
HAL Id: hal-00717572
https://hal.archives-ouvertes.fr/hal-00717572v3

Submitted on 12 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-way automata and regular languages of overlapping
tiles

Anne Dicky, David Janin

To cite this version:
Anne Dicky, David Janin. Two-way automata and regular languages of overlapping tiles. Fundamenta
Informaticae, Polskie Towarzystwo Matematyczne, 2015, 142, pp.1-33. �10.3233/FI-2015-1280�. �hal-
00717572v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49496946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00717572v3
https://hal.archives-ouvertes.fr

Two-way automata and regular languages of overlapping
tiles

Anne Dicky and David Janin

LaBRI UMR 5800, Université de Bordeaux, Bordeaux INP
351, cours de la Libération, F-33405 Talence, FRANCE

{dicky|janin}@labri.fr

Abstract. We consider classes of languages of overlapping tiles, i.e., subsets of the McAl-
ister monoid: the class REG of languages definable by Kleene’s regular expressions, the
class MSO of languages definable by formulas of monadic second-order logic, and the class
REC of languages definable by morphisms into finite monoids. By extending the seman-
tics of finite-state two-way automata (possibly with pebbles) from languages of words to
languages of tiles, we obtain a complete characterization of the classes REG and MSO.
In particular, we show that adding pebbles strictly increases the expressive power of two-
way automata recognizing languages of tiles, but the hierarchy induced by the number of
allowed pebbles collapses to level one.

1 Introduction

Background

One-dimensional overlapping tiles already appear in the 70’s in inverse semigroup theory [37].
As elements of particular quotients of free inverse monoids [40, 33], known as monoids of McAlis-
ter [34, 33], the tiles came to the forefront again in the late 90’s inmathematical physics, associated
with tilings of the Euclidian space [29–31, 1]. Although implicitly, overlapping tiles also appear
in theoretical computer science in the studies of zigzag codes and the underlying zigzag covers of
finite, infinite or bi-infinite words [2, 8, 35, 1]. Oddly enough, our interest in languages of positive
tiles came from application perspectives in computational music theory [21]. In particular, tiles
and continuous variants may be used to describe advanced synchronization mechanisms between
musical patterns [4, 27]; an approach that leads to new programming features for music system
design [28, 18].

In software engineering, overlapping tiles may be seen as the possible concrete values of
string objects extended with history-preserving memory capacities. This point of view turns out
to provide a simple presentation of many properties satisfied by one-dimensional overlapping
tiles; it also conveys most of the intuition that underlies the work presented here.

Let us thus assume that we are software developers trying to enrich the class of string objects
with some history-preserving capacity.

More precisely, for every string object s, let s ·a denote the result of adding some character a
to the right of the string s, and let s · ā denote the result of removing a from the right of s. With
a standard string, s · a · ā = s, and thus s · a · ā · b = s · b for any character b. A history-preserving
mechanism is a way to prevent a character to appear in s if a different character has previously
occurred in the same position. Thus our extended strings should satisfy the property

s · a · ā · b =
{
s · b if a = b
undefined otherwise

as if adding and removing the character a to the right of the string s create some footprint of
that character in such a way that no other character can ever be put later on that position.

One-dimensional overlapping tiles describe the effects of the possible sequences of actions
(additions or removals of characters) on these extended string objects; and thus the possible
values of the objects themselves (as the effects of sequences of actions on the empty string). For
instance, the effect of the sequence āabcbaāb̄ is described by the tile

a bc ba

where bc is the string to be added, while the left part a and the right part ba of the tile model
the footprints left by the other actions. The composition of actions yields a monoid structure of
tiles that turns out to be the inverse monoid of McAlister [37, 34].

These examples show that the model of one-dimensional overlapping tiles is a versatile model
that can be used in many fields. However, the associated language theory can still be further
developed. Indeed, the classical tools of formal language theory somehow fail to apply to inverse
monoids [36, 46]. To be more precise, the expressive power induced by the usual formal language
theoretic tools, namely, the automata induced by morphisms into finite monoids, collapses when
applied to inverse monoids.

In this paper, we aim at developing a computer science-flavored formal language theory
for overlapping tiles. Since adding or removing characters of extended string objects can be
interpreted as movements of the reading head of a two-way automaton [42] on a classical string
(adding a character corresponds to reading it from left to right, whereas removing it corresponds
to reading it from right to left), finite-state two-way automata appear as natural and expressive
candidates to define and study classes of tile languages.

Incidentally, following a habit quite developed in formal language theory, strings will be called
words and characters will be called letters throughout the remainder of the text.

Outline

The monoid of one-dimensional overlapping tiles is presented in Section 2 (Theorem 2.8). A
special emphasis is put on the way non-zero tiles are generated from linear walks (Theorem 2.31),
thus rephrasing, in the context of one-dimensional tiles, the notion of free inverse monoid captured
by the Wagner congruence (Lemma 2.28). The link with Pécuchet’s notion of bisection [39] is
specified at the end of the section (Remark 2.32).

To a specialist of inverse semigroups, most of the material presented in this section is quite
straightforward. In particular, our presentation of the monoid of McAlister could be significantly
simplified by defining it as a Rees’ quotient of the free inverse monoid, following the classical
Scheiblich-Munn presentation of free inverse monoids [44, 38]. We prefer a direct, standalone pre-
sentation to address a more general public, providing an alternative to Lawson’s presentation [34]
(see also [33], chap. 9, for a relationship with various other classes of semigroups).

From Section 3 we study languages of tiles, starting with the class REG of languages definable
by regular expressions.

The class REC of languages of tiles recognizable by finite monoids is shown to be strictly
included in the class REG (Theorem 3.11 and Corollary 3.14). Still, a nontrivial example of a
language in REC is given (Example 3.16), illustrating the complete characterization of the class
REC given in [26]. Further details on languages recognized by inverse monoids can be found
in [36, 46].

Then we define the class 2WA of languages accepted by two-way tile automata. Quite closely
related with Pécuchet’s study [39], two-way tile automata are standard two-way automata over

words with a semantics expressed in terms of tiles. Tiles are simply seen as the results of partial
runs: runs that may start and stop anywhere on the input words. We show that the class REG
of regular languages of tiles (definable by Kleene expressions) corresponds to the class 2WA of
languages of tiles recognized by finite-state two-way tile automata (Theorem 3.21).

Beyond regular languages, the class MSO of languages definable in Monadic Second-Order
Logic is studied in Section 4. This class is shown to be both robust (Theorem 4.3) and simple
(Theorem 4.7). It is strictly larger than REG (see Corollary 4.4).

As a consequence of robustness, it is shown that MSO contains the class k-REG of k-regular
languages, i.e., tile languages that can be defined by Kleene expressions extended with the idem-
potent projection operator, with a nesting depth at most k. As a consequence of simplicity, it is
shown (Theorem 4.12) that the class MSO equals the class 1-REG (extended regular expressions
with no nested projection operators).

We also prove that MSO is the class of languages recognized by finite-state two-way many-
pebble automata. A simple correspondence between k-regular languages (k-REG) and k-pebble
automata (k-P2WA) is shown to hold (Theorem 4.18). Thus one-pebble automata capture the
whole class of many-pebble automata (Theorems 4.12 and 4.18). Indeed, the equality 1 -P2WA =
MSO was first proved in Theorem 3.3 of [10], where a tile language is called a trip, and an MSO-
definable tile language is called a regular trip.

Shepherdson’s theorem and analogous known results for pebble automata are obtained as
immediate corollaries (Corollaries 4.9 and 4.21).

To summarize, we prove that for every integer k ≥ 1:

REC (REG = 2WA (1-REG = 1 -P2WA = k-REG = k-P2WA = MSO

All these results support the long-standing intuition [39, 5, 32] that the theory of inverse monoids
is a powerful tool in the study of two-way automata. Indeed, all proofs presented here are quite
simple.

Although the expressiveness hierarchy induced by k-regular expressions (resp. k-pebble au-
tomata) collapses to its first level, the notion of k-regular expressions (resp. k-pebble automata) is
still worth being studied since, following [17], it is conjectured that k-regular expressions induces
a succinctness hierarchy (Conjecture 4.13).

Related works

Two-way automata have been the subject of many studies. This can be explained by their in-
triguing combinatorial complexity.

For instance, Rabin-Scott-Shepherdson’s result [42, 45] that two-way automata are as expres-
sive on words as one-way automata was long considered difficult [48]. More precisely, the capacity
of two-way automata to read each letter an unbounded number of times makes the structure of
two-way automata runs difficult to analyze. This is particularly clear in Pécuchet and Birget’s
algebraic studies of two-way automata [39, 5], in which two-way runs give rise to a rich combi-
natorial structure. A similar complexity is illustrated by Globerman and Harel’s result [17] that
the number of allowed pebbles in two-way automata induces a “succinctness” hierarchy: each
additional pebble provides inherent exponential power.

Still, gaining a full understanding of two-way automata, with or without pebbles, remains
a challenging topic (see, e.g., [16]). The classical theory of (one-way) finite-state automata has
benefited from a rich algebraic language theory that led, and still leads, to many decision algo-
rithms [41]. But, as already observed by Birget [5], there is no similar algebraic characterization
of two-way automata that does not amount to reducing two-way automata to one-way automata.

Further studies on languages of overlapping tiles [20, 24], infinite tiles [7], or on languages
of birooted trees [26, 22, 25], show that some progress can be done along Birget’s long-standing
open question [5].

2 Overlapping tiles

Here we give a description of monoids of one-dimensional overlapping tiles, and show that they
are isomorphic to monoids of McAlister [34]. The link between tiles and two-way linear walks on
words is formalized by an onto morphism from walks to tiles whose kernel is indeed the Wagner
congruence.

2.1 Preliminaries

Given a finite alphabet A, let A∗ be the free monoid generated by A and let 1 be the neutral
element. The concatenation of two words u and v is denoted by uv. The length of a word u is
denoted by |u|.

Let ≤p stand for the (partial) prefix order over A∗, let ≤s stand for the suffix order, and
let ∨p (resp. ∨s) denote the join operator for the prefix (resp. suffix) order. For all words u and
v, the word u ∨p v (resp. u ∨s v) is the least word of which both u and v are prefixes (resp.
suffixes) when it exists. The extended monoid A∗ ∪ {0} with 00 = 0 and 0u = u0 = 0 for every
word u, with the prefix order extended to 0 by 0 ≤p 0 and u ≤p 0 for every word u, is a lattice;
in particular, u ∨p v = 0 whenever neither u is a prefix of v, nor v is a prefix of u. Symmetric
properties hold in the suffix lattice.

Given a disjoint copy Ā = {ā : a ∈ A} of the alphabet A, let u 7→ u be the mapping from
(A∪ Ā)∗ to itself inductively defined by 1 = 1, au = u ā and āu = u a for every letter a ∈ A and
every word u ∈ (A ∪ Ā)∗. The mapping u 7→ u is involutive, i.e., for every word u ∈ (A ∪ Ā)∗
we have u = u. It is also an antimorphism of the free monoid (A ∪ Ā)∗, i.e., for all words u and
v ∈ (A ∪ Ā)∗ we have uv = v u. For all u ∈ (A ∪ Ā)∗, the word u is called the syntactic inverse
of u.

The free group FG(A) generated by A is the quotient of (A∪ Ā)∗ by the least congruence '
such that, for every letter a ∈ A, aā ' 1 and āa ' 1. Let→ denote the rewriting relation induced
by the rules aā → 1 and āa → 1 for every a ∈ A. It is well known that every congruence class
[u] ∈ FG(A) contains a unique element red(u) (the reduced form of u) irreducible with respect to
→, i.e., containing no subword of either form a ā and ā a. It follows that the elements of FG(A)
may be defined as words of the form red(u) with u ∈ (A ∪ Ā)∗, with the group product defined
by u · v = red(uv) for all u, v ∈ FG(A). Since we have u · ū = 1 = ū · u, in the free group FG(A),
the syntactic inverses are the group inverses. By extension, for all words u and v in (A∪ Ā)∗, let
also u · v denote the reduced form of uv. The following are well-known properties of reduction:
for all u, v, w ∈ (A ∪ Ā)∗,

. if u, v ∈ A∗ or u, v ∈ Ā∗ then u · v = uv,

. u · v = v̄ · ū,

. (u · v) · w = u · (v · w).

We will also use the properties stated in the following lemma.

