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ABSTRACT

A stochastic model of symbolic (MIDI) performance of
polyphonic scores is presented and applied to score fol-
lowing. Stochastic modelling has been one of the most suc-
cessful strategies in this field. We describe the performance
as a hierarchical process of performer’s progression in the
score and the production of performed notes, and repre-
sent the process as an extension of the hidden semi-Markov
model. The model is compared with a previously studied
model based on hidden Markov model (HMM), and rea-
sons are given that the present model is advantageous for
score following especially for scores with trills, tremolos,
and arpeggios. This is also confirmed empirically by com-
paring the accuracy of score following and analysing the
errors. We also provide a hybrid of this model and the
HMM-based model which is computationally more effi-
cient and retains the advantages of the former model. The
present model yields one of the state-of-the-art score fol-
lowing algorithms for symbolic performance and can pos-
sibly be applicable for other music recognition problems.

1. INTRODUCTION

For the last thirty years the real-time matching of music
performance to the corresponding score (called score fol-
lowing) has been a popular field of study motivated by
applications such as automatic music accompaniment and
score-page turning system [1, 2, 3, 4, 5, 6, 7, 8]. We study
here score following of polyphonic symbolic (MIDI) per-
formance. A central problem in score following is to prop-
erly capture the variety of music performance in a com-
putationally efficient manner. A commonly studied way to
capture this variety and develop an effective score-following

c© Eita Nakamura1 Philippe Cuvillier2

Arshia Cont2.
Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Eita Nakamura1 Philippe
Cuvillier2 Arshia Cont2. “ Autoregressive Hidden Semi-
Markov Model of Symbolic Music Performance for Score Following ”,
16th International Society for Music Information Retrieval Conference,
2015.

algorithm is to use stochastic models of music performance
(Sec. 2.1, see also [3]).

Hidden Markov models (HMMs) have been applied to
score following of symbolic performance and provided cur-
rently best results [4, 7, 9]. In these models, a musical
event in the score, i.e. note, chord, trill, etc., is represented
as a state, and the performed notes are described as outputs
of an underlying state transition process. Memoryless sta-
tistical dependence is assumed for both output and transi-
tion probabilities for the sake of computational efficiency.
Due to these simplifications the models cannot well de-
scribe significant features of performance data such as the
number of performed notes per event and the total duration
of a trill.

Phenomenologically, music performance can be regarded
as a hierarchical process of producing musical notes: The
higher level describes performer’s progression in the score
in units of musical events, and the lower level describes
the production of individual notes [9, 10]. We describe this
process in terms of a hidden semi-Markov model (HSMM)
[11] with an autoregressive extension [12] (Sec. 2) and in-
corporate the above features into the model. With some
simplifications, the model is reduced to a previously stud-
ied HMM [9]. We compare these models in the informa-
tional and algorithmic aspects and argue that the present
model is advantageous for score following especially for
scores with trills, tremolos, and arpeggios (Sec. 3). Empir-
ical confirmation of this fact is given by comparing the ac-
curacy of score following and analysing the errors (Sec. 4).
Finally remaining problems and future prospects are dis-
cussed (Sec. 5).

2. AUTOREGRESSIVE HIDDEN SEMI-MARKOV
MODEL OF SYMBOLIC PERFORMANCE

2.1 Stochastic description of music performance

Music performances based on a score have a wide vari-
ety because of indeterminacies inherent in musical score
descriptions and uncertainties in movements of perform-
ers and musical instruments. These indeterminacies and
uncertainties are included in tempos, noise in onset times,
dynamics, articulations, ornaments, and also in the way of



making performance errors, repeats, and skips [7]. In order
to perform accurate and robust score following, we need
to incorporate (maybe implicit) rules into the algorithm to
capture this variety.

A way to do this is to construct a stochastic model of
music performance and describe those indeterminacies and
uncertainties in terms of probability. A score-following al-
gorithm can be developed as an inference problem of the
model. We shall take this approach in the following, which
has been proved to be successful in score following.

