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Context: xDSMLs and traces

Recently, a lot of effort in the field of executable Domain
Specific (Modeling) Languages (xDSMLs)

From a Verification and Validation (V&V) point of view, need
for dynamic V&V approaches to analyse the behaviors of
executable models, ie. temporal properties

Central concept in dynamic V&V approaches: execution traces!

Examples of trace usages in dynamic V&V:

Omniscient Debugging: a trace is used to step backward

Model checking: counter example in the form of a trace

Runtime monitoring: to check if a trace satisfies a property

Semantic differencing: trace comparison of different models
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Execution Trace

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

An alternate sequence of states and events

A state contains the values of all the mutable parts of a model

An event is the application of a transformation rule (focus on
operational semantics)
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Problem: generic trace metamodels are not good enough

Example of generic clone-based trace metamodel:

Trace

State

Transition Event

qualifiedName : String

Object
states *

transitions *
event 1

source1

outgoing0..1

target 1

incoming 0..1

objects *
{ordered=true}

Scalability in time issue: sequential structure ⇒ to navigate
in a trace, each execution state has to be visited

Usability issue: domain-specific trace analyses have to
handle domain-specific data that may be arbitrarily complex,
and a generic set of objects is not convenient
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Example: Petri net xDSML

Abstract Syntax

input
1..*
output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

transitions
*

places
*

imports

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Operational Semantics (set of transformation rules)

: while there is an enabled transition, fires it.
: returns true if tokens > 0 for each input Place, false otherwise.
: removes a token from each input Place and adds a token to each output Place.

run(Net)
isEnabled(Transition)
fire(Transition)

Properties of the abstract syntax (e.g. initialTokens)
are said immutable

Properties of the execution metamodel (tokens)
are said mutable
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Example: generic Petri net trace

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

objects

s2 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 1

: Place

name = “p4"
tokens = 0

objects

s3 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 0

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 1

objects

s1 : State
: Place

name = “p1"
tokens = 1

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 0

: Trace
states

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

1 Generic types require type checks and casting

2 Redundancy, both with immutable and mutable data

3 Trace can be only queried by visiting all states
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Approach: generating a domain-specific trace metamodel

To provide usability

Generative approach to automatically derive a domain-specific
trace metamodel for a given xDSML

Domain-specific: domain concepts are directly accessible

Automation: save language engineers the design of a complex
metamodel, which is time-consuming and error-prone

To provide scalability in time

Rich navigation facilities, e.g. browsing a trace according to the
values reached by a specific mutable element
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Overview

Rich Domain-Specific
Trace metamodel

generator

Abstract Syntax

Execution Metamodel

Event Metamodel

xDSML

Rich Domain Specific
Trace Metamodel

imports

merges

imports
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Trace metamodel generation (1)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent
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Trace metamodel generation (2)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

Reification of mutable properties into classes
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Trace metamodel generation (3)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

Class for value sequences of mutable data of objects
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Trace metamodel generation (4)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

1..*

tokensValues
0..*

ExecutionState

executionStates

Class for the model state ≡ tuple of all mutable values
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Trace metamodel generation (5)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

1..*

tokensValues
0..*

ExecutionState

executionStates

precedingState
1

0..1

<<abstract>>

Event FireEvent

fired
1

followingEventOcc

Class for each event, with one event following each state
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Trace metamodel generation (6)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

1..*

tokensValues
0..*

ExecutionState

executionStates

precedingState
1

0..1

<<abstract>>

Event FireEvent

fired
1

followingEventOcc

Trace

exeTrace
0..*

tracedPlaces
*

*

{ordered=true}

fireTrace
{ordered=true}

Class for the trace, which includes event sequences
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Example of Domain Specific Trace

: Trace

s1 : ExecutionState s2 : ExecutionState

p1 : TracedPlace

p2 : TracedPlace

p3 : TracedPlace

p4 : TracedPlace

: TokensValue

tokens = 1

: TokensValue

tokens = 0

: TokensValue

tokens = 0

: TokensValue

tokens = 1

: TokensValue

tokens = 0

: TokensValue

tokens = 1

: TokensValue

tokens = 0

tokens
Trace

tokens
Trace

tokens
Trace

executionState

tokensValues

executionState

tokensValues

executionState

tokensValues

tokens
Trace

exeTrace

tracedPlaces

: Place

- name = "p3"
- initialTokens = 0

: Place

- name = "p4"
- initialTokens = 0

: Place

- name = "p2"
- initialTokens = 1

: Place

- name = "p1"
- initialTokens = 1

originalObject

originalObject

originalObject

originalObject

: TokensValue

tokens = 0

: TokensValue

tokens = 1

s0 : ExecutionState

t1p1 p3

p2

p4t2 t1p1 p3

p2

p4t2 t1p1 p3

p2

p4t2fire(t1) fire(t2)

value

object state

model state

model element
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Implementation

Implementation available for EMF

Trace metamodel generator (generic)

– Input abstract syntax: Ecore

– Input execution semantics: xMOF or Kermeta

– Output trace metamodel: Ecore

Trace builder (generic)

– Instruments xMOF/fUML virtual machine

– Produces traces conforming to generated rich domain-specific
trace metamodel

Git repository:
https://gforge.inria.fr/projects/lastragen/

Also part of the GEMOC Studio: http://gemoc.org/studio
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Case study

Trace manipulations: Semantic Differencing

Consists in comparing traces of different versions of a model
according to a set of semantic differencing rules

A set of semantic differencing rules is:

– specific to an xDSML, hence domain-specific

– specific to a given trace metamodel

– written using the Epsilon Comparison Language (ECL)

xDSML: fUML

Real world xDSML, subset of UML

Used models: activity diagrams taken from [Maoz etal. 2011]
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Evaluation: scalability in time

400 450 500 550 600 650 700 750 800
1
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Result: Match rules on rich domain-specific traces are
between 170 and 400 times faster (on average 250 times)

Reason: Rich structure of traces allow efficient querying of
state changes of particular model elements
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Evaluation: usability

Elements Generic Rich Domain-Specific Gain

Lines of code 136 55 60%

Statements 58 21 64%

Operation calls 32 13 60%

Loops 5 4 40%

Type checks 4 0 100%

Result: Complexity of rules reduced between 40% and 100%

Reasons:

– Rich structure of traces allow efficient querying of state
changes of particular model elements

– Domain-specific structure makes type checks and casting
obsolete
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Conclusion

xDSMLs bring a lot of possibilities: simulation, dynamic V&V

Dynamic V&V uses traces, and hence a trace data structure

Generic trace metamodels have two weaknesses: usability and
scalability in time

To cope with these issues, generation of rich domain-specific
trace metamodels

Perspectives

Enhancing customisation of trace metamodels

Experiment other V&V activities on top of generated trace
metamodels
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Done!

Thank you for your attention! ,
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