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Abstract
Uncertainty propagation is an established approach to handle
noisy and reverberant conditions in automatic speech recogni-
tion (ASR), but it has little been studied for speaker recognition
so far. Yu et al. recently proposed to propagate uncertainty to
the Baum-Welch (BW) statistics without changing the posterior
probability of each mixture component. They obtained good
results on a small dataset (YOHO) but little improvement on
the NIST-SRE dataset, despite the use of oracle uncertainty
estimates. In this paper, we propose to modify the computation
of the posterior probability of each mixture component in order
to obtain unbiased BW statistics. We show that our approach
improves the accuracy of BW statistics on the Wall Street
Journal (WSJ) corpus, but yields little or no improvement on
NIST-SRE again. We provide a theoretical explanation for this
that opens the way for more efficient exploitation of uncertainty
on NIST-SRE and other large datasets in the future.

Index Terms: speaker recognition, robustness, uncertainty
propagation, i-vector.

1. Introduction
A current challenge in the field of speaker recognition is to mi-
grate automatic systems developed in the lab to real world envi-
ronments. The distortion of speech by environmental noise and
reverberation jointly with channel mismatch provokes a vari-
ability that degrades considerably the high accuracy reached in
the lab. Several methods for compensating noise have been
developed in the field of automatic speech recognition (ASR)
[1–3] and speaker recognition [4]. These methods operate on
the input features, on the model parameters, or both.

Among the latter category, uncertainty propagation (UP)
has emerged as a new paradigm whereby the data are not treated
as point estimates anymore but as a Gaussian posterior distribu-
tion that is propagated through the subsequent processing steps.
The variance of that distribution quantifies the loss of informa-
tion due to the finite number of data points (aleatoric uncer-
tainty) or to some distortion of the data (epistemic uncertainty).
The development of UP has mainly focused on ASR [5–12],
but a few works have also been presented on speaker recogni-
tion in order to handle noisy environments [13–15], signals of
short duration [16], or signals of different duration [17, 18].

Table 1 presents an overview of previous works on UP
for speaker identification (SI) or speaker verification (SV). The
systems used include Gaussian mixture models (GMM) [19],
joint factor analysis (JFA) [20], or i-vectors [21], and they
may be text-independent (TI) or text-dependent (TD). The lo-
cation of uncertainty in the system is described by data on

which is was estimated (Origin) and the data or the model to
which it was propagated (Focus), e.g., the universal background
model (UBM) or the probabilistic linear discriminant analysis
(PLDA). From this table, it can be seen that [15] is the only
study on UP for noise robustness in the state-of-the-art i-vector
PLDA framework so far. In this study, the uncertainty on the in-
put features was propagated to the Baum-Welch (BW) statistics
and the i-vectors without changing the posterior probability of
each mixture component computed by the UBM. This approach
gave improved results on a small dataset (YOHO), but it could
not obtain good results over the NIST-SRE dataset, even though
oracle (ideal) uncertainty estimates were used.

In this paper, we describe how to propagate the uncertainty
from a speech enhancement system into the i-vectors. Based on
the previous work [14] in the older GMM framework, we mod-
ify the computation of the posterior probability of each mix-
ture component in order to obtain unbiased BW statistics. Pre-
liminary experiments yield good results on a noisy version of
the Wall Street Journal (WSJ) corpus, but little or no improve-
ment on a noisy version of the NIST-SRE 2008 corpus similarly
to [15]. We perform an analysis of the UBM and the BW statis-
tics on both datasets which provides a theoretical explanation
for the results and suggests some future research directions to-
wards addressing UP on NIST-SRE and other large datasets.

Section 2 recalls the i-vector computation process. Section
3 presents the proposed method for computing the i-vectors tak-
ing into account the uncertainty due to noise on the features.
Speaker verification experiments are carried out in Section 4.
Section 5 reports the results obtained and explores the underly-
ing causes. Finally the conclusions of the study and future work
are discussed in Section 6.

