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Abstract. Nowadays, performance optimization involves careful data
and task placement to deal with parallel application needs with respect to
the underlying hardware topology. Monitoring the application behavior
provides useful information that still needs to be matched with the actual
placement, for instance to understand whether bottlenecks are caused by
the sequential code itself or by shared resources in parallel programs.
We propose an insightful monitoring tool based on two cornerstones of
hardware performance counters monitoring and hardware locality mod-
eling, respectively named PAPI and hwloc. It enables a dynamic visual
analysis of parallel applications' phases at runtime, revealing their possi-
bly variable and heterogeneous behaviors and needs. A purpose designed
application shows that the topology-aware visual representation of hard-
ware counters can help �guring out shared resource bottlenecks and ease
the task placement decision process in runtime systems.

1 Introduction

The memory wall makes data locality increasingly important on the road to
exascale. Data and computing tasks have to be colocated to better exploit the
performance of parallel platforms. Many research projects focus on locality-aware
data and/or task placement, for parallel programing models ranging from MPI
and OpenMP to graphs of tasks. However �nding out which placement is the best
remains a di�cult exercise that depends on the topology and characteristics of
the hardware and on the application needs. Indeed, the hardware is increasingly
complex, and software a�nities can be of di�erent kinds. For instance memory-
bound tasks may prefer being scattered all across the machine, while, on the
contrary, communication and synchronization may want to keep them close.
Runtime systems require help identifying these needs and bottlenecks before
they can place tasks accordingly.

Performance monitoring is a very active software area that o�ers many tools
to gather information about the execution of tasks, the bottlenecks, etc. We in-
troduce, in this paper, a new way to analyze performance by crossing the roads
of performance monitoring and topology-aware placement. We propose an ex-
tension of the Hardware Locality software (hwloc [2]) that enhances its graphical
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representation of the topology with performance monitoring information. This
new tool enables optimization of the placement of parallel tasks based on visual
monitoring.

The remaining of the paper is organized as follows. Section 2 presents the
context of our work before the state of the art is described in Section 3. Section 4
details the goals, features and implementation of the proposed tool while an in-
depth use case is studied in Section 5.

2 Context

The domain of parallel computing has undergone a shift in the way applications
are executed with the advent of multicore systems. Nowadays, systems with
more than 10 cores and a deep memory hierarchy (multiple levels of caches) are
common place. Moreover, deeper data paths (�ash, non-volatile memory, RAM,
caches) and larger systems (the next Intel Knight Landing processor will pro-
vide more than 60 cores with 4 threads each) are expected in a near future. Such
architectures feature many characteristics that make the execution highly sensi-
tive to the way the computations are mapped. Indeed, threads exhibit di�erent
kinds of a�nities as they do not use the same amount of memory or exchange
the same amount of data.

Several works [7,6,10] showed that the way the a�nity is managed has an
important impact on the application performance: memory accesses depend on
the mapping of the threads and the data location. Therefore, it is crucial to
understand how this mapping impacts the performance. Moreover, it is the case
for every steps of the application: the data allocation, the I/O (network, stor-
age, etc.) or the computation. This is even more intricate when computation is
composed of phases where the a�nity between tasks changes. For instance a com-
putation phase may be compute intensive, e.g. heavily use �oating-point units,
before another phase is memory intensively. To cope with this phase heterogene-
ity, some systems feature co-scheduling where compute-intensive applications are
mixed with memory-bound ones expecting that the di�erent application bottle-
necks (here memory/cache vs. compute units/cores) will not interfere with each
other.

In any case, whether the system executes one application or co-schedules
several, it is very important to be able to e�ciently map the processes and the
threads on the di�erent cores. To understand the impact of such mapping and
analyze the performance of the running application(s), in the light of the map-
ping, applications and system developers need tools to monitor the application
behavior. Such monitoring tool need not only to be able to display the perfor-
mance of the application but also need to link the performance with the topology
where the application is running. We believe that this last part is very important
as the performance can only be understood if it is matched with the memory
hierarchy and the used cores.
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3 State of the art

Performance analysis can be performed at di�erent levels of granularity, from
individual instructions up to the entire program. Analyzing the performance at
the instruction level with tools such as MAQAO [1], PIN [9] or Intel VTune
Ampli�er is a part of the development and optimization process. We rather
focus on optimizing through better placement during the execution. Moreover
we target parallel applications with a regular execution pattern (for instance
applications programmed with MPI, PGAS and/or threads) without dynamic
scheduling of many tasks that would require a �ner grain. Our coarse grain
approach targets the entire application or di�erent phases during its execution
by observing its behavior from a higher level as the Unix top tool would.

