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PARTIAL CLONES CONTAINING ALL BOOLEAN

MONOTONE SELF-DUAL PARTIAL FUNCTIONS

MIGUEL COUCEIRO, LUCIEN HADDAD, AND IVO G. ROSENBERG

Abstract. The study of partial clones on 2 := {0, 1} was initiated by
R. V. Freivald. In his fundamental paper published in 1966, Freivald
showed, among other things, that the set of all monotone partial func-
tions and the set of all self-dual partial functions are both maximal
partial clones on 2.

Several papers dealing with intersections of maximal partial clones
on 2 have appeared after Freivald work. It is known that there are
infinitely many partial clones that contain the set of all monotone self-
dual partial functions on 2, and the problem of describing them all was
posed by some authors.

In this paper we show that the set of partial clones that contain all
monotone self-dual partial functions is of continuum cardinality on 2.

1. Preliminaries

Let A be a finite non-singleton set. Without loss of generality we assume
that A = k := {0, . . . , k − 1}. For a positive integer n, an n-ary partial
function on k is a map f : dom (f) → k where dom (f) is a subset of kn

called the domain of f . Let Par(n)(k) denote the set of all n-ary partial
functions on k and let

Par(k) :=
∪
n≥1

Par(n)(k).
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For n,m ≥ 1, f ∈ Par(n)(k) and g1, . . . , gn ∈ Par(m)(k), the composition

of f and g1, . . . , gn, denoted by f [g1, . . . , gn] ∈ Par(m)(k), is defined by

dom (f [g1, . . . , gn]) := {a⃗ ∈ km | a⃗ ∈
m∩
i=1

dom (gi)

and (g1(⃗a), . . . , gm(⃗a)) ∈ dom (f)}
and

f [g1, . . . , gn](⃗a) := f(g1(⃗a), . . . , gn(⃗a)),

for all a⃗ ∈ dom (f [g1, . . . , gn]).
For every positive integer n and each 1 ≤ i ≤ n, let eni denote the n-ary

i-th projection function defined by

eni (a1, . . . , an) = ai

for all (a1, . . . , an) ∈ kn. Furthermore, let

Jk := {eni : 1 ≤ i ≤ n}
be the set of all (total) projections.

Definition 1. A partial clone on k is a composition closed subset of Par(k)
containing Jk.

Remark 1. There are two other equivalent definitions for partial clones.
One definition uses Mal’tsev’s formalism and the other uses the concept of
one point extension. These definitions can be found in chapter 20 of [7].

The partial clones on k, ordered by inclusion, form a lattice LPk
in which

the infinimum is the set-theoretical intersection. That means that the inter-
section of an arbitrary family of partial clones on k is also a partial clone on
k. A maximal partial clone on k is a coatom of the lattice LPk

. Therefore
a partial clone M is maximal if there is no partial clone C over k such that
M ⊂ C ⊂ Par(k).

Example 1. The set of partial functions

Ωk :=
∪
n≥1

{f ∈ Par(n)(k) | dom (f) ̸= ∅ =⇒ dom (f) = kn}

is a maximal partial clone on k.

Definition 2. For h ≥ 1, let ρ be an h-ary relation on k and f be an n-
ary partial function on k. We say that f preserves ρ if for every h × n
matrix M = [Mij ] whose columns M∗j ∈ ρ, (j = 1, . . . n) and whose rows
Mi∗ ∈ dom (f) (i = 1, . . . , h), the h-tuple (f(M1∗), . . . , f(Mh∗)) ∈ ρ. Define

pPol ρ := {f ∈ Par(k) | f preserves ρ}.
It is well known that pPol ρ is a partial clone called the partial clone deter-
mined by the relation ρ.
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Notice that if there is no h×n matrix M = [Mij ] whose columns M∗j ∈ ρ
and whose rows Mi∗ ∈ dom (f), then f ∈ pPol ρ.

Example 2. Let 2 := {0, 1} and let {(0, 0), (0, 1), (1, 1)} be the natural order
on 2. Consider the binary relation {(0, 1), (1, 0)} on 2. Then

pPol {(0, 0), (0, 1), (1, 1)}
is the set of all monotone partial functions and

pPol {(0, 1), (1, 0)}
is the set of all self-dual partial functions on 2.

For simplicity we will write pPol (≤) and pPol ( ̸=) for

pPol ({(0, 0), (0, 1), (1, 1)}) and pPol ({(0, 1), (1, 0)}),

respectively. It is not difficult to see that

pPol (≤) := {f ∈ Par(2) | [a,b ∈ dom (f),a ≤ b] =⇒ f(a) ≤ f(b)}, and

pPol ( ̸=) := {f ∈ Par(2) | [a,a + 1 ∈ dom (f)] =⇒ f(a + 1) = f(a) + 1}
where the above sums are taken mod 2.

