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Abstract 

The Minnesota State Planning Agency has 
developed a geographically referenced Land 
Management Information System which is being 
used extensively for planning purposes. Land 
use categories in the system were originally 
coded from aerial photographs; this method is 
inefficient for updating the large-area data 
base. Landsat data and many computer-assisted 
techniques are available to analyze the 
classification system and to update the land 
use data base. The data derived from a Landsat 
analysis could be used to supplement the exist­
ing data base and to complement detailed inter­
pretations of aerial photographs. 

This study had as its primary objective an 
evaluation of computer manipulation, classifica­
tion, and accuracy assessment techniques for 
use in updating land use data in the Land 
Management Information System. Four approaches 
to statistical computer manipulation (polygons 
selected from cathoderay tube displays, un­
supervised clustering, polygons selected from 
aerial photographs and data extracted from the 
existing land use data base) were attempted. 
The resulting statistics were applied to the 
image data by three pattern-recognition algorithms: 
minimum distance to the mean, maximum likelihood, 
and canonical analysis with minimum distance to 
the mean. Twelve output images were compared 
to photo interpreted samples, ground-verified 
samples, and the current land use data base for 
accuracy assessment. 

The results of this study indicate that 
for a reconnaissance inventory, statistical 
computer manipulation via polygons selected 
from aerial photographs applied with the canonical 
analysis and minimum distance algorithm is the 
most accurate and efficient approach. Cross­
tabulation with the accuracy samples indicated 
classification accuracies between 20 to 40 
percent. These accuracy levels could probably 
be increased with the availability of appropriate 

seasonal coverage and the collection of more 
timely multidate supporting data. 

I . BACKGROUND 

The Minnesota Land Management Information 
System (MLMIS) is a geographically referenced 
data base developed and maintained by the Minnesota 
State Planning Agency's Land Management Information 
Center (LMIC). The system was developed in an 
attempt to centralize storage and analysis of 
data on Minnesota's resources. MLMIS was developed 
cooperatively on the University of Minnesota 
computer by the University's Center for Urban and 
Regional Affairs and the State Planning Agency. 
MLMIS is both a depository of geo-graphically 
based information and a computer analysis system. 
It is used for applications such as siting of 
power plants, assessment of productivity for tax 
purposes, and location of combined resources. 

The MLMIS data base includes natural resource 
variables such as soils, watersheds and climate, 
public ownership data, and local political unit 
boundaries. Information is stored in computer 
files by units of public land survey for every 
40-acre parcel in the State. It is organized by 
region, county, and township and can be accessed 
for mapping or statistical analysis. Besides the 
40-acre-parcel data base, data have often been 
collected for parcels of 2.5 acres for special 
small-area studies. For statewide studies, a 
file of data consisting of 5-kilometer cells has 
also been created. 

Computer software has been developed to 
retrieve and manipulate the data and to produce 
information in tabular, statistical, map, or 
computer file form. The software is called the 
Environmental Planning and Programming Language 
(EPPL) and can be used on MLMIS data or any other 
data in a compatible format. 
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The land use data in MLMIS were produced 
using interpretation of high-altitude, black­
and-white, I:90,OOO-scale photographs acquired 
during the springs of 1968 and 1969. The nine 
classes of land use, given in table 1, 
were chosen so photo interpreters could determine 
the dominant land use within each 40-acre cell 
without much ancillary data. 

The MLMIS data base has to be kept as current 
as possible so that the studies and decisions 
made by analyzing the data base are valid. 
Changes in land use, for example, from the pasture 
and open category to the urban residential category 
would make a difference in how an area is assessed 
for power-plant siting. Data resolution also 
should be improved because the 40-acre cell size 
is too large for use in many studies. These 
factors led to the recent LMIC acquisition of new 
polygon-digitization capabilities and to the 
decision to revise the geographic base of the 
MLMIS to a IOO-meter grid referenced to 
Universal Transverse Mercator (UTM) 
coordinates. This new computer system also 
provides an added capability to use computer­
assisted classification of digital data, such 
as Landsat, if it can be determined which 
classification algorithms are the most accurate 
and efficient. This study used existing soft-
ware and the latest available Landsat data at 
the Earth Resources Observation System (EROS) 
Data Center to evaluate statistical training, 
classification, and accuracy assessment for 
accuracy and efficiency in updating the MLMIS 
data base. 

