
HAL Id: hal-01183904
https://hal.inria.fr/hal-01183904

Submitted on 11 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STS-k: A Multilevel Sparse Triangular Solution Scheme
for NUMA Multicores

Humayun Kabir, Joshua Booth, Guillaume Aupy, Anne Benoit, Yves Robert,
Padma Raghavan

To cite this version:
Humayun Kabir, Joshua Booth, Guillaume Aupy, Anne Benoit, Yves Robert, et al.. STS-k: A Mul-
tilevel Sparse Triangular Solution Scheme for NUMA Multicores. [Research Report] RR-8763, Penn
State University; ENS Lyon; INRIA. 2015. �hal-01183904�

https://hal.inria.fr/hal-01183904
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
87

63
--

FR
+E

N
G

RESEARCH
REPORT
N° 8763
August 2015

Project-Team ROMA

STS-k: A Multilevel
Sparse Triangular
Solution Scheme for
NUMA Multicores
Humayun Kabir, Joshua Booth, Guillaume Aupy, Anne Benoit, Yves
Robert, Padma Raghavan

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

STS-k: A Multilevel Sparse Triangular
Solution Scheme for NUMA Multicores

Humayun Kabir∗, Joshua Booth†, Guillaume Aupy‡, Anne
Benoit‡, Yves Robert‡§¶, Padma Raghavan∗

Project-Team ROMA

Research Report n° 8763 — August 2015 — 29 pages

Abstract: We consider techniques to improve the performance of parallel sparse triangular
solution on non-uniform memory architecture multicores by extending earlier coloring and level set
schemes for single-core multiprocessors. We develop STS-k, where k represents a small number of
transformations for latency reduction from increased spatial and temporal locality of data accesses.
We propose a graph model of data reuse to inform the development of STS-k and to prove that
computing an optimal cost schedule is NP-complete. We observe significant speed-ups with STS-
3 on 32-core Intel Westmere-EX and 24-core AMD ‘MagnyCours’ processors. Incremental gains
solely from the 3-level transformations in STS-3 for a fixed ordering, correspond to reductions in
execution times by factors of 1.4 (Intel) and 1.5 (AMD) for level sets and 2 (Intel) and 2.2 (AMD)
for coloring. On average, execution times are reduced by a factor of 6 (Intel) and 4 (AMD) for
STS-3 with coloring compared to a reference implementation using level sets.

Key-words: Linear algebra; distributed computing; NUMA architecture.

∗ Department of Computer Science & Engineering, Pennsylvania State University, USA
† Center for Computer Research, Sandia National Laboratories, USA
‡ LIP, École Normale Supérieure de Lyon, INRIA, France
§ Institut Universitaire de France
¶ University of Tennessee Knoxville, USA

STS-k: Solveur multi-niveaux de systèmes
triangulaires creux pour architectures NUMA

Résumé : Nous montrons comment améliorer les performances des solveurs
parallèles pour les systèmes linéaires triangulaires creux sur des architectures
multi-cœurs, en étendant les techniques coloring et level set utilisées sur des
clusters de processeurs à un seul cœur. Nous présentons STS-k, où le paramètre
k représente le nombre de transformations pour réduire la latence. Nous pro-
posons une modélisation de la ré-utilisation des données, et nous établissons la
NP-complétude du problème d’ordonnancement associé.

Les facteurs d’accélération obtenus avec STS-3 observés sont notables, que
ce soit sur des processeurs Intel Westmere-EX 32-core ou sur des AMD ‘Magny-
Cours’ 24-core. Les temps d’exécution sont réduits en moyenne d’un facteur 6
(intel) et 4 (AMD) pour STS-3 utilisant coloring comparé à une implémentation
de référence qui utilise level-set.

Mots-clés : Algèbre linéaire ; calcul distribué ; architecture NUMA.

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores3

1 Introduction

Sparse triangular solutions are required in many scientific applications, and
particularly when sparse linear systems are solved using a method such as pre-
conditioned conjugate gradient. Parallel implementations of sparse triangular
solution tend to perform poorly for several reasons. The dependencies aris-
ing from the sparsity structure can reduce the number of tasks that can be
computed in parallel. There are often significant overheads related to synchro-
nization after the completion of each set of independent tasks. Furthermore,
higher data access latencies can degrade the efficiency of an implementation
especially on multicores with large core counts and non-uniform memory ar-
chitectures (NUMA). These factors present new opportunities for speeding-up
sparse triangular solution on NUMA multicores [12]. An added benefit is that
any performance gains that can be achieved at a multicore node will also increase
efficiencies when larger problems are solved across multiple multicore nodes of
a high performance computing cluster.

We consider sparse triangular solutions with a lower triangular coefficient
matrix L, i.e., solving for x in the system L×x = b. We provide a new multilevel
method that we call STS-k, where k is a small integer that reflects the number
of transformations. These transformations lead to k-levels of sub-structuring of
the data with large independent sets or packs of tasks that reuse components
of the solution vector. These packs can be scheduled on a NUMA multicore
to promote reuse through temporal locality for enhanced levels of performance
from reduced latencies of data accesses.

The remainder of this paper is organized as follows. Section 2 contains a
brief overview of parallel sparse triangular solution and prior related research.
Section 3 contains our main contributions. These include a Data Affinity and
Reuse (DAR) task graph model to study the complexity of optimal scheduling
schemes, to prove that computing the schedule of minimum time is NP-complete,
and to formulate heuristics that inform the development of STS-k. Section 4
concerns an in-depth empirical evaluation of STS-k, with k=3 on 1-32 cores of
an Intel Westmere-EX processor and on 1-24 cores of an AMD ‘MagnyCours’
processor. Section 5 contains concluding remarks including directions for future
research.

2 Background and Related Work

In this section, we provide a brief overview of sparse triangular solution and
review of related work.
Sparse Triangular Solution. Sparse triangular solution concerns a linear
system of equations of the form L× x = b, where L is a sparse lower triangular
matrix and b a vector. Components of the solution vector x are computed using
elements of L and b. Observe that if the matrix L were dense, then triangular
solution would be inherently sequential in that the solution for component xi
would depend on all previous components, i.e., x1, x2, . . . , xi−1, and hence the

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores4

components have to be computed in order from the first to the last one. The
sparsity of L, i.e., the presence of zeroes, removes this constraint although there
will be dependencies among groups of the solution vector components. These
dependencies need to be managed for effective parallelization and to promote
data reuse to reduce latencies of data accesses on NUMA multicores.
Related Research. There are two alternative techniques, one based on color-
ing and the other on level sets, to compute orderings that expose parallelism in
sparse triangular solution.