As mentioned earlier, Freivald showed that there are exactly eight max-
imal partial clones on 2. The following two relations are needed to state
Freivald’s result. Set

R1 := {(x, x, y, y) | x, y ∈ 2} ∪ {(x, y, y, x) | x, y ∈ 2} and

R2 := R1 ∪ {(x, y, x, y) | x, y ∈ 2}.

Theorem 2 ([2]). There are exactly 8 maximal partial clones on 2, namely,
pPol {0}, pPol {1}, pPol {(0, 1)}), pPol (≤), pPol ( ̸=), pPol (R1), pPol (R2),
and Ω2.

Notice that the total functions in pPolR2 (i.e., the functions with full
domain) form the maximal clone of all (total) linear functions over 2 (see,
e.g., chapter 3 of [7]).

An interesting and somehow difficult problem in clone theory is to study
intersections of maximal partial clones. It is shown in [1] that the set of
all partial clones on 2 that contain the maximal clone consisting of all total
linear functions on 2 is of continuum cardinality (for details see [1, 4] and
Theorem 20.7.13 of [7]). A consequence of this is that the interval of partial
clones [pPol (R2) ∩ Ω2,Par(2)] is of continuum cardinality on 2.

A similar result, (but slightly easier to prove) is established in [3] where
it is shown that the interval of partial clones [pPol (R1) ∩ Ω2,Par(2)] is
also of continuum cardinality. Notice that the three maximal partial clones
pPolR1, pPolR2 and Ω2 contain all unary functions (i.e., maps) on 2. Such
partial clones are called S lupecki type partial clones in [4, 10]. These are the
only three maximal partial clones of S lupecki type on 2.

For a complete study of the pairwise intersections of all maximal partial
clones of S lupecki type on a finite non-singleton set k, see [4].
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The papers [5, 6, 8, 12, 13] focus on the case k = 2 where various inter-
esting, and sometimes hard to obtain, results are established.

For instance, the intervals

[pPol {0} ∩ pPol {1} ∩ pPol {(0, 1)} ∩ pPol (≤), Par(2)] and

[pPol {0} ∩ pPol {1} ∩ pPol {(0, 1)} ∩ pPol ( ̸=), Par(2)]

are shown to be finite and are completely described in [5]. Some of the
results in [5] are included in [12, 13] where partial clones on 2 are handled
via the one point extension approach (see Section 20.2 in [7]).

In view of results from [1, 3, 5, 12, 13], it was thought that if 2 ≤ i ≤ 5 and
M1, . . . ,Mi are non-S lupecki maximal partial clones on 2, then the interval

[M1 ∩ · · · ∩Mi,Par(2)]

is either finite or countably infinite.
Now it was shown in [6] that the interval of partial clones [pPol (≤) ∩

pPol ( ̸=),Par(2)] is infinite. This result is mentioned in Theorem 20.8 of
[7] (with an independent proof given in [8]) and in chapter 8 of the PhD
thesis [11]. However, it remained an open problem to determine whether
[pPol (≤) ∩ pPol ( ̸=),Par(2)] is countably or uncountably infinite.

In this paper we settle this question by proving that the interval of partial
clones

[pPol (≤) ∩ pPol ( ̸=),Par(2)]

is of continuum cardinality on 2.

2. The construction

For n ≥ 5 and n > k > 1 we denote by σn
k ⊆ 22n the (2n)-ary relation

defined by

σn
k := {(x1, . . . , xn, y1, . . . , yn) ∈ 22n | ∀ i = 1, . . . , n, xi ̸= yi, and

∀ i = 1, . . . , n, yi+1 ≤ xi and yi+2 ≤ xi . . . and yi+k ≤ xi},
where the subscripts i + j in the above definition are taken modulo n. It is
not difficult to see that

σn
k := {(x1, . . . , xn, y1, . . . , yn) ∈ 22n | ∀ i = 1, . . . , n, xi ̸= yi, and

∀ i = 1, . . . , n, xi = 0 =⇒ [xi+1 = xi+2 = · · · = xi+k = 1]}.
By the Definability Lemma established by B. Romov in [9] (see also Lemma
20.3.4 in [7] and [4, 5, 6] for details), we have that

pPol (≤) ∩ pPol ( ̸=) ⊆ pPol (σn
k )

for all n ≥ 5 and all k ≥ 1.
For n ≥ 5 and n > k ≥ 1, we denote by ρnk ⊆ 24n the (4n)-ary relation

defined by

ρnk := {(x1, . . . , xn, xn+1, . . . , x2n, y1, . . . , yn, yn+1, . . . , y2n) ∈ 24n |
(x1, . . . , xn, y1, . . . , yn) ∈ σn

1 , and (xn+1, . . . , x2n, yn+1, . . . , y2n) ∈ σn
k}.