Lemma 2.1. Let u, v ∈ A∗ and w ∈ (A ∪ Ā)∗. The following properties hold:

1. u ∨p v 6= 0 if and only if ū · v ∈ A∗ ∪ Ā∗, and u ∨s v 6= 0 if and only if u · v̄ ∈ A∗ ∪ Ā∗,
2. if u ∨p v 6= 0 and w · u ∈ A∗ then w · (u ∨p v) ∈ A∗, and if u ∨s v 6= 0 and u · w ∈ A∗ then

(u ∨s v) · w ∈ A∗,

3. if w ∈ A∗ then w · (u ∨p v) = w · u ∨p w · v and (u ∨s v) · w = u · w ∨s v · w,
4. if w ∈ A∗ then u ∨p v = w̄ · (w · u ∨p w · v) and u ∨s v = (u · w ∨s v · w) · w̄.

Proof.

1. u is a prefix of v if and only if ū · v ∈ A∗; v is a prefix of u if and only if v̄ · u ∈ A∗, or
equivalently ū · v = v̄ · u ∈ Ā∗. The proof for ∨s is symmetrical.

2. The property is trivial if u∨p v = u. Otherwise, v = uv′ for some v′ ∈ A∗. Then w · (u∨p v) =
w · (u · v′) = (w · u) · v′ ∈ A∗. The proof for ∨s is symmetrical.

3. Well known properties of prefix, suffix and concatenation in A∗.
4. Immediate consequence of the previous property.

2

For a monoid M and x, y ∈ M , we say that y is an inverse of x if xyx = x and yxy = y. A
monoid M is an inverse monoid if every element of M has a unique inverse in M . The following
lemma is well-known (see [40, 33]).

Lemma 2.2. Let M be a monoid such that (i) every element of M has an inverse, and (ii) all
idempotent elements commute (i.e., if xx = x and yy = y then xy = yx). Then M is an inverse
monoid.

Proof. Let x be an element of M . For any inverse y of x, (xyx)y = xy and y(xyx) = yx, thus xy
and yx are idempotent.

Let y1 and y2 be inverses of x. Since xy1 and xy2 are idempotent, they commute, and we
have

xy2 = (xy1x)y2 = (xy1)(xy2) = (xy2)(xy1) = (xy2x)y1 = xy1

thus xy2 = xy1. Symmetrically it can be shown that y2x = y1x. It follows that y2 = y2xy2 =
y2xy1 = y1xy1 = y1, and thus the inverse of x is unique. 2

Conversely, it can be shown that the idempotents of an inverse monoid commute.
By Wagner’s theorem, the free inverse monoid FIM (A) generated by A can be defined (see

[33]) as the quotient of (A ∪ Ā)∗ by the Wagner congruence 'W , i.e., the least congruence such
that uuu 'W u and uuvv 'W vvuu for all u, v ∈ (A∪ Ā)∗. We refer the interested reader to the
books [40, 33] for details of the inverse semigroup theory.

2.2 The inverse monoid of tiles

We define here the notion of tile and the related notion of product. The resulting structure is
shown to be an inverse monoid.

Definition 2.3 (Tile). A tile over the alphabet A is a triple of words u = (u1, u2, u3) ∈ A∗ ×
(A∗ ∪ Ā∗) × A∗ such that u1 · u2 and u2 · u3 are both in A∗; i.e., if u2 ∈ Ā∗, then its syntactic
inverse u2 is a suffix of u1 and a prefix of u3. The word u2 is called the root path of the tile.
When u2 ∈ A∗ we say that u is a positive tile. When u2 ∈ Ā∗ we say that u is a negative tile.
Observe that a negative tile is of the form (v1v2, v2, v2v3) with v1, v2, v3 ∈ A∗.

A positive tile u = (u1, u2, u3) is conveniently drawn as a (linear, unidirectional and left-to-
right) Munn’s birooted word tree [38] as depicted in Figure 1 where the dangling input arrow,
marking the beginning of the root path and called the input root of the tile, appears to the left
of the dangling output arrow, marking the end of the root path and called the output root of the
tile.

• • • •
u1 u2 u3(u)

Fig. 1. A positive tile (u1, u2, u3).

• • • •
v1 v2 v3(v)

Fig. 2. A negative tile (v1v2, v2, v2v3).

A negative tile of the form v = (v1v2, v2, v2v3) ∈ A∗ × Ā∗ × A∗ is also drawn as a birooted
word tree as depicted in Figure 2 where the input root now appears to the right of the output
root.

The domain of a tile u = (u1, u2, u3) is u1 · u2 · u3, the reduced form of u1u2u3 (if u is a
negative tile (v1v2, v2, v2v3), its domain is v1v2v3).

The set of positive tiles (resp. negative tiles) is denoted by T+(A) (resp. T−(A)). The set of
tiles is denoted by T (A). Let T0(A) = T (A) ∪ {0} denote the set of tiles extended with a zero
tile 0.

Definition 2.4 (Product of tiles).
The product of two non-zero tiles u = (u1, u2, u3), v = (v1, v2, v3) ∈ T (A) is defined as

u · v = (((u1 · u2) ∨s v1) · u2, u2 · v2, v2 · (u3 ∨p (v2 · v3)))

when both pattern-matching conditions (u1 · u2) ∨s v1 6= 0 and u3 ∨p (v2 · v3) 6= 0 are satisfied,
and 0 otherwise. The product is extended to the zero tile by u · 0 = 0 ·u = 0 for every u ∈ T0(A).

Remark 2.5. When A is a single-letter alphabet, the product of two non-zero tiles is always
a non-zero tile. The set T (A) of non-zero tiles is known to be the free inverse monoid of one
generator. Unless explicitly stated, we assume in this paper that A contains at least two distinct
letters.

Example 2.6. Let a, b, c and d be distinct letters of A. Then (a, b, c) · (b, c, d) = (a, bc, d), but
(a, b, c) · (a, c, d) = 0 (the left-matching constraint is violated since neither ab is a suffix of a, nor
a is a suffix of ab).

Remark 2.7. The product u ·v of two matching positive tiles u = (u1, u2, u3) andv = (v1, v2, v3)
is depicted in Figure 3. The product u·v of a positive tile u = (u1, u2, u3) and a matching negative
tile v = (v1v2, v2, v2v3) is depicted in Figure 4.

These figures show that, in terms of birooted words, the product u·v is obtained intuitively by
identifying the output root of u with the input root of v. Taking into account this identification,
the domain of u · v is the smallest word that contains the domains of u and v (which exists if
only if u and v match), the input root of u · v is the input root of u, and the output root of u · v
is the output root of v. These are key features to ensure that the product is associative.

Theorem 2.8. The set T0(A) of tiles over the alphabet A, equipped with the product of tiles, is
a monoid with neutral element 1 = (1, 1, 1).

(u) • • • •
u1 u2 u3

(v) • • • •
v1 v2 v3

(u · v) • • • •
(u1u2 ∨s v1) · u2 u2v2 v2 · (u3 ∨p v2v3)

Fig. 3. The product of two positive tiles.

(u) • • • •
u1 u2 u3

(v) • • • •
v1 v2 v3

(u · v) • • • •
(u1u2 ∨s v1v2) · u2 u2 · v2 v2(u3 ∨p v3)

Fig. 4. The product of a positive tile and a negative tile.

Proof. We have to prove that the product of tiles is a sound (well-defined) associative operation.
Soundness. Let u = (u1, u2, u3) and v = (v1, v2, v3) be tiles such that u·v 6= 0. Since u1 ·u2, v1 and
(u1·u2)·ū2 = u1 are in A∗, item 2 of Lemma 2.1 implies that the first component ((u1·u2)∨sv1)·u2
of the product tile u · v is in A∗. Similarly, its third component v2 · (u3 ∨p (v2 · v3)) is also in A∗.

We now prove that the second component u2 · v2 is in A∗ ∪ Ā∗. It is obvious if the tiles u
and v are both positive or both negative. Suppose u2 ∈ A∗ and v2 ∈ Ā∗. Since u2 ≤s u1u2 and
v2 ≤s v1, we have u2 ∨s v2 ≤s u1u2 ∨s v1 6= 0, hence u2 ∨s v2 6= 0 and thus u2 · v2 ∈ A∗ ∪ Ā∗
by item 1 of Lemma 2.1. The proof for u2 ∈ Ā∗ and v2 ∈ A∗ is similar, using u2 ≤p u3 and
u3 ∨p v2v3 6= 0.

Finally we prove that u · v is a tile. The reduced concatenation of its first two components,
((u1 · u2) ∨s v1) · u2 · u2 · v2 = (v1 ∨s (u1 · u2)) · v2, is in A∗ by item 2 of Lemma 2.1 since
v1 ·v2 ∈ A∗. Similarly, since u2 ·u3 ∈ A∗, the reduced concatenation of the last two components
u2 · v2 · v2 · (u3 ∨p (v2 · v3)) = u2 · (u3 ∨p (v2 · v3)) is also in A∗.
Associativity. Let u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) be non-zero tiles. Then
(u · v) · w = (x1, x2, x3) with

x1 = ((u1 · u2 ∨s v1) · v2 ∨s w1) · v2 · u2
x2 = u2 · v2 · w2
x3 = w2 · (v2 · (u3 ∨p v2 · v3) ∨p w2 · w3)

provided that the corresponding pattern-matching conditions are satisfied.
Similarly, u · (v · w) = (y1, y2, y3) with

y1 = (u1 · u2 ∨s (v1 · v2 ∨s w1) · v2) · u2
y2 = u2 · v2 · w2 = x2
y3 = w2 · v2 · (u3 ∨p v2 · (v3 ∨p w2 · w3))

again provided that the pattern-matching expressions are non-zero.
To prove that (u · v) · w = u · (v · w) we distinguish two cases.
First assume that v2 ∈ A∗. From item 3 of Lemma 2.1, it follows that

x1 = (u1 · u2 · v2 ∨s v1 · v2 ∨s w1) · v2 · u2

with the equivalent pattern-matching condition u1 · u2 · v2 ∨s v1 · v2 ∨s w1 6= 0.
From item 2 of Lemma 2.1, when v1·v2∨sw1 6= 0 we have (v1·v2∨sw1)·v2 ∈ A∗. Applying item 4 of
Lemma 2.1 to u := u1 ·u2, v := (v1 ·v2∨sw1)·v2 and w := v2, we obtain u1 ·u2∨s(v1 ·v2∨sw1)·v2 =
(u1 · u2 · v2 ∨s (v1 · v2 ∨s w1) · v2 · v2) · v2 = (u1 · u2 · v2 ∨s v1 · v2 ∨s w1) · v2 and thus y1 = x1.
Similarly, it can be shown that x3 = y3 = w2 · v2 · (u3 ∨p v2 · v3 ∨p v2 · w2 · w3).

Assume now that v2 ∈ Ā∗. From item 3 of Lemma 2.1 with w := v2, we obtain

x1 = y1 = (u1 · u2 ∨s v1 ∨s w1 · v2) · u2
x3 = y3 = w2 · (v2 · u3 ∨p v3 ∨p w2 · w3)

which conclude the proof of associativity.
Neutral element. We conclude by observing that clearly (1, 1, 1) is a neutral element. 2

Observe that the set T+
0 (A) of positive tiles (resp. the set T−0 (A) of negative tiles) extended

with 0 is a submonoid of T0(A).
Obviously, a non-zero tile u = (u1, u2, u3) is idempotent for the product, that is, it satisfies

u · u = u, if and only if u2 = 1, i.e., if and only if u is both positive and negative. Let E(A)
denote the set of non-zero idempotent tiles and let E0(A) = E(A) ∪ {0} denote the set of all
idempotent tiles. We have E(A) = T+(A) ∩ T−(A) and E0(A) = T+

0 (A) ∩ T−0 (A).

Lemma 2.9. The set E0(A) of all idempotent tiles is a commutative submonoid of T0(A).

Proof. Let u = (u1, 1, u3) and v = (v1, 1, v3) be non-zero idempotent tiles. Then u · v 6= 0
if and only if u1 ∨s v1 6= 0 and u3 ∨p v3 6= 0 (thus if and only if v · u 6= 0), in which case
u · v = (u1 ∨s v1, 1, u3 ∨p v3) = v · u. 2

Definition 2.10 (Inverse). The inverse u−1 of a non-zero tile u = (u1, u2, u3) is the tile
obtained by swapping its input root and its output root: thus

u−1 = (u1 · u2, u2, u2 · u3)

This definition is extended to zero by letting 0−1 = 0.

