
Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

A Generative Approach to Define Rich
Domain-Specific Trace Metamodels

ECMFA’15

Erwan Bousse 1 Tanja Mayerhofer 2 Benoit Combemale 3

Benoit Baudry 4

1University of Rennes 1 (IRISA), France

2Vienna University of Technology, Austria

3Inria, France

July 22, 2015

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 1/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Outline

1 Context and Motivation

2 Rich Domain-Specific Trace Metamodels

3 Evaluation

4 Conclusion

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 2/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Outline

1 Context and Motivation

2 Rich Domain-Specific Trace Metamodels

3 Evaluation

4 Conclusion

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Context: xDSMLs and traces

Recently, a lot of effort in the field of executable Domain
Specific (Modeling) Languages (xDSMLs)

From a Verification and Validation (V&V) point of view, need
for dynamic V&V approaches to analyse the behaviors of
executable models, ie. temporal properties

Central concept in dynamic V&V approaches: execution traces!

Examples of trace usages in dynamic V&V:

Omniscient Debugging: a trace is used to step backward

Model checking: counter example in the form of a trace

Runtime monitoring: to check if a trace satisfies a property

Semantic differencing: trace comparison of different models

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 3/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Context: xDSMLs and traces

Recently, a lot of effort in the field of executable Domain
Specific (Modeling) Languages (xDSMLs)

From a Verification and Validation (V&V) point of view, need
for dynamic V&V approaches to analyse the behaviors of
executable models, ie. temporal properties

Central concept in dynamic V&V approaches: execution traces!

Examples of trace usages in dynamic V&V:

Omniscient Debugging: a trace is used to step backward

Model checking: counter example in the form of a trace

Runtime monitoring: to check if a trace satisfies a property

Semantic differencing: trace comparison of different models

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 3/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Execution Trace

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

An alternate sequence of states and events

A state contains the values of all the mutable parts of a model

An event is the application of a transformation rule (focus on
operational semantics)

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 4/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Problem: generic trace metamodels are not good enough

Example of generic clone-based trace metamodel:

Trace

State

Transition Event

qualifiedName : String

Object
states *

transitions *
event 1

source1

outgoing0..1

target 1

incoming 0..1

objects *
{ordered=true}

Scalability in time issue: sequential structure ⇒ to navigate
in a trace, each execution state has to be visited

Usability issue: domain-specific trace analyses have to
handle domain-specific data that may be arbitrarily complex,
and a generic set of objects is not convenient

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 5/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Problem: generic trace metamodels are not good enough

Example of generic clone-based trace metamodel:

Trace

State

Transition Event

qualifiedName : String

Object
states *

transitions *
event 1

source1

outgoing0..1

target 1

incoming 0..1

objects *
{ordered=true}

Scalability in time issue: sequential structure ⇒ to navigate
in a trace, each execution state has to be visited

Usability issue: domain-specific trace analyses have to
handle domain-specific data that may be arbitrarily complex,
and a generic set of objects is not convenient

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 5/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Example: Petri net xDSML

Abstract Syntax

input
1..*
output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

transitions
*

places
*

imports

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Operational Semantics (set of transformation rules)

: while there is an enabled transition, fires it.
: returns true if tokens > 0 for each input Place, false otherwise.
: removes a token from each input Place and adds a token to each output Place.

run(Net)
isEnabled(Transition)
fire(Transition)

Properties of the abstract syntax (e.g. initialTokens)
are said immutable

Properties of the execution metamodel (tokens)
are said mutable

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 6/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Example: generic Petri net trace

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

objects

s2 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 1

: Place

name = “p4"
tokens = 0

objects

s3 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 0

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 1

objects

s1 : State
: Place

name = “p1"
tokens = 1

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 0

: Trace
states

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

1 Generic types require type checks and casting

2 Redundancy, both with immutable and mutable data

3 Trace can be only queried by visiting all states

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 7/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Example: generic Petri net trace