II. ANALYSES PERFORMED 

A diversity of training, classification, 
and accuracy assessment techniques were applied 
in the study for comparative purposes. Train­
ing sets were selected using four different 
selection procedures: 

(1) 

(2) 
(3) 

(4) 

Supervised polygon selection on a 
cathode-ray tube (CRT) display. 
Unsupervised clustering. 
Polygons digitized from interpreta­
tions of color-infrared aerial photo­
graphy. 
Existing digital land use data (MLMIS 
data) as binary masks. 

These four training sets were used as 
input to three classification algorithms: 

(1) Minimt~ distance to the mean. 
(2) Maximum likelihood. 
(3) Minimum distance to the mean after 

canonical transformation. 

Table I.--Dominant land use for 40-acre parcels, 
determined from aerial photographs. 

[Source - Land Management Information in northwest 
Minnesota ,< Report Number One, MLMIS study, 
Minneapolis: University of Minnesota, Center for 
Urban and Regional Affairs, 1972. Source Map 
Data - 1969. MLMIS Update - 1976. Interpre­
tation by MLMIS staff.] 

CLASS 

1. Forested 

2. Cultivated 

3. Water 

4. Marsh 

5. Urban 
Residential 

6. Extractive 

7. Pasture and 
Open 

8. Urban and 
Nonresidential 
or Mixed 
Residential 

TYPE OF LAND USE 

Containing at least IO-percent 
crown cover of deciduous or 
coniferous trees. 

Dominant type of land use 
appears to be recently tilled 
or harvested land. 

Permanent open water is the 
dominant surface feature. 

Dominant type of land use is 
nonforested, vegetated areas 
which are permanently wet. 

Containing five or more 
residential buildings and no 
commercial buildings. 

Dominant type of land use is 
the extraction of minerals 
and includes such features and 
facilities as mines, tailings, 
gravel pits, quarries, 
crusheries, and storage 
facilities. 

Dominant type of land use is 
pasture land or land not used 
for any other identifiable 
purpose. 

Containing at least one 
commercial, industrial, or 
institutional development. 
Examples: schools, factories, 
hospitals, athletic fields, 
business districts, churches, 
warehouses, military installa­
tions, sewage disposal facili­
ties junk yards. 

9. Transportation Dominant type of land use is 
facilities for the conveyance 
of people and/or materials. 
Examples: airports, railroad 
yards, highway interchanges, 
rights-of-way. 
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The three classifications were then 
applied to two data hases: 

(1) System-corrected Landsat data (re­
sampled to the Hotine Oblique l1ercator 
map projection). These data were 
resampled by the nearest neighbor 
method to a SO-meter UTM grid follow­
ing classification. 

(2) System-corrected Laodsat data re ­
sampled to a SO-meter UTN grid. 
These data were subjec ted to cubic 
convolution resampling (in effect, 
re-resampled data) prior to classifi­
catioo. This was needed for the 
binary-mask training selection because 
of the geographic referencing. 

Finally, the results were assessed for 
accuracy by: 

(1) Comparison to digitizer-encoded 
polygons which ",ere photointerpreted 
from high-altitude color-infrared 
photogrsphy. 

(2) Comparison to a random set of ground­
verified sample plots. 

(3) Comparison to the current (that is, 
IO-year-old) 40-acre-parcel MLNIS 
digital land use base. 

