
HAL Id: hal-01184116
https://hal.archives-ouvertes.fr/hal-01184116

Submitted on 13 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Median preserving aggregation functions
Miguel Couceiro, Jean-Luc Marichal, Bruno Teheux

To cite this version:
Miguel Couceiro, Jean-Luc Marichal, Bruno Teheux. Median preserving aggregation functions. 8th
International Summer School on Aggregation Operators and their Applications (AGOP 2015), Michal
Baczyński, Bernard De Baets, Radko Mesiar, Jul 2015, Katowice, Poland. pp.85-89. �hal-01184116�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49496797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01184116
https://hal.archives-ouvertes.fr


MEDIAN PRESERVING AGGREGATION FUNCTIONS

Miguel Couceiro
LORIA

(CNRS - Inria G. E. - U. Lorraine)
Bat. B, Campus Sci. - B.P. 239
F-54506 Vandoeuvre-lès-Nancy
miguel.couceiro[at]inria.fr

Jean-Luc Marichal
Mathematics Research Unit,
University of Luxembourg
6, rue Coudenhove-Kalergi

L-1359 Luxembourg
jean-luc.marichal[at]uni.lu

Bruno Teheux
Mathematics Research Unit,
University of Luxembourg
6, rue Coudenhove-Kalergi

L-1359 Luxembourg
bruno.teheux[at]uni.lu

Summary

A median algebra is a ternary algebra that
satisfies every equation satisfied by the me-
dian terms of distributive lattices. We
present a characterization theorem for ag-
gregation functions over conservative median
algebras. In doing so, we give a character-
ization of conservative median algebras by
means of forbidden substructures and by pro-
viding their representation as chains.

Keywords: Median algebras, Aggregation
Functions, Distributive lattices.

1 INTRODUCTION AND
PRELIMINARIES

Informally, an aggregation function f : An → B may
be thought of as a mapping that preserves the struc-
ture of A into B. It is common to consider that B
is equal to A and is equipped with a partial order
so that aggregation functions are thought of as order-
preserving maps [8].

If L = 〈L,∧,∨〉 is a distributive lattice then the
ternary term operation defined on L by

m(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) (1.1)

is symmetric and self dual, and is called the median
term over L. If L is a total order, then m(a, b, c) is
the element among a, b and c that is between the two
other ones if a, b, c are mutually distinct, and is the
majority element otherwise.

Median algebras are ternary algebras that were intro-
duced in order to abstract this notion of betweenness.
Formally, a median algebra is an algebra A = 〈A,m〉

with a single ternary operation m that satisfies the
equations

m(x, x, y) = x,

m(x, y, z) = m(y, x, z) = m(y, z, x),

m(m(x, y, z), t, u) = m(x,m(y, t, u),m(z, t, u)),

and that is called a median operation. In particular,
every median algebra satisfies the equation

m(x, y,m(x, y, z)) = m(x, y, z). (1.2)

Examples of median operations are given by median
term operations over distributive lattices. If L is a
distributive lattice and if mL is the operation defined
on L by (1.1) then the algebra 〈L,mL〉 is called the
median algebra associated with L. If A is a median al-
gebra, the median operation is extended to An point-
wise.

A median algebra A = 〈A,m〉 is said to be conserva-
tive if

m(x, y, z) ∈ {x, y, z},
for every x, y, z ∈ A. It is not difficult to observe that a
median algebra is conservative if and only if each of its
subsets is a median subalgebra. Moreover, the median
term associated with a total order is a conservative
median operation. This fact was observed in §11 of
[12], which presents the four element Boolean algebra
as a counter-example.

The results of this paper, which were previously ex-
posed in [5], are twofold. First, we present a de-
scription of conservative median algebras in terms
of forbidden substructures (in complete analogy with
Birkhoff’s characterization of distributive lattices
with M5 and N5 as forbidden substructures and Ku-
ratowski’s characterization of planar graphs in terms
of forbidden minors), and that leads to a representa-
tion of conservative median algebras (with at least five
elements) as chains. In fact, the only conservative me-
dian algebra that is not representable as a chain is the
four element Boolean algebra.



