knowledge of the computing resources:

Definition 8 (T-closed contracts). Say that a set T ⊂ T of tasks is segregated if the set
R of all resources partitions as follows: R = R ∪ R,R ∩ R = ∅, and T ⊆ ΣR whereas
T − T ⊆ ΣR. For any segregated set of tasks T , say that concrete contract C = (A,G)
is T-closed if TG ⊆ T and TA ∩ T = ∅.

If C = (A,G) is T-closed, then ρG(TG) ∩ ρA(TA) = ∅ holds. Illegal steps are performed
on T-closed contracts only. An illegal step consists in replacing T-closed contract C by
another T-closed contract C′ port-refining it: C′ �P C.

Port-refinement being not a refinement, replacing C by C′ won’t ensure that any
implementation of C′ meets the guarantees of C under any legal environment for C′—
it should ensure this if it was a true refinement. Still, the following result holds, which
precisely bounds the risks at system integration time:

Lemma 7. Let be C′ �P C satisfying the following conditions: C and C′ are T-
closed for a same segregated set T of tasks, C′ is schedulable, [[A′]]P = [[A]]P, A
and A′ both have their tasks pairwise non-conflicting, and G is resourceless. Then:
∅ , A×G′ v G.

Lemma 7 expresses that G′ is an implementation of C′ that, when put in the context
of the most permissive environment of C, meets the guarantee G and is schedulable.
That G is met will remain valid for any legal environment of C and any implementation
of C′. Schedulability, however, is only ensured by the most permissive environment of
C and implementation of C′. This restriction is not surprising since schedulability is a
liveness property whereas A/G-contracts support only safety properties.

We are now ready to explain how the Autosar development process (Process 1) can
be made safe by implementing the illegal development steps safely.

Process 2 (Autosar development process made safe) We assume a segregated subset
T of tasks.

1. Start with a top-level, T-closed, contract Cfunc
top = (Atop,Gtop). At this level, only

functions are considered while computing resources are ignored. Functions are ab-
stracted as systems of tasks with their precedence constraints. The top-level con-
tract may be the conjunction of several viewpoints, and/or it may be specified by
means of requirement tables.

– Comment: No change with respect to Process 1 besides T-closedness.

2. To prepare for subcontracting to different suppliers, decompose the above func-
tional contract Ctop into functional, resource agnostic, sub-contracts in such a way
that

Cfunc
ref = (Aref ,Gref) = × i∈I Ci satisfies

{
Atop ×Gref v Gtop

Aref w Atop
(5)

where the Ci are T-closed subcontracts for the different suppliers. In addition, we
require that Aref and Atop possess identical sets of tasks, i.e., map ψ of Lemma 3
is the identity. By Lemma 6, (5) ensures C func

ref � C func
top . So far resources were not

considered.
– Comment: No change so far, with respect to Process 1, besides naming con-

tracts and making refinement step precise through (5). The first two steps make
no reference to semantics, meaning that no scheduling analysis is required, cf.
Comment 1. From the next step on, this process deviates from Process 1.

3. At this step the computing resources are now taken into account. Allocate a re-
source to each task of Aref and Gref , in such a way that all tasks of Aref are pair-
wise non-conflicting, see Definition 1. Precedence constraints between tasks are
not modified. This yields a resource aware T-closed contract Cres

ref such that

Cres
ref = (Ares

ref ,G
res
ref) �P Cfunc

ref (6)

Since Ares
ref is free of conflict, only Gres

ref requires a non-trivial scheduling analysis,
which result is specified through the semantics [[Gres

ref]], cf. Comment 1. At this point,
resources have been globally budgeted and scheduling analysis globally performed.

– Comment: This is the illegal step, which is protected by Lemma 7.
4. Continue by decomposing contract Cres

ref into resource aware sub-contracts Cres
i , fol-

lowing the architecture specified in Step 2, in such a way that
⊗

i∈I C res
i � C res

ref .
The results of the next section can be used for this.

4 An example in the context of Autosar

To illustrate the practical use of the framework of scheduling contracts in Autosar,
we consider as an example an excerpt of an exterior light management system for an
automobile.6 Regarding modeling methodology and notations, we will be using both
concrete contracts (for the specification of contracts at early steps of the design) and
abstract contracts (when using the contract algebra). We will use the symbols C and C
to distinguish between them. The duration of the time slot is 1µs.

