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Abstract—Software engineering research now considers that
no system is an island, but it is part of an ecosystem involving
other systems, developers, users, hardware, ... When one system
(e.g., a framework) evolves, its clients often need to adapt. Client
developers might need to adapt to functionalities, client systems
might need to be adapted to a new API, client users might need
to adapt to a new User Interface. The consequences of such
changes are yet unclear, what proportion of the ecosystem might
be expected to react, how long might it take for a change to diffuse
in the ecosystem, do all clients react in the same way? This paper
reports on an exploratory study aimed at observing API evolution
and its impact on a large-scale software ecosystem, Pharo, which
has about 3,600 distinct systems, more than 2,800 contributors,
and six years of evolution. We analyze 118 API changes and
answer research questions regarding the magnitude, duration,
extension, and consistency of such changes in the ecosystem.
The results of this study help to characterize the impact of API
evolution in large software ecosystems, and provide the basis to
better understand how such impact can be alleviated.

I. INTRODUCTION

As frameworks evolve, client systems often need to adapt
their source code to use the updated APIL. To facilitate
this time-consuming task, frameworks should be backward-
compatible and include deprecated methods. In practice,
researchers have found that frameworks are backward-
incompatible [1] and deprecation messages are often miss-
ing [2]. To deal with these problems, some approaches have
been developed to help client developers. This can be done,
for example, with the support of specialized IDEs [3], the help
of experts [4], or the inference of change rules [1], [5], [6],
(71, [8].

Commonly, these approaches are evaluated on small-scale
case studies. In practice, many software systems are part of a
larger software ecosystem, which often exists in organizations,
or open-source communities [9]. In this context, it is hard
to predict the real impact of API evolution. For example, in
ecosystems, API deprecation may affect hundreds of clients,
with several of these clients staying in an inconsistent state
for long periods of time or do not reacting at all [2]. This
suggests that the impact of API evolution may be large and

sometimes unknown; in this context, managing API evolution
is a complex and risky task [10].

To support developers to better understand the real impact
of API evolution and how it could be alleviated, software
ecosystems should also be studied. In that respect, a first
large-scale study was performed by one of the authors of this
paper, Robbes et al. [2], to verify the impact of deprecated
APIs on a software ecosystem. However, API evolution is
not restricted to deprecation. It may imply, for example, a
better API design that improves code legibility, portability,
performance, security, etc. But are client developers aware
of such evolving APIs? How frequent and how broad is the
impact on clients? The aforementioned study analyzes the
adoption of a specific group of changes, methods explicitly
annotated as deprecated. But this introduces a bias as people
will probably notice more readily changes documented and
checked by the compiler (explicit deprecation) than changes
not advertised. Therefore, there is still space for analyzing the
adoption of more generic API changes (not explicitly marked
as deprecated).

In this paper, we analyze the impact of API changes, not
related to explicit API deprecation, on client systems. We set
out to discover (i) to what extent API changes propagate to
client systems, and (ii) to what extent client developers are
aware of these changes. Our goal is to better understand, at the
ecosystem level, to what extent client developers are affected
by the evolution of APIs, and to reason about how it could
be alleviated. Thus, we investigate the following research
questions to support our study:

« RQ1 (Magnitude): How many systems react to API
changes in an ecosystem and how many developers are
involved?

¢ RQ2 (Duration): How long does it take for systems to
react to API changes?

o RQ3 (Extension): Do all the systems in an ecosystem
react to API changes?

¢ RQ4 (Consistency): Do systems react to an API change
in the same way?



In this study we cover the Pharo! software ecosystem, which
has about 3,600 distinct systems, more than 2,800 contributors
and six years of evolution, and we analyze 118 API changes.
We also compare our results with the Robbes et al. study on
API deprecation on Pharo [2] to better understand how these
two types of API evolution affect client systems.

The contributions of this paper are summarized as follows:

1) We provide a large-scale study, at the ecosystem level,
to better understand to what extent client developers
are impacted by API changes that are not marked as
deprecated.

2) We provide a comparison between our results and the
ones of the previous API deprecation study [2].

Structure of the paper: In Section II, we present the API
changes considered in this study. We describe our experiment
design in Section III. We present and discuss the experiment
results in Section IV. We present the implications of our study
in Section V, and the threats to the validity in Section VI.
Finally, we present related work in Section VII, and we
conclude the paper in Section VIII.

II. API CHANGES
A. Definition

In this work, we focus on API changes related to method
replacements and improvements, following the line studied by
several researches in the context of framework migration [1],
[5], [6], [7], [11], [12], [13], [8]. Next, we define and provide
examples on the two types of API changes considered in this
paper.

Method replacements: In this type of API change, one
or more methods in the old release are replaced by one
or more methods in the new release. For example, in a
one-to-one mapping, the method LineConnection.end() was
replaced by LineConnection.getEndConnector() from JHotDraw
5.2 to 5.3 [1]. In another case, in a one-to-many map-
ping, the method CutCommand(DrawingView) was replaced
by CutCommand(Alignment, DrawingEditor) and UndoableCom-
mand(Command) [1]. In both examples, the removed methods
have not been deprecated; they were simply dropped, causing
clients to fail.