Second, we characterize functions f : B → C that
satisfy the equation

f(m(x, y, z)) = m(f(x), f(y), f(z)), (1.3)

where B and C are finite products of (non necessar-
ily finite) chains, as superposition of compositions of
monotone maps with projection maps (Theorem 4.5).
Particularized to aggregation functions f : An → A,
where A is a chain, we obtain an Arrow-like theorem:
f satisfies equation (1.3) if and only if it is dictatorial
and monotone (Corollary 4.6).

Throughout the paper we employ the following no-
tation. For each positive integer n, we set [n] =
{1, . . . , n}. Algebras are denoted by bold roman cap-
ital letters A,B,X,Y . . . and their universes by italic
roman capital letters A,B,X, Y . . .. To simplify our
presentation, we will keep the introduction of back-
ground to a minimum, and we will assume that the
reader is familiar with the theory of lattices and or-
dered sets. We refer the reader to [7, 9] for further
background. Proofs of the results presented in the
fourth section are omitted because they rely on argu-
ments involving a categorical duality that are beyond
the scope of this paper. The missing proofs and details
can be found in [6].

2 MEDIAN ALGEBRAS, MEDIAN
SEMILATTICES AND MEDIAN
GRAPHS

Median algebras have been investigated by several au-
thors (see [4, 10] for early references on median alge-
bras and see [2, 11] for some surveys) who illustrated
the deep interactions between median algebras, order
theory and graph theory.

For instance, take an element a of a median algebra A
and consider the relation ≤a defined on A by

x ≤a y ⇐⇒ m(a, x, y) = x.

Endowed with this relation, A is a ∧-semilattice order
with bottom element a [13]: the associated operation
∧ is defined by x ∧ y = m(a, x, y).

Semilattices constructed in this way are called median
semilattices, and they coincide exactly with semilat-
tices in which every principal ideal is a distributive
lattice and in which any three elements have a join
whenever each pair of them is bounded above. The
operation m on A can be recovered from the median
semilattice order ≤a using identity (1.1) where ∧ and
∨ are defined with respect to ≤a. Semilattices as-
sociated with conservative median algebras are called
conservative median semilattices.

Note that if a median algebra A contains two elements
0 and 1 such that m(0, x, 1) = x for every x ∈ A,
then (A,≤0) is a distributive lattice order bounded
by 0 and 1, and where x ∧ y and x ∨ y are given by
m(x, y, 0) and m(x, y, 1), respectively. It is notewor-
thy that equations satisfied by median algebras of the
form 〈L,mL〉 are exactly those satisfied by median al-
gebras. In particular, every median algebra satisfies
the equation

m(x, y, z) = m
(
m
(
m(x, y, z), x, t

)
,

m
(
m(x, y, z), z, t

)
,m

(
m(x, y, z), y, t

))
. (2.1)

Moreover, covering graphs (i.e., undirected Hasse di-
agram) of median semilattices have been investigated
and are, in a sense, equivalent to median graphs. Re-
call that a median graph is a (non necessarily finite)
connected graph in which for any three vertices u, v, w
there is exactly one vertex x that lies on a shortest
path between u and v, on a shortest path between u
and w and on a shortest path between v and w. In
other words, x (the median of u, v and w) is the only
vertex such that

d(u, v) = d(u, x) + d(x, v),

d(u,w) = d(u, x) + d(x,w),

d(v, w) = d(v, x) + d(x,w).

Every median semilattice whose intervals are finite has
a median covering graph [1] and conversely, every me-
dian graph is the covering graph of a median semilat-
tice [1, 13]. This connection is deeper: median semi-
lattices can be characterized among the ordered sets
whose bounded chains are finite and in which any two
elements are bounded below as the ones whose cover-
ing graph is median [3]. For further background see,
e.g., [2].