III. STUDY AREA DESCRIPTION 

Two criteria were used in selection of the 
study area. First, the system-corrected data 
had to be available in order to assess questions 
of advaotages and/or disadvantages of geometric 
correction. This also tested the software for 
reading new-format 2 computer-compatible tapes 
(CCT's). Unfortuoately, this criteria limited 
us to a single scene acquired on a non-optimum 
date (24 Hay 1979), making multidate analysis 
unfeasible. Figure 1 shows the Landsat band 5 
scene which was used in the study. 

Second, a study area located in an "urban 
fringe" region of the available sceoe was 
sought. This would provide data of the greatest 
utility to the planners in terms of updating 
their information. Urban fringe regions are 
also the most difficult areas for Landsat 
analYSis because of the wide range of spectral 
characteristics of constituent cover types and 
conSiderable spatial complexity. 

Figure 1. Landsat scene, band 5, shows the 
Twin Cities of Minnesota at the con­
fluence of the l1innesota and Mississippi 
Rivers 

The study area covered four U.S. Geological 
Survey 7.5-minute quadrangles (map names; Center~ 

Ville, Hugo, White Bear East, and White Besr West) 
with White Bear Lake approximately in the center of 
the area. Distances between the various stages of 
urban development (high density, suburban, and 
exurbsn) and rural farmland are minimal in this 
northeast portion of the Twin Cities (Minneapolis 
and St. Paul). The area also contains many lakes, 
wetlands, and forested areaS . Figure 2 shoWG the 
Landsat band 5 subscene that was selected for 
study, and the subscene illustrates the complexity 
of the region. 

IV. DESCRIPTION OF ANALYSES 

A. IMAGE CORRECTION 

Radiometric correction by destriping.--The 
selected subscene was entered into the EROS Data 
Analysis Laboratory's interactive digital image 
analysis system and checked for missing data by 
displaying each of the four Landsat multispectral 
scanner (MSS) bands. The next step WaS to radio­
metrically correct the data for any residual strip­
ing caused by nonlinearity in the MSS detector 
respons es . The algorithm used t~ do this is a 
procedure fo .. "smoothing by a thresholded window." 
The program tests brightness values of pixels in a 
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window of specified size (in this study, 7 
lines of 7 samples each) sgainst the brightness 
value of the center pixel. If the absolute 
difference between the center pixel and the 48 
neighbors is less thsn a sp~cified threshold (3 
brightness levels in this study), the center 
pixel is replaced by the average of the 49 
pixels. The size of the window and the thres­
hold values had previously been determined 
empirically by studying water areas because 
these most clearly show the effects of the 
corrections. 

figure 2. Landsat, band 5, aubscene of the 
selected study area 

Figure 3 is a aide-by-s ide comparison o f 
image data Over White Besr Lake before and 
after "smoothing." The left-hand portion of 
the image illustrates the li~itations of the 
radiometric correction applied t o this system­
corrected data set. The right-hand portion 
shows that the striping effect apparent in the 
left-hand side i~age has been reduced. The 
image in fig. 3 was enhanced to show the water 
area, but the algorithm has the Same effect on 
al l the data which ~eet the spatial and 
spectral criteria. 

Geometric correction.--After the radiO­
metric correction by smoothing was completed, 
geometric correction to a ~O-meter UTN grid was 
done. This involved selecting 31 ground­
control points located in the image and 
correlat ing their i~age coordinates to 7.5 -

minute map coordinates. (A CRT display and sonic 
digitizing table were used.) These points were 
used in a least-squares analysis to derive a second 
order polynomial transformation. 

~
-.-. .-

I> 
.I> 

Figure 3. A comparison of he fore and after 
thresholded smoothing 

The multispectral Landsat image was then 
registered, once before classif ication and once 
after classification, to a grid which allowed 
~O-meter pixel spacing and was aligned to the north 
in a UTH projection (fig. 4). Because it was 
desirable in the first registration that the least 
amount of spatial deg~adation occu~ . cubic con­
volution ~esampling was used. The selected study 
a~ea registered to the 50-meter UTN grid il shown 
in fig. 4. In the second registration, performed 
after classificstion, nearest neighbo~ resampling 
was used. Resistering all the d':3ta to the same 
grid allowed the comparison of the results by 
single sets of points in the accuracy asselsment. 