Method improvements: In this type of API change, one
(or more) method in the old release is improved, producing
one (or more) new method in the new release. For example,
in Apache Ant, the method to close files was improved to
centralize the knowledge on closing files [13], producing a
one-to-one mapping where calls to InputStream.close() should
be replaced by FileUtils.close(InputStream). In this case, both
solutions to close files are available in the new release, i.e.,
both methods can be used. However, the latter is the suggested
one in order to improve maintenance. In the Moose plat-
form?, a convention states that calls to MooseModel.root() and
MooseModel.add(MooseModel) should be replaced by Moose-
Model.install() when adding models. Again, all the methods are

Uhttp://www.pharo.org, verified on 25/03/2015
Zhttp://www.moosetechnology.org, verified on 25/03/2015

available to be used, but MooseModel.install() is the suggested
one to improve code legibility.’

These types of API changes are likely to occur during
framework evolution, thus their detection is helpful for client
developers. Recently, researchers proposed techniques to au-
tomatically infer rules that describe such API changes [1],
[6], [7], [11], [12], [13]. In this study, we adopt our previous
approach [7] in order to detect API changes, which covers
both aforementioned cases.

B. Detecting API Changes

In our approach, API changes are automatically produced
by applying the association rules data mining technique [14]
on the set of method call changes between two versions of
one method. We produce rules in the format old-call — new-
call, indicating that the old call should be replaced by the new
one. Each rule has a support and confidence, indicating the
frequency that the rule occurs in the set of analyzed changes
and a level of confidence. We also use some heuristics to filter
rules that are more likely to represent relevant API changes;
for example, rules can be ranked by confidence, support or
occurrences in different revisions. Please, refer to our previous
study [7] for an in-depth description about how the rules are
generated.

III. EXPERIMENT DESIGN
A. Selecting the Clients: Pharo Ecosystem

For this study, we select the ecosystem built around the
Pharo open-source development community. Our analysis in-
cluded six years of evolution (from 2008 to 2013) with
3,588 systems and 2,874 contributors. There are two factors
influencing this choice. First, the ecosystem is concentrated
on two repositories, SqueakSource and SmalltalkHub, which
gives us a clear inclusion criterion. Second, we are interested
in comparing our results with the previous work of Robbes et
al. [2]; using the same ecosystem facilitates this comparison.
The Pharo ecosystem: Pharo is an open-source, Smalltalk-
inspired, dynamically typed language and environment. It is
currently used in many industrial and research projects.* The
Pharo ecosystem has several important projects. For example,
Seaside® is a web-development framework, a competitor for
Ruby on Rails as the framework of choice for rapid web
prototyping. Moose is an open-source platform for software
and data analysis. Phratch, a visual and educational program-
ming language, is a port of Scratch to the Pharo platform.
Many other projects are developed in Pharo and hosted in the
SqueakSource or SmalltalkHub repositories.

The SqueakSource and SmalltalkHub repositories: Squeak-
Source and SmalltalkHub repositories are the basis for the soft-
ware ecosystem that the Pharo community have built over the
years. They are the de facto platform for sharing open-source
code for this community offering a nearly complete view of

3See the mailing discussion in: http://goo.gl/U13Sha, verified on 25/03/2015
“http://consortium.pharo.org, verified on 25/03/2015
Shttp://www.seaside.st, verified on 25/03/2015
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the Pharo software ecosystem. The SqueakSource repository
is also partially used by the Squeak open-source development
community. SmalltalkHub was created after SqueakSource
by the Pharo community to be a more scalable and stable
repository. As a consequence, many Pharo projects migrated
from SqueakSource to SmalltalkHub, and nowadays, new
Pharo projects are concentrated in SmalltalkHub.

Transition between SqueakSource and SmalltalkHub: We
detected that 211 projects migrated from SqueakSource to
SmalltalkHub while keeping the same name and copying the
full source code history. We count these projects only once:
we only kept the projects hosted in SmalltalkHub, which hosts
the version under development and the full code history.

In theory, the migration was done automatically by a script
provided by SmalltalkHub developers, thus keeping the meta-
data such as project name. However, to increase our confidence
in the data, we calculated the Levenshtein distance between
the projects in each repository to detect cases of similar but
not equal project names. We detected that 93 systems had
similar names (i.e., Levenshtein distance = 1). By manually
analyzing each of these systems, we detected that most of
them are in fact distinct projects, e.g., “AST” (from abstract
syntax tree) and “rST” (from remote smalltalk). However,
14 systems are the same project with a slightly different
name, e.g., ‘“Keymapping” in SqueakSource was renamed
to “Keymappings” in SmalltalkHub. In these cases, again,
we only kept the projects hosted in SmalltalkHub, as they
represent the version under development and include the full
source code history.

B. Selecting the Frameworks: Pharo Core

Pharo core frameworks: The frameworks from which we
applied associations rules mining to extract the API changes
come from the Pharo core. They provide a set of APIs, includ-
ing collections, files, sockets, unit tests, streams, exceptions,
graphical interfaces, etc. (they are Pharo’s equivalent to Java’s
JDK). Such frameworks are available to be used by any system
in the ecosystem.