3 CHARACTERIZATIONS OF
CONSERVATIVE MEDIAN
ALGEBRAS

Let C0 = 〈C0,≤0, c0〉 and C1 = 〈C1,≤1, c1〉 be chains
with bottom elements c0 and c1, respectively. The
⊥-coalesced sum C0⊥C1 of C0 and C1 is the poset
obtained by amalgamating c0 and c1 in the disjoint
union of C0 and C1. Formally,

C0⊥C1 = 〈C0 t C1 /≡, ≤
〉
,

where t is the disjoint union, where ≡ is the equiva-
lence generated by {(c0, c1)} and where ≤ is defined
by

x/≡ ≤ y/≡ ⇐⇒ (x ∈ {c0, c1} or x ≤0 y or x ≤1 y).



•z′
•
a

•x •y

•z

(a) A1

•
a

•x

•y •z

(b) A2

•z
′

•
a

•x •y

•z

(c) A3

•z′

•
a

•x •y

•z

(d) A4

Figure 1: Examples of ∧-semilattices that are not con-
servative.

Proposition 3.1. The partially ordered sets
A1, . . . ,A4 depicted in Fig. 1 are not conserva-
tive median semilattices.

Proof. The poset A1 is a bounded lattice (also denoted
by N5 in the literature on lattice theory, e.g., in [7, 9])
that is not distributive. In A2 the center is equal to
the median of the other three elements. The poset A3

contains a copy of A2, and A4 is a distributive lattice
that contains a copy of the dual of A2 and thus it is
not conservative as a median algebra.

The following Theorem provides descriptions of con-
servative semilattices with at least five elements, both
in terms of forbidden substructures and in the form
of representations by chains. Note that any semilat-
tice with at most four elements is conservative, but the
poset depicted in Fig. 1(b).

Theorem 3.2. Let A be a median algebra with |A| ≥
5. The following conditions are equivalent.

(1) A is conservative.

(2) For every a ∈ A the ordered set 〈A,≤a〉 does not
contain a copy of the poset depicted in Fig. 1(b).

(3) There is an a ∈ A and lower bounded chains
C0 and C1 such that 〈A,≤a〉 is isomorphic to
C0⊥C1.

(4) For every a ∈ A, there are lower bounded chains
C0 and C1 such that 〈A,≤a〉 is isomorphic to
C0⊥C1.

Proof. (1) =⇒ (2): Follows from Proposition 3.1.

(2) =⇒ (1): Suppose that A is not conservative, that
is, there are a, b, c, d ∈ A such that d := m(a, b, c) 6∈
{a, b, c}. Clearly, a, b and c must be pairwise distinct.
By (1.2), a and b are ≤c-incomparable, and d <c a and
d <c b. Moreover, c <c d and thus 〈{a, b, c, d},≤c〉 is
a copy of A2 in 〈A,≤c〉.

(1) =⇒ (4): Let a ∈ A. First, suppose that for every
x, y ∈ A \ {a} we have m(x, y, a) 6= a. Since A is
conservative, for every x, y ∈ A, either x ≤a y or y ≤a
x. Thus ≤a is a chain with bottom element a, and we
can choose C1 = 〈A,≤a, a〉 and C2 = 〈{a},≤a, a〉.

Suppose now that there are x, y ∈ A \ {a} such that
m(x, y, a) = a, that is, x ∧ y = a. We show that

z 6= a =⇒
(
m(x, z, a) 6= a

or m(y, z, a) 6= a
)
, z ∈ A. (3.1)

For the sake of a contradiction, suppose that
m(x, z, a) = a and m(y, z, a) = a for some z 6= a.
By equation (2.1), we have

m(x, y, z) = m
(
m
(
m(x, y, z), x, a

)
,

m
(
m(x, y, z), z, a

)
,m

(
m(x, y, z), y, a

))
. (3.2)

Assume that m(x, y, z) = x. Then (3.2) is equivalent
to

x = m(x,m(x, z, a),m(x, y, a)) = a,

which yields the desired contradiction. By symme-
try, we derive the same contradiction in the case
m(x, y, z) ∈ {y, z}.

