
HAL Id: hal-01184261
https://hal.inria.fr/hal-01184261

Submitted on 18 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ontology-Based Workflow Validation
Tuan Anh Pham, Thi Hoa Hue Nguyen, Nhan Le Thanh

To cite this version:
Tuan Anh Pham, Thi Hoa Hue Nguyen, Nhan Le Thanh. Ontology-Based Workflow Validation. RIVF:
International Conference on Computing & Communication Technologies - Research, Innovation, and
Vision for Future, Can Tho University, Can Tho, Vietnam, Jan 2015, Can Tho, Vietnam. pp.41 - 46,
�10.1109/RIVF.2015.7049872�. �hal-01184261�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49496677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01184261
https://hal.archives-ouvertes.fr

 Ontology-Based Workflow Validation

Tuan Anh Pham

WIMMICS – I3S – CNRS - INRIA

University of Nice Sophia Antipolis

Sophia Antipolis, France

tuan-anh.pham@inria.fr

Thi-Hoa-Hue Nguyen
WIMMICS – I3S – CNRS - INRIA

University of Nice Sophia Antipolis

Sophia Antipolis, France

nguyenth@i3s.unice.fr

Nhan Le Thanh
WIMMICS – I3S – CNRS - INRIA

University of Nice Sophia Antipolis

Sophia Antipolis, France

 nhan.le-thanh@inria.fr

Abstract—In order to ensure a workflow to be executed

correctly, many approaches were introduced. But not many of

them consider the semantic correctness of the workflow in the

design time and the run time. In this paper, a solution to check

the semantic correctness of the workflow automatically is

presented. To do that, the workflow must be represented in a

machine understandable form, an ontology-based approach to

represent a workflow is proposed. In addition, we also provide a

set of changed operations allowing the users to customize a

workflow for using in their organizations. Their change can be

made while ensuring the correctness of the workflow. Moreover,

a verification method is proposed for checking the semantic

correctness of workflow.

Keywords—Workflow; Ontology; Coloured Petri Net; Workflow

verification

I. INTRODUCTION

A workflow is a set of related activities which can be
executed in a certain order. For a long time, the workflow was
studied by the company [1], [2]. They have been trying to
make it more intelligent and more flexible, one of the most
important point is to verify the correctness of the workflow
automatically at the design time and during the run time to
allow the workflow can be executed correctly.

 Nowadays, many works have been done on workflow

verification. However, a complete solution for checking the

correctness of workflow is rarely considered. Many

researchers focus on the control-flow aspect, such as [7], [8],

[9], [10], [11] to prevent errors (e.g., avoiding deadlocks,

infinite cycles) at the syntactic level. Nevertheless, they

mainly check the conformance of a workflow process based

on the principle that if the constraints on data and control flow

are met during execution, the workflow is correct. There are

some teams proposing only the idea, they do not consider the

validation of workflow such as [19]. This team has the same

ontological approach with us but they did not consider the

semantic correctness and syntactic correctness [8] at the

design time and the runtime. With our approach, we use

Coloured Petri Net [21] to verify the syntactic correctness of a

workflow at the design time.
We realize that there are not many researchs on checking

the semantic correctness. Checking semantic correctness of
workflow is to ensure that a workflow is designed and
redesigned in compliance with some predefined rules in a
domain. Let us take an example, a user creates a process of the

Order Management Activity, he cannot create the task
“Evaluated results” before the task “Order request” because at
that time the request is not sent. This type of constraint is called
“Semantic Constraint”.

In this paper, we restrict ourselves to ensure the semantic
correctness of a workflow processes and provide a set of
changed operations to help the users customize a workflow to
be corresponded to their requirements while their change does
not affect to the semantic and syntactic constraints. Our
contributions are:

 Giving a formal method to describe a variety of semantic
constraints;

 Developing an ontology for annotating semantic
constraints and representing control flow-based business
workflow processes based on that ontology;

 Giving a set of changed operations to allow the users
customize the workflow;

 Showing how to use the SPARQL query language [6] to
check the semantic correctness of workflow processes.

