
Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Scalable Armies of Model Clones through Data
Sharing

MODELS 2014 Valencia

Erwan Bousse1 Benoit Combemale2 Benoit Baudry2

1University of Rennes 1 (IRISA), France

2Inria, France

November 24, 2014

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 1/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Outline

1 Introduction

2 Preliminaries: runtime and cloning

3 Scalable model cloning operators

4 Evaluation

5 Conclusion

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 2/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Plan

1 Introduction

2 Preliminaries: runtime and cloning

3 Scalable model cloning operators

4 Evaluation

5 Conclusion

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Context and motivation

New MDE activities which rely on the production of large
quantities of models and variations of a set of models, that
can be obtained through model cloning.

Definition: clone

A clone is a model that is, when created, is identical to an existing
model. Both models conform to the same metamodel and are
independent from one to another.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 3/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Example of large quantities of clones

Evolutionnary computation:

MutationCross-overSelectionInitial population

Execution trace:
Step 1 Step 2 Step 3 Step 3

Design space
exploration:

Design space

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 4/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Example of large quantities of clones

Evolutionnary computation:

MutationCross-overSelectionInitial population

Execution trace:
Step 1 Step 2 Step 3 Step 3

Design space
exploration:

Design space

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 4/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Example of large quantities of clones

Evolutionnary computation:

MutationCross-overSelectionInitial population

Execution trace:
Step 1 Step 2 Step 3 Step 3

Design space
exploration:

Design space

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 4/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Example of large quantities of clones

Evolutionnary computation:

MutationCross-overSelectionInitial population

Execution trace:
Step 1 Step 2 Step 3 Step 3

Design space
exploration:

Design space

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 4/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Problem: efficient model cloning

Need for the ability to clone a model

Already possible using the most convenient cloning
implementation: deep cloning (see EcoreUtil.Copier class)

deep cloning ≡ duplicating the model in memory

Problem: deep cloning has very poor memory performances

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 5/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Problem: efficient model cloning

Need for the ability to clone a model

Already possible using the most convenient cloning
implementation: deep cloning (see EcoreUtil.Copier class)

deep cloning ≡ duplicating the model in memory

Problem: deep cloning has very poor memory performances

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 5/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Plan

1 Introduction

2 Preliminaries: runtime and cloning

3 Scalable model cloning operators

4 Evaluation

5 Conclusion

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Manipulating metamodels and models at runtime

Execution environments are necessary to make concrete use
of metamodels and models

One of the most popular: Eclipse Modeling Framework (EMF)

EMF generates Java interfaces and classes that implement a
metamodel, providing mechanisms to create runtime
representations of models that conform to the metamodel

Definition: runtime representation

The runtime representation of a model is the set of runtime data
that is sufficient to reflect the model data structure. It must
be manipulated through an interface that is consistent with the
corresponding metamodel.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 6/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Example: a metamodel, a model, and runtime counterparts

:B

x = 5

:B

x = 7:A

i = 1
j = 2

-b
*

Example of system

instance ofinstance of instance of
conforms to

b
*

Metamodel "AB"

Model "abb"

Runtime representation

implements

:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1
j = 2

A
+i: int
+(mut) j: int

B
+x: int

representation of

<<interface>>

A

+getB(): List<B>
+getI(): int
+setI(int)
+getJ(): int
+setJ(int)

AImpl
+i: int
+j: int

<<interface>>

B

+getX(): int
+setX(int)

BImpl
+x: int

API

Modeling framework
code generation
e.g. EMF

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 7/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Example: a model clone obtained using deep cloning

Metamodel "AB"

Model "abb"

conforms toconforms to

cloned
from

Model "abb_clone"

representation of representation of

:B

x = 5

:B

x = 7

:A

i = 1
j = 2

:B

x = 5

:B

x = 7

:A

i = 1
j = 5

:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1
j = 5

:BImpl

x = 5

:BImpl

x = 7

:AImpl

i = 1
j = 2

Runtime representation of "abb" Runtime representation of "abb_clone"

API

System

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 8/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Plan

1 Introduction

2 Preliminaries: runtime and cloning

3 Scalable model cloning operators

4 Evaluation

5 Conclusion

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Requirements for cloning operators

Req #1 scalability.

Runtime representations of model clones must scale in memory.

Req #2 manipulation performance.

It is necessary to manipulate the clones as efficiently as any model.

Req #3 model interface.

The clones and the original model must be manipulated through
the same interface.

Req #4 reflective layer

Support model manipulation through a reflective layer.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 9/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Requirements for cloning operators

Req #1 scalability.

Runtime representations of model clones must scale in memory.

Req #2 manipulation performance.

It is necessary to manipulate the clones as efficiently as any model.

Req #3 model interface.

The clones and the original model must be manipulated through
the same interface.

Req #4 reflective layer

Support model manipulation through a reflective layer.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 9/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Requirements for cloning operators

Req #1 scalability.