We now prove that

z 6= a =⇒
(
m(x, z, a) = a or m(y, z, a) = a

)
, z ∈ A.

(3.3)
For the sake of a contradiction, suppose that
m(x, z, a) 6= a and m(y, z, a) 6= a for some z 6= a.
Since m(x, y, a) = a we have that z 6∈ {x, y}.

If m(x, z, a) = z and m(y, z, a) = y, then y ≤a z ≤a x
which contradicts x∧y = a. Similarly, if m(x, z, a) = z
and m(y, z, a) = z, then z ≤a x and z ≤a y which also
contradicts x ∧ y = a. The case m(x, z, a) = x and
m(y, z, a) = z leads to similar contradictions.

Hence m(x, z, a) = x and m(y, z, a) = y, and the
≤a-median semilattice arising from the subalgebra
B = {a, x, y, z} of A is the median semilattice as-
sociated with the four element Boolean algebra. Let
z′ ∈ A \ {a, x, y, z}. By (3.1) and symmetry we may
assume that m(x, z′, a) ∈ {x, z′}. First, suppose that
m(x, z′, a) = z′. Then 〈{a, x, y, z, z′},≤a〉 is N5 (Fig.
1(a)) which is not a median semilattice. Suppose then
that m(x, z′, a) = x. In this case, the restriction of ≤a
to {a, x, y, z, z′} is depicted in Fig. 1(c) or 1(d), which
contradicts Proposition 3.1, and the proof of (3.3) is
thus complete.



Now, let C0 = {z ∈ A | (x, z, a) 6= a}, C1 = {z ∈
A | (y, z, a) 6= a} and let C0 = 〈C0,≤a, a〉 and C1 =
〈C1,≤a, a〉. It follows from (3.1) and (3.3) that 〈A,≤a
〉 is isomorphic to C0⊥C1.

(4) =⇒ (3): Trivial.

(3) =⇒ (1): Let x, y, z ∈ C0⊥C1. If x, y, z ∈ Ci for
some i ∈ {0, 1} then m(x, y, z) ∈ {x, y, z}. Otherwise,
if x, y ∈ Ci and z 6∈ Ci, then m(x, y, z) ∈ {x, y}.

The equivalence between (3) and (1) in Proposition
3.2 gives rise to the following representation of conser-
vative median algebras.

Theorem 3.3. Let A be a median algebra with |A| ≥
5. Then A is conservative if and only if there is a
totally ordered set C such that A is isomorphic to
〈C,mC〉.

Proof. Sufficiency is trivial. For necessity, consider the
universe of C0⊥C1 in condition (3) of Proposition 3.2
endowed with ≤ defined by x ≤ y if x ∈ C1 and y ∈ C0

or x, y ∈ C0 and x ≤0 y or x, y ∈ C1 and y ≤1 x.

As stated in the next result, the totally ordered set C
given in Theorem 3.3 is unique, up to (dual) isomor-
phism.

Theorem 3.4. Let A be a median algebra. If C and
C′ are two chains such that A ∼= 〈C,mC〉 and A ∼=
〈C′,mC′〉, then C is order isomorphic or dual order
isomorphic to C′.

4 HOMOMORPHISMS BETWEEN
CONSERVATIVE MEDIAN
ALGEBRAS

In view of Theorem 3.3 and Theorem 3.4, we introduce
the following notation. Given a conservative median
algebra A (|A| ≥ 5), we denote a chain representation
of A by C(A), that is, C(A) is a chain such that
A ∼= 〈C(A),mC(A)〉, and we denote the corresponding
isomorphism by fA : A→ 〈C(A),mC(A)〉. If f : A→
B is a map between two conservative median algebras
with at least five elements, the map f ′ : C(A)→ C(B)
defined as f ′ = fB ◦ f ◦ f−1A is said to be induced by f .