The notion of inverse is depicted in Figure 5.

• • • •
u1 u2 u3(u) • • • •

u1 u2 u3
(u−1)

• • •
u1 u2u3

(u · u−1) • • •
u1u2 u3

(u−1 · u)

Fig. 5. Inverses and associated idempotents.

The following properties are straightforward.

Lemma 2.11. For all tiles u, v ∈ T0(A):

. (u−1)−1 = u

. (u · v)−1 = v−1 · u−1

. u−1 = u if and only if u is idempotent

. u · u−1 and u−1 · u are idempotents.

Note that the last item of this lemma is an immediate consequence of the first three items.
The next theorem shows that the monoid T0(A), equipped with the inverse operation, is

indeed an inverse monoid.

Theorem 2.12. The monoid of tiles T0(A) is an inverse monoid.

Proof. It is straightforward to check that if u is a non-zero tile (u1, u2, u3), then u · u−1 =
(u1, 1, u2 · u3) and u−1 · u = (u1 · u2, 1, u3) (see Figure 5). It follows that u · u−1 · u = u and
u−1 ·u ·u−1 = u−1. Thus every element of T0(A) has an inverse. By Lemma 2.11, the idempotents
of T0(A) commute. By Lemma 2.2, T0(A) is an inverse monoid. 2

2.3 Words and tiles

We define here the notion of canonical morphism from (A ∪ Ā)∗ into T0(A). This leads to the
study of linear walks and to the proof that the monoid of tiles is the monoid of McAlister [34].

Definition 2.13 (Canonical morphism). Let θ : (A∪ Ā)∗ → T0(A) be the monoid morphism
defined by

θ(a) = (1, a, 1) and θ(ā) = (a, ā, a)

for every a ∈ A.

The next lemmas, given with standalone proofs, are well-known consequences of the fact that
T0(A) is an inverse monoid (Theorem 2.12) and that θ(a) = θ(a)−1 for every a ∈ A.

Lemma 2.14. For every w ∈ (A ∪ Ā)∗, we have θ(w) = θ(w)−1.

Proof. By induction on the length of w, since for every a ∈ A ∪ Ā we have θ(a) = θ(a)−1, and if
θ(w) = θ(w)−1 then θ(aw) = θ(w) · θ(a) = θ(w)−1 · θ(a)−1 hence θ(aw) = θ(aw)−1. 2

Lemma 2.15. The canonical morphism preserves the Wagner congruence, i.e., for every w1, w2 ∈
(A ∪ Ā)∗, if w1 'W w2 then θ(w1) = θ(w2).

Proof. This amounts to proving that θ(uuu) = θ(u) and θ(uuvv) = θ(vvuu) for all u, v ∈ (A∪Ā)∗.
Let u ∈ (A∪ Ā)∗. We have θ(uūu) = θ(u) ·θ(ū) ·θ(u). By Lemma 2.14 we have θ(ū) = θ(u)−1,

hence θ(uūu) = θ(u) since T0(A) is an inverse monoid.
Let u, v ∈ (A ∪ Ā)∗. By the same argument, we have θ(uū) = θ(u) · θ(u)−1 and θ(vv̄) =

θ(v) · θ(v)−1, hence both θ(uū) and θ(vv̄) are idempotents by Lemma 2.11, and thus commute.
2

Remark 2.16. For every w ∈ A∗, we have θ(w) = (1, w, 1) (by induction on the length of w)
and θ(w̄) = (1, w, 1)−1 = (w,w,w) (by Lemma 2.14). Thus θ(A∗) is a submonoid of T0(A)
isomorphic to A∗, and the monoid of tiles T0(A) can be seen as an extension of the free monoid
A∗. Similarly T0(A) can also be seen as an extension of the free monoid Ā∗.

The following notion of left and right projections, central in inverse semigroup theory since
they characterize Green’s left and right classes (see [33], Chap. 3.2), yields a simple proof that θ
is surjective.

Definition 2.17 (Left and right projections). For every u ∈ T0(A), let uL = u−1 · u be the
left projection of the tile u, and uR = u · u−1 be its right projection.

As observed in the proof of Theorem 2.12, if u = (u1, u2, u3) is a non-zero tile, then we have
uL = (u1 ·u2, 1, u3) and uR = (u1, 1, u2 ·u3). Examples of left and right projections have already
been depicted in Figure 5. The next lemma shows how tiles are related to words via left and
right projections.

Lemma 2.18. For every positive tile u = (u1, u2, u3) we have u = θ(u1)L · θ(u2) · θ(u3)R and
for every negative tile v = (u1u2, u2, u2u3) we have v = θ(u3)R · θ(u2) · θ(u1)L.

Proof. By the first sentence of Remark 2.16, for every word w ∈ A∗ we have θ(w)L = (w, 1, 1)
and θ(w)R = (1, 1, w). It is easy to check that if u = (u1, u2, u3) is a positive tile, then (u1, 1, 1) ·
(1, u2, 1) · (1, 1, u3) = (u1, u2, u3), hence u = θ(u1)L · θ(u2) · θ(u3)R and, taking the inverses,
u−1 = θ(u3)R · θ(u2) · θ(u1)L. 2

It follows that:

Lemma 2.19. The canonical morphism θ : (A ∪ Ā)∗ → T0(A) is surjective.

Proof. By Lemma 2.14, θ(w)L = θ(w̄w) and θ(w)R = θ(ww̄) for every w ∈ (A ∪ Ā)∗. Hence, by
Lemma 2.18, every non-zero tile is a finite product of elements of θ((A∪ Ā)∗), hence an element
of θ((A ∪ Ā)∗). Since 0 may be obtained as θ(ab̄) where a and b are distinct letters of A, we
conclude that the morphism θ is surjective. 2

As an immediate consequence:

Lemma 2.20. The monoid T0(A) is finitely generated from θ(A ∪ Ā).

Observe that the submonoid T+
0 (A) of positive tiles is not finitely generated by products. How-

ever, we have:

Lemma 2.21. The monoid T+
0 (A) of positive tiles is finitely generated from θ(A) by products

and left and right projections.

Proof. Immediate from Lemma 2.18 observing that 0 = θ(a) · θ(b)L for a 6= b. 2

Remark 2.22. Projections are a corner stone of the notion of quasi-recognizability [20, 19] or
the notion of non-deterministic tile automata [24] and their closure properties [9], and they play a
major role in the language theory of infinite tiles [7]. In recent developments of inverse semigroup
theory, the projections are used to define “almost inverse” for more general classes of semigroups
such as ample monoids (see, e.g., [14]).

2.4 Linear walks

The notion of linear walks, that is, words inducing non-zero tiles, and, conversely, words induced
by traversals of non-zero tiles, conveys a relevant intuition of the link between tiles and two-way
automata studied in the next section.

Definition 2.23 (Linear walk). A word w ∈ (A ∪ Ā)∗ is a linear walk, or simply walk when
θ(w) 6= 0. The set of walks is denoted by W (A).

Example 2.24. Since θ(āabcbaāb̄) = (a, bc, ba) (cf. the Introduction), the word āabcbaāb̄ is a walk.
The word aāb is not a walk when a 6= b.

Remark 2.25. A word w = a1 · · · an in W (A), with ai ∈ A ∪ Ā, can be viewed intuitively as
a walk as follows. Consider the sequence of non-zero tiles u0, u1, . . . , un corresponding to the
prefixes of w, i.e., ui = θ(a1 · · · ai).

This can be viewed as a walk that constructs the tile un = θ(w) ∈ T (A), starting from the
unit tile u0 = (1, 1, 1). The “steps” in the walk are the transitions from the tile ui to the tile
ui+1, for every 0 ≤ i ≤ n − 1. Note that ui+1 = ui · θ(ai+1). Thus, if ai+1 = a ∈ A, then ui+1
is obtained from ui by moving the output root one letter to the right, after first adding a to the
right of the output root, when there are no letters there. Similarly, if ai+1 = a ∈ A, then the
output root is moved one letter to the left but first a is added to its left, if necessary.

In this way, θ(w) is obtained from (1, 1, 1) by moving the output root in a stepwise fashion.
Since the input root does not change, w can be viewed as a walk that moves back and forth on
the domain of θ(w), starting at the input root of θ(w) and ending at its output root. Note that
the root path of ui (i.e., its second component) equals red(a1 · · · ai) (easy proof by induction). In
particular, the root path of θ(w) is red(w).

As an example, the walk āabcbaāb̄ corresponds to the following sequence of tiles: (1, 1, 1),
(a, ā, a), (a, 1, 1), (a, b, 1), (a, bc, 1), (a, bcb, 1), (a, bcba, 1), (a, bcb, a), (a, bc, ba).

We finally note that the same sequence of tiles can be constructed when w is not in W (A),
but then ui = 0 for some i ≥ 1, and so uj = 0 for all j ≥ i.

Lemma 2.26. If A is not a singleton, the set of walks over A is not a context-free subset of
(A ∪ Ā)∗.

Proof. Let a and b be distinct letters of A, and let L be the intersection of the set of walks with
the regular language ba∗bb̄ā∗b̄ba∗b. For all m,n, p ≥ 0, the tile product

θ(bamb) · θ(b̄ānb̄) · θ(bapb) = (1, bamb, 1) · (banb, b̄ānb̄, banb) · (1, bapb, 1)

is (1, banb, 1) if m = n = p, and 0 otherwise; thus L = {banbb̄ānb̄banb : n ≥ 0}. Since L is not a
context-free language, the set of walks is not context-free. 2

More generally, we shall prove that walks exactly correspond to back-and-forth reading of
words over A, thus relating walks with runs of a two-way automaton.

Definition 2.27 (The monoid of linear walks). Let ⊥ = θ−1(0) be the set of words that
are not walks. Clearly, ⊥ is an ideal, i.e., u⊥v ⊆ ⊥ for all u, v ∈ (A ∪ Ā)∗.

The monoid of walks W0(A) is the Rees’ quotient W0(A) = (A ∪ Ā)∗/⊥, that is, the monoid
of walks W0(A) is defined by collapsing the set ⊥ of non-walks into a single zero. In other words,
W0(A) = W (A) ∪ {0} with the product of two elements u, v ∈ W0(A) defined as uv when u, v
and uv are in W (A), and 0 otherwise.

Lemma 2.28. Let w ∈ (A∪ Ā)∗ be a walk and let u = (u1, u2, u3) ∈ T+(A) be a positive tile. If
θ(w) = u then w 'W ū1u1u2u3ū3, and if θ(w) = u−1 then w 'W u3ū3ū2ū1u1.

Proof. By induction on the length of w. If w = 1 then θ(w) = (1, 1, 1), and indeed we have
w 'W 1. Assume now that the property is true for some w ∈ (A ∪ Ā)∗, and let a ∈ A.

Observe that if u = u−1, i.e., u2 = 1, then ū1u1u2u3ū3 = ū1u1u3ū3 'W u3ū3ū1u1 =
u3ū3ū2ū1u1. In other words, when u2 = 1, it suffices to prove one of the two statements of
the lemma.

If wa is a walk, then so is w. We consider three different possible forms of θ(w), such that
θ(w) · (1, a, 1) 6= 0.
Case 1: θ(w) = (u1, u2, 1) ∈ T+(A) and w 'W ū1u1u2. Then θ(wa) = θ(w) · θ(a) = (u1, u2a, 1)
and, since 'W is a congruence, we have wa 'W ū1u1u2a.

Case 2: θ(w) = (u1, u2, au3) ∈ T+(A) and w 'W ū1u1u2au3ū3ā. Then θ(wa) = (u1, u2a, u3) and
wa 'W ū1u1u2au3ū3āa. By commutation of u3ū3 and āa, this implies that wa 'W ū1u1u2aāau3ū3.
Simplifying aāa into a, we obtain wa 'W ū1u1u2au3ū3.
Case 3: θ(w) = (u1, au2, u3)−1 with (u1, au2, u3) ∈ T+(A) and w 'W u3ū3ū2āū1u1. Then
θ(wa) = (u1a, u2, u3)−1 and thus we have wa 'W u3ū3ū2āū1u1a.