We took into account all the versions of Pharo core since
its initial release, i.e., versions 1.0, 1.4, 2.0, and 3.0. Table I
shows the number of classes and lines of code in each version.
The major development effort between versions 1.0 and 1.4
was focused on removing outdated code that came from
Squeak, the Smalltalk dialect Pharo is a fork of, explaining
the drop in number of classes and lines of code.

TABLE I
PHARO CORE VERSIONS SIZE.

[ Version | 1.0 1.4 2.0 3.0 ]
Classes 3,378 3,038 3,345 4,268
KLOC 447 358 408 483

Generating a list of API changes: We adopted our previous
approach [7], described in Section II, to generate a list of API
changes. We set out to produce rules with a minimum support

of 5, and a minimum confidence of 50%. The minimum
support at 5 states that a rule has a relevant amount of
occurrences in the framework, and the minimum confidence
at 50% yields a good level of confidence (as an example,
Schifer et al. [12] use a confidence of 33% in their approach
to detect evolution rules). Moreover, the thresholds reduce the
number of rules to be manually analyzed.

This process produced 344 rules that were manually ana-

lyzed with the support of documentation and code examples
to filter out incorrect or noisy ones. For example, the rule
SortedCollection.new() — OrderedCollection.new() (i.e., Java’s
equivalent to SortedSet and List, respectively) came out from
a specific refactoring on a specific framework but clearly we
cannot generalize this change for clients, so this rule was
discarded. This filtering produced 148 rules.
Filtering the list of API changes by removing deprecation:
Naturally, some of the API changes inferred by our approach
are related to API deprecation. As such cases were studied
by Robbes er al. [2], they are out of the scope of this paper.
For this purpose, we first extracted all methods marked as
deprecated found in the analyzed evolution of Pharo core;
this produced 1,015 API deprecation. By discarding the API
changes related to API deprecation, our final list includes 118
API changes.

From these API changes, 59 are about method suggestion
(i.e., both methods are available to be used by the client; cf.
Section II) and 59 are about method replacement (i.e., the
old method is removed, so it is not available to be used).
Furthermore, 10 out of the 118 API changes involved the
evolution of internal APIs of the frameworks which, in theory,
should not affect client systems. By internal API, we mean a
public component that should only be used internally by the
framework, i.e., not by client systems. For instance, in Eclipse,
the packages named with infernal include public classes that
is not part of the API provided to the clients [15], [16].

In Table II, we present some examples of API changes.
The first API change improves code legibility, as it replaces
two method calls by a single, clearer one. The second exam-
ple replaces a method with a more robust one, that allows
one to provide a different behavior when the intersection is
empty. The third is an usage convention: Pharo advises not
to use Object.log() methods, to avoid problems with the log
function. Finally, the fourth one represents a class and method
replacement due to a large refactoring: ClassOrganizer.default()
does not exist anymore; ideally, it should have been marked
as deprecated.

TABLE I
EXAMPLE OF API CHANGES.

[ id [ API change (old-call — new-call) ]

1 ProtoObject.isNil() and Boolean.ifTrue(*) — ProtoObject.ifNil(*)
2 | Rectangle.intersect(*) — Rectangle.intersectlfNone(*,*)

3 | Object.logCr(*) — Object.traceCr(*)

4 | ClassOrganizer.default() — Protocol.unclassified()




Assessing reactions of API changes in the ecosystem:
When analyzing the reaction of the API changes in the
ecosystem, we do not consider the frameworks from which
we discovered the API changes, but only the client systems
hosted at SqueakSource and SmalltalkHub, as described in
Subsection III-A. To verify a reaction to API change in these
systems, we need to detect when the change was available.
We consider that an API change is available to client systems
from the moment it was discovered in the framework. All
commits in the client systems after this moment that remove
a method call from the old API and add a call to the new API
are considered to be reactions to the API change.

Notice that, in this study, we assess commits in the ecosys-
tem that applied the prescribed API change (i.e., the removals
and additions of method call according to the rule we inferred).
In the API deprecation study [2], the authors were primarily
interested in the removals of calls to deprecated methods, but
did not consider their replacement.

IV. RESULTS
A. Magnitude of Change Propagation

RQI. How many systems react to the API changes in an ecosystem
and how many developers are involved?

1) Results: In this research question we verify the fre-

quency of reactions and we quantify them in number of
systems, methods, and developers.
Frequency of reactions: From the 118 API changes, 62 (53%)
caused reactions in at least one system in the ecosystem.
Moreover, from these API changes, 5 are internal, meaning
client developers also use internal parts of frameworks to
access functionalities not available in the public interfaces.
We see in the next research questions that many systems take
time to react to API changes. Hence, some API changes may
not have been applied by all systems yet.

These reactions involved 178 (5%) client systems and 134
(4.7%) distinct developers. We show the distribution of such
data (i.e., the API changes that caused change propagation) in
the box plots shown in Figure 1.

(a) reacting systems (b) reacting methods (c) reacting developers

number of reacting systems
number of reacting methods
number of affected developers

10 15 20 25 30 35

|

Fig. 1. Box plots for (a) systems, (b) methods, and (c) developers reacting
to API changes.