This paper is organized as follows: A short introduction to
the CPN Ontology, which is defined to represent Coloured
Petri Nets (CPNs) [21] with OWL DL, is given in Section II.
Section III proposes a formal definition of semantic constraints
for business processes. We then develop a semantic
conformance-oriented ontology. In Section IV, we present the
creation of correspondences between these two ontologies to
develop workflow processes. In section V, we propose a set of
changed operations to customize the workflow. Five semantic
verification issues of a workflow process are introduced in
Section VI. Finally, Section VII concludes the paper with an
outlook on the future research.

II. REPRESENTATION OF COLOURED PETRI NET WITH OWL

DL ONTOLOGY

In this Section, we introduce the Coloured Petri Net
Ontology [21] defined for business processes modelled with
Coloured Petri Net (CPNs). The purpose of this ontology is to
ensure the syntactic correctness of workflow [8] processes and
to facilitate business process models for sharing and reusing.

On one hand, Coloured Petri Nets (CPNs) have been
developed into a full-fledged language for the design,
specification, simulation, validation and implementation of
large software systems. Consequently, modelling business

processes with CPNs supports workflow designers easy to
verify the syntactic correctness of workflow processes [8]. On
the other hand, OWL DL, which stands for OWL Description
Logic, is equivalent to Description Logic SHOIN(D). OWL
DL supports all OWL language constructs with restrictions
(e.g., type separation) and provides maximum expressiveness
while keeping always computational completeness and
decidability. Therefore, we choose OWL DL language to
represent the CPN Ontology. We believe that the combination
of CPNs and OWL DL provides not only semantically rich
business process definitions but also machine-processable
ones. Fig. 1 depicts the core concepts of the CPN ontology.

The CPN Ontology comprises the concepts: “CPNOnt”
defined for all possible CPNs: “Place” defined for all places;
“Transition” defined for all transitions; “InputArc” defined for
all directed arcs from places to transitions; “OutputArc”
defined for all directed ares from transitions to places; “Token”
defined for all tokens inside places (we consider the case of one
place containing no more than one token at one time);
“GuardFunction” defined for all transition expressions;
“CtrlNode” defined for occurrence condition in control nodes;
“ActNode” defined for occurrence activity in activity nodes,
“Delete” and “Insert” defined for all expressions in input arcs
and output arcs, respectively; “Attribute” defined for all
attributes of individuals); “Value” defined for all subsets of I1

 I2 … In where Ii is a set of individuals.

Properties between the concepts in the CPN Ontology are
also specified in Fig 1. For example, the concept “CPNOnt” is
defined with three properties “hasPlace”, “hasTrans” and
“hasArc”. It can be glossed as ‘The class CPNOnt is defined as
the intersection of:’ (i) any class having at least one property
“hasPlace” whose value restricted to the class “Place” and; (ii)
any class having at least one property “hasTransition” whose
value is restricted to the class Transition and; (iii) any class
having at least one property “hasArc” whose value is either
restricted to the class “InputArc” or the class “OutputArc”.

CPNOnt ≡≥ 1hasTrans.Transition⊓≥1hasPlace.Place⊓

 ≥ 1hasArc.(InputArc⊔ OutputArc)

Place ≡ connectsTrans.Transition ⊓

 = ≤1hasMarking.Token

Transition ≡ connectsPlace.Place ⊓

 1hasGuardFunction.GuardFunction

InputArc ≡≥ 1hasExpresion.Delete⊓∃ hasPlace.Place

OutputArc ≡≥ 1hasExpresion.Insert

 ⊓∃ hasTrans.Transition

Delete ≡∀ hasAttribute.Attribute

Insert ≡∃ hasAttribute.Attribute

GuardFunction ≡ ≥ 1hasAttribute.Token

 ⊓=1hasActivity.ActNode⊔ =1hasControl.CtrlNode

Token ≡≥1hasAttribute.Attribute

Attribute ≡≥1valueAtt.Value

ActNode ≡=1valueAtt.Value

CtrlNode ≡≤1valueAtt.Value

Value ≡ valueRef.Value

Fig. 1 : Coloured Petri Net ontology

III. SEMANTIC CONSTRAIN FOR BUSSINESS PROCESS

As mentioned previously, our work aims at representing
workflow processes modelled with CPNs is a knowledge base.
Therefore, in this section, we focus on ensuring their quality by
guaranteeing their semantic correctness.