Runtime representations of model clones must scale in memory.

Req #2 manipulation performance.

It is necessary to manipulate the clones as efficiently as any model.

Req #3 model interface.

The clones and the original model must be manipulated through
the same interface.

Req #4 reflective layer

Support model manipulation through a reflective layer.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 9/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Requirements for cloning operators

Req #1 scalability.

Runtime representations of model clones must scale in memory.

Req #2 manipulation performance.

It is necessary to manipulate the clones as efficiently as any model.

Req #3 model interface.

The clones and the original model must be manipulated through
the same interface.

Req #4 reflective layer

Support model manipulation through a reflective layer.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 9/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Requirements for cloning operators

Req #1 scalability.

Runtime representations of model clones must scale in memory.

Req #2 manipulation performance.

It is necessary to manipulate the clones as efficiently as any model.

Req #3 model interface.

The clones and the original model must be manipulated through
the same interface.

Req #4 reflective layer

Support model manipulation through a reflective layer.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 9/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing: existing approaches

Idea for Req #1: considering that only a subset of a model changes
during its lifecycle, avoid data redundancy among clones

Dynamically: copy-on-write (aka lazy copy)

Create virtual copies, and create real copies on write accesses.

either using a specific API/entry-point, breaks Req#3

or in a transparent way, but managing consistency depends on the
implementation language (e.g. Java is pass-by-value)

Copies are done during manipulations, may break Req#2

Statically: flyweight design pattern

Objects are designed to be used in multiple contexts.

Requires the passing the extrinsic state (ie the mutable part) of the
object as a parameter, for all its operations, breaks Req #3

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 10/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing: existing approaches

Idea for Req #1: considering that only a subset of a model changes
during its lifecycle, avoid data redundancy among clones

Dynamically: copy-on-write (aka lazy copy)

Create virtual copies, and create real copies on write accesses.

either using a specific API/entry-point, breaks Req#3

or in a transparent way, but managing consistency depends on the
implementation language (e.g. Java is pass-by-value)

Copies are done during manipulations, may break Req#2

Statically: flyweight design pattern

Objects are designed to be used in multiple contexts.

Requires the passing the extrinsic state (ie the mutable part) of the
object as a parameter, for all its operations, breaks Req #3

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 10/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing: existing approaches

Idea for Req #1: considering that only a subset of a model changes
during its lifecycle, avoid data redundancy among clones

Dynamically: copy-on-write (aka lazy copy)

Create virtual copies, and create real copies on write accesses.

either using a specific API/entry-point, breaks Req#3

or in a transparent way, but managing consistency depends on the
implementation language (e.g. Java is pass-by-value)

Copies are done during manipulations, may break Req#2

Statically: flyweight design pattern

Objects are designed to be used in multiple contexts.

Requires the passing the extrinsic state (ie the mutable part) of the
object as a parameter, for all its operations, breaks Req #3

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 10/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Approach: static identification of safely shareable parts

Operations

Metamodel

Mutable
elements

(runtime data,
parts to optimize,

etc.)

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 11/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Approach: static identification of safely shareable parts

Operations

Metamodel

Mutable
elements

(runtime data,
parts to optimize,

etc.) Metamodel with
shareable elements tagged

Shareable
elements

identification of
shareable elements

Sharing
strategy

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 11/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Approach: static identification of safely shareable parts

Operations

Metamodel

Mutable
elements

(runtime data,
parts to optimize,

etc.) Metamodel with
shareable elements tagged

Shareable
elements

identification of
shareable elements

cloning while safely sharing
shareable data

Shared data
(based on shareable
elements of the MM)Runtime repr.

of a model Runtime repr.
of a clone

In memory

Sharing
strategy

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 11/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Shareable elements and sharing mechanisms

b
*

Metamodel "AB"

A
+i: int
+(mut) j: int

B
+x: int

:AImpl

i = 1
j (mut) =2

:AProxy

j (mut) =5

origin

Field sharing using a partial proxy
(i considered shareable)

:BImpl

x = 5

:AImpl :AImpl

Object sharing
(B considered shareable)

Req #2 (efficiency) is not satisfied when sharing fields

Req #4 (reflective layer) is not satisfied when sharing objects,
since it breaks MOF container() operation

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 12/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Shareable elements and sharing mechanisms

b
*

Metamodel "AB"

A
+i: int
+(mut) j: int

B
+x: int

:AImpl

i = 1
j (mut) =2

:AProxy

j (mut) =5

origin

Field sharing using a partial proxy
(i considered shareable)

:BImpl

x = 5

:AImpl :AImpl

Object sharing
(B considered shareable)

Req #2 (efficiency) is not satisfied when sharing fields

Req #4 (reflective layer) is not satisfied when sharing objects,
since it breaks MOF container() operation

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 12/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing strategies

For design-time, 3 sharing strategies with trade-offs between
memory use and satisfaction of Req #2 and Req #4

DeepCloning Nothing is shareable.