The earliest scheme, based on graph coloring, was proposed by Schreiber and
Tang [9] in the eighties to extract parallelism in sparse triangular solution for
efficient implementations on multiprocessors. Consider the graph of the matrix
A = L+ LT , G = (V,E) where each row/column in A corresponds to a vertex
in G and an edge exists between vertex i and j if and only if Aij 6= 0. Now G is
colored, followed by a reordering of the matrix L in which rows/columns in each
color are numbered contiguously, in some order of the colors. This method is
very effective in identifying large independent sets of tasks that can be processed
in parallel to calculate corresponding components of the solution vector.

In the nineties, a level set reordering was proposed by Saltz [8] as a scheme to
enable parallel sparse triangular solution on multiprocessors. In this approach,
a variant of breadth-first search is performed on the graph of A = L + LT to
identify a succession of vector solution components that can be computed con-
currently. Each level identified in the search corresponds to a set of calculations
that can be performed in parallel after the previous levels have been completed.

A parallel step in sparse triangular solution corresponds to solving unknowns
within the same color or same level, concurrently. These parallel steps must be
performed one after the other because they depend on unknowns that were
computed in a preceding step, i.e., at a preceding color or level. Consequently,
their total number, which is equal to the number of colors or levels, and the
average number of solution components per step provide a measure of available
parallelism. The total number of these steps is also a measure of the overheads
of synchronization that must occur within an implementation of parallel sparse
triangular solution.

More recently, Naumov [6] developed a sparse triangular solution scheme for
Nvidia GPUs using the level set ordering to extract parallelism. We utilized
the fact that graph coloring is very effective in extracting large independent
sets of calculations to develop an alternate scheme for sparse triangular solution
on GPUs [11]. This scheme resulted in very large factors of performance gains
relative to the Nvidia implementation based on level set ordering [6].

Wolf et al. [12] considered several factors influencing the performance of
sparse triangular solution on multicores to conclude that the overheads of syn-
chronization between parallel steps have the greatest effect on the performance
of sparse triangular solution. Earlier, we had proposed a multilevel compressed
sparse row sub-structuring (CSR-k) as an alternative to the traditional com-
pressed sparse row format for sparse matrix calculations on NUMA multi-
cores [4]. This sub-structuring of the sparse matrix seeks to mimic the mul-
tiple levels of caches present in NUMA multicores to increase locality of data

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores5

accesses. Our evaluation for parallel sparse matrix vector multiplication indi-
cated significant performance benefits largely as a consequence of higher cache
hit rates and an effective reduction in data access latencies.

In this paper, we adapt CSR-k, coloring and level-set approaches and develop
a scheduling framework for efficient parallel sparse triangular solution on NUMA
multicores.

l11# l13# l19#

l22# l24# l29#

l31# l33# l36#

l42# l44# l46# l47#

l55# l57# l58#

l63# l64# l66# l67#

l74# l75# l76# l77# l78#

l85# l87# l88# l89#

l91# l92# l98# l99#

x6#

G1#=#G(A)#
A#=#L#+#L’#

x9#

x8#

x5#

x7#

x4#

x2#

x1#

x3#

6,7#

9#

1,3#

2,4#

5,8#

G2#

Figure 1: A = L + LT (left) and its graph G1 (middle) transformed into G2

(right) with super-rows through coarsening. A vertex of G2 is formed by col-
lapsing two connected vertices of G1.

3 STS-k: A Multilevel Sparse
Triangular Solution Scheme
for NUMA Multicores

In this section, we develop STS-k, a multilevel scheme for sparse triangular
solution to achieve high performance on NUMA multicores. The key idea is to
restructure the traditional scheme to exploit the memory hierarchy of NUMA
multicores that affect data access latencies.

We develop STS-k as a specific composition of key techniques. We first con-
sider techniques to increase: (i) spatial locality of memory accesses by grouping
rows into super-rows; and (ii) the size of independent sets of super-rows that can
be processed in parallel. Next, we develop a NUMA-aware task graph model
of calculations in an independent set, or pack, and specify a scheduling prob-
lem, which we show to be NP-complete. Then, we present a special case of
the scheduling problem and its heuristic solution. These results inform a fur-
ther level of sub-structuring to promote data reuse through temporal locality
of shared solution components among tasks in a pack to yield STS-k. We ex-
pect that STS-k will permit high levels of parallelism and spatial and temporal
locality of data accesses to significantly speed-up sparse triangular solution on
NUMA multicores.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores6

3.1 Super-rows for Increasing Spatial Locality in Data Ac-
cesses

In our previous work [4], we introduced CSR-k, a multi-level compressed sparse
row format for efficient sparse matrix-vector multiplication, SpMV, on multi-
core processors. In this scheme, k is an integer greater than 1 that represents
the number of well-differentiated levels in the memory hierarchy of a multicore
processor and it is used to repeatedly (k − 1 times) group rows of the matrix
into a format that increased the spatial locality of access during SpMV. We
now adapt CSR-k to improve spatial locality in accesses to L and x in sparse
triangular solution.

CSR-k uses the graph form of a symmetric sparse matrix; in sparse tri-
angular solution we have only a sparse lower triangular matrix L but we can
construct an equivalent symmetric matrix A = L + LT and consider its undi-
rected graph G1 (see Figure 1 for an example). Consider a number of rows
of A that have in common one or more columns with nonzeroes in them, or
equivalently, their vertex counterparts in G1 that are connected by many edges.
The latter can be agglomerated to form a super-vertex with the corresponding
rows in A forming a super-row. This agglomeration can be formalized using
graph coarsening or grouping together continuous rows of A, if it is ordered us-
ing band-reducing ordering, such as reverse Cuthill-McKee [1] (more details can
be found in [4]). The coarsened graph corresponding to this grouping, whose
vertices now represent super-rows, is denoted by G2. For example, in Figure 1,
each super-row consists of two rows of A that share nonzeroes in a column. In
CSR-k this process is repeated k − 1 times to get super-rows, super-super-rows
and so on. Further, coarsening is performed in such a way to seek super-rows
with equal numbers of nonzeroes to enable equal work tasks.