A. Definition of Semantic Constraints

By talking account domain experts in support of modellers
at build time, a set of semantic constraints is specified, which
then is used to develop a corresponding workflow. According
to [13], there are two fundamental kinds of semantic
constraints, including mutual exclusion constraints and
dependency constraints. For interdependent tasks, e.g., the
presence of task A indicates that task B must be included,
however, task B can be executed while task A is absence. In
fact, there may exist tasks that are coexistent. This refers to the
coexistence constraints. Consequently, we propose three basic
types: mutual exclusion constraints, dependency constraints
and coexistence constraints.

Definition 1 (Semantic Constraint): Let T be a set of tasks. A

semantic constraint:

c = (constraintType, appliedTask, relatedTask, order,

description,[Equivalence]) where:

 constraintType{mExclusion,dependency,coexistence

};

 appliedTask T;

 relatedTask T;

 order {before, after, concurrence, notSpecified};

 description is an annotation of the constraint;

 Equivalence is a set of tasks which are equivalent to

task appliedTask.

In Definition 1, the first parameter “constraintType”

denotes the type of a semantic constraint. Each value of
“constraintType” refers to the relationship between the
executions of the source task denoted by the second parameter
“appliedTask” and the target task denoted by the third
parameter “relatedTask”. Parameter “order” specifies the order
between the source and target tasks in a process model. The
first four parameters are very important when defining a
semantic constraint. The fifth parameter, “description”, is used
for describing the constraint. “Equivalent3 is an optional
parameter, which contains a set of tasks (if any) being
equivalent to the source task.

Let us continue the example of a process of the Order
Management activity. The process is determined as follows:
After receiving an order, two tasks have to do in parallel are
“authenticate client” and “check availability”. If both of these
tasks result “true”, the order is accepted. An order confirmation
is sent out. In contrast, an order refusal is sent out, etc. Some
semantic constraints of the process are formed as follows:

c1 = (dependency, authenticate client, receive request, before,

receiving an order has to be performed before authenticating

client, {authenticate purchaser});

c2 = (dependency, check availability, receive request, before,

receiving an order has to be performed before checking

availability);

c3 = (coexistence, authenticate client, check availability,

concurrence, client authentication and checking availability

are performed in parallel);

c4 = (dependency, evaluate results, authenticate client, before,

evaluating the results obtained from the relevant departments);

c5 = (dependency, evaluate results, receive request, before,

receiving an order has to be performed before evaluating

results related to the order)

B. Development of a Semantic conformance-oriented

Ontology

Our work aims at representing processes modelled with
CPNs in a knowledge base. Therefore, to provide a
representation of semantic constraints related to process
elements, we develop an approach for constructing a new
ontology. This ontology is oriented to semantic conformity
checking in workflow processes. We focus on formalizing the
concepts/relations corresponding to the knowledge that is
required by model elements.

The following keystones to transform a set of semantic
constraints into an OWL DL ontology:

 Each semantic constraint c is mapped to an instance of
owl :Class.

 “appliedTask” and “relatedTask” are mapped into two
instances of owl :Class. The rdfs:subClassOf property is
used to state that these classes is a subclass of the
constraint class.

 Each value of “constraitType” or order is defined as an
instance of the built-in OWL class owl:ObjectProperty.

 Description is defined as an instance of the built-in
OWL class owl:Datatype Property;

 Each value in the set Equivalence is mapped to an
instance of owl:Class. The built-in property owl:
equivalentClass is used to link every class description
of these classes to the class description of
“appliedTask”.

In the next Section, we will discuss about the integration of
a semantic conformance-oriented ontology (domain
knowledge) and the CPN Ontology to create workflow
processes.

Fig. 2 : An example of ontology mapping

IV. CREATION OF CORRESPONDENCES BETWEEN

ONTOLOGIES

We rely on ontology mapping techniques for matching
semantics between ontologies, i.e., the CPN Ontology and
Domain Ontology (a semantic conformance-oriented
ontology). In our case, the articulation of two ontologies is
used not only for creating semantically workflow processes,
but also for verifying their correctness.