Coarse-grain performance analysis still requires dynamic monitoring over
time. It may involve real time tools such as numatop or tiptop [12], or o�ine
temporal analysis with one of the existing tracing tools such as VampirTrace [8].
We base our work on these existing approaches while focussing on topology-aware
performance study both in real-time or for post-mortem analysis.

Multiple metrics may be used to diagnose topology-related performance is-
sues, including memory link contention, cache con�icts, or computing unit shared
accesses. Performance counters are the main solution for analyzing the behavior
of codes and numerous tools are available such as PAPI [3] or the Linux perf

utility. We focus on intra-node performance in this paper while other metrics
exist for entire cluster-wide, such as congestion in network switches or links,
which may be studied with tools such as SCALASCA [4] or Paraver [11].

Analyzing performance based on the topology of the architecture is not a
very active research topic yet. Indeed, discovering all the computing and mem-
ory resources in computing platform has only been recently mastered with tools
such as hwloc [2]. Former approaches were often less portable or do not expose as
many details about cache sharing etc. MemAxes [5] o�ers �ne-grained memory
performance analysis with a graphical radial hierarchy display. However, it only
focuses on static post-mortem analysis of memory accesses while our approach
is dynamic and works for all performance metrics and more kinds of resource
sharing. LIKWID [13] is a set of performance analysis tools that use advanced
knowledge of the hardware topology. This knowledge is used for task placement
while we also propose to combine it with performance monitoring for better anal-
ysis. LIKWID is actually complementary to our work, it will soon use hwloc for
better topology discovery, while we may use LIKWID performance monitoring
abilities when they will be exported as a C programming interface.

4 Topology-aware performance monitoring

Here, we describe the proposed extension of lstopo utility : design, usage and
implementation.
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4.1 Objectives and features

lstopo is a utility from hwloc which function is to display machines topologies.
The main goal of the new lstopo extension is to provide a fast and simple
way to analyze the architecture behaviour during a program execution. Such a
hardware based outlook can be used just to get a quick glance on the machine
state as well as for more complex studies such as task placement optimization.
It �ts especially well multi-phase applications such as code coupling or complex
structure traversal.

The original lstopo displays the hierarchy of computing resources (proces-
sors, NUMA nodes, cores, threads, caches, etc.) as nested boxes (see Fig. 1(a)).
Inner boxes represents smaller resources (e.g. cores within processors or even
hypertheads).

The extension aims to stay as simple as the original tool. From the user per-
spective, the new graphical output keeps the existing boxes organization intact
but changes their inner text and colors to report performance information. Box
names are replaced with performance monitored values, whose variation (with
respect to the maxima reached across the execution) is also represented by a
horizontal line and the background color. At a given rate, the bar moves ver-
tically and the color changes according to the monitored value (see Fig 1(b)):
from green to red (with di�erent intermediate shades of yellow and orange). This
implementation keeps the original technologies used in hwloc: The Cairo library
is still used to draw the graphical output but it now periodically refreshes the
display to update counters.

As explained in the next section, a few lines of input con�guration enable
the displaying of live, derived performance counters.

Because you cannot always get a graphical display on HPC platforms, perfor-
mance counters may also be recorded with low overhead for later o�ine display.
Indeed, just like hwloc lets you manipulate topologies of remote machines, the
new lstopo may also load performance counters for more convenient display-
ing on another host. Moreover, performance counters may also be exported in a
trace �le in PAJÉ format 1 for later post-mortem analysis with any paje trace
analyzer.

Several options can be set such as sampling rate, replay speed, accumulating
values or not. Moreover, we provide two monitoring modes: per node where per-
formance counters are displayed for all the process running on the NUMA node
and per process where performance counters are displayed for a given process.