Step 1 of Process 2: In this step a view of the Virtual Functional Bus System is cre-
ated. It shows how the system functions interact regardless of any network topology or
deployment across multiple ECUs. Step 1 of Process 2 is performed by considering re-
sourceless contracts for this Virtual Functional Bus (VFB) view. All contracts created in
this step have to be T-closed to prepare for the later steps where resources are added. In

6 A case-study from the German SPES2020 project

BrakeLights

ext_pedal ext_brake_lamp

TurnLights

emcy

ext_rear_di_lamp

τBL

τTL

trig_TL

Fig. 3. Virtual Functional Bus (VFB) architecture

these contracts, functions provided by software components, are represented by means
of tasks with precedence constraints. Typical constraints imposed by the language of
contracts would be latency intervals, synchronization of events and event models. Fig-
ure 3 shows the VFB architecture of the exterior light management. The system shall
control the brake lights in accordance with the driver pressing the brake pedal. The
TurnLights component controls the direction indicator lights according to the position
of the turn signal lever and the warn lights button. The system shall also implement an
emergency stop signal, where warn lights flash in case of severe braking. The graphical
notations in Figure 3 distinguishes pure data flows (the dashed lines) from control flows
(the solid lines), where the latter may also carry data items.

The languages LA and LG of a (concrete) scheduling contract can be specified by
means of the Autosar timing extensions [9]. The concept of observable events allows
to derive sorts of scheduling components, as well as ports of their tasks. Precedence
order −→◦ follows from the interconnection of ports of software components.

To avoid heavy textual notations, in the following we denote by the expression
δ(X,Y) the latency between occurrence of an event at port X and occurrence of an event
at port Y. Further S(X,T, J) denotes a periodic event model for occurrences of events at
port X, where T is the period and J is the jitter. We will also write S(X,T), if J = 0. We
use boolean operators to combine such expressions.

In the case-study there is a maximum allowed latency between brake sensing and
activating the brake lights. The same applies to flashing the warn lights in case of an
emergency brake situation. The resulting top-level contract for the VFB is as follows:

Ctop = (Atop,Gtop) =

(
S(ext_pedal, 20ms)∧
S(trig_TL, 20ms) ,

δ(ext_pedal, ext_brake_lamp) ≤ 25ms∧
δ(ext_pedal, ext_rear_di_lamp) ≤ 60ms

)
Atop makes explicit an assumption about the frequency of sensor samples of the brake
pedal position. These assumptions were not part of the requirements.7

Step 2 of Process 2: Assuming that components BrakeLights and TurnLights are imple-
mented by two different suppliers, we propose sub-contracts specifying a time budget-
ing for them. Thereby a clear assignment of responsibilities to the suppliers is achieved.

7 It is actually not uncommon that some critical assumptions are implicit in requirements docu-
ments, which may, at times, become a problem.

This activity is step 2 of Process 2. In our case two subcontracts are specified:

CBL =

(
S(ext_pedal, 20ms) ,

δ(ext_pedal, ext_brake_lamp) ≤ 25ms∧
δ(ext_pedal, emcy) ≤ 5ms

)
CTL =

(
S(emcy, 20ms, 5ms)∧
S(trig_TL, 20ms) , δ(emcy, ext_rear_di_lamp) ≤ 50ms

)
These contracts are still resourceless. To ensure that CBL and CTL are correct with re-
spect to the top-level contract, we must prove the refinement

CBL ⊗ CTL � Ctop

This can be performed by invoking Lemma 6.

Steps 3 and 4 of Process 2: The next step in the Autosar methodology consists in de-
veloping system and sub-system views, where the network topology and deployment of
software components to ECUs is defined. Resource aware contracts are now considered.
A resource is allocated to each task of the contracts defined for the VFB description.
Precedence constraints between tasks are not modified. If tasks of the assumption are
pair-wise non-conflicting (see Definition 1), this yields a resource aware T-closed con-
tract, that port-refines the contract of the VFB.

RIECANCBE

TurnLights_SC

0

emcy

ext_rear_di_lamp

BrakeLights_SC BrakeLampActuator

ext_pedal

lamp_out

ext_brake_lamp

RearDirActuator

rear_dir_out

CAN
BL

CBE
BL RIE

BL

trig_BLAlamp_in

rear_dir_in

CBE
TL

trig_TL

CAN
TL RIE

TL

trig_RDA

ms
CLK
10

1

ms
CLK
10

2

Fig. 4. Deploying VFB on computing and communication resources.

