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AN ANALYTICAL APPROACH TO THE DESIGN OF 
SPECTRAL MEASUREMENTS IN THE DESIGN OF 
MULTISPECTRAL SENSOR 

DANIEL J, WIERSMA 
Minneapolis Honeywell 

DAVID A, LANDGREBE 
Purdue University 

ABSTRACT 

The purpose of the research which led to this 
paper is to develop an analytical procedure for 
the design of the spectral channels for multi
spectral remote sensor systems. An optimum 
design based on the criterion of minimum mean
square representation error using the Karhunen
Loeve expansion was developed to represent the 
spectral response functions from a stratum. From 
the overall pattern recognition system perspective 
the effect of the representation accuracy on a 
typical performance criterion, the probability 
of correct classification, is investigated. 
Although the analytical technique was developed 
primarily for the purpose of sensor design it 
was found that the procedure has potential for 
making important contributions to scene under
standing. It was concluded that spectral channels 
which have narrow bandwidths relative to current 
sensor systems may be necessary to provide 
adequate spectral representation and improved 
classification performance. The optimum sensor 
design provides a standard against which sub
optimum operational sensors can be compared. 

I. INTRODUCTION 

A pattern recognition system as used in a 
remote sensing system for earth resources consists 
of three fundamental components - the scene, the 
sensor, and the processor (Figure 1). The scene 
is that portion of the earth's surface observed 
by the sensor. The desired information is con
tained in the spectral, spatial, and temporal 
variations of the electromagnetic energy emanating 
from the scene. The sensor collects the energy 
and measures its features. The processor is 
typically a digitally implemented classification 
algorithm which makes an appropriate decision 
based on the feature measurements provided by 
the output from the sensor. Various types of 
ancillary data are also now typically used in the 
decision making process. 

At present the design of the processor 
algorithms is quite advanced and provides variety 
and flexibility for optimal performance given a 
feature set (Fukunaga, 1972; Duda and Hart, 1973). 
However, the design of the best set of features 
is a complex matter which is not well understood. 
In the current work we limit considerations to 
the design of the spectral aspects of features to 
make the problem more tractable, leaving other 
aspects to later occasions. We will attempt 
herein to advance the knowledge of the spectral 
representation of the scene and to provide an 
analytical basis for the design of spectral 
channels for an operational sensor. 

II. SPECTRAL REPRESENTATION AND OPTIMUM SENSOR 
DESIGN 

The multispectral scanner is a complex 
system that is designed infrequently and has very 
little built-in flexibility. It must serve a 
wide variety of users with little opportunity 
for specialization. As a result careful consid
eration must be given to the specification of 
the parameters in the sensor design. The para
meters may be grouped into five categories -
spectral representation, spatial representation, 
signal-to-noise ratio, ancillary data or infor
mation not contained in the spectral response 
function itself, and the information classes 
desired (Landgrebe, 1978). As we have indicated, 
the principal category of parameters dealt with 
here is that of the spectral representation, 
since the goal is to select spectral bands; 
however, all of the parameters are interrelated 
such that specifying one of them places con
straints on the others. 

The ultimate goal is to optimize the overall 
system performance with respect to some criterion. 
A typical criterion, and the one used here, is 
the probability of correct classification, an 
intricate function of the parameters. 

1979 Machine Processing of Remotely Sensed Data Symposium 

CHI430-S179/0000-0331$OO.75 © 1979 IEEE 331 



Let us begin by considering the information 
bearing aspects of the spectral response function 
X(A) (Holmes and MacDonald, 1969). This response 
function is proportional to the electromagnetic 
energy received by the sensor as a function of 
wavelength A (Figure 2). Many factors determine 
the spectral response function for a given 
observation. The irradiance of the sun, the 
conditions of the atmosphere, and the reflectance 
of the surface features are all known to have 
important effects on the response. Since a 
deterministic relationship between the response 
function and the factors affecting it would be 
very complex, the set of functions which are 
received will be modeled as a stochastic process. 