A function f : A→ B between median algebras A and
B is called a median homomorphism if it satisfies equa-
tion (1.3). We use the terminology introduced above
to characterize median homomorphisms between con-
servative median algebras. Recall that a map between
two posets is monotone if it is isotone or antitone.

Theorem 4.1. Let A and B be two conservative
median algebras with at least five elements. A map
f : A → B is a median homomorphism if and only if
the induced map f ′ : C(A)→ C(B) is monotone.

•

•

•

•

•

•

(a) A monotone map
which is not a median
homomorphism.

•

•

• •

•

•

•

•

•

(b) A median homomorphism
which is not monotone.

Figure 2: Examples for Remark 4.3.

Corollary 4.2. Let C and C′ be two chains. A map
f : C→ C′ is a median homomorphism if and only if
it is monotone.

Remark 4.3. Note that Corollary 4.2 only holds for
chains. Indeed, Fig. 2(a) gives an example of a mono-
tone map that is not a median homomorphism, and
Fig. 2(b) gives an example of median homomorphism
that is not monotone.

Since the class of conservative median algebras is
clearly closed under homomorphic images, we obtain
the following corollary.

Corollary 4.4. Let A and B be two median alge-
bras and f : A → B. If A is conservative, and if
|A|, |f(A)| ≥ 5, then f is a median homomorphism if
and only if f(A) is a conservative median subalgebra
of B and the induced map f ′ : C(A) → C(f(A)) is
monotone.

We are actually able to lift the previous result to finite
products of chains. If fi : Ai → A′i (i ∈ [n]) is a family
of maps, let (f1, . . . , fn) : A1×· · ·×An → A′1×· · ·×A′n
be defined by

(f1, . . . , fn)(x1, . . . , xn) := (f1(x1), . . . , fn(xn)).

The following theorem characterizes median homo-
morphisms between finite products of chains.

Theorem 4.5. Let A = C1 × · · · × Ck and B =
D1 × · · · ×Dn be two finite products of chains. Then
f : A → B is a median homomorphism if and only
if there exist σ : [n] → [k] and monotone maps fi :
Cσ(i) → Di for i ∈ [n] such that f = (fσ(i), . . . , fσ(n)).

As an immediate consequence, it follows that aggre-
gation functions compatible with median functions on



ordinal scales are dictatorial.

If A = A1 × · · · × An and i ∈ [n], then we denote the
projection map from A onto Ai by πAi , or simply by
πi if there is no danger of ambiguity.

Corollary 4.6. Let C1, . . . ,Cn and D be chains. A
map f : C1×· · ·×Cn → D is a median homomorphism
if and only if there is a j ∈ [n] and a monotone map
g : Cj → D such that f = g ◦ πj.

In the particular case of Boolean algebras (i.e., powers
of a two element chain), Theorem 4.5 can be restated
as follows.

Corollary 4.7. Assume that f : 2n → 2m is a map
between two finite Boolean algebras.

(1) The map f is a median homomorphism if and only
if there are σ : [m] → ([n] ∪ {⊥}) and ε : [m] →
{id,¬} such that

f : (x1, . . . , xn) 7→ (ε1xσ1
, . . . , εmxσm

),

where x⊥ is defined as the constant map 0.

In particular,

(2) A map f : 2n → 2 is a median homomorphism if
and only if it is a constant function, a projection
map or the negation of a projection map.

(3) A map f : 2n → 2n is a median isomorphism if
and only if there is a permutation σ of [n] and an
element ε of {id,¬}n such that f(x1, . . . , xn) =
(ε1xσ(1), . . . , εnxσ(n)) for any (x1, . . . , xn) in A.

5 CONCLUDING REMARKS AND
FURTHER RESEARCH
DIRECTIONS

In this paper we have described conservative median
algebras and semilattices with at least five elements
in terms of forbidden configurations and have given
a representation by chains. We have also character-
ized median-preserving maps between finite products
of these algebras, showing that they are essentially de-
termined componentwise. The next step in this line
of research is to extend our results to larger classes of
median algebras and their ordered counterparts.
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