For the example, the VFB view is further refined and then deployed as the archi-
tecture shown in Figure 4. The blue dashed boxes denote the previous components
BrakeLights and TurnLights from the architecture shown on Figure 3. The brown boxes
labeled CBE, CAN and RIE, indicate resources allocated to tasks. Deployment is driven
by the separation of the sensing and control parts from the actuation part. In addition to
allocating resources, execution budgets are specified per task. Mirroring the decompo-
sition of the VFB description, the contract of the system view is the composition of the
resource aware sub-contracts CBL′ and CTL′ . Since contracts created in this step and in
previous steps 1 and 2 are T-closed, Lemma 7 applies and we can bound the risks for
later system integration.

5 Conclusion

We have developed a framework of Assume / Guarantee contracts for schedulability
analysis. The methodological step of Autosar suggesting a transition from a Virtual
Function Bus view, which is independent of the target platform, to a system view where
network topology and deployment across ECUs is considered, was particularly chal-
lenging. A strict contract based approach offering independent development was not
feasible, since task scheduling is a resource allocation problem, which, by essence, can
only be solved globally. However, our approach allows to properly bound the devel-
opment steps of the Autosar methodology that do not comply with the rules of con-
tract based design, while avoiding risks at system integration with a clear and limited
additional discipline regarding resource segregation. Within resource segregated sub-
systems, our contract framework enables compositional reasoning about scheduling of
applications distributed over several resources.

References

1. Alur, R., Weiss, G.: Regular Specifications of Resource Requirements for Embedded Con-
trol Software. In: Proceedings of the 14th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2008. pp. 159–168. IEEE Computer Society (2008)

2. Alur, R., Weiss, G.: RTComposer: A Framework for Real-Time Components with Schedul-
ing Interfaces. In: Proceedings of the 8th ACM & IEEE International conference on Embed-
ded software, EMSOFT 2008. pp. 159–168. ACM (2008)

3. Anand, M., Fischmeister, S., Lee, I.: A Comparison of Compositional Schedulability Analy-
sis Techniques for Hierarchical Real-Time Systems. ACM Trans. Embedded Comput. Syst.
13(1), 2 (2013)

4. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.: Multiple
Viewpoint Contract-Based Specification and Design. In: Proceedings of the Software Tech-
nology Concertation on Formal Methods for Components and Objects, FMCO’07. Lecture
Notes in Computer Science, vol. 5382, pp. 200–225. Springer (October 2008)

5. Boudjadar, A., David, A., Kim, J.H., Larsen, K.G., Mikucionis, M., Nyman, U., Skou, A.:
Widening the Schedulability of Hierarchical Scheduling Systems. In: Formal Aspects of
Component Software - 11th International Symposium, FACS 2014, Bertinoro, Italy, Septem-
ber 10-12, 2014, Revised Selected Papers. pp. 209–227 (2014)

6. Boudjadar, A., Kim, J.H., Larsen, K.G., Nyman, U.: Compositional Schedulability Analysis
of An Avionics System Using UPPAAL. In: Proceedings of the 1st International Confer-
ence on Advanced Aspects of Software Engineering, ICAASE 2014, Constantine, Algeria,
November 2-4, 2014. pp. 140–147 (2014)

7. Autosar consortium: 10 years Autosar. Tech. rep., Autosar(2013), available from
http://www.autosar.org/fileadmin/files/events/10yearsautosar/ATZextra_
AUTOSAR_-_THE_WORLDWIDE_AUTOMOTIVE_STANDARD_FOR_EE_SYSTEMS.pdf

8. Autosar consortium: Methodology (Release 421, 2014), available from http:
//www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/
methodology/auxiliary/AUTOSAR_TR_Methodology.pdf

9. Autosar consortium: Specification of Timing Extensions (Release 421, 2014),
available from http://www.autosar.org/fileadmin/files/releases/
4-2/methodology-templates/templates/standard/AUTOSAR_TPS_
TimingExtensions.pdf

http://www.autosar.org/fileadmin/files/events/10yearsautosar/ATZextra_AUTOSAR_-_THE_WORLDWIDE_AUTOMOTIVE_STANDARD_FOR_EE_SYSTEMS.pdf
http://www.autosar.org/fileadmin/files/events/10yearsautosar/ATZextra_AUTOSAR_-_THE_WORLDWIDE_AUTOMOTIVE_STANDARD_FOR_EE_SYSTEMS.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_TimingExtensions.pdf

