
HAL Id: hal-01186005
https://hal.inria.fr/hal-01186005

Submitted on 23 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language Definitions as Rewrite Theories
Vlad Rusu, Dorel Lucanu, Traian-Florin Şerbănuţă, Andrei Arusoaie, Andrei

Ştefănescu, Grigore Roşu

To cite this version:
Vlad Rusu, Dorel Lucanu, Traian-Florin Şerbănuţă, Andrei Arusoaie, Andrei Ştefănescu, et al.. Lan-
guage Definitions as Rewrite Theories. Journal of Logical and Algebraic Methods in Programming,
Elsevier, 2016, 85 (1), pp.98–120. �10.1016/j.jlamp.2015.09.001�. �hal-01186005�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49495179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01186005
https://hal.archives-ouvertes.fr

Language Definitions as Rewrite Theories
Vlad Rusub, Dorel Lucanua, Traian-Florin Şerbănuţăc, Andrei Arusoaiea,b,

Andrei Ştefănescud, Grigore Roşud

a"Alexandru Ioan Cuza" University of Iasi, Romania
bInria Lille Nord Europe, France

cUniversity of Bucharest, Romania
dUniversity of Illinois at Urbana Champaign

Abstract

K is a formal framework for defining operational semantics of program-
ming languages. The K-Maude compiler translates K language definitions
to Maude rewrite theories. The compiler enables program execution by us-
ing the Maude rewrite engine with the compiled definitions, and program
analysis by using various Maude analysis tools. K supports symbolic exe-
cution in Maude by means of an automatic transformation of language def-
initions. The transformed definition is called the symbolic extension of the
original definition. In this paper we investigate the theoretical relationship
between K language definitions and their Maude translations, between sym-
bolic extensions of K definitions and their Maude translations, and how the
relationship between K definitions and their symbolic extensions is reflected
on their respective representations in Maude. In particular, the results show
how analysis performed with Maude tools can be formally lifted up to the
original language definitions.

Keywords: operational semantics, rewrite theories, symbolic execution, K
Framework, Maude

1. Introduction

K [1] is a formal framework for defining operational semantics of program-
ming languages. The version of K that we are using in this paper 1 includes

1 K version 3.4 is available in the online interface https://fmse.info.uaic.ro/
tools/K-3.4/. A virtual machine running K 3.4 can be downloaded from http:
//www.kframework.org/imgs/releases/kvm-3.4.zip. The above links are also accessi-
ble from the main page of K http://www.kframework.org/.

Preprint submitted to Journal of Logic and Algebraic Methods in ProgrammingAugust 23, 2015

https://fmse.info.uaic.ro/tools/K-3.4/
https://fmse.info.uaic.ro/tools/K-3.4/
http://www.kframework.org/imgs/releases/kvm-3.4.zip
http://www.kframework.org/imgs/releases/kvm-3.4.zip
http://www.kframework.org/

options that have Maude [2] as a backend: the K compiler translates a K def-
inition into a Maude module, and then, the K runner uses Maude to execute
or analyse programs in the defined language.

The Maude backend of K has been extended with symbolic execution
support [3]. Briefly, aK language definition is automatically transformed into
a symbolic language definition. The concrete execution of a program using
the symbolic definition is the symbolic execution of the same program using
the original language definition. The transformation consists of two steps:
(1) incorporating path conditions in program configurations, and (2) changing
the semantics rules to match on symbolic configurations and to automatically
update the path conditions. A symbolic execution path is called feasible if its
path conditions are satisfiable. Two results relating concrete and symbolic
program executions are proved in [3]: coverage, saying that for each concrete
execution there is a feasible symbolic execution along the same program
path; and precision, saying that for each feasible symbolic execution there
is a concrete execution along the same program path. If both coverage and
precision hold we say that we have a symbolic extension relation between a
language and a symbolic language.

In this paper we propose two ways of representing K language definitions
in Maude: a faithful representation and an approximate one. We then study
the relationship between K language definitions (including symbolic ones,
obtained by the above-described transformation) and their representations
in Maude. We also show how the relationship between a language L and
its symbolic extension Ls is reflected on their respective representations in
Maude. These results ensure that (symbolic) analysis performed with Maude
tools on the (faithful and approximate) Maude representations of languages
can be lifted up to the original language definitions. The various results that
we have obtained are graphically depicted in the diagrams in Figure 1, where
the arrows have the following meaning:

p transformations preserving the property p,
p relations preserving the property p.

The dashed arrows show the results proved in this paper.
In the faithful encoding, each semantics rule of the language definition

L is translated into a rewrite rule of the rewrite theory R(L). Equations
are only introduced in order to express equality in the data domain. The
resulting rewrite theory is proved to be executable by Maude, and the transi-
tion system generated by the language definition is shown to be isomorphic

2

Faithful Representation Approximate Representation
L Ls

R(L) R(Ls)

coverage

precision

faithful
encoding

faithful
encoding

coverage

precision

L Ls

R(L) R(Ls)

coverage

precision

approx.
encoding

approx.
encoding

coverage

precision

Figure 1: Faithful vs. Approximate representations

to the one generated by the rewrite theory. This ensures that the encoding
theories R(L) and R(Ls) also satisfy the coverage and precision properties
relating L and Ls. Thus, we can say that the rewrite theory R(Ls) is a
symbolic extension of R(L) (in terms of rewrite theories). This means that
the symbolic extension and faithful encoding operations commute, as shown
by the commuting diagram in the left-hand side of Figure 1.

As a consequence, both positive and negative results of reachability anal-
ysis obtained on rewrite theories (i.e., by using the Maude search command)
also hold on the original language definitions. Moreover, all symbolic reach-
ability analysis results obtained on the rewrite theory representation R(Ls)
of a symbolic language Ls also hold on the rewrite theory representation
R(L) of the language L. The latter property is analogous to the results ob-
tained in [4], where rewriting modulo SMT is shown to be related to (usual)
rewriting in a sound and complete way.

For nontrivial language definitions the faithful encoding is not very prac-
tical, because it typically generates a huge state-space that is not amenable to
reachability analysis. This is why we introduce approximate representations
of language definitions as two-layered rewrite theories. These approximations
are obtained by splitting the semantic rules of the language into two sets,
called layers, such that the first layer forms a terminating rewrite system.
The one-step rewriting in such a theory is obtained by computing an irre-
ducible form w.r.t. rules from the first layer (according to a given strategy),
and then applying a rule from the second layer.

In an (approximating) two-layered rewrite theory R(L), only a subset
of the executions of programs in the original language L are represented,
i.e., R(L) is an under-approximation of L. The consequence is that only
positive results of reachability analysis on the two-layered rewrite theories
can be lifted up to the corresponding language definitions. The approximate

3

encoding of a language by a two-layered rewrite theory can also be seen as
the output of a compiler that solves some semantics choices left by the lan-
guage definition at compile-time. For example, in C and C++, the order
in which the operands of addition are evaluated is a compile-time choice.
By turning the operand-evaluation rules into first-layer rules, and by letting
Maude automatically execute these rules in various orders according to cer-
tain strategies, one can reproduce the various design compile-time choices for
the evaluation of arguments. However, this comes at a price. Due to the side
effects of some operators, there are C/C++ programs with nondeterministic
behaviour. This feature cannot be exhibited with the operand-evaluation
rules in the first layer; in order to exhibit the nondeterminism, the rules
evaluating the operators must be in the second layer. For programs using
operators without side effect, there is no reason to introduce their evalua-
tion rules in the second layer because the result is always the same due the
confluence of these rules.

The approximate representations are also useful during the design of the
semantics of a language. If one wishes to test the behaviour of some seman-
tical rule, then one can include only that rule in the second layer and use the
K stepper to see the effect of the rule.

We note that approximating two-layered rewrite theories have some lim-
itations: only the coverage property relating the language definition L to its
symbolic version Ls also holds on their respective approximate-encoding the-
ories; the precision property holds only in some restricted cases (presented in
Theorem 6 later in the paper). Problematic for this are the conditional rules.
The symbolic version must execute both branches, when the condition holds
and when the condition does not hold. Therefore the rules corresponding
to the two cases must be in the second layer, otherwise the first layer could
become non-terminating due to iterative statements. This means that some
rules which are in the first layer in R(L) are in the second layer in R(Ls).
This could affect the order in which the rules are being executed. Recall
that the precision property says that for each feasible symbolic execution
there is a concrete one taking the same program path. In order to obtain
that property we must have appropriate strategies for choosing the execution
paths with rules in the first layer. However, the precision property between
the approximate symbolic encoding R(Ls) and the language definition L al-
ways holds (Corollary 3). Hence, one can trace symbolic reachability analysis
(performed on R(Ls)) back to programs in L, and also (in some restricted
cases) to the representation of programs in R(L), which, as discussed above,

4

can be seen as compiled programs where some semantic choices are left to
the compiler.

The present paper extends the results published earlier in [5] in the fol-
lowing directions: the notions of symbolic extensions for language definitions
and for rewrite theories are introduced, which allow us to state the results
relating language definitions, symbolic execution, and their rewrite theo-
ries in a more compact manner. Most importantly, we have increased the
expressiveness of language definitions, their symbolic extensions, and their
corresponding rewrite theories by allowing axioms such as associativity, com-
mutativity, identity, and combinations thereof for certain operations. This
is essential for capturing realistic K language definitions and their encodings
in Maude, since K definitions use axioms extensively.

Organisation. In Section 2 we present our working examples: a partial de-
scription of the K definition for CinK [6] (a kernel of C++) together with two
CinK programs.

In Section 3 we present background notions used in the rest of the paper:
rewrite theories (the target of our translation of language definitions), and
several logics used in the paper, chief among which is Reachability Logic [7],
a logic for defining the semantics of programming languages.

In Section 4 we present a formal notion of language definitions, in which
the syntax is presented in an algebraic manner and the operational semantics
is described using Reachability-Logic rules. This allows us to make our ap-
proach independent of the K language-definition framework and to abstract
away particular implementation details of K. We also present the notion of
a so-called symbolic extension Ls of a given language L: it is a language
whose configurations may contain symbolic values possibly constrained by a
path condition and whose executions are related to those of L by so-called
coverage and precision relations.

In Section 5 we present the notion of symbolic extension of a rewrite
theory, by analogy with the corresponding notion for language definitions
introduced in the previous section.

Section 6 presents the faithful representations of language definitions as
rewrite theories. We show that the faithful representation is an executable
rewrite theory, which satisfies the results graphically depicted in the left-hand
side of the diagram in Figure 1: namely, that the faithful representation of a
symbolic extension of a language coincides with the symbolic extension of the
faithful encoding of the language in question. We also relate our approach

5

with rewrite theories modulo SMT [4], a recently introduced extension of
rewrite theories that, under certain conditions, allows one to symbolically
execute rewrite theories directly in Maude.

In Section 7 we present the approximate encodings of language definitions
as two-layered rewrite theories, and establish the results connecting language
definitions, their symbolic versions, and their approximate encodings graph-
ically depicted in the right-hand side of Figure 1.

Section 8 presents the applications of these representations to the compi-
lation of K language definitions as Maude modules.

Finally, Section 9 presents conclusions and related work.
The proofs of the main theorems together with their auxiliary definitions

and lemmas are included in the appendix.

Acknowledgments. This work was partially supported by Inria via a CPER
grant, by the strategic grant POSDRU/159/1.5/S/137750 “Project Doctoral
and Postdoctoral programs support for increased competitiveness in Exact
Sciences research” co-financed by the European Social Fund within the Sec-
torial Operational Program Human Resources Development 2007-2013, by
the (Romanian) grant SMIS-CSNR 602-12516 (DAK), and by the NSF grant
CCF-1218605.

2. Running Example

Our running example is CinK [6], a kernel of the C++ programming
language. The K definition of CinK used in this paper can be found in
the K Framework Github repository: https://github.com/kframework/
cink-semantics/releases/tag/v1.0. As any K definition, it consists of
the language syntax, given using a BNF-style grammar, and of its semantics,
given using rewrite rules on configurations. In this paper we only exhibit a
small part of the K definition of CinK, whose syntax is shown in Figure 2.

Some of the grammar productions are annotated with K specific at-
tributes. For example, one feature of C++ expressions is given by the “se-
quenced before” relation [8], which defines a partial order over the evaluation
of subexpressions. This is expressed in K using the strict attribute to specify
a nondeterministic evaluation order. For instance, all the binary operations
are strict. Hence, they may induce non-determinism in programs because of
possible side effects in their arguments.

