
HAL Id: hal-01182995
https://hal.archives-ouvertes.fr/hal-01182995

Submitted on 5 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From out-of-time design to in-time production of
temporal media

Paul Hudak, David Janin

To cite this version:
Paul Hudak, David Janin. From out-of-time design to in-time production of temporal media. [Research
Report] LaBRI - Laboratoire Bordelais de Recherche en Informatique. 2015. �hal-01182995�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49497797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01182995
https://hal.archives-ouvertes.fr

From out-of-time design to in-time production of
temporal media

Paul Hudak

Department of Computer Science
Yale University

New Haven, CT 06520

David Janin

LaBRI, Bordeaux INP,
Université de Bordeaux

F-33405 Talence

August 5, 2015

Abstract
The design a temporal media, a sequence of temporal media values

such as notes, sounds, images, etc., is an out-of-time task. Fairly general
out-of-time program constructs are available for such a purpose. For ex-
ample, when writing a musical piece, a composer can traverse back and
forth his creation. On the contrary, rendering a temporal media is an
in-time task. The production of notes in a musical performance is bound
to be coherent with the unceasing onward flow of time. It follows that
some of the out-of-time programming constructs used for the creation of
that pieces must have been re-ordered in order to produce the right media
events in the right order and at the right time. In this paper, we propose a
formal study of the interplay between these in-time and these out-of-time
programing constructs. With an explicitly out-of-time design approach,
we eventually show that simpler and more abstract declarative program-
ming features become available, leaving to computers the tedious task of
synchronizing and scheduling the media events to be produced in-time,
upon demand.

1 Introduction
In many multimedia applications, one of the main task performed by computers
is to render temporal media, that is, to produce and perform, in the right
order and at the right time, media values: sounds, notes, images, etc. Such a
production is an in-time process. It is necessarily performed in the irreversible
flow of time. The computation of media values is bound to be coherent with
the unceasing onward flow of time.

On the contrary, in the design process of these temporal media, the flow of
time is partially reversible. A designer can easily traverse back and forth the

1

temporal media under to be created. It follows that, in such an out-of-time
design process more programming features are available, leaving to computers
the task of re-organizing, possibly just upon demand, the temporal media that
must be produced.

As an example, a typical in-time program construct consists of specifying
the production of values after a certain amount of time. This construct can be
implemented by means of a timer. In this case, there is an immediate corre-
spondance between the definition of a stream of values to be produced and its
in-time production. In the out-of-time definition of a stream of value, another
program construct consists of specifying that some event must occur before a
certain amount of time. Even though refeering to the past, this backward de-
pendence can still be implemented provided it does not violate some causality
constraints. For example, another timer may be used to count down the remain-
ing time available before the occurrence of a known planed events. However,
in that later case, the correspondance between the definition of the stream of
values and their effective production of these values is no longer straightforward.
It requires to check its consistency with respect to the flow of time and, in the
positive case, to retrieve the media values in the appropriate order and time.

In this paper, we propose a formal study of the interplay between such
in-time and out-of-time programming features and we eventually show that a
simple and efficient program transformation is available in order to convert out-
of-time temporal media specification into in-time temporal media production.
The tedious task of synchronizing and scheduling the media events to be pro-
duced in-time is thus left, upon demand, to the computer.

More precisely, we first define a simple set of out-of-time primitives, namely
event productions and back and forth shifts of time, that can be combined one
with the other. Then, we show how the resulting (zigzagging) sequence of prim-
itives can be encoded so that an efficient on-the-fly normalization is available
to re-order events in the way they have to be produced in-time. Doing so, we
eventually recover the notion of tiled temporal media [5], a notion originating
from the 80’s in the field of computational music [1], that induces a rich alge-
braic structure. Under adequate assumption, temporal media form an inverse
monoid.

Compared to [5], the main novelty of the present paper is that, by im-
plementing out-of-time temporal media constructs and the related on-the fly
in-time normalization process, we eventually provide a simple, elegant, and
standalone implementation of truly polymorphic tiled temporal media. In [5],
we had implicitly provided an encoding of out-of-time (tiled) temporal media
into in-time temporal media. In this paper, we explicitly provide an embedding
of finite in-time into out-of-time (tiled) temporal media.