The ensemble of the stochastic process 
(Papou1is, 1965) will be defined in terms of the 
stratification necessary to apply pattern 
recognition methods to the earth observational 
problem. A stratum, S, is defined as the largest 
contiguous area which can be classified to an 
acceptib1e level of performance with a single 
training of the classifier. It is noted that the 
sensor must be designed to operate satisfactorily 
over a large number of such strata, which vary 
greatly with time, location and application. 
The collection of all possible strata which a 
sensor may observe is denoted by So. Since the 
set S is quite large, it is necessary to select 
a sma£ler subset which is representative in a 
statistical sense in order to perform the analysis. 

The random experiment for the stochastic 
process consists of the observation of a point in 
a stratum S. Each point in the stratum is mapped 
into a spectral response function (Figure 3). The 
collection of all response functions from a 
stratum defines an ensemble. The ensemble plus 
the corresponding probability measure defines the 
stochastic process (Papou1is, 1965). It is 
appropriate to assume for this process a Gaussian 
probability measure (Crane et a1, 1972). 

It is necessary to choose a.mathematica1 
model for the sensor to represent the spectral 
response function for each observationa. Let the 
sensor consist of a set of N filter functions 
or basis functions {~i(A)} such that the output 
of each filter is given by (Figure 4) 

xi = tXCA)¢i (A) dA (1) 

The output of the sensor model is a sequence, xl' 
~, .• , ~, which represents the spectral response 
by the approximation 

X(A)::: xl4>1(A)+Xz~2(A)+ ••• +~~(A) = xU) 

N 
= L xi~i (A) 

i=l 
For a small number of simple functions, the 
approximation is very coarse (Figure 5). It is 
desired to choose a (ordered) set which will be 
optimum in some sense over a stratum. For the 
purpose of achieving an optimal set, no 
restrictions will be placed on the physical 

(2) 

realizability of {~i(A)}. 

A key ,consideration is the choice of the 
criterion for optimality. Because the sensor 
must function over a varied collection of strata 
using any of a large collection of classifiers, 
a criterion was chosen which is a measure of the 
fidelity with which the output of the sensor 
represents the input. We will choose the set 
{~i(A)} such that for a given {X(A)} the approx
imation X(A) is as close as possible to the true 
spectral response function. Since the uses and 
therefore the specific spectral attributes needed 
by the various users cannot be predicted, this 
approach insures that all of the information in 
X(A) will still be available in and recoverable 
from the {xi}produced by the sensor. A common 
criterion for representation accuracy is the 
expected mean-square representation error given 
by 

E{£ } 
r 

(3) 

However, it is desirable at this point to 
generalize this criterion by introducing a weight 
function W(A) on the spectral interval. As will 
be seen presently, the weight associated with 
each A can be used to in troduce a priori knowledge 
concerning the spectrum into the analysis. Thus 
equations (1) and (3) become, (Wiersma, 1979). 

JX(A)¢i (A)w(A)dA 

A 

(la) 

E{<r

' 

- E ( I Ix(;HH;)!'w(;)d; } (Ja) 

We want to choose the set of basis functions 
{~i(A)} which is optimum with respect to the 
spectral represent~tion criterion of expected 
mean-square error £. More specifically, it is 
desired the represe~tation be complete in the 
sense that the expected mean-square error for any 
function in the ensemble be made arbitrarily 
small simply by including enough terms, that 
convergence of the approximation to the original 
response be rapid in the first few terms, and that 
the basis functions be orthogonal to each other. 