ShareFieldsOnly Only immutable attributes are shareable.

ShareObjOnly
Classes that can’t (transitively) access mutable
parts are shareable.

ShareAll

Shareable elements are immutable attributes, classes
whose properties are all shareable, and immutable
references pointing to shareable classes.

For runtime, 1 generic algorithm parameterized by a sharing
strategy → 3 data sharing cloning operators.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 13/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing strategies

For design-time, 3 sharing strategies with trade-offs between
memory use and satisfaction of Req #2 and Req #4

DeepCloning Nothing is shareable.

ShareFieldsOnly Only immutable attributes are shareable.

ShareObjOnly
Classes that can’t (transitively) access mutable
parts are shareable.

ShareAll

Shareable elements are immutable attributes, classes
whose properties are all shareable, and immutable
references pointing to shareable classes.

For runtime, 1 generic algorithm parameterized by a sharing
strategy → 3 data sharing cloning operators.

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 13/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing strategies: example

C
+c1 (mut): int
+c2: boolean

D
+d1: int

E
+e1: int
+e2: int

d e

F

f

G
+g1: int

g

H

h

someF (mut)

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 14/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing strategies: example

C
+c1 (mut): int
+c2: boolean

D
+d1: int

E
+e1: int
+e2: int

d e

F

f

G
+g1: int

g

H

h

someF (mut)

ShareFieldsOnly

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 14/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing strategies: example

C
+c1 (mut): int
+c2: boolean

D
+d1: int

E
+e1: int
+e2: int

d e

F

f

G
+g1: int

g

H

h

someF (mut)

ShareFieldsOnly

ShareObjOnly

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 14/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Data sharing strategies: example

C
+c1 (mut): int
+c2: boolean

D
+d1: int

E
+e1: int
+e2: int

d e

F

f

G
+g1: int

g

H

h

someF (mut)

ShareFieldsOnly

ShareObjOnly

ShareAll

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 14/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Resulting cloning operators

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 15/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Plan

1 Introduction

2 Preliminaries: runtime and cloning

3 Scalable model cloning operators

4 Evaluation

5 Conclusion

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Research questions

RQ#1

Do the new operators reduce the memory footprint of clones,
compared to deep cloning?

RQ#2

Can a clone be manip. with the same efficiency as the original ?

RQ#3

Can a clone be manip. using the same generated API ?

RQ#4

Can a clone be manip. using the reflective layer (e.g. as stated in
the MOF Reflection package)?

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 16/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Evaluation – RQ#1 and RQ#2

Experiment

data set: 100 randomly generated metamodels

memory measures: gain as compared to deep cloning, after
cloning the model 1000 times

performance measures: loss of time as compared to the
original model, when navigating 10 000 times through each
object of the model while accessing all properties

Results

memory: the more shareable parts, the more memory gain

performance: worst median overhead is 9,5% when
manipulating clones with fields sharing

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 17/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Evaluation – RQ#1 and RQ#2

Experiment

data set: 100 randomly generated metamodels

memory measures: gain as compared to deep cloning, after
cloning the model 1000 times

performance measures: loss of time as compared to the
original model, when navigating 10 000 times through each
object of the model while accessing all properties

Results

memory: the more shareable parts, the more memory gain

performance: worst median overhead is 9,5% when
manipulating clones with fields sharing

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 17/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Evaluation – results overview

RQ1: memory
RQ2: efficiency
RQ3: same API
RQ4: reflective layer

RQ1 RQ2 RQ3 RQ4

DeepCloning % ! ! !

ShareFieldsOnly + - - ! !

ShareObjOnly ++ ! ! %

ShareAll +++ - ! %

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 18/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Plan

1 Introduction

2 Preliminaries: runtime and cloning

3 Scalable model cloning operators

4 Evaluation

5 Conclusion

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Conclusion

Model cloning is required in many kinds of applications, but
deep cloning not scalable

Approach: find shareable parts at the metamodel level,
then share both runtime objects and fields between runtime
representations of clones

3 data sharing strategies + 1 algorithm = 3 cloning operators

Evaluation shows memory gain with tradeoffs regarding
efficiency and/or reflective layer compatibility

Possible future work

Automate the choice or operator using static analysis (e.g. if
eContainer() is used, then some operators are disabled)

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 19/20



Introduction Preliminaries: runtime and cloning Scalable model cloning operators Evaluation Conclusion

Done!

Thank you for your attention ,

Tool (Eclipse plugin):

http://moclodash.gforge.inria.fr/

Erwan Bousse, Benoit Combemale, Benoit Baudry Scalable Armies of Model Clones 20/20

http://moclodash.gforge.inria.fr/

	Introduction
	Preliminaries: runtime and cloning
	Scalable model cloning operators
	Evaluation
	Conclusion