Oddly enough to be mentioned, the work presented here essentially amounts
to define and study a set of spatiotemporal primitives that can be combined
one after the other for creating temporal media somehow much in the same way
some spatial primitives are provided in Logo, for the turtle to create pictures.

2

The remarkable difference is that the pictures resulting from a spatial traver-
sal of the turtle can be displayed as such. On the contrary, the temporal media
resulting from the spatiotemporal traversal of the turtle must be normalized in
order to be rendered. Then, when this normalization is defined as the in-time
retrieval of media events to be rendered, we recover the classical correspondance
between normalization and computation.

2 Out-of-time vs in-time temporal media
We give in this section the syntax of out-of-time temporal media definitions and
we briefly review their associated in-time semantics described in terms of tiled
temporal media. This leads us to the specification of the corner stone functions
of our proposal: the head/tail normalization functions. Implementation and
other semantics issues are then discussed in the remaining sections.

2.1 Out-of-time syntax
We first need to define a simple set of out-of-time primitives that can be used
for designing temporal media: timed sequences of media values, be they sounds,
notes, images, animation commands, etc.

The set of primitives we consider is defined as the primitive event e that
describes the instantaneous event e at the current date, the basic primitive
delay d that described the (positive or negative) shift of d units of time for the
current position (forward or backward) in time. These primitives can then be
composed by means of an (infix) sequential composition product z1 % z2 that
combined, one “after” the other, any out-of-time specifications z1 and z2. An
exemple of the resulting zigzags is depicted Figure 1.

delay 5

delay (−8)

delay 9

delay (−4)
delay 2

e1

e2

e3
e4

Figure 1: The out-of-time (zigzag) specification z of a temporal media.

In this figure, we have depicted the sequential composition product of the
primitives delay 5, event e1, delay (−8), event e2, delay 9, event e3, delay (−4),
event e4 and delay 2.

As far as semantics is concerned, we assume that the composition product is
associative. This allows for depicting any out-of-time specification of a temporal

3

media as a sequence of events related by the forward and backward zigzag in
time created by the positive and negative delays.

For the sake of simplicity, we only handle media events that are supposed
to be instantaneous. As we shall see later in the text, this takes into account
all common situations where media values, lasting for a certain amount of time,
can be decomposed into two events, a media on event and a media off event.

2.2 In-time semantics
Now, we aim at rendering in-time the media events that have been described
out-of-time.

In the above out-of-time description of streams of events, we observe that
two events may appear syntactically close while, in the flow of time, while they
are far one from the other in time.

For exemple, in Figure 1, the events e2 and e3 are syntactically close in the
product defining the out-of-time specification while, in the flow of time, the
event e2 should be played the first and the event e3 should be played the last,
hence they are separated by all other events.

In some sense, in out-of-time descriptions of a temporal media, media events
can be intricate. Executing or rendering such a temporal media thus necessitates
to retrieve the events to be launched in an order coherent with the flow of
time. This re-ordering defines the in-time semantics linearize z of an out-of-
time specification z.

More precisely, linearizing an out-of-time description of a temporal media
just amounts to order the events (or media values) that appear in a zigzag
description. The resulting structure is a tiled temporal media [5] : a list of
timed media values (a temporal media in the sense of [3, 4]) that is extended with
two synchronization marks that memorized the position in time of the former
beginning (for Pre) and end (for Post) of the out-of-time zigzag specification.

An exemple of a linearization is depicted in Figure 2. It corresponds to the
tile linearize z obtained by linearizing the out-of-time definition z depicted in
Figure 1.

Pre

Post
e1e2 e3e4

Figure 2: The in-time (linearized) semantics linearize z of the out-of-time tem-
poral media specification z.

It occurs that a simple semantical mapping, that maps every of out-of-time
specification z to its linearization linearize z, induces quite a rich algebraic
structure: the algebra of tiled temporal media [5] that is reviewed below under
the new point of view provided by out-of-time temporal media.