Finally, for those whom want to record speci�c part of an application, a li-
brary interface is provided to record parts of a whole application and set markers
to delimit phases into the trace.

1 http://paje.sourceforge.net/index.html

http://paje.sourceforge.net/index.html
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4.2 Usage and con�guration

Figure 1(a) shows the original lstopo output on a dual-core Intel i7-4600U
processor. Figure 1(b) shows the the same display with --perf option appended.
Coloured boxes represent the monitors.

Machine (16GB total)

NUMANode P#0 (16GB)

Package P#0

L3 (4096KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#2

PU P#3

(a) lstopo classic output

Machine (16GB total)

NUMANode P#0 (16GB)

Package P#0

L3 (4096KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#2

PU P#3

1,8490000000e+03

6,4000000e+021,2090000e+03

6,4000000e+021,2090000e+03

6,4000000e+021,2090000e+03

2,61000e+02

3,79000e+02

3,39000e+02

8,70000e+02

(b) lstopo performance output

Fig. 1: Graphical lstopo output

The topology structure is a hierarchy of resources. For each hierarchy level
(cores, caches, threads (PU), etc.), the user may set an arithmetic expression of
counters meant to represent a metric associated with that level. A �le containing
such a description is speci�ed to lstopo with the option --perf-input and is
written with the following syntax:

name {hwloc_obj_type_t where to accumulate,

algebraic formula using PAPI counters}

An example of such syntax is:

CYC_per_INS {PU, PAPI_TOT_CYC/PAPI_TOT_INS}

PER_CORE_L3_MISS {Core, PAPI_L3_TCM}

PER_NUMA_L3_MISS {NUMANode, PAPI_L3_TCM}

In this example, the program would count on each processor hyperthread the
number of cycles (PAPI_TOT_CYC), the number of instruction (PAPI_TOT_INS)
and the number of cache misses in the L3 (PAPI_L3_TCM). The latter is summed
by Core (2nd line) and by NUMA node (3rd): in this case all the cache misses
are displayed at the node level. The formers are used to compute the ratio of
cycles per instruction on each hyperthread (1st line).
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More complex expressions could be used to translate raw counter values into
higher-level criterias such as the memory bandwidth, or another performance
monitoring library could be used instead of PAPI to directly gather such infor-
mation.

4.3 Implementation

The tool uses hwloc to build the topology and store counters' values into its
nodes. The lstopo utility (which shows the machine topology) was updated to
add a hook plugin, periodically sampling hardware counters, and changing nodes
rendering as the monitors' hierarchy is updated.

Data: map(hwloc object type, counters), hwloc topology, process ID
Result: trace(timestamp, topology object, monitor value)

1 Spawn a thread per leaf waiting in a barrier;
/* The main thread triggers counter's collect periodically */

2 repeat

3 forall the topology's leaves do
4 if isRunning(leaf,pid's thread) then activate(sampling(leaf));
5 end

6 wait(barrier);
7 until wait(timer);

/* The others gather samples */

8 forall the thread do

9 repeat

10 wait(barrier);
11 if thread's leaf is not activated then continue ;
12 read(counters);
13 forall the node in leaf's parents into the monitor hierarchy do

14 forall the counters do
15 if counter physical location is under node then

16 sum counters into node;
17 if Current leaf is the last to update node then

18 compute the user input arithmetic expression of counters ;
19 else

20 if Current leaf is the �rst to update node then

21 Set the node and sibling counters value to the read counter ;
22 end

23 end

24 end

25 until isAlive(pid);
26 end

Algorithm 1: Dynamic counter aggregation algorithm.

When performance monitoring is enabled, the topology is redrawn periodi-
cally after gathering counters.

The new lstopo can also attach to a process to track and record a single
process placement and performance values.



Topology-aware Performance Monitoring 7

Performance counters are usually collected for each processing unit leaf of
the topology (hyperthreads in the above example) but lstopo may accumulate
them in parents. For counters that are not per-core, they are usually displayed
higher in the hierarchy, for instance in the system or NUMA node box.

As an example, displaying the last level cache (LLC) miss count on the LLC
itself would sum the total number of LLC miss performed on all cores, whereas
displaying it on each Core would show the miss count performed by each Core.
Algorithm 1 describes this behavior synthetically.