6

https://github.com/kframework/cink-semantics/releases/tag/v1.0
https://github.com/kframework/cink-semantics/releases/tag/v1.0

Exp ::= Id | Int
| ++ Exp [strict , prefinc]
| -- Exp [strict , predec]
| Exp / Exp [strict(all(context(rvalue))), divide]
| Exp + Exp [strict(all(context(rvalue))), plus]
| Exp > Exp [strict(all(context(rvalue)))]
| Exp = Exp [strict(1 (context(lvalue)),

2(context(rvalue)))]
Stmt ::= Exp ; [strict]

| {Stmts}
| while (Exp)Stmt
| return Exp ; [strict(all(context(rvalue)))]
| if (Exp)Stmt else Stmt [strict(1 (context(rvalue)))]

Figure 2: CinK syntax

Another language feature expressed by K attributes is given by the clas-
sification of expressions into rvalues and lvalues . For instance, in the expres-
sion x = x + 2 the first occurrence of x is an lvalue whereas the second one
is an rvalue. The arguments of binary operations are evaluated as rvalues
and their results are also rvalues , while, e.g., both the argument of the prefix-
increment operation and its result are lvalues . The strict attribute for such
operations has a sub-attribute context which states that every subexpression
must be evaluated as an rvalue. Other attributes (funcall , . . .) are names
associated to syntactic productions, which can be used to refer to them.

The K framework uses configurations to store program states. A config-
uration is a nested structure of cells, which typically include the program
to be executed, I/O streams, values for program variables, and other addi-
tional information. The configuration of CinK (Figure 3) includes the 〈〉k
cell containing the code that remains to be executed, which is represented
as an associative list of computation tasks C1 y C2 y . . . to be executed in
the given order. Computation tasks are typically statements and expression
evaluations. The memory is modeled using two cells 〈〉env, which holds a map
from variables to addresses, and 〈〉state, which holds a map from addresses
to values. The configuration also includes a cell for the function call stack
〈〉stack and another one 〈〉return for the return values of functions.

When the configuration is initialised at runtime, a CinK program is loaded
in the 〈〉k cell, and all the other cells remain empty.

7

〈 〈$PGM〉k 〈·〉env 〈·〉store 〈·〉stack 〈·〉return 〉cfg
Figure 3: CinK configuration

I1:Int + I2:Int ⇒⇒⇒ I1 +Int I2 [plus]

I1:Int / I2:Int ⇒⇒⇒ I1 /Int I2 requires I2 6=Int 0 [division]

if(true) St:Stmt else _⇒⇒⇒ St [if-true]

if(false) _ else St:Stmt ⇒⇒⇒ St [if-false]

while(B:Exp) St :Stmt ⇒⇒⇒ if(B){ St while(B) St else {}} [while]

V :Val ;⇒⇒⇒ · [instr-expr]

{ Sts:Stmts }⇒⇒⇒ Sts [block]

〈X:Id ⇒⇒⇒ lval(L) ···〉k〈··· X 7→ L:Loc ···〉env [varname]

〈++lval(L:Loc)⇒⇒⇒ lval(L) ···〉k〈··· L 7→ (V :Int ⇒⇒⇒ V +Int 1) ···〉store [inc,memw]

〈--lval(L:Loc)⇒⇒⇒ lval(L) ···〉k〈··· L 7→ (V :Int ⇒⇒⇒ V −Int 1) ···〉store [dec,memw]

〈lval(L:Loc)= V :Val ⇒⇒⇒ lval(L) ···〉k〈··· L 7→ _⇒⇒⇒ V ···〉store [update,memw]

rvalue(lval(L:Loc))⇒⇒⇒ $lookup(L) [lvalue2rvalue]

〈$lookup(L:Loc)⇒⇒⇒ V ···〉k〈··· L 7→ V :Val ···〉store [lookup,memr]

Figure 4: Subset of rules from the K semantics of CinK

The rule for division has a side condition which restricts its application.
The conditional statement if has two corresponding rules, one for each pos-
sible evaluation of the condition expression. The rule for the while loop
performs an unrolling into an if statement. The increment and update rules
have side effects in the 〈〉store cell, modifying the value stored at a specific
address. Finally, the reading of a value from the memory is specified by the
lookup rule, which matches a value in the 〈〉store and places it in the 〈〉k cell.
The auxiliary construct $lookup is used, e.g., when a program variable is
evaluated as an rvalue.

The K Notation. A K rule is a topmost rewrite rule specifying transitions
between configurations. Typically, only a small part of the configuration is
changed by a rule, while a larger context is needed to check the preconditions
of the rule. The K notation simplifies the writing of such rules through con-
figuration abstraction and local rewriting. Configuration abstraction allows
one to only specify the parts transformed by the rule using static positional
information about the cells (specified by the initial configuration) to fill in
the missing structure. For instance, the (abstract) rule for addition, shown
in Figure 4, represents the (concrete) rule

8

〈〈I1 + I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg
⇒⇒⇒ 〈〈I1 +Int I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg

where +Int is the mathematical operation for addition.
Local rewriting addresses the fact that although a larger context is needed

to make sure a rule applies and to collect data about the application, usually
only minor changes occur. To allow a more compact, precise, and less error-
prone specification of transitions, K lets the user specify precisely where
the changes in the matched configuration take place by allowing the rewrite
symbol ⇒ to occur inside a matching context.

Consider, for example, the lookup rule in Figure 4. If the next execution
task consists in looking up for the value of location L in the store, and the
location L is mapped to a value V in the store, then the rule locally (i.e., at
the top of the k cell) replaces the current execution task by the computed
value V , without otherwise modifying the matching context.

〈$lookup (L:Loc)⇒⇒⇒ V ···〉k 〈··· L 7→ V :Val ···〉store [lookup,memr]

Note that the ellipses in a cell (e.g., 〈 ···〉k) represent the part of the cell
not affected by the rule. The desugared topmost rewrite rule corresponding
to the lookup rule is automatically obtained by replicating the context and
filling in the missing variables and cells:

〈〈$lookup (L:Loc) y K〉k 〈L 7→ V :Val S〉store C〉cfg
⇒ 〈〈V y K〉k 〈L 7→ V S〉store C〉cfg

To address the fact that a rule might induce changes in several places in
the configuration, K allows the rewrite symbol to occur multiple times in the
matching context (as long as it is not nested). This can be seen in several of
the rules in Figure 4.

In addition to those rules (written by the K user), the K framework
automatically generates so-called heating and cooling rules, which are induced
by strict attributes in the syntax. We show only the case of division, which
is strict in both arguments:

A1 / A2⇒⇒⇒ rvalue (A1) y � / A2 (1)
A1 / A2⇒⇒⇒ rvalue (A2) y A1 / � (2)
rvalue (I1) y � / A2⇒⇒⇒ I1 / A2 (3)
rvalue (I2) y A1 / �⇒⇒⇒ A1 / I2 (4)

9

int counter = 1;
int inc() {

return ++counter;
}
int dec() {

return --counter;
}
int main() {

return inc() + dec();
}

int main() {
int k, x;

cin >> x;
k = 0;
while (x > 0) {

++k;
x = x / 2;

}
}

a) The program counter b) The program log

Figure 5: Two C++ programs

where � is a special symbol, destined to receive the result of an evaluation.
We shall be using the programs in Figure 5 in the sequel. The program

counter is nondeterministic; the nondeterminism arises from the unspecified
evaluation order for the arguments of the + operation and from the side
effects in its arguments. The program log takes as input an integer value A
and computes in the variable k the value blog2(A)c, where b_c denotes the
integer part of a real number. In Section 8 we show how the behaviours of
these programs can be analysed using our tool.

3. Background

In this section we present background material on rewrite theories (Sec-
tion 3.1) and on the logics used in the paper, including (topmost) matching
logic and reachability logic (Section 3.2.2).

3.1. Rewrite Theories
We consider an extended notion of rewrite theories, namely, rewrite theo-

ries with entailment, which allow us to capture both standard rewrite theories
and rewrite theories modulo a builtin subtheory [4] that we use for encoding
language definitions.

A rewrite theory with entailment R = (Σ, E ∪A,R,`) consists of a
signature Σ, a set of equations E, a set of axioms A, e.g., associativity, com-
mutativity, identity or combinations of these, a set of rewrite rules R of the
form l→ r if b, where l and r are terms with variables and b is a condition,

10

and an entailment relation ` which is sound w.r.t. the semantic interpreta-
tion of the formulas in the standard model, i.e., E ∪A ` b implies TE∪A |= b.
We often write ` b for E ∪ A ` b. We assume there is a distinguished sort
Bool such that each term b ∈ TΣ,Bool is a particular case of formula. For the
rewrite theories supported by the Maude language [2], the formulas used in
conditions are of the form (

∧
i ui = u′i) ∧ (

∧
j vj : sj) ∧ (

∧
k wk → w′k), the

three conjuncts being respectively equations, memberships, and rewrite con-
ditions. Here we let more freedom in choosing the condition formulas, e.g.,
the conditions could be first-order formulas and the entailment ` is checked
by an external prover.

The relation →R/A denotes the one-step (ground) rewriting relation de-
fined by applying a rule from R modulo axioms A over ground terms: u→R/A

v iff there are terms u′, v′, a rule l → r if b in R, a position p in u′, and a
(ground) substitution σ such that u =A u

′, v =A v
′, u′|p = σ(l), v′ = u[σ(r)]p,

and ` σ(b). We use t|p to denote the subterm of t at position p, t[u]p to de-
note the term obtained from t by replacing the subterm at position p with u,
and var(t) to denote the set of variables occurring in t.
Remark 1. If conditions b are of the form

∧
i ui → vi and we define ` by

`
∧
i ui → vi iff `n

∧
i ui → vi for some n ≥ 0, where `n and →R/A,n are

inductively defined as follows:

• →R/A,0 = ∅, `0= ∅;

• →R/A,n+1 =→R/A,n ∪ {(u, v) | (∃p)(∃l→ r if b ∈ R)
u|p =A σ(l), v =A u[σ(r)]p,`n σ(b)}

`n+1 = `n ∪ {
∧
i ui → vi | ui →∗R/A,n vi for all i}

then →R/A is the standard inductive definition for the one-step rewriting
relation in rewriting logic (see, e.g., [9]).

We are only interested in rewrite theories R that are executable, i.e.,

1. there exists a matching algorithm modulo A;
2. (Σ, E ∪ A) is ground Church-Rosser and terminating modulo A (the

equations E are seen here as rewrite rules oriented from left to right).
Thus, each ground term t has a canonical form canE/A(t) that is unique
modulo the axioms A;

3. R is ground coherent w.r.t. E modulo A [10]: for all t, t1 ∈ TΣ with
t →R/A t1 there is t2 ∈ TΣ s.t. canE/A(t) →R/A t2 and canE/A(t1) =A

canE/A(t2);

11

4. ` is decidable.

We note that the last condition is specific to rewrite theories with entailment.
The rewriting relation →R defined by an executable rewrite theory R is:
t1 →R t2 iff canE/A(t1) →R/A t′2 and canE/A(t′2) = t2. This is equivalent to
→R/(E∪A) due to confluence, termination and coherence. We write t1

α−→R t2
to emphasise that α , (l → r if b) ∈ R is applied in the rewriting step
canE/A(t1)→R/A t

′
2. The executability conditions on R ensure that the set of

successors of a term by the rewriting relation →R is computable.
The set of E/A-canonical forms can be organised as a Σ-algebra CanΣ,E/A,

where a functional symbol f ∈ Σs1...sn,s is interpreted as the function that
sends a tuple (t1, . . . , tn) of E/A-canonical terms of appropriate sorts to the
the E/A-canonical form of f(t1, . . . , tn). CanΣ,E/A is isomorphic to the initial
algebra TΣ,E∪A (see, e.g., [11]).

3.2. Logics
In this section we introduce the logics employed in the paper.

3.2.1. First-Order Logic
We assume the reader is familiar with algebraic specifications and the

basics of (many-sorted) First-Order Logic (FOL). We denote a many-sorted
first-order signature by a pair (Σ,Π), where Σ is an algebraic signature and
Π is a set of predicates. The set of FOL formulas over (Σ,Π) is defined as:

φ ::= True | p(t1, . . . , tn) | ¬φ | φ ∧ φ | (∃V)φ

where p is a predicate symbol in Π, each ti is a term in TΣ(Var) of appropriate
sort, and V is a subset of Var . A (Σ,Π)-model consists of a Σ-algebra M
together with a setMp for each predicate p ∈ Π. A valuation ρmaps variables
from Var to elements inM . A substitution σ is a particular valuation, where
M is TΣ(Var). We let dom(σ) denote the domain of σ, {x ∈ Var | σ(x) 6= x},
and ran(σ) denote the range of σ, {σ(x) | x ∈ dom(σ)}.

Next, we give a construction of a free extension of a FOL model with
respect to a subsignature, which will be used later in the paper.