2. I-vector computation
Let M be the supervector for one utterance u. In the front-end
factor analysis model [21], this supervector is expressed as

M = m+ Tw (1)

where m is the UBM mean, T is the low-rank total variability
matrix, andw is the vector of standard normal random total fac-
tors or i-vector. The i-vector is obtained by computing the pos-
terior expectation of w over the feature sequence {y1, . . . , yL},
with L the number of time frames:

E[w(u)] = (I + T ′Σ−1N(u)T )−1T ′Σ−1F̂ (u). (2)

In this equation, N(u) is a diagonal matrix obtained by con-
catenating the zeroth order BW statisticsNc(u) for all Gaussian
components c, ˆF (u) is a supervector obtained by concatenating



Table 1: Overview of uncertainty propagation approaches applied to robust speaker recognition (see Section 1 for abbreviations).
System Work Corpus Task Goal Uncertainty Origin and Focus

approach Features UBM BW stats JFA, T mat. i-vector PLDA
GMM [14] CHiME TI SI Noise Origin Focus

i-vector

[18] NIST 2010 TI SV Duration Origin Focus
[17] RSR 2015 TD SV Duration Origin Focus
[16] NIST 2010 TI SV Duration Origin-Focus
[15] YOHO TI SV Noise Origin Focus

the centralized-first order BW statistics F̂c(u), Σ is the diagonal
covariance matrix of the front-end factor analysis model, and .′

denotes matrix transposition. The BW statistics are given by

Nc(u) =

L∑
t=1

γt(c) (3)

F̂c(u) =

L∑
t=1

γt(c)(yt −mc) (4)

where

γt(c) =
πcN (yt|µc,Σc)∑C
i=1 πiN (yt|µi,Σi)

(5)

is the posterior probability of the c-th Gaussian component, as
obtained from its mean mc, covariance Σc and weight πc.

3. Uncertainty propagation to the i-vector
The study in [14] introduced a modified BW algorithm in order
to train a GMM from uncertain data by maximizing the uncer-
tainty decoding objective in [6]. This algorithm relies on the
computation of unbiased BW statistics. In this section, we ex-
tend this algorithm to the computation of i-vectors.

Let us assume that the observed features xt now result from
the addition of clean speech yt and noise. Using a speech en-
hancement algorithm together with an uncertainty estimation
technique, e.g., [9,12], the posterior probability of clean speech
can be approximated as

p(yt|xt) = N (yt|ȳt, Σ̄t) (6)

with ȳt the estimated clean speech and Σ̄t the uncertainty co-
variance matrix at time t. By integrating over the unknown
clean features, the likelihood of the c-th Gaussian component
is modified as follows [6]:

p(xt|c) = N (ȳt|µc,Σc + Σ̄t) (7)

Consequently the BW statistics must be modified as [14]

γunc,t(c) =
πcN (ȳt|µc,Σc + Σ̄t)∑C
i=1 πiN (ȳt|µi,Σi + Σ̄t)

(8)

Nunc,c(u) =

L∑
t=1

γunc,t(c) (9)

F̂unc,c(u) =
L∑
t=1

γunc,t(c)Wc,t(ȳt −mc) (10)

where Wc,t is the Wiener filter [22] defined as

Wc,t = Σc[Σc + Σ̄t]
−1. (11)

We obtain the i-vector from the unbiased BW statistics as

E[wunc(u)] = (I + T ′Σ−1Nunc,c(u)T )−1T ′Σ−1F̂unc,c(u).
(12)

4. Experiments and Results
Due to the current lack of a dataset for the evaluation of speaker
verification in real, noisy, multi-microphone conditions, we
adopt the usual approach of distorting clean speech [23–26].
In the following, we use noise and reverberation from Track 1
of the 2nd CHIME Challenge [27] which received significant
attention in the robust ASR community [28]. This dataset was
recorded in a real domestic environment and it stands out by the
attention brought to the realism of the sound scenes.