The aggregation currently only implements the addition of counters from all
children resources, but we plan to support average, min and max operations as
an optional �ag in the language in the near future.

5 Analyzing tasks concurrency gives a room for thread

placement

Here, we will illustrate a situation where a visual hint can be useful to choose
thread placement. In this example the monitoring mode is the per node one: we
monitor all the processes of the node.

5.1 Spreading or packing threads?

Tasks a�nity is a widely studied problem in HPC because it can suit several
optimizations such as, MPI-process placement, node allocation, co-scheduling,
etc. At the node granularity, the e�ciency of scheduling threads under a shared
cache depends both on the pressure they put on the cache and the reuse distance
of their shared data. Two solutions often discussed are: either spread threads to
balance the pressure on caches, or pack them to optimize shared data access [10].
These two placement policies are widely used and implemented in most OpenMP
Runtime. But whether you should use one or the other is left to the user respon-
sibility.

5.2 A use case of threads' interference balancing, using the cache

miss ratio

Some works use the cache miss ratio as a metric to measure pressure on cache [14]
and decide on thread's placement policy.

Based on this observation we build a small application able to put arbitrary
pressure on the last level cache, and thanks to hardware counter information we
will be able to see where are the threads pinned on the Cores, and the amount
of pressure they put on the last level cache.

The application we monitor is a walk into a linked list. It basically consists
in loading data and therefore should be sensitive to memory stress. Each item
in the list is sized to �t into a cache line and the list is randomly linked to avoid
successful prefetching by the processor.
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Before doing any measure, we walk the whole list so that each attempt to
resolve the next pointer will trigger a cache miss if the list size is greater than
the cache size as shown in Figure 2.

cacheline cacheline cacheline cacheline cacheline cacheline cacheline

DRAMLLC

Fig. 2: Randomly linked list.

5.3 Experimental Conditions

Figure 3 shows the LLC miss count evolution when changing the list size and
running n threads walking each a cloned list.

The vertical line at 220 shows that walking simultaneously 4 lists of size
220KiB, results in a reasonable amount of LLC misses even if the 4 lists should
�t into the last level cache.

2^5

2^10

2^15

2^20

2^18 2^19 2^20 2^21 2^22 2^23 2^24 2^25

ca
ch

e 
m

is
s

list size(Bytes)

L3

8_threads
4_threads
2_threads

1 thread

Fig. 3: Evolution of cache miss count of the node when increasing pressure on
cache.
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Hence we build two lists list1 and list2 of respective memory size s1 = 220KiB
and s2 = 224KiB. The 4 threads of the former one may have their whole data
set �t simultaneously in the last level cache, whereas 2 threads of the latter
would already over�ow the cache. Using a topology with two 8-core processors,
we co-schedule 4 threads, each one walking a clone of list1 and 4 threads, each
one walking a clone of list2 spread across the processors so each processors hosts
4 threads. In the �rst scenario we schedule 2 threads of list1 and 2 threads of
list2 on each processor whereas in the second scenario 4, 4 list1 are walked on a
processor and 4 list2 are walked on the other.

list1 list1 list1 list1L
L
C
0

Core0 Core1 Core2 Core3

D
R
A
M

L
L
C
1

Core4 Core5 Core6 Core7

list2 list2 list2 list2

Fig. 4: Co-scheduling low-pressure threads, then high pressure threads.

5.4 How lstopo shows the situation

In this context, co-scheduling walks of list1 with walks of list2 would grow the
number of miss for list1 walks and slow the miss count for list2 walks, whereas
doing the opposite strategy would reverse the tendency. What about the total
number of cache misses ?

Figure 5 illustrates both scenarios from lstopo view. The topology has been
restricted to only 4 cores per processors and cache boxes are hidden for clarity.
The input con�guration �les used was the one described before in subsection
implementation.

The upper most red and green boxes represent the machine NUMA nodes and
we display on them the total amount of LLC miss for each node. The red, yellow
and green outer boxes represent the machine cores 3,4,8,9 in logical numbering.
Each single core LLC miss count is displayed on it. The red, yellow and inner
boxes represent the machine hyperthreads on which is displayed the hyperthread
cycles per instruction ratio.