Definition 1. Let (Σ,Π) be an S-sorted FOL signature and M,M ′ be two
(Σ,Π)-models. A (Σ,Π)-model-morphism h : M → M ′ is an S-sorted
family of functions (hs : Ms →M ′

s | s ∈ S) such that

12

• hs(Mf (a1, . . . , an)) = M ′
f (hs1(a1), . . . , hsn(an)) for each function sym-

bol f : s1 × . . . × sn → s in Σ and (a1, . . . , an) ∈ Ms1 × . . . ×Msn ,
and

• (a1, . . . , an) ∈Mp implies (hs1(a1), . . . , hsn(an)) ∈M ′
p for each predicate

symbol p : s1 × . . .× sn in Π and (a1, . . . , an) ∈Ms1 × . . .×Msn .

Example 1. Let us consider a signature (Σ,Π) which includes a sort Int , and
two (Σ,Π) models M and M ′ which include the carrier sets Z and Z32 (32-
bit integers), respectively. Then, a (Σ,Π)-model-morphism h : M → M ′ in-
cludes a function hInt : Z→ Z32 which sends an integer x into a 32-bit repre-
sentation. The function hInt must satisfy hInt(M+(x, y)) = M ′

+(hInt(x), hInt(y)).

In this paper we use (Σd,Πd) to distinguish the (sub)signature of data
sorts in a programming language from the other non-data constructs of the
language.

Definition 2. Let (Σd,Πd) ⊂ (Σ,Π) be a signature inclusion and M be a
(Σ,Π)-model. Then M�(Σd,Πd) is the (Σd,Πd)-model M d defined as follows:

• M d
s = Ms for each Σd-sort;

• M d
f = Mf for each function symbol f in Σd;

• M d
p = Mp for each predicate symbol p in Πd.

Example 2. Let (Σd,Πd) be a signature which includes some data sorts (like
Int , Bool , String , . . .) and is included (⊂) in a signature (Σ,Π). If M is a
(Σ,Π)-model then M�(Σd,Πd) is a (Σd,Πd)-model. This model interprets data
sorts and their operations in the same way these are interpreted in M .

Definition 3. Let (Σd,Πd) ⊂ (Σ,Π) be a signature inclusion and h : M →
M ′ be a (Σ,Π)-model-morphism. Then h�(Σd,Πd) is the (Σd,Πd)-model-mor-
phism h′ : M�(Σd,Πd) →M ′�(Σd,Πd) defined by h′s = hs for each Σd-sort s.

Definition 4. Let (Σd,Πd) ⊂ (Σ,Π) be a signature inclusion and D be a
(Σd,Πd)-model. A (Σ,Π)-modelM is free over D (in the category of (Σ,Π)-
models) if M�(Σd,Πd) = D and for any (Σ,Π)-model M ′ and (Σd,Πd)-model-
morphism h : D → M ′�(Σd,Πd) there is a unique (Σ,Π)-model-morphism
h# : M →M ′ such that h#�(Σd,Πd) = h.

13

Since the free model M over D is unique up to an isomorphism, we often
denote it by D�(Σ,Π). A constructive definition for D�(Σ,Π) is given by the
following result, whose proof is standard.

Proposition 1. Let (Σd,Πd) ⊂ (Σ,Π) be a signature inclusion and D be a
(Σd,Πd)-model. We assume that the result sort for any function symbol f in
Σ \ Σd is not a Σd-sort. Then the model M , defined as follows:

• for each item (sort, function/predicate symbol) o ∈ (Σd,Πd), Mo = Do;

• for each sort s in Σ \ Σd, Ms is the set of ground (Σ \ Σd)(D)-terms;

• for each function symbol f in Σ \ Σd, Mf is the term constructor f
such that for all (t1, . . . , tn), Mf (t1, . . . , tn) = f(t1, . . . , tn) (recall that
the result sort of f does not belong to Σd by the hypotheses);

• for each predicate symbol p in Π \ Πd, Mp is the empty set,

is free over D.

Example 3. Let D be the data domain over which the semantics of CinK
is defined. For instance, D interprets sorts like Bool and Int , interprets
operations like +Int ∈ Σd and predicates<Int ∈ Πd. ThenD�(Σ,Π) includes the
CinK code and the configurations obtained during the execution of programs.
Note that in general D�(Σ,Π) is not necessarily the term algebra built over
D because it could be required that some non-data operations must satisfy
axioms like associativity (e.g., y).

3.2.2. Matching Logic and Reachability Logic
Our generic notion of language-definition framework, introduced below

in Section 4, uses (topmost) Matching Logic (ML) [12] for the static parts
of language definitions, and Reachability Logic (RL) [13] for their dynamic
parts.

Definition 5 (ML signature). An ML signature Λ = (Σ,Π,Cfg) is a first-
order signature (Σ,Π) together with a distinguished sort Cfg for configura-
tions.

Definition 6 (ML formula). Given an ML signature Λ = (Σ,Π,Cfg), the set
of ML formulas over Λ, also called patterns, is defined by

ϕ ::= π | True | p(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | (∃X)ϕ

14

where π ranges over TΣ,Cfg(Var), p ranges over predicate symbols Π, each ti
ranges over TΣ(Var) of appropriate sorts, and X over finite subsets of Var .
An elementary pattern is an ML formula of the form π∧φ and a basic
pattern is an ML formula π ∈ TΣ,Cfg(Var).

We sometimes say "ML formula" instead of "ML formula over the ML
signature Λ" when the signature Λ is clear from the context.
Example 4. Recall the semantical rules defining CinK from Figure 4. Each
rule, after desugaring, is made up from two components separated by the ⇒
symbol. Those components are CinK configurations, possibly accompanied
by a logical constraint. For instance, the rule for division (after being com-
pleted with cells by the configuration desugaring mechanism) is:

〈〈I1 / I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg
⇒⇒⇒
〈〈I1/IntI2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg requires I2 6=Int 0

The left-hand side of the rule, 〈〈I1 / I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg,
is a term of sort TΣ,Cfg(Var) (cf. Example 7), which is a basic pattern (cf.
Definition 6). The right-hand side can also be seen as a basic pattern. The
left hand side together with the condition form an elementary pattern:

〈〈I1 / I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg ∧ I2 6=Int 0.
We extend the notion of (free) variables var() from terms to ML formulas.

For elementary patterns ϕ , π∧φ we have var(ϕ) = var(π) ∪ var(φ). For
simplicity we write var(π, φ) to denote var(π) ∪ var(φ), and for all patterns
ϕ and ϕ′ we let var(ϕ, ϕ′) , var(ϕ) ∪ var(ϕ′).

Definition 7 (ML satisfaction relation). Given an ML signature Λ = (Σ,
Π,Cfg), T a (Σ,Π)-model, ϕ an ML formula, γ ∈ TCfg a configuration, and
ρ : Var → T a valuation, the satisfaction relation (γ, ρ) |=ML ϕ is defined as
follows:

1. (γ, ρ) |=ML π iff ρ(π) = γ;
2. (γ, ρ) |=ML True;
3. (γ, ρ) |=ML p(t1, . . . , tn) iff (ρ(t1), . . . , ρ(tn)) ∈Mp;
4. (γ, ρ) |=ML ¬ϕ iff (γ, ρ) |=ML ϕ does not hold;
5. (γ, ρ) |=ML ϕ1 ∧ ϕ2 iff (γ, ρ) |=ML ϕ1 and (γ, ρ) |=ML ϕ2; and
6. (γ, ρ) |=ML (∃X)ϕ iff there is ρ′ : Var → T with ρ′(y) = ρ(y), for all
y 6∈ X, such that (γ, ρ′) |=ML ϕ.

15

The T -semantics of a formula is given by JϕKT = {γ ∈ TCfg | ∃ρ : Var →
T , (γ, ρ) |= ϕ}. A ML formula ϕ is valid, denoted by |=ML ϕ, if for all (γ, ρ)
it holds that (γ, ρ) |=ML ϕ.

We often write only JϕK if the model T is understood from the context.

Example 5. Consider the ML formula

ϕ(, π ∧ φ) , 〈〈I1 / I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg ∧ I2 6=Int 0

and a (configuration) term in TCfg

γ , 〈〈2 / 1 y ·〉k〈·〉env〈·〉store〈·〉stack〈2〉return〉cfg
If ρ : Var → T is a valuation such that ρ(I1) = 2, ρ(I2) = 1, ρ(C) = ·,
ρ(E) = ·, ρ(S) = ·, ρ(T) = ·, and ρ(V) = 2, then (γ, ρ) |= ϕ since ρ(π) = γ
and ρ(I2) = 2 6=Int 0.

The dynamics of programs in a language are given by Reachability Logic
(RL) formulas, which are pairs of ML formulas:

Definition 8 (RL formula). Given an ML signature Λ = (Σ,Π,Cfg), an
RL formula, a.k.a. reachability rule, (over Λ) is an expression of the form
ϕ⇒⇒⇒ ϕ′ where ϕ and ϕ′ are ML formulas (over Λ).

The K rules shown in Figure 4 are examples of RL formulas. For instance,
the rule from Example 4 can be written as

〈〈I1 / I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg ∧ I2 6=Int 0

⇒⇒⇒
〈〈I1/IntI2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg

Definition 9 (RL transition system). Let Λ = (Σ,Π,Cfg) be an ML signa-
ture, T be a (Σ,Π)-model, and let S be a set of reachability rules over Λ.
Then S induces a transition system (TCfg ,⇒S), where ⇒S ⊆ TCfg × TCfg is
defined by γ ⇒S γ′ iff there is α , ϕ ⇒⇒⇒ ϕ′ in S and ρ : Var → T with
(γ, ρ) |=ML ϕ and (γ′, ρ) |=ML ϕ′. We sometimes write γ α

=⇒S γ′ in order to
explicitly state that the applied rule is α.

Example 6. Consider

γ , 〈〈if (true) skip else skip〉k〈x 7→ 7〉env〈7 7→ 23〉store〈〉stack〈〉return〉cfg
and

γ′ , 〈〈skip〉k〈x 7→ 7〉env〈7 7→ 23〉store〈〉stack〈〉return〉cfg

16

two CinK configurations. Then there is a transition γ
α

=⇒S γ′, where α is
the rule if-true in Figure 4.

4. Language Definitions and their Symbolic Extensions

4.1. Language Definitions
Definition 10. A language definition is a tuple L = ((Σ,Π,Cfg), T ,S)
where:

• (Σ,Π,Cfg) is an ML signature

• T is a model of (Σ,Π,Cfg)

• S is a finite set of RL formulas, of the form π1∧φ1 ⇒⇒⇒ π2∧φ2, where
π1∧φ1, π2∧φ2 are elementary patterns over the signature (Σ,Π,Cfg).

Example 7. Recall the syntax and semantics of CinK from Figures 2 and 4.
Every non-terminal in the syntax is a sort in Σ (e.g. Exp). Every syntax
production defines a new operation symbol; for instance, the corresponding
operation for the production Exp ::= Exp + Exp is _+_ : Exp ×Exp → Exp,
which takes two terms of sort Exp and returns a new term of sort Exp. The
sort Cfg corresponds to CinK’s configuration which is shown in Figure 3. Cfg
terms can be constructed using the operation

〈〈_〉k〈_〉env〈_〉store〈_〉stack〈_〉return〉cfg : K ×Map ×Map × List ×K → Cfg .

Every K rule shown in Figure 4 is included in S. Note that every K rule is
an RL formula (see Example 4).

We also assume a (strict) subsignature (Σd,Πd) of (Σ,Π) for the lan-
guage’s data types (integers, lists, etc) and a (Σd,Πd)-model D such that T
restricted to (Σd,Πd) equals D, i.e., T �(Σd,Πd) = D. The sort Cfg is not a
data sort. We sometimes call language definitions languages for simplicity. A
language definition L naturally induces a transition system (TCfg ,⇒S), where
⇒S is given in Definition 9.

4.2. Symbolic Extension of a Language Definition
We assume a countably infinite sorted set of variables Var d of data sorts.

Definition 11 (Symbolic extension of language definition). Given a language
definition L = ((Σ,Π,Cfg), T ,S), we say that another language definition
Ls = ((Σs,Πs,Cfgs), T s,Ss) is a symbolic extension of L if the semantic
domain ((Σs,Πs,Cfgs), T s) satisfies:

17

1. Σs contains two new sorts: Cfgs and Bool2.
The operations of sort Bool include the usual propositional items (true,
false,∧,¬) as well as an operation p : s1 × · · · × sn → Bool for each
predicate p ∈ Πs1...,sn . The unique operation of sort Cfgs is its construc-
tor ∧s : Cfg × Bool → Cfgs. We naturally identify terms of the sort
Bool with the corresponding FOL formulas. We extend the notation
[[·]] defined on ML formulas, to the corresponding terms of sort Cfgs,
by letting [[π∧sφ]] , [[π∧φ]].