B. TRAINING SET SELECTION 

Statistical train1ng of the classification 
algo~ithras was done by four Methods: (a) super­
vised polygon selection from CRT display, (b) 
unsupervised cluatering, (c) airphoto-based super­
vised clustering, and (d) training from the exist­
ing HLHIS land cover data base. 

Supervised polygon selection from CRT 
~en(A).--[>olygons were selected on a color CRT 
on enlarged subscenes by an analyst familiat with 
remote sensing but not with the study area. 
Refe~ence was made to 7 .~-lIIinute quadrangles to 
assist in the selection of areas falling within the 
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Flgure 4. Landsat, hand 5, subsc .. n" of the 
selected study 

desired land use classes. The polygons were 
nol made so small as to be homogeneous training 
fields; they were lacge enough to contain 
approximately 5 to 10 spectral classes of land 
cover within the d ... signated land use. Several 
polygons for each land use class were selected. 
A clUstering algorithm6 developed the mean 
vectors and covariance matrices for spectral 
clusters within each set of land use poly­
gons.:1 The statistics from tbese individual 
clusterings were consolidated i nto one file of 
84 clusters and then were reduced to 43 by 
deleting clusters which overlapped. Overlap 
was determined by a separability algorithm9 

whiCh uses the saturated t r ansformed divergence 
as l-h" t"st of separability of clusters. A 
divergence value of 1200 was used as the level 
below which clusters were deleted. Figure 5 is 
a spectral comparison plot showing the means in 
bands 4 and 7. The cumulative density function 
contour is 68 percent. This plot shows that in 
two dimensions many of the clusters overlap and 
that the contours vary greatly in si~e; there 
are also gaps in the spectral space definition 
by these clusters. 

'f - The parameter5 used in the program 
(known as ISOCLS) were : STDI1AX'" 2.0, DLHIN 
1.6, ISTOP", 10, NMIN = 10, MAXCLS : 64, CHNTHS 
'" I. 6. 

"0' ". ,,0· ". ,. ,. 
n .. 

~ .. .. 
Q •• Z·· e .. .. -•• -" •• . , 

n .. .. 

TU'NIHG .. 
" OUGOHSOH UT 

Figure 5. Spectral comp"rison plot of Landsat 
band 4 vs. Landsat band 7 training by 
polygons on CRT 

Unsupervised Clustering(B).--Unsupervised 
cluste r ing was done of the entire are". If the 
area had been larger, " random sample could 
have been taken to reduce the computation time. 
Other stud ies 7 ,10 hav" shown thst "ven 1- or 2-
percent samples are representa t ive. 

The clustering algorithm, using the same 
parameters ss used for the individual polygon 
clustering, grouped the data into 64 clusters 
which were then consolidated, again using the 
separability algorithm, to 60 clusters. Figure 
6, another comparison plot with the same para­
meters as fig. 5, shows that there tra ining 
data had l i ttle over l ap and that with a few 
exceptions the 68-percent cumulative density 
function contour were of similar size. 

Polygons Digitized from Interpretations 
of Colo r- Infra r ed Aerial Photography(C).--Poly­
gons which had been interpreted by analysts who 
were familiar with the study area and who had 
done some field verifica tion were digiti~ed 
f r om 1:24,OOO-scale color-infrared aerial 
photographs. These pol ygons were composited in 
the analysis system by registering the photo ­
graphs to maps, using ground reference paints 
which were visible on both. The polygons were 
then used as masks to extract only those 
selected portions of t he data. The selected 
portions were then clustered using the same 
separability parameters as before. 
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.. ;; ;1I.lIllt ttt~ 01 tlll~~ ~ ~ ~ ~ BAND 7 II ....... 