We now define our use of the term “mapping": Consider
two ontologies, O1 and O2. Mapping of one ontology with
another is defined as bringing ontologies into a mutual
agreement in order to make them consistent and coherent. It
means that for a concept or a relation in ontology O1, we try to
find the same intended meaning in ontology O2 ; For an
instance in ontology O1, we find the same instance in ontology
O2.

 Definition 2 (Mapping related to the “before” property)
Give an instance, IC, of a semantic constraint in which the order
between the instance of class “appliedTask”, named taska, and
the instance of class “relatedTask”, named taskb, is indicated by
the object property before. The type of instance IC is either
dependency or coexistence. A set of correspondences is
determined as follows:

 Each instance of class “appliedTask” or “relatedTask” is
mapped into an instance of class Transition (expresses
activity node).

 There exists a firing sequence t1t2 … tn , where t1; tn are the
instances of class T ransition corresponding to instances

taska and tb respectively, ta = t1, tb = tn n2.

Definition 3 (Mapping related to the “concurrence”
property)

Give an instance, IC, of a semantic constraint in which the
order between the instance of class “appliedTask”, named
taska, and the instance of class “relatedTask”, named taskb, is
indicated by the object property concurrence. The type of
instance IC is coexistence. A set of correspondences is
determined as follows:

 Each instance of class “appliedTask” or “relatedTask” is
mapped into an instance of class “Transition” (expresses
activity node).

 Two instances of class transitions which correspond to
instance taska and instance taskb can be enabled at the same
time.

It is important to note that object property “before” is the
symmetrical property of object property “after”. Consequently,
we do not define a mapping related to the “after” property.

By continuing the process schema for the Order
Management Activity in Section 4, Figure 1 shows the
mapping of some instances between two ontologies, CPN
Ontology and Semantic Conformance-oriented Ontology.

We have introduced the formal definition of semantic
constraints and illustrated how to model a workflow process
with CPNs based on specified semantic constraints. Note that
concrete workflow processes are represented in RDF syntax.
Moreover, to develop or modify a workflow process,

manipulation operations [20] (e.g., inserting a new element) are
required. Therefore, it is necessary to verify workflow
processes at the design time before using it.

V. CUSTOMIZING OF WORKFLOW

In this section, we introduce a set of changed operations to
help the users modify the workflow to be corresponded to their
requirements. Each customized workflow we consider like a
workflow instance which must respect the set of predefined
semantic constraints and set of predefined syntactic constraints.

In the Semantic conformance-oriented Ontology, we have a
set of terminologies and constraints in many domains. But
when an user download a template to modify it, maybe they
want to modify the set of terminologies to be corresponded to
their system, so that is why we provide operation change
“Mapping terminology”.

TABLE I. SET OF CHANGED OPERATIONS

Fig. 3. Mapping of terminologies

Fig. 4. Splited operation

Changed Operations

Operation Template Instance

Mapping terminologies
Terminology

templates
User’s terminologies

Split A Node Set of nodes

Merge Set of nodes A Node

Insert/Remove N node N+1 node/ N-1 node

Semantic
conformance-

oriented Ontology

User’s Semantic
conformance-

oriented Ontology

Authenticate

Client
Login

Authenticate Client

Login

Search

Product

Collect

results
Inform

The results

Collect

results

Evaluate
results

Authenticate

Client

Check

Avaibility

Authenticate
Client

Fig. 5. Merged operation

 Let us continue the previous example. There are someones
who download this workflow to reuse it, but they want to use
the terminology “Login” instead of the terminology
“Authenticate Client”. we have a function to help him to create
a Semantic conformance-oriented Ontology which contain his
own set of terminologies. The mapping between two Semantic
conformance-oriented ontology is created also. “Split”
operation allows users to split a node into many nodes, the set
of splited nodes can be executed sequentially or in parallel.

In the Fig. 4, the task “Check availability” is splited into
two tasks, “Search product” and “Inform the results”. Before
do this operation, two terminologies above must be inserted
into the user’s Semantic conformance-oriented Ontology. The
relations between the new terminologies and the other one
must be generated depending on the old terminologies’s
relations.

We also provide the “Merged operation” to allow the users
to merge two tasks into one task. Continuing the previous
example, in Fig 4, two tasks “Collect results” and “Evaluate
results” are merged into one task “Operate results”. In this
case, to respect the semantic constraints, the new terminology
“Operate results” must be inserted into the user’s Semantic
conformance-oriented Ontology and have the same relations
with other terminologies which have a relation with two
terminologies “Collect results” and “Evaluate results”.