4

2.3 Induced tiled temporal media algebra
Let us consider again the zigzag depicted in Figure 1. Assume additionally that
the delay 9 primitive is cut into two successive delays, delay 2 and delay 7.
Then, as depicted in Figure 3, this cut defines two successive zigzags z1 and
z2 that can be combined sequentially in order to form the zigzag z = z1 % z2.
Then, it can be proved (see [5]) that tiled temporal media can be equipped with

delay 5

delay (−8)
delay 2

e1

e2

delay 7
delay (−4)

delay 2
e3

e4

Figure 3: The sequential composition z = z1 % z2 of two out-of-time (zigzag)
temporal media z1 and z2.

a product, still denoted by %, such that the following property is satisfied :

(linearize z1) % (linearize z1) = linearize (z1 % z2)

In other words, the set of linearized zigzags can be equipped with a product,
called the tiled product in [5], such that the mapping linearize is a morphism
with respect to zigzag sequential composition.

An exemple of a tiled product is depicted in Figure 4. In this figure, the
tiled product is detailed as the succession of two elementary steps: the synchro-
nization (or alignment) step and the fusion (or reduction) step.

The first step, the synchronization step, amounts to making coincide the
Post synchronization mark of the first component with the Pre synchronization
of the second component. Then, the second step, the fusion step, amounts to
merge the underlying streams of media values.

Although not appearing in the example depicted above, several events may
occur at the same time. This may result from a linearization process. This
may also just result from the composition of two events. At this stage of our
presentation, let us just mentioned that simultaneous events are assumed to
be totally ordered and, in the fusion step, they are collected into an ordered
multiset.

In some sense, these multisets describe the instantaneous spatial structure
that results from the back and forth traversal of the time dimension. All the
example depicted above are kept simple so that they only induce singleton (spa-
tial) structures.

5

e1e2

e3e4

(synchronization)

(fusion)

e1e2

e3e4

e1e2 e3e4

Figure 4: The induced tiled product linearize (z1 % z2) of their in-time (lin-
earized) temporal media linearize z1 and linearize z2.

2.4 The head/tail on-the-fly normalization
We have briefly sketched above the linearization semantics. Now, we aim at
providing a slightly more effective view of that linearization mapping. It appears
that it can be defined as an on-the-fly inductive normalization process depicted
as a repeated head/tail decomposition.

More precisely, this normalization process essentially consists of retrieving
the events stored in an out-of-time (zigzag) definition of timed events in an
order that is coherent with the flow of time. Here, we show that this can be
done by defining two functions head and tail that behave as follows. For every
out-of-time specification z, head z contains the earliest events that appear in
z and tail z contains the remaining events in such a way that the following
equation is satisfied

z == (head z) % (tail z)

where == stands for the equivalence induced by the linearization mapping.
Of course, there are various possibilities for defining head and tail for achiev-

ing such a goal. In this paper, we choose to define head z and tail z in the
following way.

In the case there are no event in z, we put head z = z and tail z = delay 0.
In the case there are some events in z, we put head z = (delay d) % (event e)
where d is the relative time distance from the beginning of z to the earliest
event in z and where e is that earliest event to be played.

For instance, the zigzag example provided in Figure 1 can be decomposed
as depicted in Figure 5. Then, it is quite an easy observation that such a

6

delay (−3) (head z)e2

delay 8
delay (−3) e1

delay 4
delay (−2)

e4
e3

(tail z)

Figure 5: A one step head and tail normalization of the zigzag z depicted in
Figure 1.

normalization can be repeated, taking

head (tail z), head (tail (tail z)), etc.,

till all events have been retrieved.
The result of such a repeated decomposition is depicted in Figure 6 below.

delay (−3)e2 (head z)

delay 5 e4
(head (tail z))

delay 3 e1(head (tail (tail z)))

e3
(head (tail (tail (tail z))))

delay (−2)(head (tail (tail (tail (tail z)))))

Figure 6: The resulting head/tail decomposition.

Then, it occurs that the repeated head/tail decomposition induces a normal form
that may be used to unambiguously represent linearize z. Indeed, as depicted
in Figure 7, such a normal form can be defined as the sequential composition
of the heads of the form head (tailnz) until tailn(z) equals the unit Delay 0. In
our ongoing example, this happens when n = 5.