2. Πs consists of one predicate sat , which takes one argument of sort Bool .
3. T s interprets the elements of Σs and Πs as follows:

• all sorts s in Σ are interpreted as sets of terms in TΣ(D),s(Var d);

• the sort Bool is interpreted as a set of terms in TΣs(D),Bool(Var d);

• the sort Cfgs is interpreted as sets of terms of sort Cfgs, of the
form π∧sφ, where π ∈ TΣ(D),Cfg(Var d) and φ ∈ TΣs(D),Bool(Var d),

• all the operations in Σs are interpreted syntactically;

• the (unique) predicate sat ∈ Πs
Bool is interpreted as the theoretical

satisfiability predicate for FOL formulas represented as terms of
sort Bool , i.e., φ ∈ T s

sat iff the FOL formula represented by φ is
satisfiable;

and the rules Ss = {αs | α ∈ S} are defined such that the map α 7→ αs is a
bijection and the following two properties hold:
Coverage If γ α

=⇒S γ′ and γ ∈ [[π∧sφ]] with π∧sφ ∈ T s
Cfgs , then there exists

π′∧sφ′ ∈ T s
Cfgs such that π∧sφ αs

=⇒Ss π′∧sφ′ and γ′ ∈ [[π′∧sφ′]].
Precision If π∧sφ αs

=⇒Ss π′∧sφ′ and γ′ ∈ [[π′∧sφ′]] then there exists a
configuration γ such that γ α

=⇒S γ′ and γ ∈ [[π∧sφ]].

Example 8. As pointed in Definition 11, the symbolic extension of CinK
contains two new sorts Cfgs and Bool . The first one corresponds to symbolic
configurations, while the second one is intended to allow constraints over the
symbolic values inside such a symbolic configuration. For instance, π∧sφ ,
〈〈a = a〉k〈·〉env〈·〉store〈·〉stack〈·〉return〉cfg∧sa > 0, where a ∈ Var d, is a symbolic
configuration with π ∈ TΣ(D),Cfg(Var d) and φ ∈ TΣs(D),Bool(Var d).

2Not to be confused with the Boolean datatype that some languages may implement.

18

The sort Bool together with its operations belongs to Σsd, and sat is in
Πsd, i.e., they belong to the symbolic data.

The following two results are direct consequences of the above definitions.

Proposition 2. Let L = ((Σ,Π,Cfg), T ,S) be a language definition and let
Ls = ((Σs,Πs,Cfgs), T s,Ss) be a symbolic extension of L. Then for every
concrete execution γ0

α1=⇒S γ1
α2=⇒S · · ·

αn=⇒S γn · · · and every symbolic con-
figuration π0∧sφ0 ∈ T s

Cfgs such that γ0 ∈ Jπ0∧sφ0K, there is a symbolic execu-

tion π0∧sφ0

αs
1=⇒Ss π1∧sφ1

αs
2=⇒Ss · · ·

αs
n=⇒Ss πn∧sφn · · · such that γi ∈ [[πi∧sφi]]

for i = 0, 1,

A symbolic execution π0∧sφ0

αs
1=⇒Ss π1∧sφ1

αs
2=⇒Ss · · · is feasible iff each

side-condition φi ∈ T s
sat , i.e., φi (seen as a FOL formula) is satisfiable in T ,

for i = 0, 1,

Proposition 3. Let L = ((Σ,Π,Cfg), T ,S) be a language definition and let
Ls = ((Σs,Πs,Cfgs), T s,Ss) be a symbolic extension of L. Then for every

feasible symbolic execution π0∧sφ0

αs
1=⇒Ss π1∧sφ1

αs
2=⇒Ss · · ·

αs
n=⇒Ss πn∧sφn · · ·

there is a concrete execution γ0
α1=⇒S γ1

α2=⇒S · · ·
αn=⇒S γn · · · such that

γi ∈ [[πi∧sφi]] for i = 0, 1,

The next definition is essential for the definition of symbolic extensions,
specifically, for the coverage/precision constraints that symbolic extensions
have to satisfy.

Definition 12. Two terms t, t′ are concretely unifiable if there exists a
valuation ρ : Var → T such that ρ(t) = ρ(t′).

We now give sufficient conditions to obtain a symbolic extension of a
given language according to Definition 11:

Assumption 1. 1. The rules S have the form π1∧φ1 ⇒⇒⇒ π2, with π1 a
linear and "data-abstract" term, i.e. all subterms of data sort are
variables, φ1 a quantifier-free FOL formula, such that var(π2, φ1) ⊆
var(π1) and var(π1) ∩ Var d = ∅. The left-hand side π1 may have
variables of data sort from Var \ Var d.

2. Ss = {(π1∧sψ)∧sat(ψ ∧ φ1) ⇒⇒⇒ π2∧s(ψ ∧ φ1) | π1∧φ1 ⇒⇒⇒ π2 ∈ S},
where ψ is a fresh variable of sort Bool .

19

3. For all rules π1∧φ1⇒⇒⇒ π2 in S and π∧sφ ∈ T s
Cfgs , π1 and π are concretely

unifiable iff there exists a symbolic valuation σ : Var → T s such that
σ(π1) = π and for each concrete unifier ρ : Var → T there exists a
valuation η : Var d → T such that ρ = η ◦ σ.

This assumptions require some explanations. The first point is required
for ensuring that semantical rules in S can be mapped to rewrite theories
and that syntactical unification can be implemented by matching. Note that
the linearity and data-abstract nature of the pattern can always be obtained
by replacing duplicate variables and non-data subterms by fresh variables
and by equating the fresh variables in the condition to what they replaced.
The second point can be seen as the definition of the set of rules of the
symbolic extension of a language definition. The third point actually says
that matching can be seen as a mechanism for computing all concrete unifiers
of two terms (this is established ahead in the paper, Theorem 3, Page 24).

Theorem 1 (Ls is a symbolic extension of L). Under Assumption 1 on the
semantical rules S and Ss, the language definition Ls whose semantic domain
is defined as in Definition 11 is a symbolic extension of L.

5. Symbolic Extensions of Rewrite Theories

We define a notion of a symbolic extension of a rewrite theory, which
translates the notions of symbolic execution of programs (symbolic values,
path condition, relations with concrete execution) at the rewrite-theory level.

The definition of symbolic extension has two parts. The first one, called
symbolic pre-extension, captures the syntactical features of symbolic execu-
tion, whereas the second part captures the corresponding semantical features.

Definition 13 (Symbolic pre-extension of rewrite theory). Consider an ex-
ecutable rewrite theory R = (Σ, E ∪ A,R,`) with a distinguished sort Cfg
such that R is topmost w.r.t. Cfg . Consider a countable number of sym-
bolic values V s, each of which has a sort in Σ. We say that an executable
rewrite theory Rs = (Σs, Es ∪ As, Rs,`s) is a symbolic pre-extension of
R whenever:

• Σ(V s) ⊂ Σs;

• Σs contains a new sort Cfgs with constructor _∧s_ : Cfg×Bool → Cfgs;

20

• E ⊆ Es, A ⊆ As;

• there is a bijection _s : R→ Rs;

• Rs is topmost w.r.t. Cfgs.

Every γ ∈ CanΣ,E/A,Cfg is called a configuration, and every π∧sφ ∈
CanΣs,Es/As,Cfgs (often denoted by ϕ, ϕ′, . . .) is called symbolic configura-
tion. These notions/notations are obviously borrowed from language defini-
tions.

Definition 14 (Satisfaction relation). For any configuration γ, symbolic
configuration π∧sφ, and substitution ρ : V s → CanΣ,E/A mapping each sym-
bolic value to a canonical form of a term of corresponding sort, we write
(γ, ρ) |= π∧sφ whenever γ =E∪A ρ(π) and ` ρ(φ) holds. We denote by
[[π∧sφ]] the set of configurations {γ ∈ CanΣ,E/A,Cfg | (∃ρ) s.t. (γ, ρ) |= π∧sφ}.

The notion of symbolic extension requires, in addition to the syntactical
requirement posed by symbolic pre-extension, that the concrete and symbolic
transition relations satisfy the coverage and precision properties:

Definition 15 (Symbolic extension of a rewrite theory). A rewrite theory
Rs = (Σs, Es ∪ As, Rs,`s) is a symbolic extension of R = (Σ, E ∪ A,R,`) if
Rs is a symbolic pre-extension of R and moreover:

Coverage: if γ ∈ [[ϕ]] and γ
α−→R γ′ then there exists a symbolic

configuration ϕ′ such that γ′ ∈ [[ϕ′]] and ϕ αs

−→Rs ϕ′;

Precision: if γ′ ∈ [[ϕ′]] and ϕ αs

−→Rs ϕ′ then there exists a configuration
γ such that γ α−→R γ′.

6. Faithful Encodings

In this section we present the faithful encodings of language definitions as
rewrite theories (with entailment). We prove that the notions of faithful en-
coding and of symbolic extension commute, i.e., the faithful encoding R(Ls)
of a symbolic extension Ls of a concrete language L is a symbolic extension,
in terms of rewrite theories, of the encoding R(L) of the concrete language
L; this, in a nutshell, are the results described in the diagram of the left-hand
side of Figure 1.

21

Definition 16. Let L = ((Σ,Π,Cfg), T ,S) be a language definition that
satisfies Assumption 1.1, and R(L) = (Σ′, E ∪A,R,`) a rewrite theory such
that

1. for each Σ-sort s, there is an inclusion map Ts ↪→ TΣ′,E∪A,s,
2. there is a bijection α 7→ α′ between S and R.

Then R(L) is a faithful encoding of L iff the following property holds:
γ

α
=⇒S γ′ iff γ

α′
−→R(L) γ

′, for all concrete configurations γ, γ′ ∈ TCfg .

Note that γ and γ′ in γ α
=⇒S γ′ are elements in T and, by the inclusion

morphism, in γ
α′
−→R(L) γ

′ are equivalence classes in TΣ′,E∪A,s. Even if the
definition let some freedom in defining the bijection between rules, we may
think that the rules in S, which by Assumption 1 are of the form π∧φ⇒⇒⇒ π′,
are in correspondence with rewrite rules π → π′ if φ.

Faithful encodings enjoy the coverage and precision results (as stated
in Definition 15), which ensure that both positive and negative outcomes
of reachability analysis performed on faithfully encoding theories (e.g., per-
formed by the Maude search command) hold on the language definitions.

Assumption 2. 1. Π \ Πd = ∅ (i.e. there are no non-data predicates).
2. The result sort for any function symbol f in Σ \ Σd is not a Σd-sort.
3. Some function symbols in Σ\Σd are the subject of axioms like associa-

tivity, commutativity, unity, Let A be the set of all these axioms.
We assume that the axioms A are linear, regular, and data collapse-free.
A term t is linear iff any variable occurs in t at most once, an u = v is
regular iff var(u) = var(v) and it is linear if both sides u and v are
linear. An axiom u = v is data collapse-free iff it does not collapse a
non-data term into a data term; formally, for any substitution σ neither
σ(u) nor σ(v) is a variable of data sort. We also asume that there is a
matching algorithm modulo A.

4. T = D�(Σ,Π)/=A and it is decidable whether (Tt1 , . . . Ttn) ∈ Tp, for all
p ∈ Π and t1, . . . , tn E/A canonical forms.

The assumptions 2.1 and 2.2 are just for the sake of presentation. In
Remark 2 we show hints how the non-data predicates and data functions
with non-data arguments can be encoded in the associated rewrite theory.
Associativity and/or commutativity is needed for some structures used in the
definition of the semantics. For instance, the order of the cells in the defi-
nition of the configuration is not fixed. This is essential for the modularity:

22

one may modify the configuration without touching the existing semantical
rules. Recall that a configuration constructor is non-data (i.e. not in Σd).
The associativity of the y-lists populating the k-cell is also important for
modularity.

Definition 17. Let L = ((Σ,Π,Cfg), T ,S) be a language definition that
satisfies Assumptions 1.1 and 2. Then the rewrite theory R(L) = (Σ ∪
ΣΠ, E ∪ A,R,`) is defined as follows:

• ΣΠ contains a new sort BoolL
3, with constants trueL, falseL, proposi-

tional operations (¬L,∧L), and one operation p : s1 . . . sm → BoolL for
each predicate p ∈ Πs1...,sm ;

• A is the set of axioms from Assumption 2.3;

• for each operation f in Σd and values d1, . . . , dn ∈ D of the correspond-
ing sorts, E includes an equation f(d1, . . . , dn) = Df (d1, . . . , dn).

• R = S, where each rule (π1∧φ1 ⇒⇒⇒ π2) ∈ S becomes a rewrite rule
(π1 → π2 if φ1) ∈ R, where φ1 is a term of sort BoolL;

• ` is defined such that

– ` p(t1, . . . tn) iff p(t1, . . . tn) →!
E/A p(t′1, . . . t

′
n) and (Tt′1 , . . . Tt′n) ∈

Tp,
– ` ¬Lφ iff 6` φ, and
– ` (φ1 ∧L φ2) iff ` φ1 and ` φ2

for all predicates p ∈ Π and for all quantifier-free FOL formulas φ, φ1, φ2.

Since →E/A is confluent and terminating (see below), it follows that `
is well defined. Note that p(t1, . . . tn) →!