10. Easwaran, A., Lee, I., Sokolsky, O., Vestal, S.: A Compositional Scheduling Framework for
Digital Avionics Systems. In: 15th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA 2009, Beijing, China, 24-26 August
2009. pp. 371–380 (2009)

11. Lampka, K., Perathoner, S., Thiele, L.: Component-based system design: analytic real-time
interfaces for state-based component implementations. STTT 15(3), 155–170 (2013)

12. Lukasiewycz, M., Schneider, R., Goswami, D., Chakraborty, S.: Modular Scheduling of Dis-
tributed Heterogeneous Time-Triggered Automotive Systems. In: Proceedings of the 17th
Asia and South Pacific Design Automation Conference, ASP-DAC 2012, Sydney, Australia,
January 30 - February 2, 2012. pp. 665–670 (2012)

13. Marimuthu, S.P., Chakraborty, S.: A Framework for Compositional and Hierarchical Real-
Time Scheduling. In: 12th IEEE Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA 2006), 16-18 August 2006, Sydney, Australia. pp. 91–96
(2006)

14. Phan, L.T.X., Lee, J., Easwaran, A., Ramaswamy, V., Chen, S., Lee, I., Sokolsky, O.:
CARTS: A Tool for Compositional Analysis of Real-Time Systems. SIGBED Review 8(1),
62–63 (2011)

15. Reinkemeier, P., Stierand, I.: Compositional Timing Analysis of Real-Time Systems Based
on Resource Segregation Abstraction. In: Embedded Systems: Design, Analysis and Verifica-
tion - 4th IFIP TC 10 International Embedded Systems Symposium, IESS 2013, Paderborn,
Germany, June 17-19, 2013. Proceedings. pp. 181–192 (2013)

16. Reinkemeier, P., Stierand, I.: Real-Time Contracts - A Contract Theory Considering Re-
source Supplies and Demands. Reports of SFB/TR 14 AVACS 100, SFB/TR 14 AVACS
(July 2014), http://www.avacs.org

17. Shin, I., Lee, I.: Compositional Real-Time Scheduling Framework. In: Proceedings of the
25th IEEE Real-Time Systems Symposium (RTSS 2004), 5-8 December 2004, Lisbon, Por-
tugal. pp. 57–67 (2004)

18. Stierand, I., Reinkemeier, P., Bhaduri, P.: Virtual Integration of Real-Time Systems Based
on Resource Segregation Abstraction. In: Formal Modeling and Analysis of Timed Systems
- 12th International Conference, FORMATS 2014, Florence, Italy, September 8-10, 2014.
Proceedings. pp. 206–221 (2014)

19. Stierand, I., Reinkemeier, P., Gezgin, T., Bhaduri, P.: Real-Time Scheduling Interfaces and
Contracts for the Design of Distributed Embedded Systems. In: 8th IEEE International Sym-
posium on Industrial Embedded Systems, SIES 2013, Porto, Portugal, June 19-21, 2013. pp.
130–139 (2013)

20. Stoimenov, N., Chakraborty, S., Thiele, L.: Interface-Based Design of Real-Time Sys-
tems. In: Advances in Real-Time Systems (to Georg Färber on the occasion of his ap-
pointment as Professor Emeritus at TU München after leading the Lehrstuhl für Realzeit-
Computersysteme for 34 illustrious years). pp. 83–101 (2012)

21. Thiele, L., Wandeler, E., Stoimenov, N.: Real-Time Interfaces for Composing Real-Time
Systems. In: Proceedings of the 6th ACM & IEEE International conference on Embedded
software, EMSOFT 2006, October 22-25, 2006, Seoul, Korea. pp. 34–43 (2006)

22. Wandeler, E., Thiele, L.: Interface-Based Design of Real-Time Systems with Hierarchical
Scheduling. In: 12th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS 2006), 4-7 April 2006, San Jose, California, USA. pp. 243–252 (2006)

23. Weiss, G., Alur, R.: Automata Based Interfaces for Control and Scheduling. In: Hybrid Sys-
tems: Computation and Control, 10th International Workshop, HSCC 2007. Lecture Notes
in Computer Science, vol. 4416, pp. 601–613. Springer (2007)

	Contracts for Schedulability Analysis