The speech signals are male conversations in English. For
the training stage, 3285 speech signals of 262 speakers from
NIST-SRE 2004 and 2005 were used. For the evaluation stage,
the short2 and short3 datasets of NIST-SRE 2008 were em-
ployed, including 470 speech signals for enrollment and 671
speech signals for test. A total of 6615 verifications were per-
formed on the det7 condition of NIST-SRE.

Each training or evaluation signal was convolved with one
of 121 two-microphone room impulse responses with a rever-
beration time of 0.3 seconds. Moreover, the enrollment and test
signals were mixed with a random segment of real background
noise including, e.g., voices, TV, game console, cutlery sounds,
and footsteps. This mixing process resulted in noisy speech sig-
nals with different SNRs ranging from about -10 to +20 dB with
an average of 6.1 dB.

4.1. Speaker recognition system

The speaker recognition front-end consists of 19 Mel frequency
cepstral coefficients (MFCCs), the log-energy, and their first
and second order derivatives, followed by frame selection using
voice activity detection (VAD) and cepstral mean and variance
normalization (CMVN) [29]. The UBM consists of 512 Gaus-
sians. For the extraction of i-vectors, a T matrix of dimension
400 is used. The i-vectors are centered, whitened and length
normalized, and subsequently projected with 330-dimensional
LDA. Classification relies on Gaussian PLDA [30].

4.2. Speech enhancement and uncertainty estimation

For speech enhancement, we use the Flexible Audio Source
Separation Toolbox (FASST) [31], which has shown state-
of-the-art performance on the CHiME data [32]. For uncer-
tainty estimation, similarly to [15], we use oracle uncertainty
estimates represented by full uncertainty covariance matrices
(UPF) Σ̄t = (yt− ȳt)(yt− ȳt)′ or diagonal uncertainty covari-
ance matrices (UPD) Σ̄t = diag(yt − ȳt)2 [14].

4.3. Speaker recognition results

Table 2 shows speaker verification results expressed in equal
error rate (EER) and minimum value of the NIST detection
cost function (mDCF) [33]. For comparison purposes, the first
two rows present the results obtained when training and testing



on clean (original NIST) signals or when training and testing
on reverberated signals. The following rows show the results
obtained when training on reverberated signals and testing on
noisy or enhanced signals. Note that the chosen speech en-
hancement method reduces noise but not reverberation, hence
training on reverberated speech provides better results than
training on clean speech.

Table 2: Speaker recognition results on NIST-SRE.
Training set Evaluation set EER (%) mDCF

Clean Clean 3.19 0.0180
Reverberated Reverberated 4.33 0.0289
Reverberated Noisy 31.85 0.0982
Reverberated Enhanced 10.48 0.0512
Reverberated UPD 10.69 0.0586
Reverberated UPF 10.31 0.0511

Noise strongly degrades the system performance, reaching
31.85% EER. Multichannel speech enhancement improves the
EER to 10.477%, getting closer to reverberated speech. How-
ever UP does not exhibit the expected behavior. Oracle full UP
improves the EER only by 0.17%, while oracle diagonal UP
does not outperform the result obtained without uncertainty.

The lack of improvement brought by UP on NIST-SRE is
consistent with [15]. Considering the significant improvement
brought by UP on smaller datasets such as YOHO [15] and
CHiME-Grid [14], this result is shocking.