Reacting systems: Figure la shows the distribution of reacting
systems: the 1st quartile is 1 (bottom of the box), the median
is 2 (middle of the box), the 3rd quartile is 5 (i.e., 25% of the
API changes cause reactions in 5 or more systems, forming the
top of the box in the box plot), and the maximum is 11 (i.e.,

it marks the highest number of reacting systems that is not
considered an outlier, forming the top whisker of the box).
The API change isNil().ifTrue(*) — ifNil(*) caused the largest
reaction, 41 systems; this change is depicted as the dot at the
top of the box plot in Figure 1a (in a box plot all outliers are
shown as dots).

Reacting methods: For methods (Figure 1b), the 1st quartile
is 2, the median is 6, the 3rd quartile is 17, and the maximum
is 39. These results show that some systems reacted several
times to the same API change: the median system reaction is 2
while the median method reaction is 6. For example, the API
change isNil().ifTrue(*) — ifNil(*) caused reaction in 41 systems,
but 89 methods.

Reacting developers: The number of developers impacted by
API changes is shown in Figure 1c, as the number of commit
authors that react to the API changes. In this case, the 1st
quartile is 1, the median is 2, the 3rd quartile is 5, and the
maximum is 11. The median at 2 shows that many change
propagations involve few developers while the 3rd quartile at
5 shows that some of them involve several developers. The
API change isNil().ifTrue(*) — ifNil(*), for example, involved a
large number of developers (37). Overall, the distribution of
the number of developers involved in the change is similar to
the number of systems, implying that it is common that only
one developer from a given system reacts to the API changes.

2) Comparison with API deprecation: Our magnitude re-
sults are different when we compare to explicit API depreca-
tion. In the previous study there was a higher level of reaction
to API changes. In the present study, 62 API changes caused
reactions while in the API deprecation case, 93 deprecated
entities caused reactions, i.e., 50% more. The median of
reactions in our study is 2, whereas it is 5 in the case of
API deprecation. This is expected, since deprecated methods
produce warning messages to developers while in the case of
API changes no warning is produced.

Another difference relies on the number of developers
involved in the reaction. In our study, it is common that one de-
veloper reacts to the API changes while in the API deprecation
study it is more common that several developers of the same
system react. One possible explanation is again that changes
involving deprecated methods are usually accompanied by
warnings, thus they can be performed by any client developer.
In contrast, the API changes evaluated in this work can only
be performed by developers that previously know them. This
confirms that reacting to an API change is not trivial, thus,
sharing this information among developers is important.

These results compared to the previous study reinforce the
need to explicitly annotate API deprecation. More people gain
knowledge of the changes and more systems/methods are
adapted.

B. Duration of Change Propagation

RQ2. How long does it take for systems to react to API changes?

1) Results: A quick reaction to API changes is desirable for
clients to benefit sooner from the new API. Next, we evaluate
the reaction time of the ecosystem.



We calculate the reaction time to an API change as the
number of days between its creation date (i.e., the first time
it was detected in the framework) and the first reaction in
the ecosystem. As shown in Figure 2a, the minimum is 0
days, the 1st quartile is 5 days, the median is 34 days, the
3rd quartile is 110 days. The 1st quartile at 5 days shows that
some API changes see a reaction in few days: this is possible
if developers work both on frameworks and on client systems,
or coordinate API evolution via mailing lists [17].

In contrast, the median at about 34 days and the 3rd quartile
at 110 days indicate that some API changes take a long time to
be applied. In fact, as Pharo is a dynamically typed language,
some API changes will only appear for developers at runtime
which can explain the long time frame.

(b) reacting time

(a) reacting time .
(method impr and

o

800
1

800
1

o

number of days
600

1
number of days
600

1

400
1

400
1

200
1

200
1

o
N

—

method
replacement

o
8
o
8
e
—

0
L

0
1

mefhod
improvement

Fig. 2. Box plots for reaction time of (a) all API changes and (b) separated
by method improvement and replacement, both in number of days.

In addition, we analyze the reaction time considering the
two categories of API changes, method improvement and
replacement, as shown in Figure 2b. For the API changes
about improvement, the Ist quartile is 10 days, the median is
47 days, the 3rd quartile is 255 days, and the maximum is 351
days. In contrast, for the API changes about replacement, the
Ist quartile is 1 days, the median is 20 days, the 3rd quartile
is 59 days, and the maximum is 110 days.

Therefore, the reaction time for the API changes due to
method improvements is longer than the ones about replace-
ment, implying that the former is harder to be detected by
client developers. This is explained by the fact that in the
case of method improvements, the old method is still valid, so
client developers are not forced to update their code. However,
they would benefit if such API changes are suggested to them
beforehand. In practice, many developers are simply not aware.

In summary, the results show that the reaction to API
changes is not quick. Client developers need some time to
discover and apply the changes; this time is longer for API
changes related to method improvements.

2) Comparison with API deprecation: The reaction time
of the API changes considered in our study is longer when
we compare to the reaction time of API deprecation. In the
API deprecation case, the 1st quartile is 0 days, the median is
14 days, and the 3rd quartile is 90 days (compared to 5, 34

and 110 days, respectively, in our API changes). Clearly, the
reaction to deprecated APIs is faster than in the case of API
changes. This is facilitated by the warning messages produced
by deprecated methods.