In the �rst scenario 5(a), we use the scatter placement strategy, and see
distinctly the pressure being balanced across the nodes. Whereas the second
scenario 5(b) exhibits the packed strategy lowering considerably the pressure on
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the LLC for list1 walk threads. However, the latter increases the number of cache
misses on the most pressured cache by more than twice, suggesting that the �rst
scenario is better than the second one to optimize total LLC miss count.

Actually, the execution walltime of the �rst scenario is 8.32s while the second
one is 11.08s.

Machine (63GB total)

NUMANode P#0 (31GB)

Core P#2

PU P#4

PU P#20

Core P#3

PU P#6

PU P#22

Core P#4

PU P#8

PU P#24

Core P#5

PU P#10

PU P#26

NUMANode P#1 (32GB)

Core P#0

PU P#1

PU P#17

Core P#1

PU P#3

PU P#19

Core P#2

PU P#5

PU P#21

Core P#3

PU P#7

PU P#23

1,3462802000e+08

1,4345639000e+08

2,0393000e+046,6085974e+072,0589000e+046,8501064e+07

2,7694000e+047,2117616e+073,6427000e+047,1274653e+07

3,80443e+00

5,99274e+00

3,53643e+00

9,31618e+00

6,03730e+00

3,71635e+00

3,58340e+00

9,51143e+00

3,92322e+00

5,95134e+00

3,29320e+00

9,79546e+00

3,77932e+00

6,02446e+00

3,44735e+00

9,72093e+00

(a) Linked list walk, scattered threads

Machine (63GB total)

NUMANode P#0 (31GB)

Core P#2

PU P#4

PU P#20

Core P#3

PU P#6

PU P#22

Core P#4

PU P#8

PU P#24

Core P#5

PU P#10

PU P#26

NUMANode P#1 (32GB)

Core P#0

PU P#1

PU P#17

Core P#1

PU P#3

PU P#19

Core P#2

PU P#5

PU P#21

Core P#3

PU P#7

PU P#23

1,6749000000e+04

4,1412719900e+08

6,2190000e+031,5970000e+034,4560000e+034,4770000e+03

1,0306630e+081,0361124e+081,0372922e+081,0372044e+08

3,00377e+00

6,17645e+00

3,88513e+00

5,83022e+00

2,71668e+00

6,01359e+00

6,21070e+00

8,97653e-01

3,42994e+00

1,28395e+01

3,51594e+00

1,28032e+01

3,51024e+00

1,27397e+01

1,27944e+01

3,38271e+00

(b) Linked list walk, packed threads

Fig. 5: Two scenarios' comparison with lstopo.
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6 Conclusion and future work

The road to exascale requires careful design of parallel runtime systems with
respect to software a�nities and hardware locality so that task and data can
be properly colocated. Analyzing hardware performances values and matching
them with topology information is crucial to understand and optimize resources
utilization. In this article, we presented a tool based on hwloc2, able to col-
lect performance, topological informations, and match them to deliver valuable
hints. This tool extends the lstopo utility to display per node or per process

performance counters. It is able to aggregate these counters at a given level of
the topology hierarchy and to combine them through algebraic formulas. Colors
and bars are used to display the values of these counters dynamically on the
topology. Additionally, it is able to keep a trace of an execution to be replayed
later or analyzed afterward. We showed with a low-level application and relevant
performance metrics that mapping hardware counters on machine topology can
bring out locality issues.

We are now working at improving the output by matching performance coun-
ters with the corresponding source code, and allowing the display of multiple
counters per box. Then detection of application phases is also being investigated
in the case of post-mortem analysis. Indeed, the trace may be displayed as a
graph or analyzed with statistiscal tools to study the dynamic behavior of appli-
cations during the execution. Applications with varying heterogeneous behavior
may indeed bene�t from dynamic re-placement between phases.

Finally, our performance monitoring currently relies on PAPI high level ab-
straction and consequently inherits its strength such as simplicity of use, but
also its weaknesses. For instance, PAPI does not expose advanced memory ac-
cess counters (available in recent processors with Intel PEBS or AMD IBS). This
limits our current abilities contrary to MemAxes which manually supports them.
Depending on the support for most relevant technologies we envision support for
other performance monitoring interfaces.
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