Spectral comparison 
4 VI. Landsat band 7 

plot of Landsat 
training by un-

Thi l technique was siailar to technique A 
except for the sou rce of the polygons. In this 
technique, 68 consolidated clusters were tested for 
separability and then reduced to 60 clustera. In 
fig. 7, the eoaparilon plot shows that there WaS 
much spectral overlap between the two handl, 
pOllibly indicating clslsificstion confusion. 
Also, there were gap I in the spectral space defini­
tion of these cluatera. 

for each lsnd use class 
digital lsnd use dats. 

by creating binary masks 
from the existing KLHIS 
That is, ma rks for 

forested, cultivated, water , marsh , urban 
residential, extractive , pasture snd open, urban 
and nonresidentisl, and transportation cla5ses were 
crested. These data had been resampled from an 
originsl 40~acre grid to the 50~meter cells used in 
this study. The resulting masked dsta were then 
clustered using the ssme parameters a5 in previoua 
techniquea. 

This technique was similar to techniques A snd 
C. The resulting 238 clus ters were consolidsted 
together snd then were reduced to 58 clusters by 
the separability algorithm. Figure 8 illustrates 
the magnitude of spectral overlap in tbe two baods, 
possibly indicsting clsssificstion confusion. As 
with the other polygon techniques, there were some 
spectral gsps, but not as many because of the large 
number of initial clusters. 

" 
" " 

• 
Q , 
Z .. .. 

• 
" • 
" " "L,-,-=:-:=====-=-.. ;;:. =. = It 11:11:;; 1= a'~i~ ~- p 

BAND 7 8 " .. ~II 

Figure 7. Spectral comparison plot of Landsat band 
4 vs. Landsat band 7 training by airphoto 
digitizing 

Figure 8. Spectral comparison plot of Landsat 
band 7 training by binary masks 

C. PATTERN RECOGNITION (CLASSIFICATION) 
ALGORI1lIHS 

The statistics developed by the trainina 
techniques described above were applied to the 
image data by three pattern recognition allorithDs: 
minimu. distance to the mean, maximum likelihood, 
and canonical transformation with minimUN distance 
to the _an. 
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Minimum distance to the mean (city-
block distance)(l).--This algo~ithm tests 
each ~ultispectral vector oC the data 
against the mean vectors in the statistics 
and assigns each pixel to that cluster 
which is closest in spectral space. A 
maximum-distance parameter is used t o 
threshold all pixels which are not within 
a "reasonable" distance oC any mean. 

In this study, the Same distance 
threshold (12.0 unital was used for all 
four iterations (one for each training 
technique) oC the algor ithm. 
Maximum likelihood with threshold(2).-­
This technique computes a li kelihood value 
for each pixel based on the mean and co­
variance of each cluster and assigns the 
pixel to that cluster which has the 
maximum likelihood value. 1 The algorithm 
outputs two images. The first is the 
cluste ~ aSSignment, and the second is the 
likelihood value transformed to values 
which are indicators of chi-squa red values. 
The chi - image is used for thresholdiog 
those values which are not within a 
speciCied percentage. 

A 5-percent threshold value was used 
for thresholding the classiCications Crom 
all the training techniques. 

Canonical transCormation with alinimum 
dia tance to mean(J).--This technique uses 
linear transformations of the data to make 
the classifier more accu~ate. Canonical 
analysis S transCormations increase the 
separability of clusters while minimizing 
the differences occurring within each 
cluster. A linear transformation to 
uncorrelated variables is produced that 
has greatest amount of variance in the 
first variable and lesser amounts in the 
succeedi ng variables. 

The image data that were transformed 
by the coefficient~ developed with this 
algorithm, and tbe transformed statistics 
for the training data, were input to the 
minimum-distance classifier. 