4.4. Analysis of posterior probabilities and BW statistics

To explain this fact, we evaluate the proposed UP approach in-
dependently of the final classification stage so as find at what
processing stage the problem arises. We stop the speaker recog-
nition procedure just after the propagation of uncertainty and
we measure the impact of UP on the accuracy of the UBM pos-
terior probabilities γ and the zeroth order BW statistics N . For
this, we compare the probabilities γenh and the statistics Nenh

computed from noisy data with enhancement (with or without
UP) with the ground-truth probabilities γrev and statistics Nrev

computed from reverberated noiseless data using the following
two error metrics:

Eγ(u) =

∑L
t=1

∑C
c=1 |γenh,t(c)− γrev,t(c)|

L
(13)

EN (u) =

√∑C
c=1(Nrev,c(u)−Nenh,c(u))2

C
(14)

For comparison, we perform this experiment both on the
NIST-SRE dataset and on another dataset obtained by distort-
ing clean speech from the WSJ corpus in the same way as
above. This dataset involves 7138 utterances from 83 speakers
for training and 740 utterances from 18 speakers for evaluation.
We did not perform the entire speaker recognition process on
WSJ because we just need to check whether UP can denoise the
quantities used to compute the i-vectors, such that we can con-
firm whether the NIST-SRE dataset is the cause of the problem
or not.

Table 3 shows the average value of Eγ(u) and EN (u) over
all utterances u in the NIST-SRE 2008 short2 set and in the WSJ
development set. As expected, the application of UP reduces the
distortion over both γ andN on WSJ. The decrease is moderate
for UPD and large for UPF, as previously observed in the field

of ASR. On NIST-SRE, the distortion over γ is comparable to
WSJ and it decreases with UP. However, the distortion over N
is significantly larger and it is increases with UP.

We conclude that UP consistently improves the estimation
of γ, as previously observed in ASR, but that it does not always
improve the estimation of N , as required for speaker recogni-
tion. This might come as a surprise since N is the result of
the summation of γ over time, hence improved estimation of γ
should result in improved derivation of N . In the next section,
we analyze the cause of this surprising result.

Table 3: Eγ and EN for different UBM decoding strategies.
NIST-SRE WSJ

Enh. UPD UPF Enh. UPD UPF
Eγ 1.19 1.10 0.73 1.53 1.32 0.67
EN 5.29 7.24 5.62 2.45 1.74 0.65

5. The case of NIST-SRE
Figure 1 shows the average value of N(u) over all utterances
of the NIST-SRE 2008 short2 set and the WSJ development set,
for three types of speech: reverberated speech (ground truth),
enhanced speech, and enhanced speech with diagonal UP. In
order to better see the behavior of the curves, the figure also
shows a zoomed section of the plot.
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Figure 1: Average of N(u) over all test utterances.

5.1. Analysis for individual Gaussian components

On the one hand, it is noticeable from the global plot that the UP
curve for NIST-SRE and the curves for WSJ exhibit several nar-
row peaks and valleys. Since N(u) consists of the accumula-
tion of the Gaussian posterior probabilities over all time frames,
these peaks/valleys indicate that the corresponding Gaussians



are highly probable/improbable. This may reflect a hubness ef-
fect [34]. Hubness is a fundamental issue in machine learn-
ing due to the concentration of distances in high dimensional
spaces. This implies that certain points called “hubs” have a
small distance to many other points while certain points called
“anti-hubs” are far from all other points. This phenomenon has
been mathematically studied for lp norms [35, 36] and empiri-
cally observed for other forms of “distances” including Gaus-
sian likelihoods [37]. One possible explanation for the opposite
behavior of Eγ(u) and EN (u) on NIST-SRE may therefore be
that the acoustical distortion systematically biases the Gaussian
posterior probabilities toward certain Gaussian components.

On the other hand, note how in the zoomed plot the UP
curve for NIST-SRE exhibits significant deviations below and
above the other two curves, while on WSJ the three curves fol-
low each other more closely. Another possible explanation may
therefore be that the acoustical distortion biases to a similar ex-
tent the Gaussian posterior probabilities of all Gaussian compo-
nents.

In order to find out which of these two explanations is cor-
rect, we quantify the hubness effect and analyze the internal
structure of the UBM for both NIST-SRE and WSJ.