E/A p(t′1, . . . t
′
n) iff ti →!

E/A t′i, for
i = 1, . . . , n.

Theorem 2. Let L = ((Σ,Π,Cfg), T ,S) be a language definition that sat-
isfies Assumptions 1.1 and 2. Then R(L) defined as in Definition 17 is an
executable rewrite theory that faithfully encodes L.

3For technical reasons, the sort BoolL is specific to the R(L) encoding of the language
L, and it is distinct from, e.g., a Boolean sort that may exist in the language’s syntax Σ.

23

We shall prove that Assumption 1.3, regarding the relationship between
the concretely unifiable configurations and matching symbolic configurations,
is a consequence of the other assumptions.

Theorem 3 (Unification by Matching). Let L and Ls be language definitions
satisfying Assumptions 1.1,1.2 and 2. For all rules π1∧φ1 ⇒⇒⇒ π2 in S and
π ∈ T s

Cfg , π1 and π are concretely unifiable if and only if matchA(π1, π) ,
{σ : var(π1) → TΣ(Var d) | σ(π1) =A π} 6= ∅ and for each concrete unifier ρ
of π1 and π there is σ ∈ matchA(π1, π) and a valuation η such that ρ = η ◦σ.

The result stated by the first part of Theorem 3 is similar to the Matching
Lemma in [4]. The second part, which says that any concrete unifier can be
written as the composition of a matcher and a valuation of data variables, is
essential for proving the coverage and precision properties (see Theorem 1).

Corollary 1. Let L = ((Σ,Π,Cfg), T ,S) and Ls = ((Σs,Πs,Cfgs), T s,Ss) be
language definitions satisfying Assumptions 1.1, 1.2 and where the semantic
domain T s is defined like in Definition 11. Then Ls is a symbolic extension
of L.

Definition 11 leaves some freedom in defining a symbolic extension. The
following particular definition preserves the symbolic extension property for
the encoding rewrite theories.

Definition 18. The precise definition for the semantic domain T s is as fol-
lows:

• Any Σs-sort s is interpreted as the set of E-canonical forms CanΣs,E,s;

• T s
f (t1, . . . , tn) is the E-canonical form of f(t1, . . . , tn).

The following corollary summarizes the results (graphically depicted in
the left-hand side of Figure 1).

Corollary 2. If L satisfies Assumption 2 and Ls is defined as in Defini-
tion 18 then R(Ls) is a symbolic extension of R(L).

Proof. We apply Theorem 2 for both L and Ls and obtain that R(L) faith-
fully encodes L and R(Ls) faithfully encodes Ls. Since Ls is a symbolic
extension of L the transition systems of the two languages are related by
the coverage and precision results. Since faithful encoding produces an exe-
cutable rewrite theory whose transition system is isomorphic to the language

24

being encoded, the transition systems of the (executable) rewrite theories
R(Ls) and of R(L) also satisfy the coverage and precision results. The syn-
tactical requirements for R(Ls) to be a (pre)symbolic extension of R(L) also
follow from the definitions, which concludes the proof of this corollary.

Remark 2. The constraints given by Assumptions 2.1 (no non-data pred-
icates) and 2.2 (no functions in Σ \ Σd that return data results) can be
relaxed. We claim that all results reported in this section hold if the lan-
guages definition include such predicates and functions having the following
properties.

Assume that for each predicate p ∈ Π \ Πd the definition of p in T can
be encoded with a set of confluent and terminating equations Ep that are
consistent with data. Let EΠ be the union of these sets of equations. A
simple example of such a predicate is WellTyped(E) that holds whenever E
is a well typed expression; this predicate can be easily specified by structural
induction following the syntax definition of the expressions. A predicate p is
consistent with data if it does not depend on the term representation of data,
i.e., if t =Ed t′ then ` p(. . . t . . .) iff ` p(. . . t′ . . .), where Ed denote the set of
equations given by Definition 17. For instance, a predicate foo satisfying

` foo(. . . I . . .) iff I is an odd integer
` foo(. . . t1 +Int t2 . . .) iff ` foo(. . . t1 . . .)∧ ` foo(. . . t2 . . .)

is not consistent with data because ` foo(. . . 3+Int 5 . . .) and 6` foo(. . . 8 . . .).
Similarly, we assume that Σ \ Σd includes a sub-signature Σf such that

for each function symbol f ∈ Σf \ Σd the definition of f in T can be en-
coded with a set of confluent and terminating equations Ef that preserve
data. Let Ef be the union of these sets of equations. A function f pre-
serves data iff t =Ed t′ implies f(. . . t . . .) =Ef (. . . t′ . . .). An example of
such function is typedName() that returns the type of a name in a C++ dec-
laration; e.g., typedName(int* f(bool)) returns "f of function (bool)
returning pointer to int". Such a function preserves data and can be
defined by structural induction following the syntax definition of the decla-
rations. We further assume that (Ed ∪ EΠ ∪ Ef)/A is ground confluent, ter-
minating, and coherent as well. Then we may consider T = D�(Σ\Σf,Π)/=A,
E = Ed ∪ Ef, change the definition of ` such that

• if p ∈ Πd:
` p(t1, . . . tn) iff p(t1, . . . tn)→!

E/A p(t
′
1, . . . t

′
n) and (Tt′1 , . . . Tt′n) ∈ Tp,

25

• if p ∈ Π \ Πd:
` p(t1, . . . tn) iff p(t1, . . . tn)→!

(E∪EΠ)/A True.

The equations Ef have the same properties like Ed in the above proofs and the
new definition of ` faithfully encodes the definitions of the predicates. Note
that the terms representing elements in T do not includes function symbols
in Σf because they are Ef-normal forms. We have avoided to consider these
additional functions and predicates in order to keep the presentation as simple
as possible.

7. Approximate Encodings

When attempting to verify, analyze, or symbolically execute programs,
one is usually faced with a natural state-explosion problem. This arises either
from language nondeterminism, in the case of exploring the state space of
nondeterministic or concurrent systems, or from nondeterminism given by
abstracting the input, in the case of symbolic execution.

To cope with this explosion problem, one usually employs various ab-
stractions to achieve approximate models of the intended one, be them either
over-approximations —when one attempts to ensure a property over a larger
model—, or under-approximations —when one looks for errors and wants to
maintain soundness to ensure that if a error is found, then there is indeed an
error of the intended model and not in the approximation.

Our approximate encodings fall into the under-approximation class; the
goal here is to achieve a good balance between the depth of abstraction
(which reduces the search space) and the precision of the analysis (which is
reduced by the abstraction).

There are currently two main proposals in the literature for obtaining
abstractions of the rewrite theories: equational abstractions [14] or trans-
forming some semantical rules into equations [15]. The former amounts to
essentially deriving a new definition, where the new model T is the quotient
of the original one, typically requiring substantial input from the user, which
is something we would like to avoid because, usually, the equations depend
on programs, not on languages.

The latter might not be suitable for language definitions in general be-
cause, semantically, it would equate elements that are supposed to be distinct
in T . Consider a language construct randBool with two rules: randBool =>
true and randBool => false. Assume now we want to analyse a program

26

which uses randBool, but who fails to satisfy a given property regardless of
whether randBool transits to true or to false. In this case it might be
beneficial to collapse the state space by considering only one of the cases;
however, if we transform the two rules above into equations, this will seman-
tically identify true and false in T , collapsing much more of the state space
than desirable. An additional operational concern is that transforming cer-
tain rules into equations might destroy coherence and/or confluence and/or
termination, thus falling out of the executability requirements.

Two-layered rewrite theories, introduced below, allow us to preserve the
benefits of the techniques above (state space reduction, efficient execution),
while avoiding their semantical consequences (unnecessary collapse of states
in the semantical model T).

Definition 19. A two-layered rewrite theory is a tuple R = (Σ, E ∪
A, 1R∪2R,`, ε), where (Σ, E∪A, 1R∪2R,`) is an executable rewrite theory
with entailment, E∪1R is ground terminating modulo A, and ε : TΣ → TΣ is
a function that, for any t ∈ TΣ, returns an element in the set of (E ∪ 1R)/A-
irreducible terms {t′ ∈ TΣ | t →!

(E∪1R)/A t′} (which is nonempty precisely
because E ∪ 1R is ground terminating modulo A). The one-step rewrite
relation �R is defined by t1 �R t2 iff ε(t1)→2R/A t

′
2 and canE/A(t′2) =A t2.

If a language definition is implemented by a two-layered rewrite theory,
then we may think that the executions of the programs are achieved by
representatives. If t represents the current state of the program then the
set of all 1R-executions starting from t is finite and all these executions
are finite; let enabled1R(t) denote the set of these executions. The function
ε chooses exactly one of these executions, say sampleε(t). So, the tran-
sition system defined by a two-layered rewrite theory R(L) implementing
L is an under-approximation of the one giving semantics to L. Therefore,
two-layered rewrite theories are different from equational abstractions, which
produce an over-approximation. When a program is checked against a tem-
poral property, its states are labelled with atomic properties. A rewrite rule r
is invisible if for any execution step t1 → t2 obtained by applying r, t1 and t2
have the same labels (i.e. satisfy the same state predicates). If all rules in 1R
are invisible, the set E ∪A∪ 1R is confluent and 2R is coherent with respect
to E ∪A∪ 1R, then the set 1R in the definition of two-layered rewrite theo-
ries coincides with invisible transitions in standard rewrite theories presented
in [15].

Examples of two-layered rewrite theories are shown in Section 8.

27

Theorem 4. Let L = ((Σ,Π,Cfg), T ,S) be a language definition and R(L) =
(Σ, E ∪A, 1R∪ 2R,`, ε) be a two-layered rewrite theory with (Σ, E ∪A, 1R∪
2R) built as in Definition 17 but where the set of rules is partitioned into two
subsets 1R and 2R and E ∪ 1R is terminating modulo A. If γ �R(L) γ

′ then
γ ⇒+

S γ′.
We say that R(L) is an approximate encoding of L.

Corollary 3 (precision for approximate encoding). Let L = ((Σ,Π,Cfg), T ,S)
be a language definition and R(Ls) = (Σ, E ∪A, 1R ∪ 2R,`, ε) be an approx-
imate encoding of Ls. For each feasible symbolic execution π0∧φ0 �R(Ls)

π1∧φ1 �R(Ls) · · · �R(Ls) πn∧φn �R(Ls) · · · there is a concrete execution
in L: γ0 =⇒+

S γ1 =⇒+
S · · · =⇒+

S γn =⇒+
S · · · such that γi ∈ [[πi∧φi]] for

i = 0, 1,

An interesting and practically relevant question is whether the coverage
and precision relationships between L and Ls can be reflected on the ap-
proximate encodings as two-layered rewrite theories. To investigate these
relationships we have to find a way to define an approximate two-layered
rewrite theory R(Ls) that extends a given approximate two-layered rewrite
theory R(L). A first attempt is to build 1Rs from 1R and 2Rs from 2R, but
this is not enough to have a coverage-like result. For example, the program
log in Figure 5 is deterministic and terminating for each ϑ(A) ∈ Int . Thus,
one may execute any instance of it with an approximate encoding having no
second-layer rules, i.e., 2R = ∅. If 2Rs = ∅, then 1Rs could be non terminat-
ing because there is an infinite execution corresponding to the case when the
value of the program variable x in the current configuration is always greater
than zero. Another problem is to specify how the strategy ε is extended to
εs. Since it is hard to give general answers for these questions we opted for
a particular solution that can be implemented in Maude.

Definition 20 (symbolic approximate encoding). Let Ls = ((Σs,Πs,Cfgs),
T s,Ss) be the symbolic extension of L = ((Σ,Π,Cfg), T ,S) and R(L) =
(Σ, E ∪ A, 1R ∪ 2R,`, ε) an approximate encoding of L. We assume that
there is a total order relation ≺ over 1R such that:

1. the rewrite t→!
(E∪1R)/A ε(t) uses the minimal applicable rule from 1R

w.r.t. ≺ whenever such a rule exists;
2. if α is unconditional and α′ is conditional then α ≺ α′.

We let the approximate encoding of Ls beR(Ls) = (Σs, E∪A, 1Rs∪2Rs,`s, εs)
such that:

28

• 1Rs = {αs | α ∈ 1R, α unconditional};

• 2Rs = {αs | α ∈ 1R, α conditional} ∪ {αs | α ∈ 2R};

• `s the same with that of R(Ls);

• αs≺s α′s only if α ≺ α′;

• εs uses the minimal rule from 1Rs w.r.t. ≺s.

The partial order ≺s together with ε and εs are used to control the ap-
plication order of the rules in the two theories, R(L) and R(Ls). If a rewrite
engine, like Maude, executes the equations and respectively the rules in the
order they appear in the rewrite theory, then ≺s could be this order. A
symbolic configuration represents a set of concrete configurations. If a condi-
tional rule is applicable for a given symbolic configuration, then the condition
could hold for some concrete configurations and not for others. Hence the
symbolic execution must be branched in two sub-executions according to the
two cases. In order to capture these behaviours the transitions given by these
rules cannot be collapsed and therefore all conditional rules are included in
2Rs.