PARTIAL CLONES CONTAINING BOOLEAN MONOTONE SELF-DUAL P. FUNCT.S 5

Again by the Definability Lemma, we have that

pPol (σn
1 ) ∩ pPol (σn

k ) ⊆ pPol (ρnk),

and thus pPol (≤) ∩ pPol ( ̸=) ⊆ pPol (ρnk) for all n ≥ 5 and all k ≥ 1.
Our goal is to construct an infinite set of odd integers X and an infinite

family of partial functions {gt, t ∈ X} so that for every t, t′ ∈ X, we have

gt ∈ pPol ρ
n(t′)
t′ if and only if t ̸= t′.

Remark 3. Since every tuple in σn
k (resp. ρnk) is completely determined by

its first n entries (resp. 2n entries), we will omit the second half of such
tuples. We therefore denote by Sn

k and Rn
k the relations obtained from σn

k
and ρnk , respectively, by deleting the second half of every tuple in σn

k and ρnk ,
i.e.,

Sn
k := {(x1, . . . , xn) ∈ 2n | (x1, . . . , xn, 1 + x1, . . . , 1 + xn) ∈ σn

k}
and

Rn
k := {(x1, . . . , x2n) ∈ 22n | (x1, . . . , x2n, 1 + x1, . . . , 1 + x2n) ∈ ρnk}

where the above sums are taken mod 2.

Note that Sn
k is the n-ary relation on 2 whose members are tuples in which

any two 0’s are separated by at least k symbols 1 (in particular, if the first
position is 0, then the last k positions must be 1). Furthermore, Rn

k is the
cartesian product Sn

1 × Sn
k .

As mentioned earlier we will use the relations Sn
1 , S

n
k and Rn

k with the
understanding that we are omitting the second parts of the relations σn

1 , σ
n
k

and ρnk in order to simplify the notation.

Notations. In the sequel k ≥ 4 stands for an even integer. Set n(k) :=

k(k + 1) + 1. We will write ρn(k) for ρ
n(k)
k and Rn(k) for R

n(k)
k . Let Mk

↑

be the n(k) × n(k) matrix with columns in S
n(k)
1 , the first being c1 =

[0110101 . . . 0101]T and the remaining columns are obtained by applying
cyclic shifts to c1, i.e.,

c2 = [10110101 · · · 010]T ,

c3 = [010110101 · · · 01]T ,

· · ·
cn(k) = [110101 · · · 010]T .

Remark 4. Let ri and rj be two rows of Mk
↑ . If |i− j| ≥ 2(modn(k)), then

ri and rj have a 0 in the same position.

Lemma 5. If k′ < k, then there is no n(k′)×n(k) matrix N whose columns

are in S
n(k′)
1 and whose rows are rows of Mk

↑ .

Proof. Suppose that k′ < k and that N is an n(k′)×n(k) matrix whose

columns are in S
n(k′)
1 . Suppose, by way of contradiction, that the rows of N
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are rows of Mk
↑ . By Remark 4, the only possible adjacent rows of a row r

in N are exactly the predecessor and successor rows of r in Mk
↑ . But then

n(k′) would be even, thus yielding the desired contradiction.

Let Mk
↓ be the n(k) × n(k) matrix with columns in S

n(k)
k , and such that

the first is c′1 = [0 1 · · · 1︸ ︷︷ ︸
k+1

0 1 · · · 1︸ ︷︷ ︸
k

· · · 0 1 · · · 1︸ ︷︷ ︸
k

]T and the remaining columns are

obtained by applying cyclic shifts to c′1 as before.

Remark 6. Since k ≥ 4 is even, if ri is a row of Mk
↑ , and r′j is a row of

Mk
↓ , then ri and r′j have a 0 in the same position.

Lemma 7. If k′ > k, then there is no n(k′)×n(k) matrix N whose columns

are in S
n(k′)
k and whose rows are rows of Mk

↓ .

Proof. Suppose that k′ > k and that N is an n(k′)×n(k) matrix whose

columns are in S
n(k′)
k . Assume, by way of contradiction, that the rows of N

are rows of Mk
↓ . Since each row of Mk

↓ has exactly k 0’s, we have that N has

k×n(k′) 0’s. Hence the matrix N has a column with at least k×n(k′)
n(k) symbols

0. It is easy to verify that since k′ > k ≥ 4, we have that k×n(k′)
n(k) > k′. But

this yields the desired contradiction, since all columns of N are members of

S
n(k′)
k , and each has at most k′ 0’s.