“Insert/Delete” operation help users to add a node into a
workflow or remove a node. When the user insert a node into a
workflow, must add a terminology into his Semantic
conformance-oriented Ontology before using it to create a node
in the workflow.

VI. SEMANTIC VERIFICATION ISSUE

We here pay attention to the research question relating to
semantic verification: Is the behavior of the individual
activities satisfied and conformed with the control flow? To
answer this question, we address the following semantic
verification issues:

 Are there activities whose occurrences are mutual
exclusion, but that may be executed in parallel or
in sequence?

 Are there activities whose executions are
interdependent, but that may be carried out in
choice or in parallel?

 Are there activities whose occurrences are
coexistent, but that may be executed in a choice?

 Are there any couples of activities whose order
executions are defined as one before the other, but
that may be executed in the opposite?

 Are there any couples of activities whose order
executions are defined as one after the other, but
that may be executed in the opposite order?

Because concrete workflows are stored in RDF syntax, we
rely on the CORESE [25] semantic search engine for
answering SPARQL queries asked against an RDF knowledge
base. We initiate SPARQL queries to verify whether workflow
processes contain semantic errors or not. SELECT query form
is chosen for this work. After a SELECT keyword, the
variables are listed that contain the return values. And in the
WHERE clause, one or more graph patterns can be specified to
describe the desired result.

The following query relating to the third verification issue
is used to query if the model contains `any pairs of activities
whose occurrences are coexistence but that may be executed in
choice'. The properties “h:coexistence” and “h:concurrence”
defined in the first ontology indicates the semantic constraint
between activities ?t1 and ?t2. On the other hand, the other
properties defined in the second ontology which represent these
activities restricted to the control flow perspective. By applying
this query to the workflow example depicted in Figure 1, the
result is empty.

The sample query does not only demonstrate that the
SPARQL query language is able to check the semantic
correctness of workflow processes, but also the usage of
terminological background knowledge provided by the
semantic conformance-oriented ontology and CPN Ontology.

Moreover, by representing CPNs-based business processes
with OWL DL ontology we can also verify the soundness of
models. This means that we can check syntactic errors (for
example, deadlocks, infinite cycles and missing
synchronization, etc.) by the SPARQL query language.

SELECT ?t1 ?t2 WHERE

{

?t1 rdf:type h:Transition

?t2 rdf:type h:Transition

?t3 rdf:type h:Xor-split

?t4 rdf:type h:Xor-join

?t1 h:coexistence ?t2

?t2 h:concurrence ?t1

?t3 h:connectsPlace/h:connectsTrans ?t1

?t3 h:connectsPlace/h:connectsTrans ?t2

?t1 h:connectsPlace/h:connectsTrans ?t4

?t2 h:connectsPlace/h:connectsTrans ?t4

FILTER (?t1!=?t2)

 }

Collect

results

Evaluate
results

Authenticate

Client

Check

Avaibility

Authenticate
Client

Check

Avaibility

Operate

results

VII. CONCLUSION

This paper presents an approach to define and customize a
workflow. First, we propose a formal method represents the
semantic constraint which is used to ensure the semantic
correctness of a workflow. To integrate the domain knowledge
used for annotating the process elements, we develop a
semantic conformance-oriented ontology. This ontology is then
matched with the CPN Ontology (a representation of CPNs
with OWL DL). We use the mapping two ontologies to verify
the semantic correctness of a workflow. Second, we provide
some changed operations which allow the users to customize a
workflow to be corresponded to their requirements.

With the future work, we will try to resolve following
problems:

 Verifying the semantic correctness and syntactic
correctness of the workflow when an user makes a
change in a workflow.

 Explaining in more detail about the conditions to merge
a set of nodes into a node and split a node into a set of
nodes, insert and delete a node in the workflow.

 Considering version control when an user makes a
change on the workflow, the system can be rollback to
the previous step.

 Working with other more complex constraints, not only
dependency, coexistence and exclusion.

 Enriching the set of terminologies.