The next result proves a coverage result between R(L) and R(Ls), where
the step by step simulation is replaced by a kind of stuttering simulation,
which is close to that required by Definition 15.

Theorem 5 (coverage for approximate encoding rewrite theories). Let L =
((Σ,Π,Cfg), T ,S) be a language definition, R(L) = (Σ, E ∪A, 1R∪2R,`, ε)
be an approximate encoding of L, and R(Ls) be the approximate encoding of
Ls defined as in Definition 20. If γ →R(L) γ

′, γ ∈ Jπ∧sφK then there is π′∧sφ′
such that π∧sφ→+

R(Ls) π
′∧sφ′ and γ′ ∈ Jπ′∧sφ′K.

A precision relationship between R(L) and R(Ls) does not hold in gen-
eral. The reason is that 1Rs has fewer rules than 1R and hence the representa-
tive-selection strategy εs is weaker than ε. Therefore there are no guarantees
that the concrete execution given by Corollary 3 will be the same with that
chosen by the strategy ε.

If the strategies εs are "isomorphic images" of ε, then we have a precision-
like result.

Theorem 6 (precision for approximate encoding rewrite theories). Let L =
((Σ,Π,Cfg), T ,S) be a language definition, R(L) = (Σ, E ∪A, 1R∪2R,`, ε)

29

be an approximate encoding of L, and R(Ls) be the approximate encoding
of Ls defined as in Definition 20 such that εs is an isomorphic image of ε
via the transformation • 7→ •s. If π∧sφ →R(Ls) π

′∧sφ′ and γ′ |= π′∧sφ′ then
there exists γ such that γ →R(L) γ

′ and γ |= π∧sφ.

The isomorphism between ε and εs can be easily obtained. We already
have a 1-1 correspondence between S and Ss using the transformation given
in [3]. If the rewrite engine tries to execute the equations/rules in the order
they are written in the rewrite theory, then we take ≺ being defined by this
order. The following example illustrates this feature.

Example 9. Let P0 denote the CinK program a = --y / x; and γ0 the con-
figuration 〈〈P0〉k〈E0〉env〈S0〉store ···〉cfg, where E0 , x 7→ `x a 7→ `a y 7→ `x and
S0 , `x 7→ 1 `a 7→ 0. This configuration can be obtained, e.g., by compiling
the program int x = 1, a = 0; int& y = x; a = –y / x;. Recall that
the evaluation order for the division operator is nondeterministic. Assume
that the heating-cooling rules (1)-(4) are in 1R. Their symbolic versions are:

A1 / A2 ∧s ψ⇒⇒⇒ rvalue(A1) y � / A2 ∧s ψ (5)
A1 / A2 ∧s ψ⇒⇒⇒ rvalue(A2) y A1 / � ∧s ψ (6)

rvalue(I1) y � / A2 ∧s ψ⇒⇒⇒ I1 / A2 ∧s ψ (7)
rvalue(I2) y A1 / � ∧s ψ⇒⇒⇒ A1 / I2 ∧s ψ (8)

If the strategy ε chooses to apply first the rules (1) and (3), respectively, then
we obtain the intermediate configuration γ1 , 〈〈P1〉k〈E0〉env〈S1〉store ···〉cfg
with P1 equal to 0/x y `a = �; and S1 the store `x 7→ 0 `a 7→ 0.

Let γs0 denote the symbolic configuration 〈〈P0〉k〈E0〉env〈Ss
0〉store ···〉cfg∧sx ≥ 1,

with Ss
0 , `x 7→ x `a 7→ a. If the strategy εs chooses to apply first the

rules (6) and (8), respectively, then we obtain the intermediate configuration
γs2 , 〈〈P s

2 〉k〈E0〉env〈Ss
0〉store ···〉cfg∧sx ≥ 1 with P s

2 equal to --y / x y `a =
�;. Obviously, the computation γs0 ⇒∗S γs2 does not cover γ0 ⇒∗S γ1. But we
get coverage if the strategy εs chooses to apply first the rules (5) and (7),
respectively, and this can be achieved by setting (1) ≺ (2). Moreover, we
have precision as well because there is an isomorphism between ε and εs.

Assume now that the rules (1)-(4) are replaced with the following condi-

30

tional ones:

A1 / A2 ∧ ¬A1 :: Int ⇒⇒⇒ rvalue(A1) y � / A2 (9)
A1 / A2 ∧ ¬A2 :: Int ⇒⇒⇒ rvalue(A2) y A1 / � (10)

rvalue(I1) y � / A2 ∧ A1 :: Int ⇒⇒⇒ I1 / A2 (11)
rvalue(I2) y A1 / � ∧ A2 :: Int ⇒⇒⇒ A1 / I2 (12)

where :: is the membership predicate. Then, their symbolic versions are in
2Rs.

The computation γ0 ⇒∗S γ1 is now covered by γs0 ⇒∗S γs1, where γs1 is
〈〈P s

1 〉k〈E0〉env〈Ss
1〉store ···〉cfg∧sx ≥ 1 with P s

1 equal to x −Int 1/x y `a = �;
and Ss

1 equal to `x 7→ x−Int 1 `a 7→ a. But in this case we loose the precision
for γs0 ⇒∗S γs2. The precision result can be obtained if we include rules (9)-(12)
in 2R.

8. K definitions as Maude theories

This section discusses encoding the representation of both K semantic
definitions and their symbolic extensions as two layered rewrite theories in
the Maude rewrite engine.

The K framework (up to version 3.5) uses Maude as a rewrite engine.
Through compilation, K definitions are translated into Maude rewrite theo-
ries which are then used for running/analysing programs. The main compo-
nents of a K definition are the syntax declarations, the configuration and the
K (rewrite) rules. To these, the tool adds automatically the rules generated
from strictness annotations (e.g. heating/cooling rules 1-4).

The set of K rules is compiled into a two-layered rewrite theory, which is
then encoded into Maude by using equations for the first-layer and rewrite
rules for the second-layer. Being optimized for generating interpreters, the
default behavior of the K compiler is to translate all K rules into (condi-
tional) equations (i.e. 1R = S and 2R = ∅). This behavior can be altered by
specifying (at compile time) that certain rules are to be considered transi-
tions, which will trigger their transformation into (conditional) rewrite rules
in the resulting Maude module. To do so, the names of the rules defining
transitions must be passed as an argument for the –-transition option at
compilation time:

31

$ kompile cink.k –-transition "division"

The above command specifies that the rule tagged with the division attribute
is a transition; thus, the rule for division is included in 2R. By making it a
rewrite rule in Maude, we can explore the nondeterminism generated by the
rule when using Maude’s search command.

A source of nondeterminism arises from strictness annotations. When
the strict attribute is given to some syntactical construct, the tool chooses
by default an arbitrary, but fixed order to evaluate its arguments. This opti-
misation has the side effect of possibly losing behaviours due to missed inter-
leavings. Some of these interleavings can be restored using the –-superheat
option. This option is used to instruct the K tool to exhaustively explore
all the nondeterministic evaluation choices for the strictness of a language
construct.

The following example shows how one can explore more behaviours by
specifying second-layer rules at compile time. If we compile the language
definition of CinK without any options, then running the program counter
(Figure 5) will result in a single solution, where the returned value is either 1
(when the tool first evaluates dec() and then inc()) or 3 (when it evaluates
inc() before dec()). However, if we set the operation plus as superheat:

$ kompile cink.k –-superheat "plus"

then we obtain both solutions, because the heating rule for addition can be
applied in two ways and the option tells the tool to explore them both:

$ krun counter.cink –-search

8.1. Representing the symbolic extensions
The symbolic transformations discussed in Section 4.2 are implemented as

compilation steps in the K compiler [3]. The tool uses the same translation to
Maude discussed above in order to obtain the rewrite theory R(Ls). An im-
portant step in this process is that conditional rules whose conditions cannot
be reduced to true are compiled as transitions, that is, they are included in
2R. When performing search in Maude, these rules are essential in exploring
all the execution paths, thereby ensuring the coverage property (Theorem 5).
Note that none of the symbolic transformations applied by the tool to the
language definition changes the initial semantics of the language.

32

The implementation uses a slightly modified version of Maude which in-
cludes a hook to the Z3 SMT solver [16] and a corresponding operation
called checkSat. It receives as argument an SMTLib string, which is sent to
the solver to check its satisfiability. The result returned by the solver is prop-
agated back through the hook to Maude as a string, so checkSat can return
“sat”, “unsat”, or “unknown”. In practice, our tool uses checkSat to reduce
the search space by slicing unfeasible execution paths. To obtain R(Ls) from
a K definition one uses the symbolic backend as follows:

$ kompile cink.k –-backend symbolic

This command applies the symbolic transformations, moves the appropriate
rules in 2R, and generates the rewrite theory R(Ls). Using R(Ls) one can
execute programs using either concrete or symbolic values. However, run-
ning programs with symbolic values may lead to infinite loops when the loop
conditions contain symbolic values. In such cases one can bound the number
of final states to be searched using the –bound option, or the exploration
depth using the –depth option (in the same way):

$ krun log.cink -cIN="ListItem(#symInt(a))" -cPC="true"
\ –-search –-bound 3 4

This executes log (Figure 5) symbolically, until a number of 3 solutions is
found. Each solution consists in a result configuration and a formula which
constitutes the path condition. Users can also set the initial path condition
using the -cPC option. This becomes useful when one wants to limit the
search space by setting initial constraints over symbolic variables:

$ krun log.cink -cIN="ListItem(#symInt(a))" –-search \
-cPC="0 <Int #symInt(a) andBool #symInt(a) <Int 10"

There are certain cases where setting initial constraints over symbolic values
is important; for instance, in a program which contains two consecutive loops,
the symbolic execution might get stuck in the first loop, and it never reaches
the second one. In such cases it is a bit harder to control the number of
iterations using only –-bound and –-depth options, since their behaviour
depends on the number of rules in 2R. On the other hand, when using
constraints as in the command above, the tool returns the set of final solutions

4In the version 3.4 of the K Framework the internal representation of the symbolic
variable A:Int is ListItem(#symInt(a)).

33

by exploring all possible values of the constrained symbolic variables, and
thus, enabling the exploration of the second loop too. In fact, a generic
solution to this problem would be to add counters for each loop and use the
-cPC to set limits for them.

Since Z3 only approximates the predicate sat , our tool slices the paths for
which checkSat returns “unsat”. That is, it explores the feasible paths and
some unfeasible paths, too (corresponding to the case when checkSat returns
“unknown”). This might lead to a bigger search space, but the tool does not
miss any feasible execution path. Note that coverage for all possible feasible
paths of a program is obtained only when using faithful encodings.

9. Conclusion and Future Work

We have presented some results that relate language definitions to dif-
ferent kinds of rewrite theories, which encode the language definitions both
faithfully and approximately. The results show how (symbolic) analysis per-
formed on a rewrite theory are reflected on the corresponding language def-
inition. The general results are applied to the current implementation of K
language definitions in Maude.

The faithful encoding of K language definitions as rewrite theories is
relatively simple but the resulting theory is not efficient in practice. There-
fore, we extended the notion of rewrite theory in order to work with under-
approximations of the language definitions (and implicitly of the rewrite the-
ories).

The approximating theories are more efficient and flexible – the user has
the freedom to work with various levels of approximations –, but their use
for program analysis must be done with care because they do not preserve
all the behavioural properties. The coverage/precision results proved in this
paper can help the user in correctly assessing which analysis hold on which
representations.

Related Work
The first tool supporting K [17] was written in Maude’s meta-level, as

a series of transformations translating K definitions into Maude programs.
Then, the K compiler became a more complex tool that translates a K defini-
tion into an intermediate language, which is used to generate code for various
backends, including Maude. The tool and the semantics of K definitions are

34

described in [18]. The programming-language definition framework presented
in this paper (Section 4) is a specialised case of that definition.

Rewriting modulo SMT was proposed as a new (language independent)
technique which combines the power of SMT solving, rewriting modulo SMT,
and model checking, for analysing infinite-state open systems [4]. An open
system is modelled as a triple (Σ, E,R), where (Σ, E) is an equational theory
describing the system states and R is a set of rewrite rules describing the sys-
tem’s transitions. The state of an open system must include the state changes
due to the environment. These changes are captured by new fresh symbolic
variables introduced in the right-hand side of the rewrite rules. Thus, the
system states are represented not as concrete states, but as symbolic ones,
i.e. terms with variables (ranging in the domains handled by the SMT solver)
which are constrained by an SMT-solvable formula. Rewriting modulo SMT
can symbolically rewrite such states (which may describe possibly an infinite
number of concrete states). Our coverage and precision properties, which re-
late the faithful rewrite-theory encoding of a language and of that language’s
symbolic version, are analogous to the soundness and completeness results
in [4], which relate usual rewriting and rewriting modulo SMT. An interest-
ing alternative to defining symbolic execution as executions in a transformed
language (as we do it in [3]) would be to compile a language into a rewrit-
ing modulo SMT Maude module. Our construction of two-layered rewrite
theories has some similarities with equational abstractions [14] and with the
state-space reduction techniques obtained by transforming rules into equa-
tions presented in [15]. However, our first-layer rewrite rules do not equate
states as Maude equations do; their semantics is that of transformation, not
of equality. Therefore, these rules do not have to satisfy the executability
and property-preservation requirements of [14, 15].