2.2 Model of performer’s progression in the score

Let us present the model. We model music performance as
a combination of subprocesses in two levels. The higher-
level (top-level) process describes the performer’s progres-
sion in the score in units of musical events that are well-
ordered in performances without errors. We take a chord
(possibly arpeggiated), a trill/tremolo, a short appoggiatura,
or an after note 1 as a unit and represent it with a state
(top state). Let i label a top state. Then the performer’s
progression can be described as successive transitions be-
tween these states denoted by i1:N = (i1, · · · , iN ) (N is
the number of performed MIDI notes). We will use the
symbol n(= 1, · · · , N) to index the performed notes that
are ordered according to the onset time, and in represents
the corresponding musical event.

The probability P (i1:N ) describes statistical tendencies
of performances. Simplifications are necessary to construct
a performance model yielding a computationally tracta-
ble algorithm. A typical assumption is that the probabil-
ity is decomposed into transition probabilities: P (i1:N ) =
ΠN
n=1P (in|in−1) (P (i1|i0) ≡ P (i1) denotes the initial

distribution). The probability P (j|i) represents the rela-
tive frequency of straight progressions to the next event
(j = i + 1), insertions of events (j = i), deletions of an
event (j = i + 2), and repeats or skips (if |j − i − 1| >
1). These probability values can be estimated from per-
formance data. With the assumption that P (i|j) is only
dependent on i − j, the probability values have been es-
timated with piano performance data in a previous study
([7], Table 3).

2.3 Model of production of performed notes

The lower-level process describes the production of per-
formed notes during each musical event. Because dynam-
ics and articulations are generically highly indeterminate,
we focus on pitch and onset time which are denoted by
pn and tn. For example, multiple notes are performed at
a chord or a trill (Fig. 1). Note that where as chords are
written in musical scores as simultaneous notes, performed
MIDI notes are serialised and never exactly simultaneous.
Thus pn is always a single pitch.

Let us first consider the number of performed notes per
event. For “chords” (meaning a set of all simultaneous
notes in the score), short appoggiaturas, and after notes,

1 Here ‘after notes’ are defined as grace notes that are played in prece-
dence over the associated beat. A typical example is grace notes after a
trill.
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(b) Trill with preceding short-appoggiaturas and after notes.

Figure 1. Examples of musical events and performed
notes. The three types of time intervals IOI1, IOI2, and
IOI3 are explained in the text.

the expected number of notes is determinate, but it can
be modified as a result of added or deleted notes by mis-
take. For trills and (unmeasured) tremolos, the number
of notes are indeterminate since the speed of ornaments
varies among realisations. We describe this situation with
a probability distribution di(s) where s denotes the num-
ber of performed notes (Σ∞s=1di(s) = 1). For example, the
function di(s) peaks at the indicated number of notes when
event i is a chord. When event i is a one-note trill, the peak
can be written as speaki ' νiv/δttrill, where δttrill, νi, and
v denote the average inter-onset time interval (IOI) of suc-
cessive notes of a trill, the note value of event i, and the
(inverse) tempo in units of “second per unit note value”.
Because currently we do not have a strong empirical basis
for determining the shape of di(s), we simply assume it is
a normal distribution di(s) = N(s; speaki , σi) with speaki

given in Sec. 2.3, and leave σi as an adjustable parameter.
Next the pitch of each performed note of event i can be

described with a probability P pitch
i (p), which is assumed

to be independent for each note for the sake of compu-
tational efficiency. The probability values for incorrect
pitches represent the possibility and frequencies of pitch
errors. An approximate distribution of P pitch

i (p) has been
estimated previously (Eq. (30) of [7]) with piano perfor-
mance data, where the probability of pitch errors is as-
sumed to be uniform for all score notes.

Finally we consider the description of onset times. A
natural assumption of time translational invariance requires
the model to be only dependent of time intervals. There



are (at least) three different kinds of time intervals rel-
evant in locally describing onset times of music perfor-
mance: (IOI1) The time interval between the first notes
of succeeding events, which is typically the duration of an
event, (IOI2) the time interval between the first note of an
event and the last note of its previous event, and (IOI3) the
time interval between succeeding performed notes within
an event (Fig. 1). Assuming that the probability of these
time intervals depends only on the current and previous
states for simplicity and computational efficiency, it has
the form Pκ(δt|in−1, in, v) (κ = IOI1, IOI2, IOI3) where
δt and v denote the relevant time interval and the tempo.
Based on the experience that time interval IOI3 is mostly
dependent on the relevant event and almost independent
of tempo and other contexts, we further simplify the func-
tional form as PIOI3(δt|in). Note that the time intervals
IOI1 and IOI2 are not independent quantities if we retain
all historical information on time, but they have different
importance when we take the Markovian description ex-
plained below.