If we compare method improvement in this study with
method explicit deprecation in the previous study, we see
it takes more than 3 times longer (47 days against 14) to
react without explicit deprecation. To complement the result
in section I'V-A, explicit deprecation allows more developers
to know of the change and more quickly.

C. Extension of Change Propagation

RQ3. Do all the systems in an ecosystem react to API changes?

1) Results: In the previous subsection we concluded that
some systems take a long time to react to an API change. Here,
we see that other systems do not react at all. To determine
whether all systems react to the API changes, we investigate
all the systems that are potentially affected by them, i.e., that
feature calls to the old API.

Table III shows that 2,188 (61%) client systems are po-
tentially affected by the API changes, involving 1,579 (55%)
distinct developers. Moreover, we detected that 112 API
changes (out of 118), including the 10 internal API changes,
potentially affected systems in the ecosystem. In the rest of
this subsection, we analyze the distribution of such data.

TABLE III
EXTENSION OF CHANGE PROPAGATION.

Number of affected...
Systems | Methods | Developers

[ 2188 | 107,549 | 1519 |

Affected systems and methods: Figures 3a and 3b show the
distribution of systems and methods affected by API changes
in the ecosystem. We note that the number of affected systems
and methods are much higher than those that actually react
to API changes (as shown in Figure 1). The 1st quartile of
affected systems is 15 compared to only 1 system reacting
(methods: 59 compared to 2). The median of affected systems
by an API change is 56.5 compared to only 2 systems reacting
to it (methods: 253 compared to 2). The 3rd quartile of affected
systems is 154.5 compared to 5 systems reacting (methods:
744.5 compared to 17).

Relative analysis: The relative analysis of reacting and affected
systems produces a better overview of the impact. In that
respect, comparing the ratio of reacting systems to the ratio of
affected systems gives the distribution shown in Figure 4a. It
shows that a very low number of systems react: the median is
0%, the 3rd quartile is 3%, the maximum is 7%. We investigate
possible reasons for this low amount of reactions.

In an ecosystem, a possibly large amount of the systems
may be stagnant, or even dead [2]. Thus, we first investigate
the hypothesis in which systems that did not react either
died before the change propagation started or were stagnant.
A system is dead if there are no commits to its repository
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Fig. 3. Box plots for (a) systems and (b) methods affected by API changes.
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Fig. 4. Box plots for ratios of: (a) reacting affected systems; (b) reacting
alive systems; and (c) reacting alive systems, removing counter reactions.

after the API change that triggered the change propagation. A
system is stagnant if a minimal number of commits (less than
10) was performed after the API change. Thus, removing dead
or stagnant systems (i.e., keeping alive systems only) produces
the distribution shown in Figure 4b: the median is 2.5%, the
3rd quartile is 12%, and the maximum is 27%.

A second reason why a system would not react to a change
is when it is using another version of the framework, one
in which the API did not change. This may occur when a
system does not have the manpower to keep up-to-date with
the evolution and freezes its relationship with a version that
works [2]. To estimate this effect, we measure the number of
systems that actually add more calls to the old API change, i.e.,
they are counter reacting to the API evolution. Thus, removing
these systems from the alive ones gives the distribution shown
in Figure 4c: the median is 9%, the 3rd quartile is 44%, and the
maximum is 100%. This new distribution reveals that many
systems do not update to the new framework versions, even
after filtering out dead, stagnant, and counter-reacting systems.
As a result, the effort of migrating to newer versions becomes
more expensive over time due to change accumulation.

2) Comparison with API deprecation: The presented re-
acting ratios are very different when compared to the API
deprecation study. For the ratio of reacting and affected
systems, the 1st quartile is 13%, the median is 20%, and the
3rd quartile is 31% in the API deprecation case (compared
to 0%, 3% and 7%, respectively, in our API changes), which
confirms the difference between both types of API evolution.
These percentages increase in the other ratio comparisons.

For the ratio of reacting and alive without counter reacting
systems, the 1st quartile is 50%, the median is 66%, and the
3rd quartile is 75% for API deprecation (compared to 0%, 9%
and 44%, respectively, in our API changes). Clearly, client
systems react more to API deprecation. However, our results
show that reactions to API changes are not irrelevant.

D. Consistency of Change Propagation

RQ4. Do systems react to an API change in the same way?

1) Results: The API changes analyzed in the previous
research questions described the main way the analyzed
frameworks evolved. However, some API changes may allow
multiple replacements [2]. For example, Table IV shows
three examples of API changes extracted from the analyzed
frameworks, and their reactions by the ecosystem.

TABLE IV
EXAMPLES OF API CHANGES; THE NUMBERS SHOW THE CONFIDENCE OF
THE REPLACEMENT IN THE ECOSYSTEM.