When CSR-k is developed for performing parallel SpMV, observe that there
are no dependencies among tasks that operate on super-rows. Instead, there are
opportunities to exploit spatial locality in accessing the matrix, the vector and
potentially promoting reuse in the vector [4]. Consequently, k could be selected
and combined with certain data reordering and restructuring techniques purely
to promote locality at various levels of the NUMA cache hierarchy [4]. However,
parallelism in sparse triangular solution is markedly more limited and complex.
Consequently, we recommend keeping k to a very small value of 1 or 2 to increase
spatial locality to a certain extent while retaining a large fraction of the fine-
grained connectivity structure to extract parallelism before additional locality
enhancing techniques are applied.

3.2 Identifying Large Packs or Sets of Independent Super-
rows for Parallel Processing

Traditionally, methods such as level-set [6, 8] and coloring [9, 11] have been ap-
plied to G1, the graph of A1 = L+ LT to identify independent sets of solution
vector components so that the associated tasks can be performed in parallel.
The number and sizes of such independent sets matter with larger and fewer

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores7

sets being more desirable. This is because larger sets represent a greater degree
of available parallelism. Further, there are dependencies between these indepen-
dent sets in that they have to be computed one after the other in order to ensure
that components computed in earlier sets are available for use in later sets; a
smaller number of sets leads to fewer synchronization points during sparse tri-
angular solution. As discussed in Section 2, coloring is generally superior to
level-set in regard to these factors.

To identify independent set of super-rows and the subsets of their solution
vector components that can be computed in parallel, either level-set or coloring
can be applied to G2. We expect that coloring will be more effective than
level-set in producing fewer and larger independent sets or packs. Further, we
expect that level-set may actually do better when applied to G2 as opposed to
G1 because G2 has fewer vertices leading to a fewer levels in level-set and thus
fewer independent sets representing larger amounts of parallel work. To further
accentuate this effect, we propose that level-set be applied starting with a vertex
of largest degree. Assume that some n3 packs are obtained and that they are
denoted by Pk, k ∈ 1, . . . , n3. Typically, tasks related to solving for unknowns
in Pk will depend on solution components from all previous packs P1, . . . , Pk−1.
To increase the level of reuse of solution components from earlier independent
sets, we propose ordering the independent sets in increasing order of their sizes,
i.e., find a permutation π such that |Pπ(1)| ≤ |Pπ(2)| ≤ · · · ≤ |Pπ(n3)|. Figure 2
shows G2 from the earlier example organized into independent sets or packs
after coloring.

l11# l13# l19#

l22# l24# l29#

l31# l33# l36#

l42# l44# l46# l47#

l55# l57# l58#

l63# l64# l66# l67#

l74# l75# l76# l77# l78#

l85# l87# l88# l89#

l91# l92# l98# l99#

x6#

G1#=#G(A)#
A#=#L#+#L’#

x9#

x8#

x5#

x7#

x4#

x2#

x1#

x3#

6,7#

9#

1,3#

2,4#

5,8#

G2#

Figure 2: Independent sets or packs of rows obtained after coloring of G1 (left)
and packs of super-rows after coloring of G2 of the example shown earlier in
Figure 1. Observe the differences including 3 colors for G1 versus 2 in G2.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores8

3.3 NUMA-aware Scheduling of Packs for Utilizing Tem-
poral Locality of Data Accesses

Once packs and their ordering have been determined, their constituent tasks can
be processed in order from pack P1 through to Pn3

. We now consider scheduling
tasks in a pack in order to utilize the sharing of specific solution components
from a previous pack among tasks in the current pack.

Without loss of generality, assume that a task corresponds to a super-row
and its associated solution components. Such a task would require arithmetic
operations proportional to the number of nonzeroes in the associated super-row.
By construction, each super-row was selected to have approximately the same
number of non-zeroes and so the number of arithmetic operations per task could
be assumed to be equal and of a certain value e. However, actual execution times
would depend on the cost of data accesses. One way to reduce latencies is by
promoting reuse of solution components from proximal caches in the NUMA
sense. We now seek to formalize these costs so we may study how tasks within
a pack may be scheduled in a NUMA-aware manner.

We formulate a data affinity and reuse, i.e., a DAR graph of pack k, DAR(k) =
(Vk, Ek), where Vk = {tm ∈ Pk}, the set of tasks in Pk. We denote the unknowns
in a task tl by xl and the set of unknowns on which the solution of xl depends
upon is denoted by DXl. Now, there is an edge between tasks tl and tm, i.e.,
(tl, tm) ∈ Ek, if DXl ∩DXm 6= ∅.

A DAR of a pack is shown in Figure 3. We want a schedule of the tasks in a
pack, i.e., tasks to cores mapping is sought in order to balance the load across
cores and to minimize data access costs based on a latency model that concern
NUMA-distances between cores. First, we show that this scheduling problem
is NP-complete even on a Uniform Memory Access (UMA) architecture. After
that we propose a heuristic algorithm for this assignment problem which is
useful for a particular kind of DAR.

6, 7

9

1, 3

2, 4

5, 8

Pack 2Pack 1

1, 3

2, 4 5, 8

Figure 3: The construction of packs (left) and data affinity and reuse (DAR)
graph of tasks of the second pack of G2 (right) based on the example shown in
Figure 2. Each task corresponds to a super-row and two tasks are connected if
they need elements of x computed in the first pack.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores9

To assess the complexity, we start by simplifying the cache-model of the
processor as much as possible while retaining the combinatorial nature of the
problem. It turns out that we can consider a single level of cache with unlimited
capacity. Roughly speaking, this would be similar to only considering the (very
large) L3 cache.

Definition 1 (One-level platform). We suppose that we have q processors that
share a storage location of infinite volume (called memory). There are q caches
C1, . . . , Cq such that:

• Processor j can only read data stored in cache Cj at a cost r.

• The cost to copy some unit of data from memory to any cache is w.

• Each cache has an infinite volume.

Definition 2 (In-Pack). In-pack affinity-aware assignment problem:
We have a set of tasks (t1, . . . , tn) that we want to schedule on q processors.
We assume that the tasks have equal execution time e. Let Ii be the set of data
inputs necessary for the execution of ti. The In-Pack problem is to schedule
the n tasks on q processors while minimizing execution time.