7

delay (−3)
delay 5

e2

delay 3e4
1e1

delay (−2)e3

Figure 7: The induced normal form.

This suggests that the mapping linearize can be defined by the equation

linearize z = if (isUnit z) then delay 0
else head t % linearize (tail z)

where isUnit z tests if z is equivalent to the unit temporal media delay 0 or not.

In other words, the in-time (linearized) semantics of out-of-time temporal
media definition can be defined within zig-zag definitions. This opens the way
for a standalone implementation of polymorphic temporal media. More pre-
cisely, as soon as the two functions head and tail are defined over out-of-time
temporal media definitions, the equivalence induced by the linearization oper-
ator is definable. It follows that tiled temporal media can easily be defined
as (equivalence classes) of out-of-time temporal media definitions. This is the
purpose of the next section.

Observe again that, although this is not the case in our running exemple,
it may be the case that several events are to be played at the same time. As
already mentioned above for describing the fusion operation, we just assume
that these simultaneous events are totally ordered. Then, as described below,
they are collected into ordered multisets.

3 Lazy implementation in Haskell
In this section, we implement out-of-time temporal media and the related nor-
malization functions head and tail. As observed above, this provides an imple-
mentation of the polymorphic tiled temporal media defined in [5].

The proposed implementation is lazy in the sense that, when computing
the head and the tail of (the syntactic representation of) a zigzag z it never
traverses more than what is strictly needed to retrieve the events to be collected
into head z.

3.1 Preliminary remark on the tail function
Observe that, while the function head is completely specified in the previous
section, the zigzag representation of tail is less clear. The example depicted

8

above, from Figure 5 to Figure 7, clearly shows that tail z can be defined in
many ways.

From the point of view of semantics, this is not an issue since the linearization
function is eventually defined in terms of heads. However, from the implemen-
tation point of view, there is an obvious efficiency issue since the linearization
function is defined by iterated calls of the function tail.

In the proposed implementation, observing that head and tail functions are
necessarily computed by doing partially traversals of syntactic representation of
zigzags, we make these traversals optimal by precomputing on nodes of zigzag
syntactic trees certain time information. These informations, implemented by
the functions dur and firstD, are called synchronization profiles. They are
defined below.

3.2 Synchronization profiles
Following [6] and [5], a first basic elements of the synchronization profile of a
zig zag (or a tile) is the distance from its beginning (the pre synchronization
mark of a tile) and its end (the Post synchronization of a tile). This distance
is computed by the function dur that takes a tile (or a zigzag) as input and
produces a Duration with

type Duration = Rational

This function is depicted in Figure 8 below.
As it should already be clear in view of the specification of the head function,

we also need to know if there is an event in zigzags. Moreover, in the positive
case, it is the position of the first events that should be known. This leads us

Pre

Post

dur tfirstD t

e1e2 e3e4

Figure 8: The synchronization profile of linearize z.

to the definition of the function firstD that takes a tile (or a zigzag) as input
and produces a Date with

type Date = Maybe Rational

When there is no event in a tile, the function firstD returns Nothing. Otherwise,
the function firstD returns Just d, where d is the distance from the Pre syn-
chronization marks (equivalently the beginning of the zigzag) to the first events.
This function is also depicted in Figure 8.

9

3.3 Tile syntax
The syntax of tile is then defined as follows.

data Tile a = Event (MSet a)
| Delay Duration
| Twist Duration Duration (Tile a) (Tile a)

where MSet a stands for the type of multisets of elements of type a.

While the purpose of Event and Delay data constructs is clear, the construct
Twist, which code product of tiles, needs some explanation.

Firstly, the name twist, comes from the fact that an expression of the form
Twist f d t1 t2 encodes the product of two tiles, the tile t1 and the tile inv t2.
As it shall become clear below, this twisted representation of products allows
for encoding a syntactically involutive inverse operator.

Secondly, the argument d denotes the duration of the resulting tile, and the
argument f denotes a the position of the first event. Pre-computing these values
will prevent useless traversal of the underlying syntactic tree. The fact that f
is assume to be of type Duration also means that we will guarantee that Twist
constructs are always denoting tiles that, resulting from a product, contains one
event at least.