If wā is a walk, so is w and the proof is similar, again with three cases.
Case 1: θ(w) = (u1, u2a, u3) and w 'W ū1u1u2au3ū3. Then θ(wā) = (u1, u2, au3) and wā 'W
ū1u1u2au3ū3ā.
Case 2: θ(w) = (1, u2, u3)−1 and w 'W u3ū3ū2. Then θ(wā) = (1, au2, u3)−1 andwā 'W
u3ū3ū2ā.
Case 3: θ(w) = (u1a, u2, u3)−1 and w 'W u3ū3ū2āū1u1a. Then θ(wā) = (u1, au2, u3)−1 and we
have wā 'W u3ū3ū2āū1u1aā. By commutation of ū1u1 and aā we havewā 'W u3ū3ū2āaāū1u1.
Simplifying āaā into ā we obtain wā 'W u3ū3ū2āū1u1. 2

Corollary 2.29. Let w1, w2 ∈ W (A) be two walks. Then θ(w1) = θ(w2) if, and only if, w1 'W
w2.

Proof. If : by Lemma 2.15. Only if : follows from Lemma 2.28. Indeed, if θ(w1) = θ(w2) is a
positive tile (u1, u2, u3), then we have w1 'W ū1u1u2u3ū3 'W w2, and if θ(w1) = θ(w2) is a
negative tile (u1, u2, u3)−1, then we have w1 'W u3ū3ū2ū1u1 'W w2. 2

In other words, the previous results show that the diagram depicted in Figure 6 commutes.

(A ∪ Ā)∗

W0(A)= (A ∪ Ā)∗/⊥

T0(A) ∼W0(A)/ 'W

/⊥ / 'W

θ

Fig. 6. The walks and tiles diagram

Corollary 2.29 proved above gives a characterization of θ on walks. It remains to understand the
structure of ⊥ = θ−1(0).

Lemma 2.30. Let w ∈ (A ∪ Ā)∗. We have θ(w) = 0 if, and only if, there exists u ∈ (A ∪ Ā)∗
such that u 'W w and u has a factor of the form ab̄ or āb for two distinct letters a, b ∈ A.

Proof. If : by Lemma 2.15. Only if : assume that θ(w) = 0. Let then w1 be the longest prefix of
w such that θ(w1) 6= 0.

We first consider the case when w = w1bw2 with b ∈ A. Since θ(w1b) = 0, there are two
subcases with u1, u2, u3 ∈ A∗ and a ∈ A.
Case 1: θ(w1) = (u1, u2, au3) with b 6= a. By Lemma 2.28, we have w1 'W ū1u1u2au3ū3ā hence,
since w = w1bw2, we have w 'W ū1u1u2au3ū3ābw2 which has the factor āb.
Case 2: θ(w1) = (u1, au2, u3)−1 with b 6= a. By Lemma 2.28, we have w1 'W u3ū3ū2āū1u1 hence
w 'W u3ū3ū2āū1u1bw2 hence, by expanding ā into āaā, w 'W u3ū3ū2āaāū1u1bw2, and thus, by
commutation of aā and ū1u1, we have w 'W u3ū3ū2āū1u1aābw2 which has the factor āb.

Similarly we consider the case when w = w1b̄w2 with b ∈ A. Again there are two subcases.
Case 1: θ(w1) = (u1, u2a, u3) with b 6= a. By Lemma 2.28, we have w1 'W ū1u1u2au3ū3 hence

w 'W ū1u1u2au3ū3b̄w2. It follows that w 'W ū1u1u2aāau3ū3b̄w2 by expanding a into aāa.
Then, by commutation of āa with u3ū3 we have w 'W ū1u1u2au3ū3āab̄w2 which has the factor
ab̄.
Case 2: θ(w1) = (u1a, u2, u3)−1 with b 6= a. By Lemma 2.28, we have w1 'W u3ū3ū2āū1u1a
hence w 'W u3ū3ū2āū1u1ab̄w2 which has the factor ab̄. 2

We conclude our study of the monoid of tiles by proving that the monoid T0(A) is isomorphic
to the monoid of McAlister [37, 34], that is, some Rees’ quotient of the free inverse monoid
FIM (A) generated by A.

Let 'M be the McAlister congruence, defined as the least congruence in the extended monoid
(A ∪ Ā)∗ ∪ {0} such that 'W ⊆ 'M and

ab̄ 'M 0 and āb 'M 0

for all distinct a, b ∈ A. Let MA = (A ∪ Ā)∗ ∪ {0}/ 'M be the monoid of McAlister.

Theorem 2.31. The monoid of tiles T0(A), the quotient of walks W0(A)/ 'W by the Wagner
congruence and the monoid of McAlister are isomorphic.

Proof. By Corollary 2.29, T0(A) is isomorphic toW0(A)/ 'W . By Corollary 2.29 and Lemma 2.30,
the congruence associated with the morphism θ (extended to (A∪Ā)∗∪{0} by θ(0) = 0) coincides
with the McAlister congruence. 2

This situation is summarized by the commuting diagram depicted in Figure 7 below where

(A ∪ Ā)∗ FIM (A)

W0(A) T0(A) ∼MA

/ 'W

/⊥M/⊥

/ 'W

θ

Fig. 7. The walks, tiles and birooted trees diagram

the ideal of FIM (A) generated by elements of the form ab̄ and āb with a 6= b is denoted ⊥M .

Remark 2.32. In some sense, Lemma 2.28 captures most of the combinatorial analysis of two-
way automata runs made in [39, 5]. More precisely, according to Pécuchet’s definition [39], a word
bisection is any quadruple of words

((u1, u2), (v1, v2)) ∈ (A∗ ×A∗)× (A∗ ×A∗)

such that u1u2 = v1v2. Then, one can check that the mapping that maps every non-zero tile
(u1, u2, u3) ∈ T0(A) to the quadruple

((u1, u2 · u3), (u1 · u2, u3)) ∈ (A∗ ×A∗)× (A∗ ×A∗)

is a well-defined bijection from non-zero tiles to word bisections. In other words, Pécuchet’s
approach somehow provides a fourth definition of McAlister monoid. Note that this link with
McAlister’s monoid, defined in [37] but emphasized in [34], was, at best, left implicit in Pécuchet’s

and Birget’s works [39, 5], even though some connections with the theory of inverse semigroups
are made. It must be noticed, however, that in this paper, we are more interested in what two-
way automata read than in how they perform readings, which was Pécuchet’s and Birget’s main
interest. A similar observation can be made about the study of zig-zag codes [2, 8, 35] where no
connection with McAlister monoid is mentioned.

3 Regular languages of tiles and two-way automata

Given an alphabet A assumed to have at least two letters, a language of tiles on the alphabet
A is any subset L ⊆ T (A) of non-zero tiles. The consequences of such a restriction, essentially
harmless, are discussed in some remarks below.

In this section, we study the class REC of recognizable tile languages, that is, languages
definable by means of monoid morphisms into finite monoids, and the class REG of regular
languages, that is, languages definable by means of regular expressions.

The class REC is characterized and shown to be strictly included in the class REG. The
class REG is shown to correspond to the class of tile languages definable by means of finite state
two-way automata which semantics is simply extended to tiles.

3.1 Regular languages of tiles

We define in this section the class REG of regular languages of tiles. It follows the classical
definition induced by the monoid structure of T0(A) up to the fact that we restrict to languages
of non-zero tiles. In particular, the product of languages is restricted to non-zero products of
tiles. The intended meaning of this restriction is the following: when two languages of tiles model
the possible behaviors of two processes, the product of these languages models their sequential
composition. The processes implicitly communicate by agreeing on compatible behaviors, that
is, by restricting to non-zero products.

Formally, we define the following operations on languages of non-zero tiles:

. addition as union: M +N = M ∪N

. multiplication: M ·N = {u · v ∈ T (A) : u ∈M,v ∈ N}

. star: M∗ =
⋃
n≥0M

n with M0 = {(1, 1, 1)} and Mk+1 = M ·Mk for every k ∈ N

The next lemma states that these operations satisfy the usual properties of the operations on
word languages (the same proofs apply).

Lemma 3.1. For all M , N and P ⊆ T (A):

. M · (N + P) = M ·N +M · P and (M +N) · P = M · P +N · P

. M∗ ·N is the least solution (with respect to inclusion) of the equation X = M ·X +N .

Regular languages of tiles are defined by the usual notion of regular expression.

Definition 3.2 (Regular language of tiles). A language M ⊆ T (A) of tiles is regular if it
can be defined as the result of finitely many additions, multiplications and star operations over
finite languages of (non-zero) tiles. The class of regular languages of tiles is denoted by REG.

Example 3.3. The set of non-zero tiles is regular since T (A) = (θ(A ∪ Ā))∗. We prove later
(Lemma 3.8) that the set E(A) of non-zero idempotent tiles is not regular.

The inverse monoid structure of T0(A) induces three more operations on languages of tiles:

. inverse: M−1 = {u−1 ∈ T (A) : u ∈M},

. right projection: MR = {u · u−1 ∈ T (A) : u ∈M},

. left projection: ML = {u−1 · u ∈ T (A) : u ∈M}.

The following identities are straightforward.

Lemma 3.4. For all M,N ⊆ T (A):

. (M +N)−1 = M−1 +N−1

. (M ·N)−1 = N−1 ·M−1

. (M∗)−1 = (M−1)∗

As a consequence, the class REG is closed under inverse. On the contrary, we shall see (Lemma 3.7)
that the class REG is not closed under left and right projections.

The following characterization is a variation of a well-known result for rational subsets of
monoids (see, e.g., Proposition III.2.2 of [3]).

Theorem 3.5. A language of tiles X ⊆ T (A) is regular if, and only if, there exists a regular
language of words L ⊆ (A ∪ Ā)∗ such that X = θ(L ∩W (A)).

Proof. We first observe that, for every language L ⊆ (A∪ Ā)∗ we have θ(L∩W (A)) = θ(L)−{0}.
Then, the proof goes by induction on the structure of regular expressions, using that θ is a
monoid morphism.

If. Let L ⊆ (A ∪ Ā)∗ be a regular language of words. If L is finite, then θ(L) − {0} is a
finite tile language. It follows that any regular expression for L, thanks to our definition of
sum, product and star of tile languages, can be reinterpreted over languages of tiles as a regular
expression for θ(L) − {0}. Note in particular that, for all tile languages M and N , we have
M ·N = {u · v ∈ T0(A) : u ∈M,v ∈ N} − {0}.

Only if. Let X ⊆ T (A) be a regular language of tiles. If X is finite, then X = θ(F) − {0}
where F = {u1u1u2u3u3 : (u1, u2, u3) ∈ X} is a finite language. Then, any regular expression for
X can be interpreted over languages of words of (A∪ Ā)∗ denoting then a language L such that
X = θ(L)− {0}. 2

Remark 3.6. Following the definitions of [3], a subset of a monoid M is rational if it can be
defined as the result of finitely many additions, multiplications and star operations over finite
subsets of M . By Proposition III.2.2 of [3], a set Y of tiles is a rational subset of T0(A) if and
only if there exists a regular language of words L ⊆ (A ∪ Ā)∗ such that Y = θ(L). In that case,
L∪{āb} is also regular, and Y ∪{0} = θ(L∪{āb}) (where a, b ∈ A, a 6= b). Thus, by Theorem 3.5,
a language of tiles X ⊆ T (A) is regular if and only if X ∪ {0} is a rational subset of the monoid
T0(A). Note also that, by Theorem 3.5 again, every rational language of tiles X ⊆ T (A) is regular
because if X = θ(L), since 0 /∈ X then L ⊆W (A).

The following lemma gives a first example of a simple non-regular language of tiles.

Lemma 3.7. The right projection MR of the regular tile language M = θ(A∗) is not regular. As
a consequence, the class of regular languages of tiles is not closed under right (or left) projection.

Proof. Let M and MR be the languages defined as above, that is, MR = {(1, 1, y) ∈ T (A) :
y ∈ A∗}. Moreover, let a ∈ A. We first observe that since every tile in MR is idempotent, i.e.,
MR ⊆ E(A), any word w ∈ (A ∪ Ā)∗ such that θ(w) ∈ MR must have the same number of a’s
and of ā’s, which we denote by |w|a = |w|ā (this is because red(w) = 1, see also Remark 2.25
that gives some more intuition on the notion of walks).

Assume now thatMR is regular. By Theorem 3.5, there exists a regular language L ⊆ (A∪Ā)∗
such that MR = θ(L ∩W (A)). Let A be a deterministic finite-state automaton recognizing L.
Let N denote the number of states of A, and let n > N . Then there exists a word u ∈ L∩W (A)
such that θ(u) = (1, 1, an) ∈MR. Clearly, u ∈ {a, ā}∗ (see Remark 2.25).