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

objects

s2 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 1

: Place

name = “p4"
tokens = 0

objects

s3 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 0

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 1

objects

s1 : State
: Place

name = “p1"
tokens = 1

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 0

: Trace
states

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

1 Generic types require type checks and casting

2 Redundancy, both with immutable and mutable data

3 Trace can be only queried by visiting all states

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 7/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Example: generic Petri net trace

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

objects

s2 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 1

: Place

name = “p4"
tokens = 0

objects

s3 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 0

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 1

objects

s1 : State
: Place

name = “p1"
tokens = 1

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 0

: Trace
states

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

1 Generic types require type checks and casting

2 Redundancy, both with immutable and mutable data

3 Trace can be only queried by visiting all states

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 7/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Example: generic Petri net trace

p1 t1 p3 t2 p4

p2 p2

p1 t1 p3 t2 p4 p1 t1 p3 t2 p4

p2

fire(t1) fire(t2)

objects

s2 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 1

: Place

name = “p4"
tokens = 0

objects

s3 : State
: Place

name = “p1"
tokens = 0

: Place

name = “p2"
tokens = 0

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 1

objects

s1 : State
: Place

name = “p1"
tokens = 1

: Place

name = “p2"
tokens = 1

: Place

name = “p3"
tokens = 0

: Place

name = “p4"
tokens = 0

: Trace
states

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

: Transition

name = “t1"

: Transition

name = “t2"

: Net

1 Generic types require type checks and casting

2 Redundancy, both with immutable and mutable data

3 Trace can be only queried by visiting all states

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 7/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Outline

1 Context and Motivation

2 Rich Domain-Specific Trace Metamodels

3 Evaluation

4 Conclusion

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Approach: generating a domain-specific trace metamodel

To provide usability

Generative approach to automatically derive a domain-specific
trace metamodel for a given xDSML

Domain-specific: domain concepts are directly accessible

Automation: save language engineers the design of a complex
metamodel, which is time-consuming and error-prone

To provide scalability in time

Rich navigation facilities, e.g. browsing a trace according to the
values reached by a specific mutable element

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 8/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Overview

Rich Domain-Specific
Trace metamodel

generator

Abstract Syntax

Execution Metamodel

Event Metamodel

xDSML

Rich Domain Specific
Trace Metamodel

imports

merges

imports

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 9/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Trace metamodel generation (1)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 10/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Trace metamodel generation (1)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 10/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Trace metamodel generation (2)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

Reification of mutable properties into classes

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 11/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Trace metamodel generation (3)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

Class for value sequences of mutable data of objects

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 12/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Trace metamodel generation (4)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

1..*

tokensValues
0..*

ExecutionState

executionStates

Class for the model state ≡ tuple of all mutable values

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 13/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Trace metamodel generation (5)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

1..*

tokensValues
0..*

ExecutionState

executionStates

precedingState
1

0..1

<<abstract>>

Event FireEvent

fired
1

followingEventOcc

Class for each event, with one event following each state

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 14/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Trace metamodel generation (6)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

1..*

tokensValues
0..*

ExecutionState

executionStates

precedingState
1

0..1

<<abstract>>

Event FireEvent

fired
1

followingEventOcc

Trace

exeTrace
0..*

tracedPlaces
*

*

{ordered=true}

fireTrace
{ordered=true}

Class for the trace, which includes event sequences

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 15/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Trace metamodel generation (6)

Abstract Syntax

input
1..*
output
1..*

Place
+name: string
+initialTokens: int

Transition
+name: string

merges imports

Execution Metamodel

Place
+tokens: int

Event Metamodel

fired
1

Transition
(from Exe. MM)

+name: string

FireEvent

Petri net Trace Metamodel

TokensValue
+tokens: int

TracedPlace

parent
1

tokensTrace
0..*

originalObject
1

{ordered=true}

1..*

tokensValues
0..*

ExecutionState

executionStates

precedingState
1

0..1

<<abstract>>

Event FireEvent

fired
1

followingEventOcc

Trace

exeTrace
0..*

tracedPlaces
*

*

{ordered=true}

fireTrace
{ordered=true}

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 15/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Example of Domain Specific Trace