5.2. Analysis of hubness effect

For quantifying the hubness, we compute for each Gaussian the
number of frames in which it appears among the k best and
we measure the skewness of the resulting histogram [38]. The
larger the skewness, the stronger the hubness. Table 4 confirms
that the hubness increases when UP is applied, but this increase
is observed for both datasets. Furthermore, the hubness is larger
in WSJ than in NIST-SRE, even without UP. Hence hubness is
not the main cause of the increase of the distortion on N due to
UP on NIST-SRE.

Table 4: Measured hubness.
NIST-SRE WSJ

k Rev. Enh. UPD Rev. Enh. UPD
1 1.748 0.986 3.5817 4.081 2.559 3.8914
3 1.219 0.618 2.8015 3.428 1.975 3.2286
5 0.869 0.421 2.2121 2.996 1.742 2.8450

5.3. Analysis of UBM overlap

For discovering the organization of the Gaussians inside the
UBM, we used a measure of the amount of overlap between
two normal distributions, by means of the Bhattacharyya dis-
tance (bt) [22]. It is equal to 0 when the distributions are equal
and tends to grow up when the distributions move apart. We
computed bt for all unique pairs of Gaussians (c1, c2) inside
the UBM with c1 > c2. Figure 2 shows the histogram of bt
obtained for each dataset. The range of values, as represented
by the 5-th and the 95-th percentile to avoid outliers, is also
depicted.

We can see that bt is much smaller on NIST-SRE than on
WSJ. Moreover is remarkable that for small values of bt, for
example bt ≤ 5, the NIST-SRE histogram already contains sev-
eral pairs of Gaussians, in the order of 104, while that of WSJ
just has a hundred pairs. Overall, this indicates that the Gaus-
sians in the UBM learned from NIST-SRE are strongly over-
lapped, while the Gaussians in the UBM learned from WSJ are
further apart.
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Figure 2: Distribution of the overlap between Gaussians.

Table 5: Degree of overlap between Gaussians.
Dataset Range of bt Pairs bt ≤ 2

Enh. NIST-SRE 3.74 - 7.15 0.0232%
WSJ 9.65 - 33.8 0.0079%

UPD NIST-SRE 2.26 - 5.14 0.1958%
WSJ 5.47 - 19.64 0.0173%

Table 5 compares the degree of overlap before and after UP.
In order to measure the degree of overlap after UP, the uncer-
tainty covariance is added to all UBM Gaussians in each time
frame as in (7), the Bhattacharyya distance is measured and av-
eraged over all time frames. As overlap indicators, the 5-th and
95-th percentiles and the percentage of Gaussians pairs with
high overlap (bt ≤ 2) are employed.

Table 5 shows that UP increases the Gaussian overlap for
NIST-SRE, because the average distance is decreased and the
amount of Gaussians with high overlap is increased. UP also
increases the Gaussian overlap for WSJ, but ultimately results
in much less overlap than NIST-SRE. Since the UBM of NIST-
SRE is originally very overlapped, when the feature uncertainty
is propagated to the posterior probability of each mixture com-
ponent, the overlap becomes huge and causes numerous errors
in the posterior probability matrix. By contrast, the UB of WSJ
is reasonably sparse from the start, such that when UP is applied
the overlap does not become a problem.

6. Conclusions and future work
In this paper we proposed a new method for propagating the un-
certainty due to noise from the acoustic features to the i-vectors
in a speaker recognition framework. Preliminary experiments
showed that the proposed method yielded little or no improve-
ment on NIST-SRE, confirming the previous attempt of [15].
Studying the results, we found that there is a huge overlap be-
tween the Gaussians of the UBM created from NIST-SRE. This
overlap is increased by UP, which adversely affects the perfor-
mance of the system. This phenomenon does not arise for the
smaller WSJ dataset. We attribute it to the big size and the
high speaker variability of the NIST-SRE dataset. This study
suggests that addressing the noise robustness problem on NIST-
SRE and other large datasets will require solving the Gaussian
overlap problem first, e.g., by renormalizing the Gaussian log-
likelihoods. Beyond our study, further analysis of the causes
and the solutions to this problem must be conducted.
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