O. ACCURACY ASSESSMENT 

After classification by the three 
algorithms, the spectral cluster images were 
grouped according to the HLHIS land use 
classes. This group ing was done on the CRT by 
analyzing the spatial dist ribution of each 
cluster, using maps, aerial photographs, and 
knowledge of the area . 

The grouped data (fig. 9 is an example) were 
theo assessed for accuracy by three comparison 
techniques: comparison with photoioterpreted 
reference data, compar ison with the MLHIS data 
base, and comparison with ground-verification 
sample points. 

Figure 9. Color-coded image of training by 
unsupervised clustering with classifica­
tion by canonical analysis-minimum 
distance to meao 

Comparison with photo interpreted reference 
data.- -The photography had been acquired in July 
and August of 19 77 in support of wetlaods mapping 
of the eastern metropolitan Twin Cities area. The 
coverage consisted of 9-by-9-in. color-infrared 
transparencies at a scale of 1:24,000. Six scenes 
covering approximately 30 percent of the study area 
were selected for analysis, and contact prints were 
generated. These prints were photointerpreted into 
18 land cover classes, shown in table 2, by an 
analyst familiar with the area. About 12 hours of 
interpretation time were required. Because of a 
lack of overla p in the available prints, the inter­
pretation was done monoscopically, but this did not 
present any problems in view of the scale and 
interpretation classes being used. A minimum 
mapping unit of one aCre was used. 
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Table 2.--White Bear Lake Photointerpreta­
tion Classes 

Land Use Class 

Urban· 

Residential 

Forest 

Agriculture 

Wetland 

Miscellaneous 

Type of Cover 

1. Commercial/Institutional 
2. Transportation 

3. Residential-High Density 
4. -Medium Density, Little 

Forest 
5. -Med-Low Dens., Partly 

Forested 
6. -Low Density, Heavily 

Forested 

7. Forest-Mature 
8. -Shrub Forest 

9. Pasture-Open 
10. Cropland, Uncultivated 
11. Cropland, Cultivated 

12. Open Wetland 
13. Emergent Lake Vegetation 
14. Open Water 

15. Golf Course 
16. Bare Land 
17. Extractive 
18. Forest, Plantation 

Figure 10 is the interpretation overlay of 
one of the photographs. The complexity of the 
area and the irregular boundaries are well 
illustrated by this overlay. 

The interpretations were input to the 
analysis system by digitizing the polygons from 
the interpretation overlay. After the digitizing 
was checked, an image having data. values 
corresponding to the class numbers in table 2 
was generated and registered to the Landsat 
subscene. For the verification, the 18 photo­
interpreted classes were grouped into the eight 
MLMIS classes. 

The accuracy of the training technique and 
classification combinations was then determined 
by a program which creates contingency tables 
of the two input images for comparison. 

Comparison with the MLMIS data base.-­
Since the MLMIS data base and the training 
technique/classification images were already 
registered with one another, all that was 
required was to run the contingency table 
program to do the accuracy assessment. 

Figure 10. Interpretation overlay showing the 
complexity of the classes and the irregular 
boundaries of this study area 

Comparison with ground verification sample 
points.--A set of 240 ground points were randomly 
selected, plotted on the 7.S-minute quadrangles, 
and then visited on the ground. The ground visits 
consisted of locating each point and noting the 
land use for that area. Test points were extracted 
from the training technique/classification image~ 
by using the digitizer and a point-extraction 
program. The ground information was then coded and 
i.nput to the analysis system so that contingency 
tables could. be processed with the sets of data. 