Following these conventions, the functions dur and firstD are simply imple-
mented over such syntactic constructs by:

dur (Event) = 0
dur (Delay d) = d
dur (Twist d) = d
firstD (Event) = Just 0
firstD (Delay d) = Nothing
firstD (Twist e) = Just e

3.4 Tile generators
We have defined above the syntax of tiles. Now we define the tile generators
delay, event and %, enriched with an explicit unit tile unit.

unit = Delay 0
event a = Event (singleM a)
delay d = Delay d
(%) t1 t2 = case (t1, t2) of

(, Delay 0)→ t1
(Delay 0,)→ t2
otherwise →

let d1 = dur t1
d2 = dur t2
d = (d1 + d2)

10

f1 = firstD t1
f2 = firstD t2
f = minD f1 (shiftD f2 d1)

in case (f) of
Nothing → Delay d
Just x → Twist x d t1 (inv t2)

In this code, we use the function minD, that compute the minimm of two dates.
It is defined by

minD Nothing d = d
minD d Nothing = d
minD (Just d1) (Just d2) = Just (min d1 d2)

We also use the function shiftD that shifts a date by some duration. It is defined
by

shiftD Nothing d = Nothing
shiftD (Just d1) d = Just (d1 + d)

By construction, no Event construct may occur with no event at all (the empty
list). Similarly, the product is defined in such a way that, as requested above,
no Twist construct may be used over tiles without defined events.

3.5 Inverse, reset and co-reset
The inverse mapping inv is defined by

inv (Event e) = Event e
inv (Delay d) = Delay (−d)
inv (Twist y d t1 t2) = Twist (y − d) (−d) t2 t1

As expected, this implementation of the inverse function is syntactically invo-
lutive in the sense that, for every finite tile z, the representation of inv (inv z)
equals the representation of the tile z.

The related reset and co-reset functions are also defined by

re t = t % (delay (−(dur t)))
co t = (delay (−(dur t))) % t

Although reset and co-reset are defined directly as above, it is known that they
may be defined via the inverse function since, under adequate assumption [5],
we have

re t == t % (inv t)
co t == (inv t) % t

11

3.6 Normalization function
The head/tail normalization function is computed in two steps. In the first step,
the function norm make a single (partial) traversal of its argument to compute
all elements needed, in the second step, for computing head and tail.

The type of the function norm is defined by

norm :: (Ord a)⇒ Tile a → (Duration, MSet a, Tile a)

When (d, e, tt) = norm t, the duration d is the distance to the earliest events
(or zero if there are none), the multiset e contains all these first events, and the
tile tt is the remaining tail of the input tile t. This function, defined below, does
not meant to be exported.

norm (Event e) = (0, e, Delay 0)
norm (Delay d) = (0, emptyM , Delay d)
norm (Twist f d t1 t2) =

let f1 = firstD t1
f2 = firstD ((Delay (dur t1)) % (inv t2))

in case (compareD f1 f2) of
LT → let (d1, e1, tt1) = norm t1

in (d1, e1, tt1 % (inv t2))
GT → let (d2, e2, tt) = norm (inv (Twist f d t1 t2))

in (d + d2, e2, tt % (Delay d))
EQ → let (d1, e1, tt1) = norm t1

(d2, e2, tt2) = norm (inv t2)
in (d1, unionM e1 e2,

tt1 % (Delay d2) % tt2)

I n this code, we use the unionM that computes unions of multisets. We also use
the function compareD that compare dates if a way coherent with the function
minD defined above. It is defined by

compareD f1 f2 = case (f1, f2) of
(Nothing, Nothing)→ EQ
(, Nothing)→ LT
(Nothing,)→ GT
(Just x1 , Just x2)→ compare x1 x2

The case LT above corresponds to the case that the first event of the underlying
product is located in the tile t1. The definition of compareD ensures that the
tile t1 contains an event.

The case GT defined above corresponds to the case that the first event
of the underlying product is located in the tile t2. Again, the definition of
compareD ensures that the tile t2 contains an event. This case is solved by
duality, exploiting the syntactical encoding of inverses.