We easily prove by induction (see again Remark 2.25) that for every k such that 0 ≤ k ≤ n,
there exists a prefix vk of u such that θ(vk) = (1, ak, 1). Moreover, taking the least prefix that
satisfies this property, the sequence of prefixes v0, v1, . . . , vn of u is totally ordered by the prefix
order.

But since n > N , there necessarily exist two prefixes vk1 and vk2 , with k1 < k2, such that
the runs of the automaton A starting in the initial state and reading vk1 and vk2 reach the
same state. Since vk1 is a prefix of vk2 and vk2 is a prefix of u, there are words w1, w2 ∈ {a, ā}∗
such that vk2 = vk1w1 and u = vk2w2. It follows that A accepts the word u′ = vk1w2. Since
u′ ∈ {a, ā}∗ ⊆ W (A) (see Remark 2.5), we have that u′ ∈ L ∩W (A) and so θ(u′) ∈ MR and
|u′|a = |u′|ā. Now, the equality vk2 = vk1w1 implies that |w1|a − |w1|ā = k2 − k1 (see again
Remark 2.25). However, by construction, for every x ∈ {a, ā}, we have |u|x = |u′|x+ |w1|x. Since
|u|a = |u|ā, we thus have |u′|ā − |u′|a = |w1|a − |w1|ā = k2 − k1 > 0: a contradiction.

A similar proof shows that ML is not regular. 2

The next lemma gives a second example of a simple non-regular tile language.

Lemma 3.8. The set E(A) of non-zero idempotent tiles is not regular.

Proof. The proof is exactly the same as that of the previous lemma, with MR replaced by E(A).
2

Last, we give an example of a regular tile language that is not rational (see Remark 3.6).

Lemma 3.9. The regular tile language T (A) of non zero tiles is not rational.

Proof. The proof is very similar to the one of Lemma 3.7. Assume that T (A) is rational. By
Remark 3.6, there exists a regular language L ⊆ (A ∪ Ā)∗ such that T (A) = θ(L). Let A
be a deterministic finite-state automaton recognizing L, and let n be larger than the number
of states of A. Let a, b ∈ A with a 6= b. Then there exists a word u ∈ L such that θ(u) =
(1, 1, ban) ∈ T (A). As in the proof of Lemma 3.7, there exist words vk1 , vk2 , with k1 < k2,
such that θ(vk1) = (1, bak1 , 1), θ(vk2) = (1, bak2 , 1) and the runs of A on vk1 and vk2 reach
the same state. Moreover, there exist words w1, w2 such that vk2 = vk1w1 and u = vk2w2.
It follows that A accepts the word u′ = vk1w2, and so u′ ∈ L and θ(u′) ∈ T (A). Now, the
equality u = vk2w2 implies that red(w2) = āk2 b̄ (see Remark 2.25). However, that implies that
red(u′) = red(red(vk1)red(w2)) = red(bak1 āk2 b̄) = bāk2−k1 b̄, which is not in A∗∪ Ā∗, contradicting
the fact that θ(u′) is a non-zero tile. 2

3.2 Recognizable vs regular languages of tiles

For the sake of completeness, we briefly review here the notion of algebraic recognizability when
applied to languages of tiles and relate it to the notion of regular languages of words.

Definition 3.10 (Recognizable languages). A language of tiles L ⊆ T (A) is recognizable
when there exist a monoid M , a monoid morphism ϕ : T0(A)→M , and a finite subset F of M ,
such that L = ϕ−1(F); or, equivalently, when the syntactic congruence defined by u ∼L v ⇐⇒
∀x, y ∈ T0(A) (x · u · y ∈ L⇔ x · v · y ∈ L) is of finite index. The class of recognizable languages
of tiles is denoted by REC.

The following characterization is analogous to the equivalent result over the free inverse
monoid (Lemma 3.1 of [46]). It follows from classical arguments concerning recognizable lan-
guages.

Theorem 3.11. A language L ⊆ T (A) of tiles is recognizable if and only if θ−1(L) is a regular
language of words.

Proof.If : let K = θ−1(L), and let ∼K denote the syntactic congruence of K in (A ∪ Ā)∗. For all
u, v ∈ (A ∪ Ā)∗, we have u ∼K v ⇒ θ(u) ∼L θ(v): indeed, since θ is onto, for all x, y ∈ T0(A)
there exist α, β ∈ (A ∪ Ā)∗ such that θ(α) = x and θ(β) = y; if u ∼K v we have x · θ(u) · y ∈
L ⇒ θ(αuβ) ∈ L ⇒ αuβ ∈ K ⇒ αvβ ∈ K ⇒ x · θ(v) · y ∈ L and by symmetry, we have
x · θ(v) · y ∈ L⇒ x · θ(u) · y ∈ L.
Thus [u]∼K

7→ [θ(u)]∼L
is a well-defined mapping of (A ∪ Ā)∗/ ∼K onto T0(A)/ ∼L. If K is a

regular language of words then (A ∪ Ā)∗/ ∼K is finite and thus ∼L is of finite index.
Only if : let ϕ : T0(A) → M be a monoid morphism, let F be a finite subset of M and let
L = ϕ−1(F). Then ψ = ϕ ◦ θ is a monoid morphism from (A∪ Ā)∗ to M , and θ−1(L) = ψ−1(F)
is recognized (as a language of words) by the monoid M and the morphism ψ. 2

Corollary 3.12. Every recognizable tile language is regular.

Proof. Let L ⊆ T (A) be a recognizable tile language. Then M = θ−1(L) is a regular language of
words by Theorem 3.11. Since θ is surjective, L = θ(M). So, since M ⊆ W (A), θ(M) is regular
by Theorem 3.5. 2

Note that, by the proof of this corollary, every recognizable tile language is even rational (see
Remark 3.6). But not all regular languages are recognizable:

Lemma 3.13. The regular tile language L = θ(ā∗b̄ba∗) is not recognizable.

Proof. Since ā∗b̄ba∗ ⊆ W (A), by Theorem 3.5, the language L is regular. We show that the
syntactic congruence ∼L is of infinite index. For all m, k ∈ N let um = θ(āmb̄bam) = (bam, 1, 1) ∈
L and let vk = (ak, 1, 1). Then um ·vk = um if k ≤ m, and um ·vk = 0 if k > m. Hence um ·vk ∈ L
if and only if k ≤ m. Assume now that um ∼L un for some m,n ∈ N. Then for every k ∈ N, we
have k ≤ m if and only if k ≤ n, hence we necessarily have m = n. 2

By Corollary 3.12 and Lemma 3.13 we have

Corollary 3.14. REC (REG.

Remark 3.15. We have already seen that T (A) is regular while W (A) = θ−1(T (A)) is not even
context-free (Lemma 2.26). It follows that T (A) is also a regular language that is not recognizable.
Note that, as proved in Lemma 3.9, T (A) is not even rational. Thus, since the language L of
Lemma 3.13 is rational, the class of rational tile languages (see Remark 3.6) lies properly between
the classes of recognizable and regular tile languages.

Though some simple regular languages are not recognizable, the class REC does contain
non-trivial languages of tiles. In [23], it is shown that recognizable languages are strongly related
with bi-infinite periodic words. We refer the reader to this presentation for a combinatorial
characterization of these languages. In this paper, we just give an example of a non-trivial
recognizable language, that derives from the bi-infinite word ω(ab)(ab)ω.

Example 3.16. Let M = {0, 1, (a, a), (a, b), (b, a), (b, b)}, and let � be the product defined over
M by

∀x, y, z, t ∈ {a, b}, (x, y)� (z, t) =
{

0 if y 6= z
(x, t) if y = z

with 1 neutral and 0 absorbing.
We first observe that (M,�) is a monoid. It is well known that partial bijections over a

given set form a monoid with composition as product. Then it suffices to check that (M,�)
corresponds to the submonoid of partial bijections over the set {a, b} generated by the partial
bijection ma,b that maps a to b (encoded by (a, b)) and the partial bijection mb,a that maps b to
a (encoded by (b, a)). Indeed, the additional partial bijections obtained from the generators are
ma,a = ma,b ◦mb,a (encoded by (a, a)) and mb,b = mb,a ◦ma,b (encoded by (b, b)). The empty
bijection 0 is given, for instance, by 0 = ma,a ◦mb,b.

Incidentally, we also observe that (M,�) is even an inverse monoid. Indeed, it is also well-
know in inverse semigroup theory (see Wagner Theorem in [33]) that the monoid of partial
bijections over a set is an inverse monoid with function inverses as monoid inverses, and the two
generators of M are inverses of each other.

Now, let ϕ : T0({a, b}) → M be the mapping defined as follows. Let u ∈ T0({a, b}). If
u ∈ {0, 1} then ϕ(u) = u. Otherwise, if the domain of u is not a factor of the infinite word (ab)ω,
then ϕ(u) = 0. Otherwise, ϕ(u) = (x, y) where x (resp. y) is the letter directly to the right of the
input (resp. the output root) of u embedded in (ab)ω: the pair (x, y) can be seen as the partial
bijection mx,y induced by (the embedded) tile u that maps x (right after its input root) to y
(right after its output root).

For example, ϕ((a, ab, 1)) = 0 because aab is not a factor of (ab)ω, ϕ((b, aba, 1)) = (a, b)
because any factor baba of (ab)ω is followed by b, and ϕ((b, 1, 1)) = (a, a). Since the above partial
maps compose well, it should be clear that ϕ is a monoid morphism, i.e., ϕ(u · v) = ϕ(u)� ϕ(v)
(see also the discussion before Theorem 2.8).

Then, given L1 = (ab)∗ + b(ab)∗, L2 = (ab)∗, and L3 = (ab)∗ + (ab)∗a, we observe that
the tile language L1 × L2 × L3 is recognizable since it is precisely the inverse image of the set
{1, (a, a)} ⊆M under ϕ.

3.3 Two-way automata

We prove here that the regular languages of tiles are the languages recognized by finite-state
two-way automata. Our proposed definition, especially when extended with pebbles as in the
next section, is inspired by the notion of stack automata studied in [15].

Definition 3.17 (Two-way automaton). A finite-state two-way automaton over an alphabet
A is defined as a standard finite-state automaton over A ∪ Ā, i.e., a quadruple A = 〈Q, I, F,∆〉
with a finite set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, and a
transition table ∆ : (A ∪ Ā)→ P(Q×Q).

A run of A over a word of (A∪ Ā)∗ is a finite sequence ρ = q0a1q1 · · · qn−1anqn where n ≥ 0,
q0, . . . , qn ∈ Q and a1, . . . , an ∈ A∪ Ā, such that for every 1 ≤ i ≤ n, we have (qi−1, qi) ∈ ∆(ai).

The run ρ is accepting if q0 ∈ I and qn ∈ F . In that case, we say that the associated word
a1 · · · an ∈ (A ∪ Ā)∗ is accepted by the automaton A.

Let L(A) denote the set of words over the alphabet A ∪ Ā that are accepted by A, and let
LW (A) = L(A) ∩W (A) denote the language of walks recognized by A.

Remark 3.18. Observe that LW (A) may not be regular, since the trivial automaton A such
that L(A) = (A ∪ Ā)∗ recognizes the language of walks LW (A) = W (A), which by Lemma 2.26
is not even context-free.

The language of tiles recognized by A is defined as the set LT (A) = θ(L(A) ∩W (A)).

Remark 3.19. A more classical definition of LT (A) can be obtained by viewing the elements
of Q × T0(A) as configurations of A, and by defining a binary computation relation ⇒A on
Q × T0(A) as follows: (q, u) ⇒A (q′, u′) if there exists a ∈ A ∪ Ā such that (q, q′) ∈ ∆(a) and
u′ = u · θ(a). It is straightforward to prove that LT (A) is the set of non-zero tiles u such that
(q, 1)⇒∗A (q′, u) for some q ∈ I and q′ ∈ F .

As suggested in Remark 2.25, a computation (q0, 1) ⇒A (q1, u1) ⇒A · · · ⇒A (qn, un) of the
automaton A can then be viewed as a walk back and forth on the domain of un. For every i,
0 ≤ i ≤ n, the output root of ui can be viewed as the position of the reading head of A (between
letters of the domain), wheras the input root of ui is the original position of the reading head at
the start of the computation. For every a ∈ A, if (in the above computation step) u′ = u · θ(a),
then A reads the letter a from left to right, whereas if u′ = u · θ(ā), then it reads a from right to
left.