New call
Framework |

suspendAllWhile()

Old call (framework)

Ecosystem

80% suspendAllWhile()
40% Fonts.menuFont()
40% ECPref.menuFont()
63% HashFunction.new()
30% SHA1.new()

doSilently()

Pref.menuFont() Fonts.menuFont()

HashAlgorithm.new() SHA1.new()

The first API change, doSilently() — suspendAllWhile(), is
mostly followed by the ecosystem, presenting a confidence
of 80% (i.e., 80% of the commits that removed the old call
also added the new call). For the second API change, Pref-
erences.standardMenuFont() — StandardFonts.menuFont(), the
ecosystem reacts with two possible replacements, both with
confidence of 40%. For the third API change, SecureHashAl-
gorithm.new() — SHA1.new(), the ecosystem also reacts with
two possible replacements: a main one with confidence of
63% and an alternative one with 30%.% Notice that, in this
case, the main replacement is not the one extracted from the
analyzed framework, i.e., it is HashFunction.new() instead of
SHA1.new().

To better understand such cases, we analyze the consistency
of the API changes by verifying the reactions of the ecosystem.
Consistency of main and alternative replacements in the
ecosystem: Figure 5a presents the confidence distribution of
the main and alternative replacements in the ecosystem. For
the main replacement, the 1st quartile is 36%, the median
is 60%, and the 3rd quartile is 100%. For the alternative
replacement, the 1st quartile is 20%, the median is 25%, and
the 3rd quartile is 31%. These results show that alternative
replacements are found in the ecosystem (such as the second
and third examples in Table IV), but with less confidence
than the main ones. Thus, alternative replacements explain a
minority of the cases where affected systems do not react to
the prescribed API changes.

%Main and alternative replacements of API changes in the ecosystem are
determined by verifying how the ecosystem replaces the old calls. This is done
by applying our approach described in Section II in the ecosystem itself.
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Fig. 5. Box plots for the confidence of (a) the reaction in the ecosystem
(main and alternative replacements) and (b) the reacting API changes (frame-
works/libraries and ecosystem).

Consistency of API changes in the frameworks and in the
ecosystem: Figure 5b compares the confidence distribution of
the 62 reacting API changes both in the analyzed frameworks
and in the ecosystem. In the analyzed frameworks, the mini-
mum is 53%, the 1st quartile is 81%, the median is 95%, and
the 3rd quartile is 100% (recall that a minimum confidence
of 50% was adopted to generate the API changes). In the
ecosystem, for the same API changes, the minimum is 2%, the
Ist quartile is 28%, the median is 60%, and the 3rd quartile
is 100%.

There is a difference in the confidence: the API changes
are more consistently followed by the frameworks than by
the ecosystem. This suggests that many replacements are
not resolved in a uniform manner in the ecosystem: client
developers may adopt other replacements in addition to the
prescribed ones (such as the second and third examples in
Table 1V); method calls may be simply dropped, so they
disappear without replacements; and developers may replace
the old call by local solutions. Thus, this result provides
evidence that API changes can be more confidently extracted
from frameworks than from clients (i.e., the ecosystem).

2) Comparison with API deprecation: For the main re-
placement in the API deprecation study, the confidence of the
Ist quartile is 46%, the median is 60%, and the 3rd quartile
is 80% (compared to 36%, 60%, and 100%, respectively, in
our study). Note that the distribution of the main replacement
is mostly equivalent in both cases. In fact, in the case of
API deprecation, it is common the adoption of alternative
replacements and home-grown solutions due to empty warning
messages.

V. SUMMARY AND IMPLICATIONS

In summary, our study shows that 53% (62 out of 118)
of the analyzed API changes caused reaction in only 5% of
the systems and affected 4.7% of the developers. Overall, the
reaction time of API changes is not quick (median 34 days).
Client developers, naturally, need some time to discover and
apply the new API; this time is even longer in the case of
method improvement. In contrast, a large amount of systems

are potentially affected by the API changes: 61% of the
systems and 55% of the developers. In fact, the number of
affected systems are much higher than those that actually react
to API changes. As a result, the effort of porting to newer
versions becomes more expensive due to change accumulation.

The answers to our research questions allow us to formulate

the following implications of our study.
Deprecation mechanisms should be more adopted: Half of
the API changes analyzed in this work (59 out of 118) are
about method replacements. It means that such API changes
are probably missing to use deprecation mechanisms. Ideally,
they should have been marked as deprecated by the framework
developers. In fact, in large frameworks, developers may not
know whether their code is used by clients: this may cause a
growth [2] or a lack in the use of deprecation [1], [15].

In our study, this lack of deprecation was mainly due to large
refactorings in the frameworks. For instance, the framework
for dealing with files completely changed after Pharo 1.4. As
a result, some APIs missed to be marked as deprecated; e.g.,
in the Moose migration to Pharo 3.0, a developer noticed this
issue and commented’: “In FileSystem, ensureDirectory() was
renamed to ensureCreateDirectory() without a deprecation”, the
framework developer then answered: “Fill up a bug entry and
we will add this deprecation. Good catch”. In fact, for such
cases, asking in Question and Answer sites® or mailing lists’
is the current alternative for client developers.

Based on these results we conclude the following:

Many deprecation opportunities are missed by the develop-
ers (we found at least 59 instances in our study). Recom-
menders can be built to remind API developers about these
missed opportunities.