12

Lastly, the case EQ corresponds to the case that the first events of the under-
lying product are located both in the tile t1 and in the tile t2. The assumption
that a Twist construct cannot be used when both underlying tiles are empty
ensures that both tiles t1 and t2 are indeed non empty.

3.7 Head, Tail and induced equality
With the function norm given above, the head and tail functions are then simply
defined as follows.

ht t = let (d, e, tt) = norm t
in if (isEmptyM e)

then (Delay (dur t), Delay 0)
else ((Delay d) % (Event e), tt)

head t = fst (ht t)
tail t = snd (ht t)

where isEmptyM is the function that check if its argument is the empty multiset.

As observed in the previous section, the linearization function can be defined
by means of head and tail. The semantical equivalence it induces can directly
(and lazily) be defined as follows:

instance (Eq a, Ord a)⇒ Eq (Tile a) where
(==) t1 t2 = case (t1, t2) of

(Delay d1, Delay d2)→ (d1 == d2)
otherwise →

let (dd1 , ee1 , tt1) = (norm t1)
(dd2 , ee2 , tt2) = (norm t2)

in ((dd1 == dd2)
∧ (equalM ee1 ee2)
∧ (tt1 == tt2))

where the function equalM is the equality of finite multi-sets.

It can be shown that the complexity of computing the (semantical) equality
z1 == z2 of two out-of-time definition of temporal media z1 and z2 equals the
sum of their syntactic size multiply by the depth of the underlying syntactical
tree. In other words, provided this depth is kept small, our encoding of the
linearization mapping is quasi-linear in the size of its arguments.

4 Conclusion
In the experiment described in the above pages, we thus show that allowing out-
of-time programming constructs such as back and forth time shifts, eventually
leads to a confortable language for specifying temporal media. Still, the specified

13

media events can be automatically reordered in an efficient way for the in-time
rendering of these temporal media.

Quite strikingly, the complete implementation is achieved in less than a hun-
dred lines of Haskell code. This comes in particular from the twisted encoding
of the products that allows to reason by duality. This also comes from the
robustness of the underlying mathematical objects.

It can easily be shown that classical (in-time) temporal media [3] can be
embedded and thus re-encoded into the (out-of-time) tile formalism that is pre-
sented here. Even though of a rather theoretical nature, further experiments,
with audio or midi temporal media are currently done in order to validate this
approach in practice.

The on-the-fly head/tail decomposition that we have proposed and imple-
mented here may sound familiar to the programmers known FRP [2]. Although
going out of the scope of the presented experiments, it is believed that tiles can
be used for multi-scale descriptions of temporal media. Indeed, more abstract
temporal media can be defined as sequences more concrete tiled temporal media.
The fact tiled temporal media may overlap should facilitate such a hierarchical
design approach.

Beyond temporal media, our experiments examine the distinction one can
make between program design, that may go back and forth in the space of causal
dependencies, and program execution, that must respect causal dependencies.
To which extent our approach can be extended to such a much broader scope is
left to further investigations.

References
[1] P. Desain and H. Honing. LOCO: a composition microworld in Logo. Com-

puter Music Journal, 12(3):30–42, 1988.

[2] C. M. Elliott. Push-pull functional reactive programming. In Proceedings of
the 2nd ACM SIGPLAN Symposium on Haskell, pages 25–36. ACM, 2009.

[3] P. Hudak. An algebraic theory of polymorphic temporal media. In Pro-
ceedings of PADL’04: 6th International Workshop on Practical Aspects of
Declarative Languages, pages 1–15. Springer Verlag LNCS 3057, June 2004.

[4] P. Hudak. A sound and complete axiomatization of polymorphic temporal
media. Technical Report RR-1259, Department of Computer Science, Yale
University, 2008.

[5] P. Hudak and D. Janin. Tiled polymorphic temporal media. In ACM Work-
shop on Functional Art, Music, Modeling and Design (FARM), pages 49–60.
ACM Press, 2014.

14

[6] D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and S. Salvati.
The T-calculus : towards a structured programming of (musical) time and
space. In ACM Workshop on Functional Art, Music, Modeling and Design
(FARM), pages 23–34, Boston, USA, 2013. ACM Press.

The code of this experiment is available at
http://www.labri.fr/~janin/Code/code.hs

15