2.4 Autoregressive hidden semi-Markov model

The integration of the models in Secs. 2.2 and 2.3 can be
described in terms of an extension of the HSMM. In one of
equivalent formulations [13] (also Sec. 3.3 of Ref. [11]), a
semi-Markov model can be represented as a Markov model
on an extended state space. The extended state space is
indexed by a pair (i, s) of the top state i (corresponding
to a musical event) and a counter of performed notes s =
1, 2, · · · 2 with a transition probability

P (in, sn|in−1, sn−1) = δsn,1P (in|in−1)P exit
in−1

(sn−1)

+ δsn,sn−1+1δin,in−1

(
1− P exit

in−1
(sn−1)

)
(1)

where
P exit
i (s) = di(s)/Σ

∞
s′=sdi(s

′). (2)

Here δ in Eq. (1) denotes Kronecker’s delta. The exiting
probability in Eq. (2) represents the probability that the
performer moves to another event given that she has al-
ready played s notes at event i. The first term in the right-
hand side of Eq. (1) describes the probability that the per-
former moves to event in after having played sn−1 notes
of event in−1. The second term describes the probability
that the performer stays at event in and sound another note
after having played sn−1 notes. In this way, this model de-
scribes the integrated process of performer’s progression
in the score and the production of performed notes.

The pitches and onset times of the performed notes can
be described with output probabilities associated with this
semi-Markov process. We assume the statistical indepen-
dence of pitch and onset time for simplicity. The output
probability of pitch is given byP (pn|in, sn) = P pitch

in
(pn).

The output probability of the onset time of the n-th note

2 Remark: In the present model, s counts the number of notes played
during a musical event. This is not the durational time (in seconds) spent
on that event, which is described with time interval IOI1.
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Figure 2. Graphical representation of the autoregres-
sive hidden semi-Markov model of symbolic music perfor-
mance. The stochastic variables are explained in the text.

is given as

P (tn|in, sn, in−1, sn−1, v, t1:n−1)

=

{
w1PIOI1 + w2PIOI2, sn = 1;

PIOI3, sn 6= 1
(3)

where

PIOI1 = PIOI1(tn − tn−s[n−1]|in, in−1, v), (4)

PIOI2 = PIOI2(tn − tn−1|in, in−1, v), (5)

PIOI3 = PIOI3(tn − tn−1|in)δinin−1 . (6)

(Here we have written s[n−1] = sn−1 to display the equa-
tion with clarity.) The three cases correspond to the three
kinds of time intervals explained in Sec. 2.3. Because both
probabilities for IOI1 and IOI2 have relevance in score fol-
lowing, we have used a mixture probability of them (w1 +
w2 = 1). Such output probabilities with conditional de-
pendence on the previous outputs have been considered in
some studies on speech processing, and we call the model
autoregressive semi-Markov model based on the conven-
tion of previous studies [12]. A graphical representation of
the model is given in Fig. 2.

The distributions PIOI1, PIOI2, and PIOI3 can be esti-
mated by analysing performance data. The functions PIOI2

and PIOI3 have previously been estimated with piano per-
formance data [9]. It has been shown there that, in the most
important case that in = in−1+1 (straight transition to the
next event), PIOI2(δt|i+1, i, v) is well approximated by a
Cauchy distribution of the form

Cauchy(δt; v(τ endi − τi)− devi, 0.4 s). (7)

Here Cauchy(x;µ,Γ) denotes the Cauchy distribution with
mean µ and width Γ, and τi is the onset score time of event
i, τ endi is the score time after which no new onsets of event
i can occur, and devi describes the ‘stolen time’ of event
i whose expectation value is given as the number of short
appoggiaturas and arpeggiated notes times the average IOI
of the corresponding notes. Using this result, we can esti-
mate PIOI1 in the case that in = in−1+1 as

PIOI1(δt|i+1, i, v) = Cauchy(δt; vνi, 0.4 s) (8)



where νi = τi+1 − τi is the note value of event i. The dis-
tribution PIOI3 was estimated with measurements on IOIs
of chordal notes and ornaments (see Secs. 3.3 and 4.2 of
[9]).