Define Mk as the 2n(k) × n(k) matrix given by

Mk =

(
Mk

↑
Mk

↓

)
.

Notice that each column of Mk is a tuple of Rn(k).

Lemma 8. Let N be a 2n(k′) × n(k) matrix whose columns are in Rn(k′)

and whose rows are rows of Mk. Then, either all rows of N are rows of Mk
↓ ,

or the first n(k′) are rows of Mk
↑ and the remaining n(k′) are rows of Mk

↓ .

Proof. By Remark 4 and the fact that Rn(k′) := Sk′
1 ×Sk′

k , there cannot

be more than 2 rows of Mk
↑ among the last n(k′). In fact, by Remark 6 there

can only be rows from Mk
↓ among the last n(k′) rows of N . Furthermore,

from Remark 6 and the fact that Rn(k′) := Sk′
1 × Sk′

k , it follows that either

all of the first n(k′) rows of N are rows of Mk
↑ or all of the first n(k′) rows

of N are rows of Mk
↓ .

Let fk be the n(k)-ary partial function whose domain is the set of rows
of Mk, and such that fk is constant 0 on the rows of Mk

↑ and constant 1 on

the rows of Mk
↓ .

Theorem 9. Let k, k′ ≥ 4 be even integers. Then fk ∈ pPolRn(k′) if and
only if k ̸= k′.
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Proof. Since [0 · · · 01 · · · 1]T does not belong to Rn(k), we see that fk ̸∈
pPolRn(k).

So suppose that k ̸= k′. If k < k′, then it follows from Definition 2 and
Lemmas 7 and 8 that fk ∈ pPolRn(k′).

Suppose now that k > k′. If N is an 2n(k′)×n(k) matrix whose columns

are in Rn(k′) and whose rows are rows of Mk (otherwise we are done for the
domain of fk is exactly the set of rows of Mk), then by Lemmas 5 and 8 it
follows that all rows of N are rows of Mk

↓ . Since fk is constant 1 on the rows

of Mk
↓ , and since the constant 1 2n(k′) tuple belongs to Rn(k′), we conclude

that fk ∈ pPolRn(k′).

Let Mk be the 2n(k) × n(k) matrix obtained by replacing every row of
the matrix Mk by its dual tuple (obtained by interchanging 1’s and 0’s) and
define Lk as the 4n(k) × n(k) matrix given by

Lk =

(
Mk

Mk

)
.

Moreover, let gk be the n(k)-ary partial function whose domain is the
set of rows of Lk, and such that gk(u⃗) = fk(u⃗) if u⃗ is a row of Mk and
gk(u⃗) = 1 + fk(u⃗) (mod 2) if u⃗ is a row of Mk. Then, Theorem 9 can be
restated as follows:

Main Theorem. Let k, k′ ≥ 4 be even integers. Then gk ∈ pPol ρn(k
′) if

and only if k ̸= k′.

Let E≥4 := {4, 6, 8, . . . } be the set of all even integers greater or equal to
4 and denote by P(E≥4) the power set of E≥4. Since

pPol (≤) ∩ pPol ( ̸=) ⊆ pPol (ρnk)

for every n ≥ 5 and every n > k ≥ 1, we have

pPol (≤) ∩ pPol ( ̸=) ⊆
∩

t∈E≥4\X

pPol ρn(t)

for every subset X of E≥4.

So let X ⊂ E≥4 and fix k ∈ X. Then gk ∈ pPol ρn(t) for all t ∈ E≥4 \X,
i.e.,

gk ∈
∩

t∈E≥4

\X.

On the other hand, if k ∈ E≥4 \X, then we have

gk ̸∈
∩

t∈E≥4\X

pPol ρn(t) and gk ̸∈
∩
t ̸∈X

pPol ρn(t),

since gk ̸∈ pPol ρn(k). Therefore the map

χ := P(E≥4) → [pPol (≤) ∩ pPol ( ̸=),Par(2)]
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defined by

χ(X) :=
∩

t∈E≥4\X

pPol ρn(t)

is one-to-one and we have shown the following result which answers our
question on cardinality of the interval [pPol (≤) ∩ pPol ( ̸=),Par(2)].

Corollary 10. The interval of partial clones [pPol (≤) ∩ pPol ( ̸=),Par(2)]
is of continuum cardinality on 2.
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