A technique for determining the set of 
optimum basis functions for an ensemble which 
satisfies the desired properties is based on 
the weighted Karhunen-Loeve expansion. 
(Davenport and Root, 1958; Van Trees, 1968; 
Ash, 1967; Wiersma, 1979). The solution to the 
homogeneous linear integral equation 

y i ~i (A)= tK(A, E) ~i (l;)w(E;;) dE;; (4) 

with the covariance function of the stochastic 
process, K(A,I;), as kernel is a set of eigen
functions {~i(A)} with corresponding eigenvalues 
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• If the eigenvalues are arranged in descending 
order. the corresponding sequence of eigen
functions can be used to form a sequence of linear 
combinations of the eigenfunctions which converges 
to the original spectral response function with 
arbitrarily small expected mean-square error. 
Furthermore. because of the ordering of the 
eigenvalues. convergence in the first few terms 
is very rapid. This rapid convergence allows 
one to truncate the series expansion after a 
finite number of terms N with mean-square error 
minimized over all possible choices of N basis 
functions. The mean square error is given by 

L Y 
i=N+l i 

(5) 

Since the Karhunen-Loeve expansion is a well
studied technique and satisfies the desired 
properties for finding the basis functions. it 
provides a sound analytical method for deter
mining the optimum set of basis functions. 

It became apparent during this research that 
it may be advantageous to incorporate certain 
a priori information about the spectral interval 
into the analysis. The generalization of the 
Karhunen-Loeve expansion to include a weight 
function provided a convenient and appropriate 
means to incorporate such a priori knowledge into 
the design process. 

The optimum sensor design problem may be 
solved on a digital computer using empirical data 
taken by field measurements. Some appvoximations 
must be made in order to take into consideration 
some practical constraints. First the response 
functions are not available as continuous func
tions but are obtained in the field by sampling 
the-spectrum with an instrument that uses very 
narr()w spectral windows. Secondly. the para
meters of the process are not known a priori; 
hence. it is necessary to estimate the mean and 
covariance functions using a representative 
sample from the ensemble. Finally. because the 
data will be stored and processed digitally it 
is necessary to quantize the amplitude of the 
response at each of the spectral sample points. 
Each of these constraints can potentially con
tribute to the representation error. It has 
been shown that with reasonable care in selecting 
a sufficiently high spectral sampling rate. a 
large enough sample from the ensemble. and a 
large number of quantization intervals that 
the contribution of these factors to the repre
sentation error is small (Wiersma. 1979). The 
integral equation (4) becomes the matrix 
equation 

KW(jl (6) 

where (jl is the matrix of eigenvectors. r is the 
diagonal matrix of eigenvalues. K is the co
variance matrix and W is the diagonal matrix of 
weight coefficients. 

III. RELATIONSHIP BETWEEN THE SPECTRAL REPRESEN
TATION AND SYSTEM PERFORMANCE 

The performance of the overall system is 
ultimately what we wish to optimize. For remote 
sensing problems. an often used criterion for 
performance is the probability of correct 
classification P. If the vector X is an obser-

c vation from one of M classes Ci.i = 1.2 •••• M with 
a priori probabilities Pi' the probability of 
correct class\fication. using the maximum likeli
hood rule is given by 

P 
c 

(7) 

where p(xjc
i

) is the conditional joint probability 
density function for class i. The integral in 
(7) is over the observation space n. 

The analytical procedure based on the 
weighted Karhunen-Loeve expansion has prescribed 
a sensor design which minimizes the mean-square 
error. One would like to know how the ability to 
represent a process influences the classification 
performance. To study this relationship the 
graph of the probability of correct classification 
vs. expected mean-square error is introduced 
(Figure 6). We will briefly discuss some of its 
characteristics. 

The addition of terms to the series expansion 
causes a decrease in the spectral representation 
error. but the effect of the additional terms on 
the overall system performance has to be deter
mined. It can be shown that increasing the 
number of terms in the representation will never 
decrease the performance provided that the 
stochastic process is completely known. If after 
N terms the improvement in performance is small 
compared to the reduction in representation error. 
then the representation is sufficient. This is 
illustrated by case A of Figure 6 in which the 
threshold T indicates the minimum required 
E[e J. However. if the performance is showing 
sig5ificant improvement for a small decrease 
in the mean-square error. case B of Figure 6. more 
terms are necessary to complete the representation. 