REFERENCES

[1] Microsoft : Window workflow foundation. Version 4.5. Available from

http://msdn.microsoft.com/en-us/vstudio/jj684582.aspx

[2] Oracle : Oracle workflow for user. Version 2.6. Available from
http://docs.oracle.com/cd/B14117_01/workflow.101/b10285/ugov.htm

[3] Barros, A.P., ter Hofstede, A.H.M., Proper, H.A.: Essential principles
for workflow modelling effectiveness. In: PACIS. (1997) 15

[4] Koschmider, A., Oberweis, A.: Ontology based business process
description. In: EMOI-INTEROP, Springer (2005) 321-333

[5] Fellmann, M., Thomas, O., Busch, B.: A query-driven approach for
checking the semantic correctness of ontology-based process
representations. In: BIS. (2011) 62-73

[6] W3C: Sparql 1.1 query language. http://www.w3.org/TR/sparql11-
query/ (March 2013) W3C Recommendation

[7] van der Aalst W.M.P.: Verification of workflow nets. In: ICATPN.
(1997) 407-426

[8] Verbeek, H., Basten, T., van der Aalst, W.: Diagnosing workflow
processes using woflan. The computer journal 44 (1999) 246-279

[9] Bi, H.H., Zhao, J.L.: Applying propositional logic to workflow
verification. Information Technology and Management 5(3-4) (2004)
293-318

[10] Wainer, J.: Logic representation of processes in work activity
coordination. In: Proceedings of the 2000 ACM Symposium on Applied
Computing - Volume 1. SAC'00, New York, NY, USA, ACM (2000)
203-209

[11] Sadiq, W., Maria, Orlowska, E.: Analyzing process models using graph
reduction techniques. Information Systems 25 (2000) 117-134

[12] Lu, S., Bernstein, A.J., Lewis, P.M.: Automatic workflow verification
and generation. Theor. Comput. Sci. 353(1-3) (2006) 71-92

[13] Ly, L.T., Rinderle, S., Dadam, P.: Integration and verification of
semantic constraints in adaptive process management systems. Data
Knowl. Eng. 64(1) (2008)3-23

[14] Kumar, A., Yao, W., Chu, C.H., Li, Z.: Ensuring compliance with
semantic constraints in process adaptation with rule-based event
processing. In: RuleML. (2010) 50-65

[15] Ly, L.T., Rinderle-Ma, S., G•oser, K., Dadam, P.: On enabling
integrated process compliance with semantic constraints in process
management systems - requirements, challenges, solutions. Information
Systems Frontiers 14(2) (2012) 195-219

[16] Thomas, O., Fellmann, M.: Semantic process modeling - design and
implementation of an ontology-based representation of business
processes. Business & Information Systems Engineering 1(6) (2009)
438-451

[17] Weber,I.,Hoffmann, J., Mendling, J.: Beyond soundness: on the
verification of semantic business process models. Distributed and
Parallel Databases 27(3) (2010) 271-343

[18] Gasevic, D., Devedzic, V.: Interoperable petri net models via ontology.
Int. J. Web Eng. Technol. 3(4) (2007) 374-396

[19] Sebastian, A., Tudorache, T., Noy, N.F., Musen, M.A.: Customizable
workflow support for collaborative ontology development. In: 4th
International Workshop on Semantic Web Enabled Software
Engineering (SWESE) at ISWC 2008. (2008)

[20] Nguyen, T.H.H., Le-Thanh, N.: An ontology-enabled approach for
modelling business processes. In: Beyond Databases, Architectures and
Structures. Volume 424 of Communications in Computer and
Information Science. Springer International Publishing (2014) 139-147

[21] Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner's guide to
coloured petri nets. STTT 2(2) (1998) 98-132

[22] Ellis, C.A., Nutt, G.J.: Modeling and enactment of work ow systems. In:
Application and Theory of Petri Nets. (1993) 1-16

[23] W3C: Owl web ontology language reference.
http://www.w3.org/TR/owl-ref/ (2004) W3C Recommendation.

[24] van der Aalst, W.M.P.: The application of petri nets to work ow
management.Journal of Circuits, Systems, and Computers 8(1) (1998)
21-66

[25] Corby, O., et al.: Corese/kgram. https://wimmics.inria.fr/corese