V. RESULTS 

This study indicates that there is no signifi­
cant difference in the accuracy of geometric 
corrections done either before or after classifica­
tion. The trade-off is in the computer time 
required for registration versus the efficiency and 
accuracy of training-set selection. Training by 
the exist-ing digital land use data base required 
that the registration be done before the training. 
The geometric transformation used for registration 
had residual mean errors of 23 meters in the X axis 
and 30 meters in the Y axis at the ground control 
points (root mean square error= 29 meters). 
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A comparison of the training techniques 
was made based OIl the amount of variance in 
each of the canonical analysis axes, shown in 
table 3. From this comparison, technique D 
appears to be best for capturing the vari­
ability of the image. 

Table 3.--Comparison of the training techniques 
in each of the canonical analysis axes 

Canonical Training Technigue 

Axis A B C D 

Percent Variance 

1 83.86 90.57 90.62 92.47 
2 15.44 9.37 8.83 7.37 
3 0.51 0.04 0.37 0.12 
4 0.19 0.02 0.18 0.03 

The accuracy assessment techniques 
resulted in the rankings in tables 4, 5, and 6. 
These tables indicate that the most accurate 
means of training and classification is to 
digitize polygons from aerial photos and apply 
canonical analysis with a minimum-distance­
to-mean algorithm. 

Table 4.--Technigues ranked by comparison with 
photo interpreted data through contingency 
tables (values in percent). 

Percent 
Image Rank Agreement 

C3 1 37.6 
A3 2 34.1 
C1 3 33.6 
B3 4 33.0 
B1 4 33.0 
B2 5 32.3 
D3 5 32.3 
C2 6 31.7 
D1 7 31.3 
D2 8 31. 1 
Al 9 28.9 
A2 10 25.3 

Table 5.--Techniques ranked by comparison with 
Minnesota Land Management Information 
System data through contingency tables 
(values in percent). 

Percent 
Image Rank Agreement 

C3 1 30.4 
A3 2 29.7 
B1 3 28.6 
B3 4 28.0 
C1 5 27.9 
B2 5 27.9 
Al 6 26.7 
D1 7 26.6 
D3 8 26.4 
D2 8 26.4 
C2 8 26.4 
A2 9 23.0 

Table 6.--Technigues ranked by comparison with 
randomly selected ground verification 
sites through contingency tables. 

Percent 
Image Rank Agreement 

A3 1 31.4 
C3 2 31.2 
A2 3 28.1 
D1 4 28.0 
Al 5 27.1 
D2 6 26.9 
D3 7 26.6 
B3 8 26.0 
B1 9 25.9 
C1 10 24.8 
B2 11 24.6 
C2 12 18.8 

After an evaluation of the contingency tables 
produced at EROS Data Center, and a simple visual 
assessment of the classified images, the LMIC staff 
agreed that the classification using digitized 
training sets processed with a minimum-distance­
to-mean algorithm after canonical transformation 
was the best of the 12 methods used. The image 
that was classified in this way was subsequently 
transferred by tape from EDC to MLMIS, and an 
EPPL-compatible file was created to be used for 
comparison with existing MLMIS land use data. 

The MLMIS land use data were resampled to a 
registered 50-meter grid that permitted cross­
tabulation with the 50-meter Landsat classification. 
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It was also deemed desirable to aggregate the 
50-meter Landsat data in 40-acre cells. This 
was done using the ZOOM program, a scale 
reduction and expansion routine for use with 
EPPL files in the MLMIS. In this application, 
the 50-meter data were reduced by a factor of 
eight to create 400-meter cells. Assignment of 
data values was done with a dominance rule. 
The 8-by-8-pixel grid window was determined by 
a grid of the specified factor superimposed on 
the data starting at the first row and column 
of data. The cross-tabulations showed that 
with 50-meter data there was an average correla­
tion of 34.93 percent, whereas the 40-acre 
cells provided for an average correlation of 
37.65 percent. 

Besides the accuracy of the classification, 
the speed with which it is accomplished is very 
important. Table 7 shows the computer times 
required for training in the study. Training 
by polygons from a CRT is the most efficient. 
These training times, when combined with the 
computation times for the classification, shown 
in table 8, permit a comparison of the 
efficiency of individual 
factors affecting overall classification speed. 