The language of words LS(A) ⊆ A∗ recognized by the two-way automaton A is then defined
by LS(A) = {u ∈ A∗ : (1, u, 1) ∈ LT (A)}. It corresponds to the usual notion of language of
words recognized by a two-way automaton.
Remark 3.20. Our definitions of tile languages and tile languages product provide a fairly
simple relationship between the word language and the tile language recognized by two-way
automata. Indeed, given an additional letter # such that # /∈ A, we easily check that

θ(#) · LT (A) · θ(#) = θ(#) · θ(LS(A)) · θ(#) = {1} ×#LS(A)#× {1}

for every two-way automaton A. In other words, the product by θ(#) both on the left and on the
right of the tile language LT (A) recognized by A acts as a filter that selects the word language
LS(A) recognized by A. This observation is used below to recover a proof of Shepherdson’s
theorem (Corollary 4.9).

Kleene’s theorem extends to languages of tiles. Let 2WA denote the class of tile languages
recognized by finite-state two-way automata:
Theorem 3.21. REG = 2WA.
Proof. If: Let X ⊆ T (A) be a regular language of tiles. By Theorem 3.5, there is a regular
language of words L ⊆ (A ∪ Ā)∗ such that X = θ(L ∩W (A)). By Kleene’s theorem, there exists
a finite-state automaton A such that L(A) = L henceforth LT (A) = X.

Only if: Conversely, let A be a finite-state two-way automaton. By Kleene’s theorem L(A) is
regular, hence, by Theorem 3.5, the language LT (A) = θ(L(A) ∩W (A)) is regular. 2

4 Beyond regular languages
In Formal Language Theory, definability in Monadic Second-Order Logic is a typical yardstick
of expressiveness which can be defined independently of the underlying algebraic structures [47].
We quickly review how languages of tiles can be defined by MSO formulas, and we characterize
MSO-definable languages of tiles by expressions involving regular languages of words.

We extend the notion of regular expression using a projection operator onto languages of
idempotent tiles:
Definition 4.1 (Idempotent projection). For every language M ⊆ T (A) of tiles, let ME =
M ∩ E(A) denote the idempotent projection of M .
The nesting depth of idempotent projection operators induces a hierarchy of k-regular expressions
that is shown equivalent to the hierarchy of k-pebble automata. We show that all k-regular lan-
guages are MSO-definable, and that MSO-definable languages correspond to 1-regular languages,
thus proving that the hierarchy collapses at level k = 1.

4.1 MSO-definable languages

Any positive non-zero tile u ∈ T (A) can be seen as an FO-structure on the signature {Ra}a∈A of
binary relation symbols, extended with two constants in and out for the input and output roots.
For instance, the triple u = (ba, aa, bb) depicted in the following picture

0 1 2 3 4 5 6b a a a b b

can be seen as the FO-structure tu over dom(tu) = {0, 1, 2, 3, 4, 5, 6}, with relations Ra and Rb
given by Ra = {(1, 2), (2, 3), (3, 4)} and Rb = {(0, 1), (4, 5), (5, 6)}, and constants in(tu) = 2 and
out(tu) = 4. Any negative non-zero tile of the form u = (u1u2, u2, u2u3) can also be seen, as
depicted in all examples so far, as the FO-structure obtained from the one of the tile (u1, u2, u3)
just by interchanging the constants in and out.

Then, a language L ⊆ T (A) is MSO-definable when there is an MSO formula of the form
ϕ(U, x, y) where U is a set variable and x and y are two FO-variables such that, for every
u ∈ T (A), we have u ∈ L if and only if tu |= ϕ(dom(tu), in(tu), out(tu)).

Remark 4.2. Without loss of generality, we assume that all quantifications in such a formula
ϕ(U, x, y) are relativized with respect to U , that is, in every sub-formula of the form ∀z ψ (resp.
∃z ψ), we assume that ψ is of the form z ∈ U ⇒ ψ′ (resp. z ∈ U ∧ ψ′) and similarly for
quantified set variables Z ⊆ U . This standard technique, called relativization, allows us to talk
about submodels of a given model. Moreover, to ensure that these submodels are well defined,
we assume that the formula ϕ(U, x, y) checks that the set U is connected (viewing tu as a graph)
and that both x and y belong to U .

Under these assumptions, for allX ⊆ dom(tu) and x1, x2 ∈ dom(tu), we havetu |= ϕ(X,x1, x2)
if, and only if, there exists a (unique) tile v in the tile language L defined by ϕ(U, x, y) such that
tv is (up to isomorphism) the FO-structure (on the same signature) consisting of the subgraph
of tu induced by X ⊆ dom(tu), with x1 and x2 as the values of in and out, respectively. We will
say that v (determined by X, x1 and x2) is a “local” tile of u belonging to L and connecting x1
to x2.

We now prove several closure properties of the class MSO of MSO-definable languages of tiles
with an associated corollary.

Theorem 4.3 (Robustness). For all MSO-definable languages of tiles M,N ⊆ T (A), the lan-
guages M ∪N , M ·N , M∗, M−1, ML, MR and ME are also MSO-definable.

Proof. Let ϕM (U, x, y) and ϕN (U, x, y) be two MSO formulas respectively defining M and N .
Union: take ϕM∪N (U, x, y) ≡ ϕM (U, x, y) ∨ ϕN (U, x, y).
Inverse: take ϕM−1(U, x, y) ≡ ϕM (U, y, x).
Right projection: take ϕMR(U, x, y) ≡ (x = y) ∧ ∃z ϕM (U, x, z).
Left projection: take ϕML(U, x, y) ≡ (x = y) ∧ ∃z ϕM (U, z, y).
Idempotent projection: take ϕME (U, x, y) ≡ (x = y) ∧ ϕM (U, x, y).
Product: take ϕM ·N (U, x, y) ≡ ∃X ∃Y ∃z (U = X ∪ Y ∧ ϕM (X,x, z) ∧ ϕN (Y, z, y)), i.e., this
formula checks the existence of an element z and two “local” tiles, one belonging to M and
connecting x to z, and the other belonging to N and connecting z to y. Morover, it checks that
all elements of U belong to at least one of the two tiles.

Star: let ϕM (U, x, y) be a formula defining a language M ⊆ T (A). We want to define a formula
ϕM∗(U, x, y) whose models are the tiles of M∗. This amounts to saying that there is a (possibly
empty) sequence of “local” tiles belonging to M , connecting x to y and “covering” U .

This can be done as follows. Let R(x1, x2) be the binary relation defined by

R(x1, x2) ≡ ∃X ϕM (X,x1, x2)

stating that there exists a “local” tile connecting x1 to x2, and let R∗ denote its reflexive and
transitive closure, known to be definable in MSO. The formula R∗(x1, x2) checks that there is a
(possibly empty) finite connected sequence of “local” tiles of M connecting x1 to x2.

Observe that this is not enough to define the expected formula ϕM∗(U, x, y) since we must
also check that all elements of U belong to at least one of these “local” tiles. Equivalently, we
have to check that the leftmost element lf (U) and the rightmost element rg(U) of U belong to
at least one of the “local” tiles. To this purpose, let ψ(U, x1, x2) be the formula defined by

ψ(U, x1, x2) ≡ ϕM (U, x1, x2) ∨
∃X1 ∃X2 ∃z1 ∃z2 (ϕM (X1, x1, z1) ∧R∗(z1, z2) ∧ ϕM (X2, z2, x2)

∧ ((lf (U) ∈ X1 ∧ rg(U) ∈ X2) ∨ (lf (U) ∈ X2 ∧ rg(U) ∈ X1))).
This formula checks that there is a nonempty sequence of “local” tiles of M connecting x1 to
x2, such that lf (U) and rg(U) are in the first and last tile, or vice versa. Finally, the formula
ϕM∗(U, x, y) is defined by:

ϕM∗(U, x, y) ≡ ∃x1∃x2 (R∗(x, x1) ∧ ψ(U, x1, x2) ∧R∗(x2, y)) ∨ (U = {x} ∧ x = y)

where the second part of the disjunction corresponds to the unit tile (1, 1, 1) ∈M∗. 2

Since finite languages of tiles are clearly MSO-definable, a first consequence of Theorem 4.3 is
that regular languages of tiles are MSO-definable. Moreover, since the class REG is not closed
under left and right projection (see Lemma 3.7) or since E(A) is not regular (see Lemma 3.8)
this inclusion is strict. In other words:

Corollary 4.4. REG (MSO.

A simple characterization of MSO-definable languages of tiles may be obtained via a notion
of word congruence induced by a language L of tiles: two words are congruent when in any tile,
they can replace each other without altering the membership to L.

Definition 4.5 (Induced word congruence). Let L ⊆ T (A) be a language of tiles. For all
u0, v0 ∈ A∗, we say that the word u0 is equivalent to the word v0 with respect to the language
L, which is denoted by u0 'L v0, when for all w1, w2, w3 and w4 ∈ A∗, if u = (w1u0w2, w3, w4)
and v = (w1v0w2, w3, w4), or if u = (w1, w2u0w3, w4) and v = (w1, w2v0w3, w4), or if u =
(w1, w2, w3u0w4) andv = (w1, w2, w3v0w4), then u ∈ L⇔ v ∈ L and u−1 ∈ L⇔ v−1 ∈ L.

By definition, the relation 'L is indeed a congruence in the free monoid A∗. The congruence
class of a word u ∈ A∗ is then denoted by [u]L.

Theorem 4.6 (Finite word congruence property). For every language L ⊆ T (A) of tiles:
L =

⋃
(u1,u2,u3)∈L∩T+(A)[u1]L × [u2]L × [u3]L
∪
⋃

(u1,u2,u3)−1∈L∩T−(A)([u1]L × [u2]L × [u3]L)−1.
Moreover, L is MSO-definable if and only if 'L is of finite index.

Proof. The expression of L is an immediate consequence of the definition of 'L.
Assume that 'L is of finite index. By Myhill-Nerode’s theorem, for every w ∈ A∗, the

word language [w]L ⊆ A∗ is regular and hence MSO-definable by Büchi-Elgot-Trakhtenbrot’s
theorem. Then, clearly, for every u1, u2 and u3 ∈ A∗, the three languages L1 = [u1]L×{1}×{1},
L2 = {1} × [u2]L × {1} and L3 = {1} × {1} × [u3]L are also MSO-definable; and by the closure
properties of MSO (Theorem 4.3), the language L1 ·L2 ·L3 = [u1]L× [u2]L× [u3]L and its inverse
image are MSO-definable. If 'L is of finite index, then L is a finite union of such MSO-definable
languages, thus by Theorem 4.3, the language L itself is MSO-definable.

Conversely, assume that L is MSO-definable. A positive tile (u, v, w) ∈ T+(A) can be encoded
as the word c(u, v, w) := u`vcwr ∈ A∗`A∗cA∗r , where A`, Ac and Ar are three disjoint copies of
the alphabet A, and for every word y ∈ A∗, the words y`, yc and yr are the copies of y in these
alphabets. It is a straightforward exercise to show that if a tile language K ⊆ T+(A) is MSO-
definable, then so is the language of words c(K). In fact, it is easy to see that this decoding c−1

is an MSO-definable transduction, and it is well known that inverse MSO transductions preserve
MSO-definability (see Corollary 7.12 of [6]).

Now let L+ = L ∩ T+(A) and L− = L ∩ T−(A). Then L+ and (L−)−1 are languages of
positive tiles, and can be encoded as the language of words M+ = c(L+) and the language of
words M− = c((L−)−1). Since L is MSO-definable, so are L+ and (L−)−1, and thus, by the
above, their encodings M+ and M− are also MSO-definable. By Büchi-Elgot-Trakhtenbrot’s
theorem both languages M+ and M− are regular, and thus their syntactic congruences 'M+

and 'M− are of finite index. This implies that 'L is also of finite index. Indeed, for all words
u, v ∈ A∗, we have u 'L v if and only if ux 'M+ vx and ux 'M− vx for every x ∈ {`, c, r}. 2

Then, the finite congruence property allows us to prove:

Theorem 4.7 (Simplicity). A language L ⊆ T (A) of tiles is MSO-definable if and only if L
is a finite union of languages of the form M × C ×N or (M × C ×N)−1, where M , C and N
are regular languages of words over A.