Finally, tempo vn is estimated online with a separate
model, for which we use a method based on switching
Kalman filter (see Sec. 3.4 of [9]). In summary the complete-
data probability P (i1:n, s1:n, t1:n, p1:n) is given as the fol-
lowing recursive product:

n∏
m=1

[
P (tm|im, sm, im−1, sm−1, vm−1, t1:m−1) ·

P (im, sm|im−1, sm−1)P pitch
im

(pm)
]
. (9)

3. COMPARISON WITH OTHER MODELS

3.1 Relation to the HMM-based model

So far the state-of-the-art method for symbolic score fol-
lowing is developed with a performance model based on
a standard HMM [9]. The current model can be seen as
an extension of this performance model in two ways. First
the transition probability of the HMM is realised as a spe-
cial case of the transition probability in Eq. (1) with exiting
probabilities P exit

i (s) constant in s. Specifically, it is given
as the inverse of the expected number of performed notes
in event i. As is well known, this constraint leads to a geo-
metrically distributed di(s) with a peak at s = 1, which is a
bad approximation for a large chord or a long trill/tremolo.

The second difference is the structure of output proba-
bilities for onset times. In the standard HMM, the Marko-
vian condition is assumed on the output probability of on-
set times. Thus the model describes only time intervals
IOI2 and IOI3, and the probability distribution for IOI1 in
Eq. (3) is ignored. In other words, the IOI output probabil-
ity of the HMM assumes w1 = 0 and w2 = 1 in that equa-
tion. This means that the total duration of a trill/tremolo or
an arpeggios is poorly captured with the HMM.

These differences have important effects when the mod-
els are applied to score following. For score following,
the pitch information is generically most important. When
there are musical events with similar pitch contents in suc-
cession, however, the information on onset times and the
number of performed notes play more significant roles in
correctly matching notes. For example, to correctly match
performed notes of succeeding trills/tremolos, the number
of notes and the duration of each trill/tremolo are impor-
tant viewpoints. Since they are not well captured in the
HMM, the autoregressive HSMM would work better in this
case. Similar situations arise for successions of arpeggios,
where the time intervals IOI2 and IOI3 are largely vari-
able among realisations. On the other hand, the time inter-
vals IOI1 and IOI2 are almost same for successive normal
chords and these IOIs carry much information necessary to
cluster them. Thus the models are expected to have similar
effects for passages without ornaments.

3.2 Comparison with the preprocessing method

To solve the problems with ornaments for score follow-
ing, a preprocessing method has been proposed long ago
[14]. The idea is to preprocess performed notes so that
ornamental notes are not sent to the matching module di-
rectly. While the method can work for scores with not-
heavy polyphonic ornamentation and performances with
infrequent errors, the preprocessing can fail when there are
errors or unexpected repeats or skips near ornaments. Be-
cause a direct comparison showed that the HMM outper-
formed the preprocessing method for piano performances
with errors, repeats, and skips [9], we compare our model
only with the HMM in Sec. 4.

3.3 Computational cost

For score following, we find the most probable hidden state
sequence given the input performance. In order to realise
real-time processing, the computational cost of the estima-
tion algorithm must be sufficiently small. We here compare
the present model and the HMM discussed in Sec. 3.1 in
terms of the computational cost.