In order to schedule the n tasks on the q processors, we need to partition
the tasks onto these processors. Let π be a schedule: task ti is mapped onto
processor π(ti). For 1 ≤ j ≤ q, let Vj = {i | π(ti) = j} denote the indices of
tasks mapped onto processor j. The execution time of processor j is the sum
of:

• the cost of transferring required data inputs to its cache:

w · | ∪i∈Vj
Ii|;

• the time to execute the tasks:

e · |Vj |;

• the time to perform the required number of reads:

r ·
∑
i∈Vj

|Ii|.

Note that we have the sum of the cardinals
∑
|Ii| rather than the cardinal

of their union |
⋃
Ii| (as for the copy from memory to cache), because the

input of the ALU buffers must be reloaded for each task.

Finally, the execution time of a schedule is:

max
1≤j≤q

w · ∣∣∣ ⋃
i∈Vj

Ii

∣∣∣+ e · |Vj |+ r ·
∑
i∈Vj

|Ii|

 . (1)

The decision problem associated to In-Pack is to determine whether their exists
a schedule of given length K.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores10

Theorem 1. The In-Pack problem is NP-complete even when r = e = 0, i.e.,
when accounting only for memory to cache transfers.

Proof. The In-Pack problem clearly belongs to NP. To show the completeness,
we use a reduction from 3-Partition. Consider an arbitrary instance I1 of
3-Partition: given an integer B and 3n integers a1, . . . , a3n (for all i, B

4 <

ai <
B
2), can we partition the 3n integers into n triplets, each of sum B? We

can assume that
∑3n
i=1 ai = nB, otherwise I1 has no solution. The 3-Partition

problem is NP-hard in the strong sense [3], which implies that we can encode
all integers (a1, . . . , a3n, B) in unary.

We build the following instance I2 of In-Pack:
• There are q = n processors;

• There are Bn tasks (t1, . . . , tBn);

• There are Bn data inputs X = (x1, . . . , xBn);

• The dependence graph has 3n connected components (intuitively, one for
each ai). Each task in a connected component has two data inputs, as

shown in Figure 4. Formally, let Ai =
∑i−1
i=1 ai, then for j ∈ {1, . . . , ai},

the inputs of task tAi+j are

IAi+j = {xAi+j , xAi+(j mod ai)+1}.

• Finally, we take r = 0 and e = 0 and ask whether there exists a schedule
of execution time at most K = wB.

Clearly, I2 has a size polynomial in the size of I1 when I1 is written in
unary. With r = e = 0, minimizing the execution time becomes the problem of
minimizing:

max
1≤j≤q

∣∣∣ ⋃
i∈Vj

Ii

∣∣∣. (2)

In the following, we let Ti = {tAi+1, . . . , tAi+ai} be the set of the ai tasks in
the connected component corresponding to ai. By construction,⋃

tj∈Ti

Ij = {xAi+1, . . . , xAi+ai}. (3)

Furthermore, let i 6= i′, then ⋃
tj∈Ti

Ij

⋂ ⋃
tj∈Ti′

Ij

 = ∅. (4)

We now prove that I1 has a solution if and only if I2 does. Assume first that
I1 has a solution. For each triplet of the n triplets (ai, aj , ak) of I1, we schedule
Ti, Tj and Tk on a single processor. According to Equations (3) and (4), then
the number of data inputs to copy on the cache on this processor is then equal

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores11

xAi+1

xAi+2

xAi+3

xAi+4

· · ·

· · ·

xAi+ai

tAi+1

tAi+2

tAi+3

tAi+4

· · ·

· · ·

tAi+ai

tAi+1

tAi+2

tAi+3

tAi+4

· · ·

· · ·

tAi+n

Figure 4: Input dependencies for the tasks (left) and its DAR graph (right).
There are 3n such connected components.

to ai + aj + ak = B. Hence this schedule has an execution time of wB. Hence
a solution to I2.

Assume now that I2 has a solution. Since the execution time is wB, there
are at most B data input copied on each cache. Furthermore, because we have
to copy all data input at least once, there are exactly B data input copied on
each cache. Finally, no data input is copied on two different caches, otherwise we
would copy at least nB+ 1 data inputs, which would make at best an execution
time of wnB+1

n .
Let us now show that for each set of tasks Ti, all the tasks of Ti are scheduled

on the same processor. By contradiction, assume that there exists j < j′ such
that tAi+j , tAi+j′ ∈ Ti, and π(tAi+j) 6= π(tAi+j′). Then we have two successive
tasks between tAi+j and tAi+j′ that are not mapped onto the same processor.
Formally, there exists jmin > j such that

π(tAi+j) = π(tAi+jmin−1
) 6= π(tAi+jmin

) = π(tAi+j′).

Then xAi+jmin−1
is an input common to both tasks tAi+jmin−1

and tAi+jmin
,

hence it has to be copied on both processors π(tAi+j) and π(tAi+j′), which
contradicts the fact that each input is copied at most once.

This shows that each connected component of the task graph is mapped
onto a single processor. Now each processor has execution time at most wB,
hence it can be assigned at most three such connected components, because of
the condition B

4 < ai <
B
2 for all i. Finally, since the total number of writes is

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores12

x1

x2

x3

x4

· · ·
xn
xn+1

t1

t2

t3

· · ·
· · ·
tn

Pack
t1

t2

t3

· · ·

tn

Figure 5: The dependency graph for a pack where ti only shares input with ti−1
and ti+1 (left), and its DAR graph (right).

nB, each processor has execution time exactly wB, and this gives a solution to
I1.

A heuristic algorithm for the In-Pack problem.
Fortunately, some task graphs are easier to schedule. Consider the task

graph represented in Figure 5, where we have a long suite of tasks in a pack
each with two inputs. We discuss in the next subsection when this structure
arises in sparse triangular solution. In the In-Pack task graph on the right
of the figure, there is an edge between ti and ti+1 if they reuse data to solve
for the unknowns in these tasks. This reuse is due to temporal locality of x
during concurrent execution of the tasks. Note that this graph corresponds to
one connected component in Figure 4 but without the backward edge (and n
tasks instead of ai). We will use this simple task graph in Section 4. Simply
assume that n is a multiple of q, n = mq. Then the static scheduling algorithm
that assigns blocks of m tasks to processors is optimal: it has an execution time
w · (m+ 1) + e ·m+ r · (2m), and each of these terms is optimal. However, the
model does not account for variability across processor speeds, a phenomenon
to be expected in practice, and we transform the stator algorithm above into a
dynamic heuristic as follows: To complete the tasks at the earliest, assign the
available processors c1, c2, . . . , cq to the tasks t1, t2, . . . , tq. At some point the
tasks t1, t2, . . . , tk would be completed. Assign the next task tk+1 to processor cj
if it is free. This assignment ensures sharing of x in L3 between tasks tk and
tk+1.