Client developers use internal parts of frameworks: Internal
APIs are unstable and unsupported interfaces [16], so they
should not be used by clients. However, all the internal APIs
(i.e., 10 cases) analyzed in this work are used by clients.
From such, 5 caused the clients to react as in the frameworks.
Thus, our results reinforce (at large-scale and ecosystem level)
previous studies [11], [18], [16], showing that client systems
use internal parts of frameworks to access functionalities not
available in the public interfaces for a variety of reasons.
Based on these results we conclude the following:

Internal APIs are sometimes used by client developers in
the ecosystem under analysis. Recommenders can be build
to help API developers identify often used internal APIs;
those are candidates to be public APIs to keep clients using
stable and supported interfaces.

Replacements are not resolved in a uniform manner: Many
replacements are not resolved uniformly in the ecosystem.
Clients may adopt other replacements in addition to the

"http://forum.world.st/moving-moose-to-pharo-3-0-td4718927.html, veri-
fied on 25/03/2015

8Coordination via Question and Answer sites: http://stackoverflow.com/
questions/15757529/porting-code-to-pharo-2-0, verified on 25/03/2015

9Coordination via mailing lists: http://goo.gl/50q2yZ, http://g00.gl/k9FIOK,
http://goo.gl/SKkMORX, verified on 25/03/2015
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prescribed ones; method calls may be simply dropped; and
developers may replace the old call by local solutions. In this
context, some studies propose the extraction of API changes
from frameworks (e.g., [11]) other propose the extraction from
clients (e.g., [12]).

Based on these results we conclude the following:

There is no clear agreement on the best extraction source
to detect API changes: frameworks or client systems. This
study reinforces frameworks as a more reliable source.

Reactions to API changes can be partially automated: As
we observed, many systems do not react to the API changes
because they are not aware. Moreover, in the case of large
client systems, the adaptation may take a long time and is
costly if done manually.

Based on these results we conclude the following:

Most of the API changes that we found in this work can
be implemented as rules in static analysis tools such as
FindBugs [19], PMD [20], and SmallLint [21]. These rules
could help client developers to keep their source code up-
to-date with the new APIs.

VI. THREATS TO VALIDITY

Construct Validity: The construct validity is related to
whether the measurement in the study reflects real-world
situations. In our study, the main threat is the quality of the
data we analyze and the degree of involved manual analysis.

Software ecosystems present some instances of duplication
(around 15% of the code [22]), where packages are copied
from a repository to another (e.g., a developer keeping a copy
of a specific framework version). This may overestimate the
number of systems reacting to an API change.

Smalltalk (and Pharo) is a dynamically typed language, so
the detection of API change reaction may introduce noise as
systems may use unrelated methods with the same name. This
means that an API change that uses a common method name
makes change propagation hard to be detected. This threat is
alleviated by our manual filtering of noisy API changes.

Another factor that alleviates this threat is our focus on
specific evolution rules (i.e., a specific replacement of one or
more calls by one or more calls). For the first three research
questions, we include only commits that are removing an
old API and adding a new API to detect an API reaction.
Requiring these two conditions to be achieved, decreases—
or in some cases eliminates—the possibility of noise. For
the fourth research question, we require the presence of the
methods that contain a call to the old API In this case, the
noise could have been an issue, however, this threat is reduced
since we discarded the API changes involved with common
methods, i.e., the noisy ones.

We also identify two threats regarding the comparison with
the API deprecation study [2]. First, the time interval studied
is not the same one: we analyzed the ecosystem evolution
in the period from 2008 to 2013 while the API deprecation
study analyzed from 2004 to 2011. Second, the way API
changes are selected is different: while we deprecation study

simply collected the list of API deprecation, we inferred the
API changes from commits in source code repository; these
API changes were manually validated by the authors of the
paper with the support of documentation and code examples
to eliminate incorrect and noisy ones. For these reasons, we
can not claim that this is an exact comparison. Parts of the
differences observed may be due to other factors.

Internal Validity: The internal validity is related to un-
controlled aspects that may affect the experimental results.
In our study, the main threat is the possible errors in the
implementation of our approach.

Our tool to detect API changes has been (i) used by several
members of our laboratory to support their own research on
frameworks evolution, and (ii) divulged in the Moose reengi-
neering mailing list, so that developers of this community can
use it; thus, we believe that these tasks reduce the risks of this
threat.

External Validity: The external validity is related to the
possibility to generalize our results. In our study, the main
threat is the representativeness of our case studies.

We performed the study on a single ecosystem. It needs
to be replicated on other ecosystems in other languages to
characterize the phenomenon of change propagation more
broadly. Our results are limited to a single community in
the context of open-source; closed-source ecosystems, due to
differences in the internal processes, may present different
characteristics. However, our study detected API change reac-
tions in thousands of client systems, which makes our results
more robust.

The Pharo ecosystem is a Smalltalk ecosystem, a dynami-
cally typed programming language. Ecosystems in a statically
typed programming language may present differences. In par-
ticular, we expect static type checking to reduce the problem
of noisy API changes for such ecosystems.

As an alternative to our choice of ecosystem, we could have
selected a development community based on a more popular
language such as Java or C++. However, this would have
presented several disadvantages. First, deciding which systems
to include or exclude would have been much more challenging.
Second, the potentially very large size of the ecosystem could
prove impractical. We consider the size of the Pharo ecosystem
as a “sweet spot”: with about 3,600 distinct systems and more
than 2,800 contributors, it is large enough to be relevant.