Since the parameters of the stochastic 
process must be estimated from a sample of the 
ensemble. the effect of the size of the sample 
relative to the dimensionality of the system 
becomes important. Hughes (1968) has shown that 
if the sample size is too small. the classifi
cation performance may actually be degraded by 
adding terms to the expansion. Thus it is 
necessary to maintain a large set of sample 
functions from which to estimate the statistics. 
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The choice of information classes also in
fluences the performance of the pattern recogni
tion system. For purposes of classifying the data 
into distinct classes it is required that the 
class list have the following properties simul
taneously (Landgrebe, 1978): 

-Each class must be of interest to the 
user, i.e. of informational value. 

-The classes must be separable in terms 
of the features available. 

-The list must be exhaustive i.e. there 
must be a class to which it is logical to 
assign each pixel in the scene. 

The classes may be arranged in a hierarchial tree 
structure such that classes deeper in the tree 
require more accurate representation to achieve 
a given level of classification performance. 

The area of the ground resolution element, 
which is determined by the instantaneous field
of-view (IFOV), the altitude of the sensor, the 
scan rate, and the velocity of the sensor, are 
examples spatial representation parameters. The 
size of the objects which can be identified and 
the energy available are influenced by the choice 
of ground resolution element size. If a typical 
object which one wishes to identify is smaller 
than the ground resolution element size, then, 
it is very difficult to classify that object. 
Mobasseri (1978) has investigated the effe~t of 
the area of the resolution element on classifi
cation performance. Increasing the area often 
improves the signal-to-noise ratio which in turn 
improves the classification performance. 

For a given remote sensing problem the signal 
is the part of the received response which is 
information bearing, and the noise is that part 
which is non-information bearing. The influence 
of the signal-to-noise ratio where the noise is 
white, Gaussian and additive was demonstrated 
by (Ready et aI, 1971). Results show that over
all classification performance decreased with an 
increase in the noise level. A class which was 
difficult to identify under low noise level 
conditions suffered the most degradation when 
noise was added. 

IV. EXPERIMENTAL SYSTEM 

An experimental software system has been set 
up to implement the analytical procedure that 
has been developed. The software system has 
been implemented on an IBM 370 computer at the 
Laboratory for Applications of Remote Sensing 
(LARS) at Purdue University. 

A collection of field data consisting of 
spectral response functions on three dates from 
Williams County, North Dakota and three dates 
from Finney County, Kansas was available from 
the field measurements library at LARS. More 
than one thousand spectra were available from 
each location and collection date. The response 
functions were sampled in wavelength using 
narrow windows of .02~. 

The optimum set of basis functions is found 
numerically by estimating the covariance matrix 
from the sample response function. Maximum like
lihood estimates of the mean and covariance 
matrices are given by 

N 

.L E 
s 

X= E{X} Xi 
Ns i 

(8) 

and N 

LE 
s -T K = 

Ns i=i 
(Xi-X) (Xi -X) (9) 

where N is the number of sample functions avail
able an~ Xi is the ith sample vector. The co
variance is the kernel in the linear integral 
equation whose solutions are the optimum basis 
functions or eigenvectors. A remarkably stable 
and accurate method of mumerically computing the 
eigenvalues and eigenvectors was published by Grad 
and Brebner (1968). 

The eigenvectors are used to perform the 
linear transformation 

T -
Y i = tPi (X-X) (10) 

on the data set. The class conditional statistics 
are computed using the transformed data. 

In order to compare the performances of two 
systems an algorithm which estimates the prob
ability of correct classification for an M class 
problem given the class conditional multivariate 
Gaussian statistics was used (Wiersma, 1979). 
This algorithm, which is based on the stratified 
posterior estimator. (Whitsitt and Landgrebe, 
1977) was found to be accurate within one-half 
of one percent. 

The experimental system also included an 
ability to simulate (suboptimal) practical sensors. 
Although nearly any' sensor characteristic could 
be simulated, most of the sensors which were 
simulated consisted of a small set of rectangular 

baaia.::::,:"\.~:~.e~~e:.~,:-+l 
(11) 

where the \_ are endpoints of the spectral 
channels. the endpoints of two suboptimum sensors 
which were implemented are listed in Table 1. 