References

[1] G. Roşu, T. F. Şerbănuţă, An overview of the K semantic framework,
Journal of Logic and Algebraic Programming 79 (6) (2010) 397–434.

[2] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-Oliet,
C. Talcott, All About Maude, A High-Performance Logical Framework,
Vol. 4350 of LNCS, Springer, 2007.

[3] A. Arusoaie, D. Lucanu, V. Rusu, A generic framework for sym-
bolic execution, in: 6th International Conference on Software Lan-

35

guage Engineering, Vol. 8225 of LNCS, Springer Verlag, 2013, pp.
281–301, also available as a technical report at http://hal.inria.fr/
hal-00766220/.

[4] C. Rocha, J. Meseguer, C. A. Muñoz, Rewriting modulo SMT and open
system analysis, in: Rewriting Logic and Its Applications - 10th Inter-
national Workshop, WRLA 2014, Held as a Satellite Event of ETAPS,
Grenoble, France, April 5-6, 2014, Revised Selected Papers, 2014, pp.
247–262. doi:10.1007/978-3-319-12904-4_14.

[5] A. Arusoaie, D. Lucanu, V. Rusu, T.-F. Şerbănuţă, A. Ştefănescu,
G. Roşu, Language Definitions as Rewrite Theories, in: 10th Interna-
tional Workshop on Rewriting Logic and Application, Grenoble, France,
2014, pp. 31–44, (To appear in Springer LNCS).

[6] D. Lucanu, T. F. Şerbănuţă, CinK - an exercise on how to think in
K, Tech. Rep. TR 12-03, Version 2, Alexandru Ioan Cuza University,
Faculty of Computer Science (December 2013).

[7] G. Roşu, A. Ştefănescu, Checking reachability using matching logic, in:
G. T. Leavens, M. B. Dwyer (Eds.), OOPSLA, ACM, 2012, pp. 555–574.

[8] Working draft, standard for Programming Language C++, no. N3797.
URL http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2013/n3797.pdf

[9] F. Durán, J. Meseguer, On the Church-Rosser and coherence properties
of conditional order-sorted rewrite theories, J. Log. Algebr. Program.
81 (7-8) (2012) 816–850.

[10] P. Viry, Equational rules for rewriting logic, Theor. Comput. Sci. 285 (2)
(2002) 487–517.

[11] J. Meseguer, Software specification and verification in rewriting logic
(2003).
URL http://maude.cs.uiuc.edu/papers/abstract/Mspec_ver_
rwl_2003.html

[12] G. Rosu, Matching Logic - Extended Abstract (Invited Talk), in: 26th
International Conference on Rewriting Techniques and Applications

36

http://hal.inria.fr/hal-00766220/
http://hal.inria.fr/hal-00766220/
http://dx.doi.org/10.1007/978-3-319-12904-4_14
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://maude.cs.uiuc.edu/papers/abstract/Mspec_ver_rwl_2003.html
http://maude.cs.uiuc.edu/papers/abstract/Mspec_ver_rwl_2003.html
http://maude.cs.uiuc.edu/papers/abstract/Mspec_ver_rwl_2003.html

(RTA 2015), Vol. 36 of Leibniz International Proceedings in Informatics
(LIPIcs), 2015, pp. 5–21.

[13] G. Roşu, A. Ştefănescu, Ş. Ciobâcă, B. M. Moore, One-path reachability
logic, in: Proceedings of the 28th Symposium on Logic in Computer
Science (LICS’13), IEEE, 2013, pp. 358–367.

[14] J. Meseguer, M. Palomino, N. Martí-Oliet, Equational abstractions,
Theor. Comput. Sci. 403 (2-3) (2008) 239–264.

[15] A. Farzan, J. Meseguer, State space reduction of rewrite theories us-
ing invisible transitions, in: Proceedings of the 21st German Annual
Conference on Artificial Intelligence, Springer, 2006, pp. 142–157.

[16] L. M. de Moura, N. Bjørner, Z3: An efficient SMT solver, in: TACAS,
Vol. 4963 of Lecture Notes in Computer Science, Springer, 2008, pp.
337–340.

[17] T. F. Şerbanuţă, G. Roşu, K-Maude: A rewriting based tool for se-
mantics of programming languages, in: P. C. Ölveczky (Ed.), Rewriting
Logic and Its Applications - 8th International Workshop, Vol. 6381 of
Lecture Notes in Computer Science, 2010, pp. 104–122.

[18] D. Lucanu, T. F. Şerbănuţă, G. Roşu, The K Framework distilled, in:
9th International Workshop on Rewriting Logic and its Applications,
Vol. 7571 of Lecture Notes in Computer Science, Springer, 2012, pp.
31–53, invited talk.

37

Proofs

Proof of Theorem 1 (page 20). We have to establish the coverage and
precision properties required by the Ls construction (cf. Definition 11). We
state and prove them as two lemmas, and the proof of our theorem is the
direct consequence of them. The two lemmas are proved under the more
general setting in which rules α may have elementary patterns in the right-
hand side.

Lemma 1 (Coverage). If γ α
=⇒S γ′ and γ ∈ [[π∧sφ]] with π∧sφ ∈ T s

Cfgs, then

there exists π′∧sφ′ ∈ T s
Cfgs such that π∧sφ αs

=⇒Ss π′∧sφ′ and γ′ ∈ [[π′∧sφ′]].

Proof. Assume that α is π1∧φ1⇒⇒⇒ π2∧φ2. From γ ⇒S γ′ we obtain ρ : Var →
T such that: (i) ρ(π1) = γ, (ii) ρ |= φ1, and (iii) ρ(π2) = γ′. From γ ∈ [[π∧sφ]]
we obtain ρ′ : Var → T such that (iv) ρ′(π) = γ, (v) ρ′ |= φ. Since we may
assume var(π∧φ) ∩ var(π1∧sφ1) = ∅ we may take ρ = ρ′. Thus, by (i) and
(iv), ρ is a concrete unifier of π1 and π and by Assumption 1 we obtain
σπ1
π : var(π1)→ TΣ(var(π)), extended to Var such that (vi) σπ1

π (π1) =A π,

Vlad:
de verificat =A

(vii) σπ1
π (x) = x for all x /∈ var(π1), and η : Var → T such that (viii)

ρ = η ◦ σπ1
π . Since we assumed var(π∧φ) ∩ var(π1∧φ1) = ∅, using (vii) we

obtain that ρ|var(φ) = η|var(φ), and from (v) we obtain (ix) η |= φ. We now
define σ : Var ∪ {ψ} → T s as follows:

• σ(x) = σπ1
π (x) if x ∈ var(π1);

• σ(x) = φ if x = ψ;

• σ(x) = x, otherwise.

We take π′ , σ(π2) and φ′ , σ(ψ ∧ φ1) = φ ∧ σ(φ1), and show that the
conclusions of the lemma hold. First, we note that π′∧sφ′ ∈ T s

Cfgs , since,
by Assumption 1, var(π2) ⊆ var(π1) and thus var(π′) = var(σ(π2)) =
var(σπ1

π (π2)) ⊆ var(ran(σπ1
π)) ⊆ Var d, and var(φ′) = var(φ) ∪ σπ1

π (φ1) ⊆
Var d ∪ var(ran(σπ1

π)) ⊆ Var d.
Proving π∧sφ⇒S sπ′∧sφ′: From (ii) ρ |= φ1 and (viii) ρ = η ◦ σπ1

π we
obtain η |= σπ1

π (φ1) = σ(φ1). From the above and (ix): η |= φ we obtain

38

(x) η |= (φ ∧ σ(φ1)) = σ(ψ ∧ φ1), thus, σ(ψ ∧ φ1) is satisfiable, meaning
sat(σ(ψ ∧ φ1)) holds. The latter is equivalent to (xi) σ(sat(ψ ∧ φ1)) holds.

We also have (xii) σ(π1∧sψ) = π∧sφ. Using (xi), (xii) and π′ = σ(π2),
φ′ = φ ∧ σ(φ1) we obtain π∧sφ⇒S sπ′∧sφ′.

Proving γ′ ∈ [[π′∧sφ′]]: we have γ′ = ρ(π2) = η ◦σπ1
π (π2) = η ◦σ(π2), thus,

(xiii) γ′ = η(π′), and using (x) η |= φ ∧ σ(φ1) we obtain (xiv) η |= φ′. (xiii)
and (xiv) imply γ′ ∈ [[π′∧sφ′]], which concludes the proof.

Lemma 2 (Precision). If π∧sφ αs

=⇒Ss π′∧sφ′ and γ′ ∈ [[π′∧sφ′]] then there
exists a configuration γ such that γ α

=⇒S γ′ and γ ∈ [[π∧sφ]].

Proof. We assume again that α is π1∧φ1⇒⇒⇒ π2∧φ2. From π∧sφ⇒S sπ′∧sφ′ we
obtain σ : Var ∪{ψ} → T and a symbolic rule αs , (π1∧sψ)∧sat(ψ ∧ φ1)⇒⇒⇒
π2∧s(ψ ∧ φ1) ∈ Ss, obtained from α , π1∧φ1 ⇒⇒⇒ π2 ∈ S such that (i)
σ(π1∧sψ) = π∧sφ, (ii) σ |= sat(φ1 ∧ ψ) and (iii) π′∧sφ′ = σ(π2∧s(ψ ∧ φ1)).
From the hypothesis γ′ ∈ [[π′∧sφ′]] and (iii) we obtain a valuation ρ such that
(iv) γ′ = ρ(π′) = ρ(σ(π2)) and (v) ρ |= σ(φ1) ∧ σ(ψ). Let γ , ρ(σ(π1)). We
prove that γ satisfies the lemma’s conclusions.

γ ⇒S γ′: we have (vi) γ = ρ(σ(π1)) = (ρ ◦ σ)(π1), from (iv) we obtain
(vii) γ′ = (ρ ◦σ)(π2), and from (v) we obtain (viii) ρ ◦σ |= φ1. (vi), (vii) and
(viii) imply γ ⇒S γ′.

γ ∈ [[π∧sφ]]: from (v) we also obtain (ix) ρ |= σ(ψ) and using γ , ρ(σ(π1))
we obtain (x) γ ∈ [[σ(π1)∧sσ(ψ)]]. But [[σ(π1)∧sσ(ψ)]] = [[σ(π1∧sψ)]] =
[[π∧sφ]] - the latter equality is obtained using (i) - which proves γ ∈ [[π∧sφ]]
and the lemma.

This concludes the proof of Theorem 1.

Proof of Theorem 2 (page 23). We prove first several lemmas, which
state that the applications of equations and axioms may commute, and that
→E/A is ground terminating, ground confluent, and ground coherent.

Lemma 3. Let t1, t′1, t2 be three ground terms such that t1 →e t2 and t1 =u=v

t′1 for some equation e ∈ E and axiom u = v ∈ A. Then there exists t′2 such
that t′1 →e t

′
2 and t2 =u=v t

′
2.

Proof. Assume that e is f(d1, . . . , dn) = d, where d = Df (d1, . . . , dn). Let
p, p′ be two positions in t1 and a ground substitution σ such that t1|p =
f(d1, . . . , dn), t2 = t1[d]p and t1|p′ = σ(u), t′1 = t1[σ(v)]p′ (or vice-versa,
t1|p′ = σ(v), t′1 = t1[σ(u)]p′). We distinguish two cases:

39

1. p and p′ are disjoint: then we take t′2 = t1[d]p[σ(v)]p′ = t1[σ(v)]p′ [d]p.
2. Since u = v is linear and regular and it includes only non-data function

symbols, the only other possibility is that f(d1, . . . , dn) is a subterm
of σ(X) for some variable X. Let σ′ denote the substitution defined
as follows: σ′(X) is obtained by replacing the involved occurrence of
f(d1, . . . , dn) by d and σ′(Y) = σ(Y) for Y 6= X. It is easy to see
that σ(X) →e σ

′(X) and hence σ(v) →e σ
′(v) (that implies t′1 →e

t′1[σ′(v)]p′), and that t2|p′ = σ′(u). We take t′2 = t′1[σ′(v)]p′ .

So, in both cases we have t2 =u=v t
′
2 and t′1 →e t

′
2.