Proof. Let L ⊆ T (A) be a language of tiles. Let 'L be the word congruence associated with L
(Definition 4.5). Assume that L is MSO-definable. By Theorem 4.6, we have

L =
⋃

(u1,u2,u3)∈L∩T+(A)[u1]L × [u2]L × [u3]L
∪
⋃

(u1,u2,u3)−1∈L∩T−(A)([u1]L × [u2]L × [u3]L)−1

and the congruence 'L is of finite index. By Myhill-Nerode’s theorem, every [ui]L is a regular
language of words, which implies that L is a finite union of tile languages of the form M ×C×N
or (M × C ×N)−1, where M , C and N are regular languages of words.

Conversely, assume that L is such a finite union. To prove that L is MSO-definable, it suffices
to prove that every tile language of the form θ(K) = {1} ×K × {1} for some regular language
K is MSO-definable.

Indeed, for all word languages M , C and N ⊆ A∗, we have by Lemma 2.18 that

M × C ×N = θ(M)L · θ(C) · θ(N)R

and, by Theorem 4.3, the class of MSO-definable languages is closed under left and right projec-
tions, finite unions, finite products and inverses.

Now, for every regular language K ⊆ A∗, the language θ(K) is regular (by Theorem 3.5 and
because K ⊆W (A)) hence it is MSO-definable (by Corollary 4.4). 2

In terms of projection, the previous theorem and its proof arguments ensure that:

Corollary 4.8. A language of tiles is MSO-definable if and only if it is a finite union of lan-
guages of tiles of the form

ML
1 ·M2 ·MR

3 or MR
3 ·M−1

2 ·ML
1

where M1, M2 and M3 are images by θ of regular languages of words.

As an additional corollary, we retrieve Shepherdson’s well-known result [45]:

Corollary 4.9 (Shepherdson’s theorem). Every language of words recognized by a finite-
state two-way automaton is regular.

Proof. Let A be a finite-state two-way automaton. By definition, the word language recognized
by A is LS(A) = {u ∈ A∗ : (1, u, 1) ∈ LT (A)}. Following Remark 3.20, let # be a new letter not
in A. Since 0 is removed from the product of languages of tiles, we have:

θ(#) · LT (A) · θ(#) = θ(#) · θ(LS(A)) · θ(#) = {1} ×#LS(A)#× {1}

By Theorem 3.21, the tile language LT (A) is regular, thus the language θ(#) · LT (A) · θ(#) is
also regular. Hence, by Corollary 4.4, it is MSO-definable and thus, by Theorem 4.7 above, it is
of the form {1} × L× {1} for some regular language L ⊆ #A∗#.

It follows that LS(A) = {w ∈ A∗ : #w# ∈ L}, or, using left and right residual notations (see
[43]), LS(A) = #−1((L)#−1). Since regular languages are closed under left or right residuals, we
conclude that LS(A) is a regular language over the alphabet A. 2

4.2 k-regular languages

We define in this section the notion of k-regular languages of tiles that are defined measuring
the nesting depth of the idempotent projection operator in some extended notion of regular
expressions.

Definition 4.10 (k-regular languages of tiles). For every k ∈ N, a tile language M ⊆ T (A)
is k-regular if either k = 0 andM is regular, or k > 0 andM can be defined as the result of finitely
many additions, multiplications and star operations over both (k− 1)-regular tile languages and
idempotent projections of (k − 1)-regular tile languages. The class of k-regular tile languages is
denoted by k-REG.

Example 4.11. The language E(A) of non-zero idempotent tiles is 1-regular since T (A) is regular
(see Example 3.3) and E(A) = (T (A))E .

The Robustness Theorem 4.3 and the Simplicity Theorem 4.7 yield a characterization of
k-regular tile languages.

Theorem 4.12. For every k > 0, we have k-REG = MSO = 1-REG.

Proof. By construction REG ⊆ 1-REG ⊆ 2-REG ⊆ · · · ⊆ k-REG ⊆ · · · and by Corollary 4.4 and
the Robustness Theorem 4.3 we have k-REG ⊆ MSO for every k ∈ N.

But we observe that for every regular language of words M , we have that θ(M) ∈ REG and

θ(M)L = (θ(A∗)−1 · θ(M))E and θ(M)R = (θ(M) · θ(A∗)−1)E .

By definition, this means that both θ(M)L and θ(M)R are 1-REG hence, by Corollary 4.8 and
Lemma 3.4, every MSO-definable languages of tiles is in 1-REG. It follows that MSO ⊆ 1-REG.
2

Theorem 4.12 ensures that 1-REG = k-REG for every k ≥ 1. This suggests that there is
no point in defining and studying k-regular tile languages by themselves. However, the tight
correspondence obtained in the next section (Theorem 4.18) between k-regular expressions and
k-pebble automata suggests that, in a way analogous to Globerman and Harel’s result [17], a
succinctness hierarchy is induced by the number of allowed pebbles. More precisely:

Conjecture 4.13. k-REG expressions are k-fold exponentially more succinct than 1-REG ex-
pressions.

4.3 Two-way pebble automata

In this section, we define the notion of k-pebble two-way automata on tiles. Then, we show that
k-pebble automata capture k-regular tile languages. Informally, a pebble automaton is a two-
way automaton that has the capacity, from time to time, to drop and lift pebbles placed between
letters of the input word.

Here we consider invisible pebbles in the sense of [11]: at any time, only the last pebble
dropped may be seen by the automaton, and only by lifting this pebble. Also, as we will consider
automata with a bounded number of pebbles, the pebbles we use are unmarked.

The k-(invisible, unmarked)-pebble automata are particular cases of the k-(visible, marked)-
pebble automata of [17, 12], whose transitions may be governed by the presence or absence of
pebbles on the current position. The more general case of infinitely many invisible (marked)
pebbles is considered in [26] when studying walking automata on birooted trees or graphs.

Our proposed definition is inspired by stack of stack automata as studied in [15]. Indeed,
each pebble dropped (resp. lifted) during a run can be modeled as pushing (resp. popping) a new
stack on (resp. the top stack from) the main stack, kept in the run configuration. In this case, as
opposed to the case of trees or graphs [26], these secondary stacks are rather simple. They are
integers since it suffices to remember at every step the distance between the reading head and
the last pebble that has been dropped (or the starting position).

Definition 4.14 (Pebble automata). A finite-state pebble two-way automaton over an alpha-
bet A is a quadruple A = 〈Q, I, F,∆〉 with a finite set of states Q, a set of initial states I ⊆ Q,
a set of final states F ⊆ Q, and a transition table ∆ : (A ∪ Ā ∪ {1+, 1−})→ P(Q×Q).

Informally, for every a ∈ A, the set of transitions ∆(a) tells how the letter a can be read from
left to right, and the set of transitions ∆(ā) tells how that letter can be read from right to left.
The set of transitions ∆(1+) tells how a pebble can be dropped, and the set of transitions ∆(1−)
tells how a pebble can be lifted.

Runs are then defined via position configurations: non-empty finite sequences of (positive or
negative) integers p = z0z1 · · · zk for some integer k ≥ 0 and zi ∈ Z for every 0 ≤ i ≤ k. The
intended meaning of such a position configuration p is that k pebbles are dropped on the input
tile, and zi is the distance between the positions of the ith dropped pebble and the (i + 1)th
dropped pebble, with the initial position of the reading head modeled as a sort of 0th pebble
and its current position as a sort of (k+ 1)th pebble. This intention is made more precise in the
next two definitions and in the remark afterward.

Definition 4.15 (Runs of pebble automata). A run of the pebble automaton A is a finite
sequence

ρ = (q0, p0)a1(q1, p1) · · · (qn−1, pn−1)an(qn, pn) (1)

where n ≥ 0, q0, . . . , qn ∈ Q, p0, . . . , pn ∈ Z+ and a1, . . . , an ∈ A ∪ Ā ∪ {1}, such that a1 · · · an ∈
W (A) and for every 1 ≤ i ≤ n one of the following conditions is satisfied:

(1) (qi−1, qi) ∈ ∆(ai), ai 6= 1, pi−1 = pz for some p ∈ Z∗ and z ∈ Z, and pi = p(z + δ(ai)) with
δ(ai) = 1 if ai ∈ A and δ(ai) = −1 if ai ∈ Ā.

(2) (qi−1, qi) ∈ ∆(1+), ai = 1 and pi = pi−10.
(3) (qi−1, qi) ∈ ∆(1−), ai = 1 and pi−1 = pi0.
Then we put:
Definition 4.16 (k-pebble recognizability). A run ρ of A, as in Equation (1), uses at most
k pebbles when, for every 0 ≤ i ≤ n, the length of the sequence pi is at most k + 1.

For k ∈ N, a tile u is k-recognized by A when there exists a run ρ of A, as in Equation (1), that
uses at most k pebbles, such that u = θ(a1 · · · an), with (q0, p0) ∈ I × {0} and (qn, pn) ∈ F × Z.

The tile language L ⊆ T (A) is k-recognized by A if L is the set of tiles that are k-recognized
by A.

Let k-P2WA denote the class of tile languages k-recognized by finite-state pebble two-way
automata.
Remark 4.17. A simple check shows that, in the definition above, if u = (u1, u2, u3), then
pn = |u2| when u2 ∈ A∗ and pn = −|u2| when u2 ∈ Ā∗, i.e., pn is the relative position of the
output root of u compared to the input root of u.

More generally, when interpreting a run as a back and forth traversal of the tile u =
θ(a1a2 · · · an) from its input root to its output root (as in Remark 3.19), one can show that
if p0 = 0 then every other position configuration pi is of the form pi = z0z1 · · · zm with the
integers z0, z1, . . . , zm interpreted as follows. The integer z0 gives the relative position of the
first dropped pebble (or the reading head when m = 0) compared to the start of the run (i.e., the
input root of u). For every 0 < j < m, the integer zj gives the relative position of the (j + 1)th
pebble compared to the position of the jth pebble. Last, the integer zm gives the relative posi-
tion of the reading head compared to the position of the (m− 1)th pebble (or its initial position
when m = 0). The pebble automaton A keeps track of such relative positions by counting the
“number” of letters it reads in a1 · · · an, counted positive when in A (i.e., when moving to the
right on θ(a1 · · · an)) and negative when in Ā (i.e., when moving to the left).

Indeed, dropping a pebble amounts to pushing 0, the new position of the reading head com-
pared to that pebble. Reading a ∈ A∪ Ā, the position of the head compared to the last dropped
pebble (which is on top of the stack) is changed by δ(a). Lifting a pebble amounts to popping
the position of the head compared to the position of that pebble. That position must be 0; that
ensures that the head has moved back to the position it had when the pebble was dropped.
Theorem 4.18. k-REG = k-P2WA for every k ∈ N.
Proof. Follows from Lemmas 4.19 and 4.20 below. 2

Lemma 4.19. Every language of tiles k-recognized by a finite-state pebble two-way automaton
is k-regular.
Proof. Let A = 〈Q, I, F,∆〉 be a finite-state pebble two-way automaton. For every pair of states
(p, q) ∈ Q×Q and every integer k ≥ 0, let T kp,q ⊆ T (A) denote the language of tiles k-recognized
by the automaton 〈Q, {p}, {q}, ∆〉. Let Ckp,q denote the associated set of idempotent tiles Ckp,q =
(T kp,q)E .

It is easy to show that the languages T kp,q form the least solution of the set of equations
defined, for every p, q ∈ Q and every k ≥ 0, by:

T kp,q = δp,q +
∑

a∈A∪Ā

∑
(p,r)∈∆(a)

θ(a) · T kr,q

+
∑

(p,p′)∈∆(1+)

∑
(r′,r)∈∆(1−)

Ck−1
p′,r′ · T

k
r,q

with C−1
p′,r′ = ∅ and δp,q = {1} when p = q and ∅ otherwise.

Indeed, we just mimic in these equations all the possible cases to build a run. Either some
letter a ∈ A∪Ā is read, or a pebble is used. Observe that T kp,q only depends on tile languages of the
form T k

′

p′,q′ with k′ ≤ k or of the form Ck
′

p′,q′ = (T k′p′,q′)E with k′ < k. Thus no circular dependency
involves idempotent projections. It follows that this system can be solved by induction on k ∈
N, using Gaussian elimination, by Lemma 3.1. The tile language of tiles k-recognized by A is∑

(p,q)∈I×F T
k
p,q, and thus k-regular. 2

Lemma 4.20. Every k-regular language of tiles is k-recognized by a finite-state pebble two-way
automaton.