Other scheduling techniques to enhance temporal locality could be envi-
sioned, and we leave them for future work. In Section 4, we perform an experi-
mental evaluation of the STS-k algorithm.

3.4 STS-k: A k-level Sub-structuring of Sparse L × x = b
for Spatial and Temporal Locality of Data Accesses

We now propose a heuristic STS-k, that is informed by the algorithm to utilize
temporal locality in the In-Pack assignment problem when its DAR is a line as
shown in Figure 5. STS-k involves a further restructuring of super-rows in a
pack so that its DAR will contain the line graph form.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores13

Starting with the ordering across independent sets proposed earlier, namely
a permutation π in increasing order of pack size, consider a specific Pk and its
DAR(k). Let Lkxk = bk−L∗jx∗j correspond to the calculations across all tasks
in Pk. The xk are calculated using Lk and bk after previously computed com-
ponents x∗j and their corresponding elements in L, namely L∗j , are removed.

Observe that DAR(k) does not correspond to the graph of Ak = Lk + Lk
T

.

Instead it corresponds to the graph G(Âk) where Âkil 6= 0 if and only if L̂ij 6= 0

and L̂lj 6= 0, j < i, l , i.e., two rows share a solution component xj from a previ-

ous pack corresponding to elements in L∗j . The matrix Âk need not be formed

at all. However, observe that if Â were to be tri-diagonal then G(Âk) would

indeed be a line graph. Similarly, if Âk could be put in a sparse band-reduced

form, then its corresponding G(Âk) would contain a line graph. We therefore

reorder DAR(k), and hence G(Âk) using Reverse Cuthill-McKee [1]. Following
that, we permute Lk according to this ordering. Other bandwidth reducing or-

dering schemes can also be used to reorder Âk, we consider them in our future
work.

The ordering across and within packs of the super-rows and their constituent
rows, gives a 3-level sub-structure that we denote as LSTS−k∗xSTS−k = bSTS−k.
For a small sparse matrix from a fluid dynamics application L is shown with
coloring (9 colors), and restructured L with STS-3 (4 colors) in Figure 6. Con-
sider the last pack in each case; observe how the off-diagonal parts of our STS-k
formulation are structured whereas these areas are disordered for the traditional
scheme. These substructures in STS-k reflect the line graph form that is present
in the reuse of solution components from previous packs.

The 3-level structure in STS-k maps very simply to the traditional com-
pressed sparse row representation of sparse triangular solution formulation as
shown in Algorithm 1 by using two additional sets of indices. An array index3
of size n3, the number of packs, points to the first super-row of each pack. Simi-
larly, index2 array indicates the first row of each super-row. These two arrays in
addition to the traditional compressed sparse row format arrays, namely index1,
subscript1, and valueL complete the 3-level representation. Observe that the
storage format is similar to what was developed earlier for parallel sparse matrix
vector multiplication [4]. However, it differs in how it was specifically derived to
expose parallelism and locality of data accesses for sparse triangular solution.
These attributes derive in part from the original sparsity structure of L and
additionally from the effect of orderings across and within packs for spatial and
temporal locality.

Thus far we have developed STS-k for k=3. However, depending on how
many distinct levels there may be in a given NUMA multicore, additional group-
ings of super-rows into tasks could be considered for exposing locality in ways
that could be potentially utilized for higher levels of sharing in the memory
subsystem.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores14

Algorithm 1 STS-k with k=3 for sparse L×x = b; the packs form the highest
level of agglomeration at k = 3, followed by super-rows k = 2, and rows in
the traditional compressed sparse row format k = 1, for a natural OpenMP
implementation.
1: INPUT: index3, index2
2: INPUT: index1, subscript1, valueL, x, b
3: for i3 = 1 to n3 do
4: #pragma omp parallel for schedule(runtime, chunk)
5: for i2 = index3[i3] to index3[i3 + 1]− 1 do
6: for i1 = index2[i2] to index2[i2 + 1]− 1 do
7: temp val = 0
8: for j = index1[i1] to index1[i1 + 1]− 2 do
9: temp val+ = valueL[j] ∗ x[subscript1[j]]

10: end for
11: x[i1] = (b[i1]− temp val)/valL[index1[i1 + 1]− 1]
12: end for
13: end for
14: end for

4 Experimental Results

In this section, we empirically evaluate the performance of STS-3 including
comparisons with reference implementations with either level-set or coloring
orderings. After a brief description of our evaluation approach, we consider the
following. We first seek to characterize the levels of parallelism that are exposed
when coloring or level-set orderings are applied to either the original matrix or
its CSR-2 representation in STS-k. Next, we consider the incremental impact on
performance solely from the k-level sub-structuring in STS-k for either ordering
schemes. Finally, we consider how effective STS-k is in speeding-up the largest
pack by increasing the locality of data accesses for its tasks.

4.1 Test Environment and Approach

Matrix Test Suite. Our test suite consists of the lower triangular parts of 12
sparse symmetric matrices selected from the University of Florida Sparse Matrix
Collection [2]. These are listed in Table 1 with the number of rows n ranging
from 0.9 to 50.9 million, non-zeros (nnz) in the range 31.0 to 225.4 million and
row densities (nnz/n) in the range 3.1 to 44.63.
Multicore Architectures. We perform tests on an Intel and on an AMD multicore
node. The Intel node contains 4 Intel Xeon E7-8837 chips each containing 8 cores
connected via QPI (Westmere-EX microarchitecture). The memory hierarchy
of the system consists of L1, L2, L3 cache and 512 GB of DRAM. Each core has
private 64 KB L1 and 256 KB L2 caches with access latencies of 4 and 10 cycles
respectively [5]. The 24 MB L3 cache is shared among all 8 cores and it shows
NUMA effects with latencies that can vary from 38 to 170 cycles depending on
location. Furthermore, the memory access latencies are 175-290 cycles [5]. We

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores15

Matrix n nnz nnz/n
G1: ldoor 952,203 42,493,817 44.63
D1: rgg n 2 21 s0 2,097,152 31,073,142 14.82
S1: nlpkkt160 8,345,600 225,422,112 27.01
D2: delaunay n23 8,388,608 58,720,176 7.00
D3: road central 14,081,816 47,948,642 3.41
D4: hugetrace-00020 16,002,413 64,000,039 4.00
D5: delaunay n24 16,777,216 117,440,418 7.00
D6: hugebubbles-00000 18,318,143 73,258,305 4.00
D7: hugebubbles-00010 19,458,087 77,817,615 4.00
D8: hugebubbles-00020 21,198,119 84,778,477 4.00
D9: road usa 23,947,347 81,655,971 3.41
D10: europe osm 50,912,018 159,021,338 3.12

Table 1: Test suite of matrices with dimension n, the number of non-zeroes nnz,
and the average row densities nnz/n.

denote this node by Intel in the rest of the paper.
The AMD node consists of 2 twelve-core AMD ‘MagnyCours’ processors [7].