: Trace

s1 : ExecutionState s2 : ExecutionState

p1 : TracedPlace

p2 : TracedPlace

p3 : TracedPlace

p4 : TracedPlace

: TokensValue

tokens = 1

: TokensValue

tokens = 0

: TokensValue

tokens = 0

: TokensValue

tokens = 1

: TokensValue

tokens = 0

: TokensValue

tokens = 1

: TokensValue

tokens = 0

tokens
Trace

tokens
Trace

tokens
Trace

executionState

tokensValues

executionState

tokensValues

executionState

tokensValues

tokens
Trace

exeTrace

tracedPlaces

: Place

- name = "p3"
- initialTokens = 0

: Place

- name = "p4"
- initialTokens = 0

: Place

- name = "p2"
- initialTokens = 1

: Place

- name = "p1"
- initialTokens = 1

originalObject

originalObject

originalObject

originalObject

: TokensValue

tokens = 0

: TokensValue

tokens = 1

s0 : ExecutionState

t1p1 p3

p2

p4t2 t1p1 p3

p2

p4t2 t1p1 p3

p2

p4t2fire(t1) fire(t2)

value

object state

model state

model element

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 16/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Implementation

Implementation available for EMF

Trace metamodel generator (generic)

– Input abstract syntax: Ecore

– Input execution semantics: xMOF or Kermeta

– Output trace metamodel: Ecore

Trace builder (generic)

– Instruments xMOF/fUML virtual machine

– Produces traces conforming to generated rich domain-specific
trace metamodel

Git repository:
https://gforge.inria.fr/projects/lastragen/

Also part of the GEMOC Studio: http://gemoc.org/studio

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 17/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Outline

1 Context and Motivation

2 Rich Domain-Specific Trace Metamodels

3 Evaluation

4 Conclusion

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Case study

Trace manipulations: Semantic Differencing

Consists in comparing traces of different versions of a model
according to a set of semantic differencing rules

A set of semantic differencing rules is:

– specific to an xDSML, hence domain-specific

– specific to a given trace metamodel

– written using the Epsilon Comparison Language (ECL)

xDSML: fUML

Real world xDSML, subset of UML

Used models: activity diagrams taken from [Maoz etal. 2011]

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 18/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Evaluation: scalability in time

400 450 500 550 600 650 700 750 800
1

10

100

1000

10000

100000

generic trace

rich domain-
specific trace

number of statesm
at

ch
in

g
 ti

m
e 

(m
s)

 L
g 

10
^x

Result: Match rules on rich domain-specific traces are
between 170 and 400 times faster (on average 250 times)

Reason: Rich structure of traces allow efficient querying of
state changes of particular model elements

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 19/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Evaluation: usability

Elements Generic Rich Domain-Specific Gain

Lines of code 136 55 60%

Statements 58 21 64%

Operation calls 32 13 60%

Loops 5 4 40%

Type checks 4 0 100%

Result: Complexity of rules reduced between 40% and 100%

Reasons:

– Rich structure of traces allow efficient querying of state
changes of particular model elements

– Domain-specific structure makes type checks and casting
obsolete

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 20/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Outline

1 Context and Motivation

2 Rich Domain-Specific Trace Metamodels

3 Evaluation

4 Conclusion

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Conclusion

xDSMLs bring a lot of possibilities: simulation, dynamic V&V

Dynamic V&V uses traces, and hence a trace data structure

Generic trace metamodels have two weaknesses: usability and
scalability in time

To cope with these issues, generation of rich domain-specific
trace metamodels

Perspectives

Enhancing customisation of trace metamodels

Experiment other V&V activities on top of generated trace
metamodels

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 21/22



Context and Motivation Rich Domain-Specific Trace Metamodels Evaluation Conclusion

Done!

Thank you for your attention! ,

Bousse, Mayerhofer, Combemale, Baudry Rich Domain-Specific Trace Metamodels 22/22


	Context and Motivation
	Rich Domain-Specific Trace Metamodels
	Evaluation
	Conclusion