VII. RELATED WORK
A. Software Ecosystems Analysis

Software ecosystem is an overloaded term, which has sev-
eral meanings. There are two principal facets: the first one
focuses on the business aspect [23], [24], and the second on
the artefact analysis aspect, i.e., on the analysis of multiple,
evolving software systems [25], [9], [2]. In this work we use
the latter one; we consider an ecosystem to be “a collection
of software projects which are developed and co-evolve in the
same environment” [9]. These software systems have common
underlying components, technology, and social norms [25].



Software ecosystems have been studied under a variety
of aspects. Jergensen et al. [25] study the social aspect of
ecosystems by focusing on how developers move between
projects in the software ecosystems. The studies of Lungu et
al. [26] and Bavota ef al. [10] aim to recover dependencies be-
tween the software projects of an ecosystem to support impact
analysis. Lungu ef al. [27] focus on the software ecosystems
analysis through interactive visualization and exploration of
the systems and their dependencies. Gonzalez-Barahona et
al. [28] study the Debian Linux distribution to measure its size,
dependencies, and commonly used programming languages.

Recently, Mens et al. [29] proposed the investigation of
similarities between software ecosystems and natural ecosys-
tems found in ecology. In this context, they are studying
the GNOME and the CRAN ecosystems to better understand
how software ecosystems can benefit from biological ones.
German et al. [30] also analyze the evolution of the CRAN
ecosystem, investigating the growth of the ecosystem, and the
differences between core and contributed packages.

In the context of API evolution and ecosystem impact
analysis, McDonnell et al. [31] investigate API stability and
adoption on a small-scale Android ecosystem. In such study,
API changes are derived from Android documentation. They
have found that Android APIs are evolving fast while client
adoption is not catching up with the pace of API evolution.
Our study does not rely on documentation but on source
code changes to generate the list of APIs to answer different
questions. Moreover, our study investigates the impact of API
evolution on thousands of distinct systems.

In a large-scale study, Robbes er al. [2] investigate the
impact of a specific type of API evolution, API deprecation,
in an ecosystem that includes more than 2,600 projects; such
ecosystem is the same that is used in our work. Our study
considers API changes that were not marked as deprecated.
Thus, there is no overlap between the changes investigated
in our work and the ones investigated by that work. In fact,
these studies complement each other to better characterize the
phenomenon of change propagation at the ecosystem level.

B. API Evolution Analysis

Many approaches have been developed to support API
evolution and reduce the efforts of client developers. Chow
and Notkin [4] present an approach where the API developers
annotate changed methods with replacement rules that will be
used to update client systems. Henkel and Diwan [3] propose
CatchUp!, a tool that uses an IDE to capture and replay
refactorings related to the API evolution. Hora et al. [7], [8]
present tools to keep track of API evolution and popularity.

Kim et al. [32] automatically infer rules from structural
changes. The rules are computed from changes at or above the
level of method signatures, i.e., the body of the method is not
analyzed. Kim et al. [33] propose a tool (LSDiff) to support
computing differences between two system versions. In such
study, the authors take into account the body of the method
to infer rules, improving their previous work [32] where only
method signatures were analyzed. Nguyen et al. [34] propose

LibSync that uses graph-based techniques to help developers
migrate from one framework version to another. Using the
learned adaptation patterns, the tool recommends locations and
update operations for adapting due to API evolution.

Dig and Johnson [15] help developers to better understand
the requirements for migration tools. They found that 80%
of the changes that break client systems are refactorings.
Cossette et al. [35] found that, in some cases, API evolution
is hard to handle and needs the assistance of an expert.

Some studies address the problem of discovering the map-
ping of APIs between different platforms that separately
evolved. For example, Zhong et al. [36] target the mapping
between Java and C# APIs while Gokhale er al. [37] present
the mapping between JavaME and Android APIs.

VIII. CONCLUSION

This paper presented an empirical study about the impact of
API evolution, in the specific case of methods unrelated to API
deprecation. The study was done in the context of a large-scale
software ecosystem, Pharo, with about 3,600 distinct systems.
We analyzed 118 important API changes from frameworks,
and we found that 53% impacted other systems. We reiterate
the most interesting conclusions from our experiment results:

o API changes can have a large impact on the ecosystem in
terms of client systems, methods, and developers. Client
developers need some time to discover and apply the new
API, and the majority of the systems do not react at all.

o API changes can not be marked as deprecated because
framework developers are not aware of their use by
clients. Moreover, client developers can use internal APIs
to access functionalities not available in the public inter-
faces.

« Replacements can not be resolved in a uniform manner
in the ecosystem. Thus, API changes can be more confi-
dently extracted from frameworks than from clients.

e Most of the analyzed API changes can be implemented
as rules in static analysis tools to reduce the adaptation
time or the amount of projects that are not aware about
a new/better APL

o API changes knowledge can be concentrated in a small
amount of developers. API changes and deprecation can
present different characteristics, for example, reaction to
API changes is slower and less clients react.

As future work, we plan to extend this research to analyze
ecosystems based on statically typed languages. Thus, the
results presented in our study will enable us to compare
reactions of statically and dynamically typed ecosystems to
better characterize the phenomenon of change propagation.
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