The combination of accuracy and timing 
factors show that training by polygons from 
aerial photos with the canonical analysis and 
minimum-distance-to-mean classification was the 
most accurate and efficient. However, this 
technique combination requires a skilled inter­
preter familiar with ,the area and classes 
desired. 

VI . RECOMMENDATIONS 

Many factors accounted for the low 
accuracies achieved in this study. In 
particular, the date of coverage of the Landsat 
image (selected primarily because it was the 
only cloud-free system-corrected image avail­
able at the time) was not optimum for some of 
the land use classes. This is certain to have 
affected classification accuracies and, as a 
result, may have influenced the technique 
comparison. This situation was compounded by 
the fact that none of the source data used in 
the study were acquired at the same times. The 
Landsat data were acquired in May of 1979, the 
aerial photography was acquired in 1977, and 
the ground verification data were collected in 
November and December of 1979. Such 
disparities seem likely to have been responsible 
for some of the errors in the grouping of the 
clusters into classes and the errors in 
verification. 

Low accuracies not withstanding, the 
qualitative results of the comparison performed 
in this study appear valid. 

If the project were to be repeated, 
significant improvements could be realized by 
increasing the lead time allowed for the 
collection of source data. This would ensure a 
greater probability of obtaining optional data 
in terms of both image content and temporal 
commonality. 

Additional improvements could result from 
modifying the classification software, which 
could include: 

(1). Implementation of a software test pro­
cedure in all classifiers so that masked 
areas (zero in all bands) would be placed 
in class 0 without any computation. This 
would make the use of masking a registered 
image by a 'geographic information system 
more feasible and productive. With this 
technique, the land cover within the land 
use could be determined. More ground 
verification and comparison with photo­
interpreted data could improve the classes 
separated by the classification algorithms. 

(2). Development of an output file of upper and 
lower bounds (95-percent confidence limits) 
from the canonical analysis, development 
of a parallelepiped classifier using these 
bounds, and development of a weighted 
minimum-distance classifier. These tech­
niques would probably provide better 
results than the city-block, minimum­
distance classifier currently used with 
the canonical analysis technique. 

The intent of LMIC is to continue evalua­
tion of the classified land cover data. Using 
the Landsat classified data with masks of 
existing MLMIS 40-acre data, LMIC plans to 
produce an updated land use/land cover map. 
The variables they will use in the masking 
process will include ownership, forest cover, 
the 1969 land use classification, and political 
boundry information. Although these data exist 
only at 40-acre-cell resolution, it is planned 
to produce a land use/land cover variable using 
100-meter cells (approximately 2.5 acres) as 
the mapping unit. 
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Table 7.--Results of study and computer times for training. 

(All timings expressed are for an HP3000 CX computer; cpu is Central 

Processor unit time in seconds; cm is total connected time in 

minutes.) 

Polygons from CRT used 531 cpu 185 cm for selecting 
polygon<; 

468 q~u 106 cm for clustering 
999 cpu 291 cm 

Unsupervised clustering used 38,479 cpu 690 cm 

Polygons from aerial photos used 120 minutes for photo 
interpretation 

503 cpu 202 cm for digitizing 
polygons 

544 cpu 128 cm copying strata 
4,958 cEu 116 cm clustering 
6,005 cpu 446 cm 

Binary masks from MLMIS used 965 cpu 56 cm for mapping 
5,193 cpu 190 cm for masking 

(multiplies) 
94,129 cEu 3,858 cm for clustering 

100,287 cpu 4,104 cm 

Table 8.--ComEutation Time Comparison Between Training and Classification 

Technigues units: central Erocessor units! seconds/connect time! minutes 

Training Technique 

Classification A B C D 
Technigue Mean CRT Eol}'gons UnsuE· Photo Eol}'gons MLMIS mask 
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