The memory subsystem of this processor has L1, L2, L3 cache and 64 GB of
DRAM. Each core has private 64 KB L1 and 512 KB L2 cache and a 6 MB L3
cache is shared among 6 cores. This processor is denoted by AMD in the rest
of the paper.

The value of k in STS-k is determined as follows. One value of k is reserved
for set of independent tasks, i.e., at the pack level. The value of k-1 depends
on a particular architecture and the number of distinct levels of caches with
well-differentiated latencies from NUMA effects. In our test systems, L1 and L2
are private with relatively low latencies while L3 is shared with a large variation
in latencies, leading to k-1=2, with third value indicating pack level grouping.
So we choose k = 3 and evaluate the performance of STS-3 on both Intel and
AMD processors. In practice, the sensitivity of performance to the value of k
could be tested by trying +/-1 values. Additionally, to correspond to bigger
L2 cache on AMD, super-rows are consisted of 320 rows of G1 while super-rows
have 80 rows of G1 on Intel.
Sparse Triangular Solution Schemes. We consider sparse triangular solution
using the compressed sparse row format (CSR) with either level-set or coloring
orderings as the reference schemes for comparisons. These are labeled as CSR-LS
and CSR-COL in the remainder of this paper. Our STS-k formulation with k =
3 and coloring is denoted by STS-3 or equivalently CSR-3-COL. Its alternative
formulation with level-set ordering is indicated as CSR-3-LS.

The reference implementations, namely CSR-LS and CSR-COL, tend to be
far more sensitive to the initial ordering of the matrix than STS-k. They
typically perform best when the matrix is presented in the Reverse Cuthill-
McKee [1], i.e., RCM, ordering. We therefore use the RCM ordered matrix as
the input to all schemes including STS-k. Furthermore, for all schemes, fol-

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores16

lowing the application of either level-set or coloring, the packs are arranged in
increasing order of their sizes and the rows within packs are renumbered con-
tiguously. Level-set orderings are constructed starting with a vertex of largest
degree, because we have observed this leads to fewer and larger packs. Con-
sequently, they provide near best case instances for comparisons with coloring
in regard to effectiveness in extracting parallelism. Colorings were obtained us-
ing the Boost library [10]. These steps ensure that differences between the two
pairs, CSR-3-LS and CSR-LS, and CSR-3-COL (or STS-3) and CSR-COL, are
removed except when that are by design.

All methods were compiled using Intel’s icc 15.0.0 (Intel) and 15.0.1 (AMD)
with -O3 optimization. We use Intel’s OpenMP 4.0 with thread affinity set via
KMP AFFINITY = compact, and with KMP LIBRARY = throughput. Tests
with CSR-COL and CSR-LS used scheduling with
OMP SCHEDULE = dynamic, 32 because they resulted in the best perfor-
mance. For similar reasons, tests with STS-3 (CSR-3-COL) and CSR-3-LS
used OMP SCHEDULE = guided, 1. We consider execution time in seconds
measured as the average of 10 sparse triangular solution repeats. Overheads
of pre-processing for all schemes are ignored. This is an accepted approach
because such systems are solved for large sequences of right-hand side vectors
within an application with the pre-processing costs getting amortized over all
these repetitions.

4.2 Effectiveness Level-Set and Coloring Orderings in Ex-
tracting Parallelism

We would like to consider how effective level-set and coloring orderings are in
regard to exposing parallelism. Figure 7 shows how the four methods cluster
over all 12 matrices along two key dimensions, namely the number of packs
and the number of solution components that are calculated on average per
pack. The clustering indicates that coloring is significantly more effective than
level-set at exposing parallelism; the number of packs using level-set are larger
while their sizes are larger using coloring, both by several orders of magnitude
(note log scale). Furthermore, applying CSR-3, as we propose for the STS-3
formulation, causes small decreases in the number of packs with slight increases
in their sizes. This is evident from the positioning of the cluster centroids for
CSR-3-COL (STS-3) and CSR-3-LS slightly below and to the left of those for
CSR-COL and CSR-LS respectively.

The total work in sparse triangular solution is proportional to the number
of nonzeroes, where work is a fused multiple-add instruction. The percentage
of this total work contained in a few of the largest packs is another measure
of the degree of parallelism. This measure is particularly important because
it reflects how latencies could be masked by parallelism subject to bandwidth
constraints (Little’s Law). Additionally, when the total work is scattered across
many packs, synchronization costs between packs can be substantial, degrading
performance. The percentage of parallel work in the 5 largest packs is shown in
Figure 8 further substantiating coloring to be the ordering of choice.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores17

The measures of parallelism that we have reported thus far in Figures 7
and 8, are independent of the multicore architecture. Although they predict a
sizable gap in performance between schemes that use level-set versus coloring,
hardware and OpenMP attributes will likely modify the actual gaps that will
be presented in terms of execution times. We consider this aspect next.

Let T (mat,method, q) indicate the execution time for a matrix mat, with
q cores, and method as one of STS-3, CSR-3-LS, CSR-LS and CSR-COL. To
compare across both coloring and level-set orderings, we use CSR-LS as the
reference method relative to which we report performance measures. We define
parallel speedup for a specific method and matrix mat on q cores as:

T (mat,CSR-LS, 1)

T (mat,method, q)
.