Proof. For k = 0 the result follows from Theorem 3.21. For k ≥ 1 the proof is by induction on
the syntactic complexity of k-regular expressions, combining pebble automata. We start with the
construction for the idempotent projection.

Given a pebble automaton A = 〈Q, I, F,∆〉 and its k-recognized tile language L, we define
the automaton A′ = 〈Q′, I ′, F ′, ∆′〉 by Q′ = Q∪{q0, qf} with q0 and qf two new states, I ′ = {q0},
F ′ = {qf}, and, for every a ∈ A ∪ Ā, ∆′(a) = ∆(a), ∆′(1+) = ∆(1+) ∪ ({q0} × I) and ∆′(1−) =
∆(1−)∪ (F ×{qf}). It is straightforward to check that the tile language LE is (k+ 1)-recognized
by the automaton A′.

Now letA1 = 〈Q1, I1, F1, ∆1〉 andA2 = 〈Q2, I2, F2, ∆2〉 be two pebble automata,k-recognizing
the tile languages L andM . We assume thatQ1 andQ2 are disjoint. Clearly, L+M is k-recognized
by the automaton 〈Q1∪Q2, I1∪ I2, F1∪F2, ∆〉 where ∆(a) = ∆1(a)∪∆2(a) for every a ∈ A∪ Ā.

Since, in general, (L+ {1}) · (M + {1}) = L ·M +L+M + {1} and (L+ {1})∗ = L∗, we may
assume in the remaining cases that I1 = {q0,1} and F1 = {qf,1} with q0,1 6= qf,1, and similarly for
A2. Moreover, we may assume that if (q, q′) ∈ ∆1(a) for a ∈ A ∪ Ā, then q 6= qf,1 and q′ 6= q0,1,
and similarly for A2. Finally, since the number of pebbles used is finite, we may assume that A1
keeps track of the number of dropped pebbles in its finite state, and so,if (q0,1, 0) · · · (qf,1, p) is a
run of A1, then p ∈ Z, and similarly for A2.

Under these assumptions, a pebble automaton for L∗ is obtained from A1 by identifying the
states q0,1 and qf,1. Moreover, a pebble automaton for L ·M is obtained from the automaton
〈Q1 ∪Q2, {q0,1}, {qf,2}, ∆〉, where ∆ is defined as above, by identifying the states qf,1 and q0,2.
2

It is well known that the language of words k-recognized by a finite-state pebble two-way
automaton is regular [12, 13, 11]. The next corollary states this for our pebble automata. We
define the language of words k-recognized by pebble automaton A to consist of all words u ∈ A∗
such that the tile (1, u, 1) is k-recognized by A.
Corollary 4.21. Every language of words k-recognized by a finite-state pebble two-way automa-
ton is regular.
Proof. By Lemma 4.19 and Theorem 4.12 the tile language k-recognized by a finite-state pebble
two-way automaton is MSO-definable. The remainder of the proof is the same as in the proof of
Corollary 4.9. 2

5 Conclusion

Studying languages of overlapping tiles, equivalently subsets of McAlister monoids, we have
considered several classes of languages: recognizable languages, regular languages, k-regular lan-
guages and MSO-definable languages, obtaining a strict though finite hierarchy

REC (REG = 0-REG (1-REG = k-REG = MSO

for every k ≥ 1, with a clear connection between k-regular expressions and languages k-recognized
by pebble automata.

Concerning further works, we have already mentioned the question of the succinctness hier-
archy possibly induced by the maximum number of pebbles or, equivalently, the nesting depth of
idempotent projections. The limit case of runs of pebble automata with no bound on the number
of allowed pebbles could also be studied.

The tight connection already provided between (invisible) pebbles in two-way pebble au-
tomata and idempotent projection within inverse semigroup theory reenforces the idea that the
latter, a robust mathematical theory, can be used to strengthen the former, a somehow quite
adhoc theory arising from application perspectives.

An intriguing related class of languages of tiles is the class BOOL(REG) of finite boolean
combinations of regular languages. It is obviously included in the class of MSO-definable lan-
guages, but it is by no means clear whether the inclusion is strict. Another further work would
be to relate the hierarchy with classes of algebraically recognizable languages of tiles, as defined
in [20, 24, 25].

Pebble automata can be seen as a restricted class of pushdown automata. This suggests that
context-free grammars over languages of tiles could also be studied. The presence of overlaps
together with compatibility constraints in the tile product clearly shows that the underlying
word languages would no longer be context-free. Still, studying these languages could lead to
alternative characterizations of weaker classes of context-sensitive languages such as, for instance,
the class of mildly context-sensitive grammars [49] much studied in computational linguistics.

Last, the inverse monoid approach proposed here for studying the behavior of two-way au-
tomata could perhaps be extended to two-way transducers.

Acknowledgement

The authors wish to express the deepest gratitude to anonymous referees for the incredibly high
quality, depth and length of their reports on former versions of the present paper. Thanks to their
comments some entire sections and proof arguments have been entirely made anew. Of course,
only the authors should be blamed for remaining mistakes or clumsiness.

References

1. F. S. Almeida. Algebraic Aspects of Tiling Semigroups. PhD Thesis, Universidade de Lisboa, Facul-
dade de Ciências Departamento de Matemática, Lisboa, Portugal, 2010.

2. M. Anselmo. Automates et code zigzag. ITA, 25:49–66, 1991.
3. J. Berstel. Transductions and Context-Free Languages. Teubner Verlag, 1979.
4. F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio or symbolic musical

patterns: an algebraic approach. International Journal of Semantic Computing, 6(4):409–427, 12
2012.

5. J.-C. Birget. Concatenation of inputs in a two-way automaton. Theor. Comp. Sci., 63(2):141 – 156,
1989.

6. B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic, a language theoretic
approach, volume 138 of Encyclopedia of mathematics and its applications. Cambridge University
Press, 2012.

7. A. Dicky and D. Janin. Embedding finite and infinite words into overlapping tiles. In Developments
in Language Theory (DLT), volume 8633 of LNCS, pages 339–347. Springer, 10 2014.

8. Do Long Van, B. LeSaëc, and I. Litovsky. On coding morphisms for zigzag codes. ITA, 26:565–580,
1992.

9. E. Dubourg and D. Janin. Algebraic tools for the overlapping tile product. In Language and
Automata Theory and Applications (LATA), volume 8370 of LNCS, pages 335 – 346. Springer, 03
2014.

10. J. Engelfriet, H. J. Hoogeboom, and J.-P. Van Best. Trips on trees. Acta Cybern., 14(1):51–64, 1999.
11. J. Engelfriet, H. J. Hoogeboom, and B. Samwel. XML transformation by tree-walking transducers

with invisible pebbles. In Principles of Database System (PODS). ACM, 2007.
12. J. Engelfriet and H.J. Hoogeboom. Tree-walking pebble automata. In J. Karhumäki, H. Maurer,

G. Paun, and G. Rozenberg, editors, Jewels are forever, contributions to Theoretical Computer
Science in honor of Arto Salomaa, pages 72–83. Springer, 1999.

13. J. Engelfriet and H.J. Hoogeboom. Automata with nested pebbles capture first-order logic with
transitive closure. Logical Methods in Computer Science, 3, 2007.

14. J. Fountain, G. Gomes, and V. Gould. The free ample monoid. Int. Jour. of Algebra and Comp.,
19:527–554, 2009.

15. S. Fratani and G. Sénizergues. Iterated pushdown automata and sequences of rational numbers.
Ann. Pure Appl. Logic, 141(3):363–411, 2006.

16. V. Geffert and L. Istonová. Translation from classical two-way automata to pebble two-way au-
tomata. RAIRO - Theor. Inf. and Applic., 44(4):507–523, 2010.

17. N. Globerman and D. Harel. Complexity results for two-way and multi-pebble automata and their
logics. Theor. Comp. Sci., 169(2):161–184, 1996.

18. P. Hudak and D. Janin. Tiled polymorphic temporal media. In Work. on Functional Art, Music,
Modeling and Design (FARM), pages 49–60. ACM Press, 2014.

19. D. Janin. Quasi-inverse monoids (and premorphisms). Research report RR-1459-12, LaBRI, Uni-
versité de Bordeaux, 04 2012.

20. D. Janin. Quasi-recognizable vs MSO definable languages of one-dimensional overlapping tiles. In
Mathematical Found. of Comp. Science (MFCS), volume 7464 of LNCS, pages 516–528, 09 2012.

21. D. Janin. Vers une modélisation combinatoire des structures rythmiques simples de la musique.
Revue Francophone d’Informatique Musicale (RFIM), 2, 09 2012.

22. D. Janin. Algebras, automata and logic for languages of labeled birooted trees. In Int. Col. on Aut.,
Lang. and Programming (ICALP), volume 7966 of LNCS, pages 318–329. Springer, 07 2013.

23. D. Janin. On languages of one-dimensional overlapping tiles. In Int. Conf. on Current Trends in
Theo. and Prac. of Comp. Science (SOFSEM), volume 7741 of LNCS, pages 244–256. Springer, 01
2013.

24. D. Janin. Overlaping tile automata. In 8th Int. Computer Science Symp. in Russia (CSR), volume
7913 of LNCS, pages 431–443. Springer, 06 2013.

25. D. Janin. On languages of labeled birooted trees: Algebras, automata and logic. Information and
Computation, 2014.

26. D. Janin. Walking automata in the free inverse monoid. Research report, LaBRI, Université de
Bordeaux, 2015.

27. D. Janin, F. Berthaut, and M. Desainte-Catherine. Multi-scale design of interactive music systems
: the libTuiles experiment. In Sound and Music Comp. (SMC), 2013.

28. D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and S. Salvati. The T-calculus : towards a
structured programming of (musical) time and space. In Work. on Functional Art, Music, Modeling
and Design (FARM), pages 23–34. ACM Press, 2013.

29. J. Kellendonk. The local structure of tilings and their integer group of coinvariants. Comm. Math.
Phys., 187:115–157, 1997.

30. J. Kellendonk and M. V. Lawson. Tiling semigroups. Journal of Algebra, 224(1):140 – 150, 2000.
31. J. Kellendonk and M. V. Lawson. Universal groups for point-sets and tilings. Journal of Algebra,

276:462–492, 2004.
32. M. Kunc and A. Okhotin. Describing periodicity in two-way deterministic finite automata using

transformation semigroups. In Developments in Language Theory (DLT), volume 6795 of LNCS,
pages 324–336. Springer, 2011.

33. M. V. Lawson. Inverse Semigroups : The theory of partial symmetries. World Scientific, 1998.
34. M. V. Lawson. McAlister semigroups. Journal of Algebra, 202(1):276 – 294, 1998.

35. B. LeSaëc, I. Litovsky, and B. Patrou. A more efficient notion of zigzag stability. ITA, 30(3):181–194,
1996.

36. S. W. Margolis and J.-E. Pin. Languages and inverse semigroups. In Int. Col. on Aut., Lang. and
Programming (ICALP), volume 172 of LNCS, pages 337–346. Springer, 1984.

37. D.B. McAlister. Inverse semigroups which are separated over a subsemigroups. Trans. Amer. Math.
Soc., 182:85–117, 1973.

38. W. D. Munn. Free inverse semigroups. Proceeedings of the London Mathematical Society, 29(3):385–
404, 1974.

39. J.-P. Pécuchet. Automates boustrophedon, semi-groupe de Birget et monoide inversif libre. ITA,
19(1):71–100, 1985.

40. M. Petrich. Inverse semigroups. Wiley, 1984.
41. J-.E. Pin. Chap. 10. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook of

formal languages, Vol. I, pages 679–746. Springer-Verlag, 1997.
42. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research

and Development, 3(2):114 –125, april 1959.
43. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
44. H. E. Scheiblich. Free inverse semigroups. Semigroup Forum, 4:351–359, 1972.
45. J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM J. Res. Dev.,

3:198–200, April 1959.
46. P. V. Silva. On free inverse monoid languages. ITA, 30(4):349–378, 1996.
47. W. Thomas. Chap. 7. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, Vol. III, pages 389–455. Springer-Verlag, Berlin Heidelberg, 1997.
48. M. Y. Vardi. A note on the reduction of two-way automata to one-way automata. Information

Processing Letters, 30:261–264, 1989.
49. D.J. Weir. Characterizing mildly context-sensitive grammar formalisms. PhD thesis, University of

Pennsylvania, 1988.