V. RESULTS 

One of the first tasks in using the spectral 
parameter design system was to select a weight 
function. The uniform weight function of Figure 7 
was tried first 'implying that no knowledge about 
signal and noise regions is available a priori. 
Plots of the first four eignevectors for this 
weight function are shown in Figure 8. It was 
observed that the eigenvectors were dominated in 
several cases by components in the bands near 
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Table 1. Spectral Band Locations for Two 
Practical Sensor Designs. 

Sensor Number 1 
Band Wavelength 

1 .5 to .6~ 

2 .6 to .7~ 
3 .7 to .8~ 

4 .8 to 1.1~ 

Sensor 
Band 

1 
2 
3 
4 
5 
6 

Number 2 
Wavelength 
.45 to .52].lm 
.52 to • 60~ 
.63 to .69~ 
.76 to .90~ 

1. 55 to 1. 75~ 
2.98 to 2.35].lJ1l 

1.4 and 1.9 micrometers. These bands are domi
nated by water absorption in. the atmosphere, and 
the eigenvectors which were sensitive to these 
bands contributed very little to the classi
fication performance. The second weight function 
which assigns a very small weight in the water 
absorption bands was, then, tried. (Figure 9). 
The influence of the spectrum in the water 
absorption bands is significantly reduced, and 
a marked improvement in classification perform
ance was observed from the first few eigenvectors. 

Results for one of the six sets of data are 
presented in ~igures 10 through 12. The data 
were collected over Williams County, North Dakota 
on June 29, 1977. In Figure 10 the expected 
mean-square error is plotted as a function of the 
number of terms in the expansion. Th~ rapid 
convergence in the first few terms is demonstrated 
by this graph. The first eight weighted eigen
vectors are plotted in Figure 11. Examination 
of the eigenvectors will provide some at least 
subjective indications as to which spectral 
aspects are important to sys tern performance. It 
is interesting to note that magnitude of the 
first eigenvector corresponds to the average 
response over the ensemble. The three classes 
represented in this data set were spring wheat, 
summer fallow and pasture. Since the data are 
from relatively early in the seasort, the wheat 
canopy is still quite thin and thus two of the 
three classes are spectrally similar to bare 
soil. This response is reflected in l~l(A) I. 
In the second eigenvector there begins a tendancy 
to represent the spectra in bands. As the number 
of terms in the expansion is increased, the terms 
that are added require higher spectral resolution 
to reduce the mean-square error. In Figure 12 the 
probability of correct classification is graphed 
as a function of the expected mean-square error. 

Although the primary purpose of this work is 
to produce a design procedure for sensors, im
portant contributions to the understanding of the 
scene can be gained. Properties such as di
mensionality, maximum possible classification 
performance, spectral resolution and the accuracy 
of spectral representation required to obtain a 
given level of performance can be studied. 

The dimensionality can be defined as the 
number of terms necessary to represent the 
original waveform to the desired accuracy. For 

the information classes used on the six data sets 
the dimensionality was about six to eight. Some 
strata required fewer terms to obtain a good 
representation and good performance, while others 
required more terms. 

The graph of classification performance as 
a function of expected mean-square error proved 
valuable for studying the relationship between 
representation accuracy and classification per
formance for the family of functions {~(A)}. It 
is possible to see which terms contributed to both 
the representation and. the classification per
formance. By examining the asymptotic performance 
as E{£r} approached ~ero, estimates of the maxi
mum classification performance were made. For 
the June 29 data set the maximum value of prob
ability of correct classification was about 0.96, 
which is the value for 10 optimal features. 

Each of the optimum basis functions was 
ranked according to its ability to classify pOints 
in the stratum. The ranking was based on single 
feature classification performance and multiple 
feature performance using divergence calculations 
and the performance estimator. The rankings for 
the June 29 data set are in parenthesis in 
Figure 11. It was found that the ranking on 
performance is not drastically different from 
the ranking based on representation accuracy. 
In general the first five eigenvectors tend to 
have a higher ranking than eigenvectors six 
through ten. 