The Viterbi algorithm can be applied for HMMs to es-
timate states. Let us denote the product of the transition
probability and the output probability as aij(o) = P (j|i) ·
P (o|i, j) where o represents pitch and onset time. The
Viterbi update equation can be expressed as the following
recursive equation

p̂N (iN ) ≡ max
i1,··· ,iN−1

[ N∏
n=1

ain−1in(on)

]
(10)

= max
iN−1

[
p̂N−1(iN−1)aiN−1iN (oN )

]
. (11)

The number of states is N since a state corresponds to a
musical event in the score. If we allow arbitrary progres-
sions in the score including repeats and skips, a direct ap-
plication of the Viterbi algorithm requires O(N2) compu-
tations of probability for each update. When the probabil-
ity matrix aij(o) can be represented as a sum of a band
matrix αij of width D and an outer product of two vec-
tors Si and rj , the computational complexity can be re-
duced to O(DN) with a recombination method [7]. Intu-
itively, αij describes probabilities corresponding to transi-
tions between neighbouring states, which have larger prob-
abilities, and Si and rj represent probabilities correspond-
ing to large repeats and skips, which typically have very
small probabilities. Substituting aij(o) = αij + Sirj into
Eq. (11), we see αij induces O(DN) complexity and Sirj
induces O(N) complexity by a recombination. This sim-
plified transition probability matrix is used in previous stud-
ies to enable real-time processing for long scores.

It is clear from the formulation of the autoregressive
HSMM in Sec. 2.4 that the standard Viterbi algorithm can
also be applied to the model. In practice, we put an up-
per bound on the number of performed notes smax

i for each
event i, and the number of states of the HSMM is Σis

max
i ≡

SN where S is the average of smax
i . Because of the spe-

cial form of transition probabilities in Eq. (1), the compu-
tational complexity for one Viterbi update is generically



Table 1. Error rates (%) of score following with the auto-
regressive HSMM (“HSMM”), the hybrid model (“Hy-
brid”), and the HMM [9]. The first four pieces indicate
Couperin’s Allemande à deux clavecins, the solo piano part
of Beethoven’s first piano concerto, Beethoven’s second
piano concerto, and Chopin’s second piano concerto [9],
and the last two pieces are explained in the text.

Piece # Notes HSMM Hybrid HMM
Couperin 1763 5.50 6.02 6.66

Beethoven 1 17587 3.16 3.13 3.16
Beethoven 2 5861 2.01 2.20 2.35

Chopin 16241 9.22 9.22 11.1
Debussy 3294 3.64 3.58 4.66

Tchaikovsky 2245 0.40 0.40 4.55

O(SN2). When we apply the recombination method in
Ref. [7], the complexity can be reduced to O(DSN) for
the outer-product type transition probability. Note that the
width D in the top-level transition probability matrix in-
duces SD transitions between HSMM states. Consequently
the computational cost of the model is about S times larger
than its reduced HMM. For example, if we set smax

i as
twice the number of expected notes per event, S ' 3–10
for a score with a modest degree of polyphony, and it in-
creases if there are many large chords or long trills/tremolos.

3.4 Hidden hybrid Markov/semi-Markov model

As discussed in Sec. 3.1, there are reasons that the present
model yields better results for score following than the
HMM, but it is at the cost of increased computational cost,
which is unwanted for long scores. On the other hand,
most of the musical events in scores are normal chords
(or single notes) for which the HMM already yields good
results. Therefore if we combine the HMM state repre-
sentation for normal chords and the autoregressive HSMM
state representation for other ornamented events, it would
be possible to obtain an improved score-following algo-
rithm with minimal increase in computational cost. Such a
combination of HMM and HSMM can be achieved in the
framework of hidden hybrid Markov/semi-Markov model
[5, 15]. In the hybrid model, normal chords are represented
with HMM states and other events (i.e. trill, tremolo, arpeg-
gio, short appoggiatura, and after notes) are represented
with HSMM states. For this model the computational com-
plexity of the Viterbi algorithm takes the same form as the
autoregressive HSMM, by substituting smax

i = 1 for HMM
states in S = Σis

max
i /N .

4. COMPARING THE ACCURACY OF SCORE
FOLLOWING

To evaluate and compare the discussed models with re-
spect to the accuracy of score following, we implemented
three score-following algorithms based on the autoregres-
sive HSMM (Sec. 2.4), the hybrid model (Sec. 3.4), and the

Table 2. Number of mismatched notes of various types.
Each type is explained in the text. The same abbreviations
for the models as in Table 1 are used.