The parallel speedup factors are shown in Figure 9 for 16 cores on Intel and 12
cores on AMD processors; geometric means are shown as horizontal lines. Key
observations include the following:

• STS-k or equivalently CSR-3-COL is readily the best with a factor 6 (Intel)
and 4 (AMD) improvement relative to the reference CSR-LS implemen-
tation. CSR-COL which also uses coloring is next in rank for Intel and
CSR-3-LS is next in rank for AMD. However, there is a big gap in per-
formance of CSR-3-COL and CSR-COL which is not apparent from the
data in Figures 7 and 8. The fact that STS-k outperforms CSR-COL
significantly is largely a consequence of the k-level subs-structuring and
its effect in decreasing data access latencies.

• Interestingly, despite the very large gap in the levels of parallelism between
CSR-COL and CSR-3-LS as shown in Figures 7 and 8, their parallel speed-
up values are very close, with mean values of approximately 2.85 (Intel)
and 1.8 (AMD) relative to the reference CSR-LS implementation. This
is largely a result of the effect of the k-level sub-structuring that we have
proposed which reduces the latencies of data access times.

4.3 Performance: Evaluating Incremental Impacts from
k-Level Sub-Structuring

We now seek to evaluate the incremental impacts on parallel performance solely
from the k-level sub-structuring in STS-k. We focus on the performance of
CSR-3-COL relative to CSR-COL and CSR-3-LS relative to CSR-LS. We define
relative speedup for coloring orderings as:

relative speedup(coloring) =
T (mat,CSR-COL, q)

T (mat,STS-3, q)
,

note that STS-3 is equivalent to CSR-3-COL.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores18

The relative speedup for level-set orderings is defined as:

relative speedup(level-set) =
T (mat,CSR-LS, q)

T (mat,CSR-3-LS, q)
.

A value greater than 1 of relative speedup indicates the factor by which the
k-level scheme outperforms the reference method. Figure 10 indicates that our
k-level sub-structuring is indeed beneficial on 16 cores of Intel with a factor of
2.2 and on 12 cores of AMD with a factor of 2.19 improvement on average over
all matrices when applied with coloring. Similarly, Figure 11 shows that our
k-level sub-structuring is beneficial with level-set ordering, with a factor of 1.4
and 1.5 improvement on average on Intel and AMD respectively.

We next consider the relative speedup measured using the total time over
all the matrices in the test suite. We denote the sum of execution time over
all matrices for a method on q core as T (∗,method, q), where q ranging from
1-32 on Intel and 1-24 on AMD. Using total execution time, relative speedup for
coloring is defined as:

T (∗,CSR-COL, q)

T (∗,STS-3, q)
,

and relative speedup for level-set ordering is defined as:

T (∗,CSR-LS, q)

T (∗,CSR-3-LS, q)
.

Figures 12 and 13 show the factors by which our k-level structuring scheme
outperforms the reference methods on all the core counts and over the whole
test suite. We observe that k-level structuring outperforms by a factor of 2 with
coloring and a factor of 1.4 for level-set on 8 − 32 cores of Intel. The k-level
structuring also outperforms by a factor of 2.2 with coloring and 1.5 with level-
set on 6− 24 cores of AMD. These results show that our k-level sub-structuring
is indeed very effective and can reduce execution times by one-third to one-half.

4.4 Effects of Enhanced Levels of Locality on Execution
Times of Largest Pack with Coloring

Our findings thus far confirm the superiority of coloring over level-set orderings
and demonstrate substantial performance gains from the k-level sub-structuring.
In particular, we would like to assess to what extent the latter contribute towards
enhanced levels of spatial and temporal locality in processing a pack. To measure
this we will need to remove other factors such as synchronization costs between
packs that can be significant as observed by Wolf et. al [12]. Additionally,
we need to account for the fact that there is not a one-to-one correspondence
between packs for a given matrix with CSR-COL and CSR-3-COL.

Let t(method, q) denote the execution time for the largest pack P∗ for a given
method on q cores scaled by its number of unknowns (solution components). We
define the parallel speedup per unknown as the ratio:

t(CSR-COL, q)

t(STS-3, q)
.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores19

The parallel speedup per unknown on 16 cores of Intel and 12 cores of AMD
is shown in Figure 14. Observe that on average, this measure is high at 1.75
on Intel and 2.12 on AMD across all the matrices in the test suite. Thus the
performance gain of STS-k is due to our STS-k formulation.

5 Conclusions

We have developed a multilevel sub-structured formulation of sparse triangular
solution to increase locality of data accesses and thus reduce effective access
latencies in NUMA multicores. Our data affinity and reuse graph model of
the underlying computations informs how packs of independent tasks may be
scheduled for enhanced levels of reuse from temporal locality of accesses. The
observed performance gains are both promising and significant.

We plan to consider more complex NUMA systems where STS-k with values
of k greater than 3 may be appropriate. Such formulations could potentially be
obtained through further groupings of super-rows based on dependencies before
coloring orderings are applied or after they are applied to define tasks in terms
of collections of super-rows.

We expect to study the problem of NUMA-aware schedules when data affin-
ity and reuse graphs are constructed to span more than one pack. While optimal
versions will likely be NP-complete, heuristic approaches and special cases of
graphs can inform alternate sub-structuring schemes that could reduce synchro-
nization overheads and increase locality.

Current trends in microprocessor architecture indicate increasing core counts
with complex NUMA hierarchies. These NUMA effects are expected to become
more pronounced when network-on-chip (NoC) architectures are considered. In
this context, we see potential for further performance benefits through schemes
for parallel sparse computations such as the ones we have developed, with mul-
tiple levels of sub-structuring for enhancing locality of accesses and the explicit
consideration of data reuse for the scheduling of tasks.

References

[1] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In Proceedings of the 1969 24th national conference, ACM ’69,
pages 157–172, New York, NY, USA, 1969. ACM.

[2] T. A. Davis. University of Florida Sparse Matrix Collection. NA Digest,
92, 1994.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to
the Theory of NP-Completeness. W.H. Freeman and Co, 1979.

[4] H. Kabir, J. Booth, and P. Raghavan. A multilevel compressed sparse row
format for efficient sparse computations on multicore processors. In High

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores20

Performance Computing (HiPC), 2014 21st International Conference on,
pages 1–10, Dec 2014.

[5] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. Memory Perfor-
mance and Cache Coherency Effects on an Intel Nehalem Multiprocessor
System. In Proceedings of the 2009 18th International Conference on Par-
allel Architectures and Compilation Techniques, PACT ’09, pages 261–270,
Washington, DC, USA, 2009. IEEE Computer Society.