The eigenvectors were used to evaluate the 
spectrum to determine effective ways of sampling. 
It was observed that the first few eigenvectors 
had relatively wide subintervals. Eigenvectors 
later in the sequence exhibited'high frequency 
(i.e. high spectral resolution) variations in 
magnitude. Examining several of the performance 
vs. representation curves it was found that these 
later terms were often significant thus indicating 
a need for high resolution sampling bands in 
certain portions of the spectrum. In particular 
it was found that narrow bandwidths on the order 
of .02 to .05 micrometers were needed in the 
visible region between 0.60 and 0.70~ 

The primary purpose of designing an optimal 
sensor was to use it as a standard to compare 
and evaluate practical sensor systems. With the 
present state-of-the-art in sensor system design 
functions such as those in Figure 11 are not 
practical. Practical ,designs such as the ones 
described by equation 11 and Table 1 can be 
evaluated and their performances compared to the 
optimal system. Based on the comparisons, one 
can make a decision as to whether the candidate 
design is satisfactory or some modifications 
need to be made. 

The comparisons between the two simulated 
sensors of Table 1 and the optimum set were made 
on the basis of representation accuracy (Table 2) 
and classification performance,(Figure 13). 
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Sensors 1 and.2 provide much poorer representation 
accuracy chiefly because they do not represent the 
whole spectral interval. For the information 

Table 2. Comparison of Expected Mean-Square 
Error (in relative units) for Data Taken Over 
Williams County, North Dakota on June 27, 1977 

Sensor 1 17320 
Sensor 2 16380 
First 4 optimal basis functions 26.31 
First 6 optimal basis functions 11.37 
First 10 optimal basis functions 5.253 

classes used for this data set much of the infor
mation in the response is not required for 
discrimination be tween the classes. The imp rove
ment in representation by sensor 2 over sensor 
1 is very significant. The optimal sensor con
sists of the first 10 eigenvectors, where 10 
provides a small mean-square error yet keeps the 
computational problems involved with high 
dimensional systems to a reasonable level. As 
shown in Figure 13 the four band sensor 1 compares 
very poorly with the best four optimal ~i' showing 
sensor 1 to be far from optimal for these classes. 
On the other hand the six band sensor 2 compares 
very favorably with the best six optimal ~i' the 
difference in estimated P being certainly less 
than the uncertainty of P~ estimation. The slight 
further improvement of the first ten optimal ~ 
is shown for comparison. However, since thereiis 
a large difference in representation accuracy, 
this favorable comparison may not be true for a 
different set of information classes. 

VI. CONCLUSIONS 

An analytical procedure has been developed 
for the design of the spectral characteristics 
for a multispectral remote sensor system. The 
procedure provides a standard for comparison of 
suboptimum sensors and a basis for the selection 
of spectral channels for operational sensor 
systems. 

Significant contributions to the under
standing of the scene were gained from this 
investigation. In particular knowledge about 
important spectral bands was extracted and 
efficient spectral sampling techniques were 
developed. Determination of scene properties 
such as signal dimensionality and maximum prob
ability of correct classification was performed. 
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Figure 2. Spectral Response Function for 
Mature Wheat Collected on August 4, 1977 Over 
Williams County, North Dakota 
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Figure 4. Sensor System Model 
Figure 5. Approximation of the Spectral Response 
Function by a Set of Four Basis Functions 
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Figure 10_ Expected Mean-Square Error as a 
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Karhunen-Loeve Expansion for Williams 
County, June 29, 1977 
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Figure 11_ First Eight Eigenvectors for Williams County, June 29, 1977 
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Figure 12. Estimate of Probability of Correct 
Classification vs Expected Mean-Square Error for 
Williams County, June 29, 1977 

Figure 13. Comparison of Probability of 
Correct Classification for Several Sensors 
for Williams County, North Dakota, June 29, 1977 
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