Type # Notes HSMM Hybrid HMM
Trill 8159 282 281 508
Tremolo 2603 115 115 151
Arpeggio 1081 36 33 127
Other
ornaments 2401 340 339 362

Other 32030 1580 1599 1673

HMM [9], and run these algorithms for music performance
data containing various ornaments. In addition to the piano
performance data used in Ref. [9] which contain perfor-
mance errors, repeats and skips, we used collected piano
performances of passages in Debussy’s En Blanc et Noir
with successions of tremolos (the first piano part in the sec-
ond movement) and the solo piano part of Tchaikovsky’s
first piano concerto with his typical successions of wide
arpeggios (the last section of the second movement).

The additional parameters σi for the autoregressive HSMM
and the hybrid model were set as follows: σi = 0.4speaki

for trills and tremolos and σi = 1 otherwise. The mixture
weights for the output probability for time intervals IOI1
and IOI2 were set as w1 = w2 = 1/2. These parameters
were used as a benchmark and there is a room for further
optimisation.

For the evaluation measure, we calculated the error rate,
which is defined as the proportion of mis-matched notes
to the total number of performed notes. There were per-
formed notes that are difficult to associate with any score
notes even for humans, which naturally appear in real data.
While they were included in the input data, they were not
used in the calculation of error rates. Results are shown in
Table 1, where we see that the autoregressive HSMM and
the hybrid model had similar accuracies, and the HMM had
the worst accuracy overall. (Slight differences in the values
for the HMM compared to those in Ref. [9] are mainly due
to slight corrections of the implementation.) For detailed
error analysis, we list the frequencies of classified match-
ing errors in Table 2. Here the numbers indicate the total
number of matching errors in the whole data for each type.
Ornaments are classified into the first four types, and other
notes are gathered in the last type. Significant reduction
of matching errors is observed in the first three types (trill,
tremolo, and arpeggio), and other types of matching errors
are also reduced but rather slightly in the reduction rate.

Two example results of score following are shown in
Fig. 3, which represent typical situations where the auto-
regressive HSMM worked better than the HMM. In the
first example, the passage includes a succession of tremo-
los with similar pitch contents. We see some of the mis-
matched notes with the HMM are correctly matched with
the autoregressive HSMM. Similarly the mismatched notes
with the HMM are all correctly matched with the autore-
gressive HSMM for a succession of wide arpeggios in the
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(a) A passage from Debussy’s En Blanc et Noir with the autoregressive
HSMM.
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(b) Same as (a) with the HMM.
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(c) A passage from Tchaikovsky’s first piano concerto with the autore-
gressive HSMM.
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(d) Same as (c) with the HMM.

Figure 3. Example results of score following with the
autoregressive HSMM and the HMM [9]. Mismatched
notes are indicated with bold red lines.

Table 3. Averaged computation time (ms) required for one
Viterbi update. The same abbreviations for the models and
the musical pieces as in Table 1 are used.

Piece HSMM Hybrid HMM
Couperin 1.6 1.1 0.3

Beethoven 1 5.9 2.9 1.1
Beethoven 2 7.0 3.0 1.6

Chopin 7.1 3.5 1.2
Debussy 0.9 0.8 0.1

Tchaikovsky 1.2 1.0 0.1

second example. These results are consistent with the dis-
cussion in Sec. 3.1.

We also measured the required computation time (Ta-
ble 3). The computation time for each Viterbi update is
constant over time, and the algorithms were run on a lap-
top with moderate computation power. The results con-
firm our expectation that the use of hybrid model for score
following has practical advantages over the autoregressive
HSMM in the computation time and the HMM in the ac-
curacy.

5. CONCLUSION

We explained reasons that the present model of symbolic
music performance based on autoregressive HSMM is more
advantageous for score following than previously studied
HMMs, and we have confirmed this empirically by com-
paring the accuracy of score following and analysing the
matching errors. Because a semi-Markov model can be
seen as a Markov model with an extended state space as
we have explained, we can apply to the present model the
methods for HMMs to improve score following [7, 16]. In
particular, this is important to reduce matching errors oc-
curring after repeats and skips and those due to reordered
notes in the performance, which were the main factors of
remaining errors.

It would be interesting to apply the present model for
music/rhythm transcription and related problems. Because
the model describes both the total duration and the internal
temporal structure of ornaments, it would be possible to
detect ornaments from performances without a score and
integrate the results into music transcription.
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