[6] M. Naumov. Incomplete-LU and Cholesky Preconditioned Iterative Meth-
ods Using cuSPARSE and cuBLAS. Technical report, Nvidia, 2011.

[7] NERSC. Hopper at NERSC, https://www.nersc.gov/users/computational-
systems/hopper.

[8] J. H. Saltz. Aggregation methods for solving sparse triangular systems on
multiprocessors. SIAM J. Sci. Stat. Comput., 11(1):123–144, Jan. 1990.

[9] R. Schreiber and W. P. Tang. Vectorizing the conjugate gradient method.
Symposium on CYBER 205 Applications, 1982.

[10] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User
Guide and Reference Manual (C++ In-Depth Series). Addison-Wesley Pro-
fessional, 2001.

[11] B. Suchoski, C. Severn, M. Shantharam, and P. Raghavan. Adapting Sparse
Triangular Solution to GPUs. In Proceedings of the 2012 41st International
Conference on Parallel Processing Workshops, ICPPW ’12, pages 140–148,
Washington, DC, USA, 2012. IEEE Computer Society.

[12] M. M. Wolf, M. A. Heroux, and E. G. Boman. Factors impacting per-
formance of multithreaded sparse triangular solve. In Proceedings of the
9th International Conference on High Performance Computing for Com-
putational Science, VECPAR’10, pages 32–44, Berlin, Heidelberg, 2011.
Springer-Verlag.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores21

0 5 10 15 20 25

0

5

10

15

20

25

nz = 153

0 5 10 15 20 25

0

5

10

15

20

25

nz = 153

Figure 6: L is shown with coloring (top) and STS-k (bottom); the two biggest
packs are are enclosed in boxes along the diagonal. Observe the sub-structures
that are revealed in STS-k that correspond to reuse of solution components
among tasks in each pack.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores22

Solution Components per Pack
214 216 218 220 222 224 226 228 230 232

N
um

be
r o

f P
ac

ks

20

22

24

26

28

210

212

214
Degree of Parallelism

CSR-LS
CSR-3-LS
CSR-COL
STS-3

Figure 7: Each point represents observed values of the two measures of paral-
lelism, the number of packs and the umber of solution components per pack, for
one of four methods on a matrix. Observe that across all matrices in the test
suite, clusters for level-set (with the pair CSR-LS and CSR-3-LS) and coloring
with the pair (CSR-COL and CSR-3-COL) are very well separated. Further,
their centroids clearly show coloring to be vastly superior (note the log scale).

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores23

G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0

20

40

60

80

100

120

Matrices

%
 o

f T
ot

al
 in

 5
 L

ar
ge

st
 P

ac
ks

Parallel Work (% of Total)

CSR−LS
CSR−3−LS
CSR−COL
STS−3

Figure 8: The percentage of total work in the 5 largest packs with mean value
shown as lines. Observe that CSR-COL and STS-3 (CSR-3-COL) in the largest
5 packs contain over 90% of total work, where as in CSR-3-LS and CSR-LS the
largest 5 packs contain less than 5% of total work.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores24

Matrices
G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Pa
ra

lle
l S

pe
ed

up

0

2

4

6

8

Parallel Speedup: 16 cores (Intel)
CSR-LS
CSR-3-LS
CSR-COL
STS-3

Matrices
G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Pa
ra

lle
l S

pe
ed

up

0

2

4

6

8

Parallel Speedup: 12 cores (AMD)
CSR-LS
CSR-3-LS
CSR-COL
STS-3

Figure 9: Parallel speedup of STS-3, CSR-COL and CSR-3-LS compared to
CSR-LS on 16 cores Intel (top) and 12 cores AMD (bottom). The horizontal
lines show the mean speed up for the entire test suite.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores25

Matrices
G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2

2.5

3
Relative Speedup (Color): 16 cores (Intel)

CSR-COL
STS-3

Matrices
G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2

2.5

3
Relative Speedup (Color): 12 cores (AMD)

CSR-COL
STS-3

Figure 10: Relative speedup of STS-3 compared to coloring on Intel (top) and
AMD (bottom). The horizontal line shows the mean speedup of STS-3.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores26

Matrices
G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2
Relative Speedup (LS): 16 cores (Intel)

CSR-LS
CSR-3-LS

Matrices
G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2
Relative Speedup (LS): 12 cores (AMD)

CSR-LS
CSR-3-LS

Figure 11: Relative speedup of CSR-3-LS compared to CSR-LS on Intel (top)
and on AMD (bottom). The horizontal line shows the mean speedup of CSR-
3-LS.

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores27

Cores
1 2 4 8 16 24 32

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2

2.5
Relative Speedup - Color (Intel)

CSR-COL
STS-3

Cores
1 2 4 6 12 18 24

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2

2.5
Relative Speedup - Color (AMD)

CSR-COL
STS-3

Figure 12: Relative speedup of STS-3 compared to CSR-COL for the whole
test suite on 1-32 cores of Intel (top) and 1-24 cores of AMD (bottom). The
horizontal line shows mean value for 8-32 cores (Intel) and 6-24 cores (AMD).

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores28

Cores
1 2 4 8 16 24 32

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2
Relative Speedup - LS (Intel)

CSR-LS
CSR-3-LS

Cores
1 2 4 6 12 18 24

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2
Relative Speedup - LS (AMD)

CSR-LS
CSR-3-LS

Figure 13: Relative speedup of CSR-3-LS compared to CSR-LS for the whole
test suite on 1-32 cores of Intel (top) and 1-24 cores of AMD (bottom). The
horizontal line shows the mean value for 8-32 cores (Intel) and 6-24 cores (AMD).

RR n° 8763

STS-k: A Multilevel Sparse Triangular Solution Scheme for NUMA Multicores29

Matrices
G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2

2.5

3
Relative Speedup per Unknown (Intel)

CSR-COL
STS-3

Matrices
G1 D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

R
el

at
iv

e
Sp

ee
du

p

0

0.5

1

1.5

2

2.5

3
Relative Speedup per Unknown (AMD)

CSR-COL
STS-3

Figure 14: Relative speedup of STS-3 compared to CSR-COL for processing
one solution component on Intel (top) and on AMD (bottom). The horizontal
line shows the mean value of STS-3.

RR n° 8763

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