Corollary 4. If t1 →∗E t2 and t1 =A t′1 then there is t′2 such that t′1 →∗E t′2
and t2 =A t

′
2.

Lemma 4. →E/A is ground terminating.

Proof. Since the axioms A are linear, regular, data collapse-free and apply
only to non-data function symbols, it follows that if t =A t′ then a data
function symbol occurs in t iff it occurs in t′ and hence t and t′ have the
same number of data function occurrences. The equations f(d1, . . . , dn) =
Df (d1, . . . , dn) may only be applied to ground Σ-terms, and each application
strictly reduces the number of non-constant operations in ΣData in the term,
by replacing non-constant terms f(d1, . . . , dn) by constants Df (d1, . . . , dn).
So, t→E/A t

′ implies that the number of occurrences of data function symbols
in t is greater than the number of occurrences of data function symbols in t′.
Hence, there cannot be a nonterminating sequence of →E/A reductions of a
given ground term t, which proves the lemma.

Lemma 5. →E/A is ground confluent.

t =A t′ →e′ t1 =A t′1
=A =A

t′′ →e′ t′′1 e′′↓
e′′↓ e′′↓
t2 →e′ t3 =A t′′3

=A =A

t′2 →e′ t′3

Lemma 3

L
em

m
a
3

Lemma 3

Figure .6: The proof of the confluence in Lemma 5

40

Proof. Since →E/A is ground terminating, it is enough to show that it is
ground locally confluent (and by Newman’s lemma, it is also ground conflu-
ent). So we have to show that if t →e′/A t

′
1 and t →e′′/A t

′
2, then there is t3

such that t′i →e′/A t3, i = 1, 2. The situation is graphically represented by the
diagram in Figure .6. Assume that t→e′/A t1, thus, there are t′, t′1 such that
t =A t

′, t′ →e′ t1, t1 =A t
′
1. Similarly, if t →e′′/A t2 then there are t′′, t′2 such

that t =A t
′′, t′′ →e′′ t2, t2 =A t

′
2. Then there is t′′1 such that t1 =A t

′′
1, t
′′ →e′ t

′′
1

by Lemma 3.
We show now how t3 is obtained. Assume that e′ , f ′(d′1, . . . , d

′
n) = d′,

d′ = Df ′(d′1, . . . , d′n′), and e′′ , f ′′(d′′1, . . . , d
′′
n′′) = d′′, d′′ = Df ′′(d′′1, . . . , d′′n′′),

and that they match the term t′′ at positions p′ and p′′, respectively. Note
that none of the positions may be a strict prefix of the other one, because
if, say, p′′ where a strict prefix of p′ then at last one among d′1, . . . , d′n′ would
not be a constant, in contradiction to the form of the equations E. Thus, we
have the two following cases: If p′ = p′′ then e′ coincides with e′′ and thus
the confluence is not an issue. If p′ and p′ are disjoint positions, both e′ and
e′′ can be applied, which gives:

• t′′[d′]p′ [d
′′]p′′ if e′ is applied first, then e′′ is applied;

• t′′[d′′]p′′ [d
′]p′ if e′′ is applied first, then e′ is applied.

Since p′ and p′ are disjoint, the above terms are syntactically equal, say to
t3.

Finally, there are t′3 and t′′3 such that t′2 →e′ t
′
3, t3 =A t′3 and t′1 →e′′ t

′′
3,

t3 =A t
′′
3, by applying twice Lemma 3. So, we may conclude that t′i →E/A t3,

for i = 1, 2.

Lemma 6. →E/A is ground coherent.

t =A t′ = σ(π1) →α σ(π2) =A t1 →!
E/A canE/A(t1)

E/A↓! E/A↓!

def.
of
σ′ E/A↓∗ =A

canE/A(t) =A σ′(π1) →α σ′(π2) canE/A(σ′(π2))

confluence confluence

→!
E/A

Figure .7: The proof of the coherence in Lemma 6

Proof. We have to show that for all t, t1 ∈ TΣ with t →R/A t1 there is
t2 ∈ TΣ s.t. canE/A(t)→R/A t2 and canE/A(t1) =A canE/A(t2). The situation

41

is graphically represented by the diagram in Figure .7. Assume that t =A

t′, t′ →α t
′
2, t
′
2 =A t1, where α is a rule π1 → π2 if b in R. It follows that

there is a ground substitution σ such that t′ = σ(π1), t′2 = σ(π2) and ` σ(b).
Let σ′ denote the ground substitution defined by σ′(X) = canE/A(σ(X)).
It follows that σ(π1) →!

E/A σ′(π1) (recall that any data subterm of π1 is
a variable) and σ(π2) →∗E/A σ′(π2). We also have σ′(π1) →α σ′(π2) since
` σ′(b) iff ` σ(b) by the definition of ` and that of σ′. Since →E/A is
ground confluent and terminating, it follows that canE/A(t) =A σ′(π1) and
canE/A(t1) =A canE/A(σ′(π2)). Now it is easy to see that σ′(π2) is just the
term t2 required by the coherence property.

We come back now to the proof of Theorem 2. There exists a matching
algorithm modulo the equational axioms A by Assumption 2.3. The termina-
tion, confluence and coherence properties follow from Lemma 4, Lemma 5,
and Lemma 6, respectively. We show now that Ts = CanE/A,s., i.e., the
statement of the theorem that identifies configurations (elements of TCfg)
and terms of sort CanE/A,Cfg is well formed.

We have Ts = D�Σ,Πs /=A by Assumption 2. If s is a data sort then
Ts = Ds = CanE/A,s because each d ∈ Ds is a E/A-canonical form and each
term t ∈ TΣd can be reduced using equations E to an element d ∈ Ds. Recall
that a term of data sort may have only data subterms. If f ∈ Σ \ Σd and
t1, . . . , tn are E/A canonical forms of appropriate sort, then f(t1, . . . , tn) is a
E/A-canonical form, as well, because there are no equations E involving f .

There remains to prove the faithfulness of the encoding (of language def-
initions into rewrite theories), i.e., γ α

=⇒S γ′ iff γ
α−→R(L) γ

′. We have that
γ

α
=⇒S γ′ iff α , (π1∧φ1⇒⇒⇒ π2) ∈ S and there is ρ : Var → T are such that

γ =T ρ(π1), ρ(φ1) =T true and γ′ = ρ(π2).
Each valuation ρ : Var → T defines a ground substitution σρ : Var → TΣ

such that σρ(X) = ρ(X) for each X ∈ Var , which implies canE/A(σρ(t)) =
ρ(t) for each term t ∈ TΣ(Var). For instance, with A = ∅, if ρ(I1) = 3, ρ(I2) =
5 then ρ(I1 +Int I2) = T_+Int_(ρ(I1), ρ(I2)) = D_+Int_(3, 5) = 8 and σρ(I1 +Int

I2) = _ +Int _(σρ(I1), σρ(I2)) = 3 +Int 5. The term 3 +Int 5 is reduced to 8
using the equations E.

Conversely, each ground substitution σ : Var → TΣ defines a valuation
ρσ : Var → T such that ρσ(X) = canE/A(σ(X)) for each X ∈ Var .

If φ is a quantifier-free FOL formula (that can be represented as a term
of sor BoolL in R(L)), then the claims 1) ρ |= φ iff ` ρσ(φ) and 2) ` σ(φ) iff
ρσ |= φ are proved by structural induction on φ and using the definition of `.

42

Thus, if a rule π1∧φ1⇒⇒⇒ π2 in S is applicable on a concrete configuration
γ ∈ TCfg via the valuation ρ and produces γ′, then π1 → π2 if φ1 in R is
applicable to γ via σρ and produces the same result γ′. Conversely, if a
rule π1 → π if φ1 in R is applicable on γ ∈ TCfg via the substitution σ and
produces γ′, then π1∧φ1 ⇒⇒⇒ π2 in S is applicable to γ via ρσ and produces
the same result γ′. The faithfulness of the encoding is now proved, and the
theorem is proved as well.

Proof of Theorem 3 (page 24). We first introduce a definition and prove
two lemmas.

Definition 21. A data-abstraction t◦ of a ground Σ-term t w.r.t. a set Y
of variables (with var(t) ⊆ Y), and the substitution σ◦t associated to it, are
defined as follows:

1. if t is a data term, then t◦ ∈ Var \ Y is a fresh variable and σ◦t (t◦) = t;
2. if t = f(t1, . . . , tn) with f a non-data functional symbol, then t◦ =
f(t◦1, . . . , t

◦
n) and σ◦t = σ◦t1] . . .] σ

◦
tn , where t

◦
i is a data abstraction of

ti w.r.t. Y ∪
⋃
j 6=i var(t◦j) and σ◦ti is the substitution associated to t◦i .

Remark 3. 1. By Assumption 2.2, a term of data sort does not include
non-data function symbols and hence any ground Σ-term has a data-
abstraction that is unique up to a variable renaming.

2. A data-abstraction is linear since by construction any fresh variable
occurs just once.

3. If t◦ is a data-abstraction of t w.r.t. Y and σ◦t is the substitution
associated to t◦ then σ◦t (t◦) = t.

All the above properties can be checked by induction on the number of
non-data function symbols occurring in t.

Lemma 7. Let t be a linear term such that all its subterms of data sorts are
variables, ρ : Var → T a valuation, and t◦ a data-abstraction of t w.r.t. Y .
Then there is a substitution σ : Var → TΣ(Var d) and a valuation η : Var →
T such that ρ(y) = η(σ(y)) for all y ∈ Y .

Proof. We proceed by structural induction on t. We distinguish the following
cases:

1. t is a variable of data sort. We take σ defined by:

• σ(t) = ρ(t)◦ (which is a fresh variable because ρ(t) is a data term)

43

• σ(x) = x for all x 6= t

and the valuation η given by:

• η(ρ(t)◦) = ρ(t), and

• η(x) = ρ(x) for all x 6= ρ(t)◦.

Thus, η(σ(y)) = ρ(y) for all y ∈ Y (note that ρ(t)◦ is not in Y).
2. t is a variable of non-data sort.

• σ(t) = ρ(t)◦

• σ(x) = x for all x 6= t

and the valuation η given by

• η(x) = σ◦ρ(t)(x) for x ∈ var(ρ(t)◦)

• η(x) = ρ(x) for all x 6∈ var(ρ(t)◦)

We have η(σ(y)) = ρ(y) for all y ∈ Y (note that Y ∩ var(ρ(t)◦) = ∅).
3. t = f(t1, . . . , tn) where f is a non-data function operation. Then
ρ(t)◦ = f(t̄1, . . . , t̄n) by Definition 21, where t̄i = ρ(ti)

◦ for i = 1, . . . n.
There are σi and ηi such that ηi(σi(ti)) = ρ(ti) by the induction hy-
pothesis (ti fulfils the hypotheses of the lemma). Let σ denote the
substitution defined by:

• σ(x) = σi(x) for all x ∈ var(ti) and i = 1, . . . , n

• σ(x) = x for all x 6∈
⋃
i var(ti)

and let η denote the valuation

• η(x) = ηi(x) for all x ∈ var(t̄i) and i = 1, . . . , n

• η(x) = ρ(x) for all x 6∈
⋃
i var(t̄i)

Since t is linear, it follows that σ and η are well-defined. We ob-
tain ρ(y) = ηi(σi(y)) for all y ∈ Y ∪

⋃
j 6=i var(t̄j) and i = 1, . . . n by

the induction hypothesis. Let y ∈ Y . We distinguish two cases: 1)
σ(y) = σi(y): then y ∈ var(ti) and var(σi(y)) ⊂ var(t̄i), which implies
η(σ(y)) = ηi(σi(y)) = ρ(y); 2) σ(y) = y, which implies η(y) = ρ(y) and
hence η(σ(y)) = ρ(y). So, in both cases we obtained η(σ(y)) = ρ(y),
which concludes the lemma.

Corollary 5. In the context of Lemma 7:

44

1. σ(t) = ρ(t)◦;
2. σ(x) = ρ(x)◦ for all x ∈ var(t).

Lemma 8. Let t and t′ be two ground Σ-terms of the same non-data sort s.
If t =A t

′ then there is a variable renaming ξ such that t◦ =A ξ(t
′◦).

Proof. The congruence =A on TΣ(Var) is the smallest equivalence relation
that 1) includes ρ(u) =A ρ(v) for all u = v in A and ρ : Var → TΣ(Var), and
2) is closed under replacement: if t1 =A t2 then t0[t1]p =A t0[t2]p.

We proceed by induction on the number of how many times the replace-
ment rule is applied.

For the base case, we need to show that if u = v in A, then ρ(u)◦ =A

ξ(ρ(v)◦) for some renaming ξ. Since u = v is linear, regular, and data
collapse-free we have var(u) = var(v) = {x1, . . . , xn}. Moreover, since both
u and v include only non-data functional symbols, we may apply Lemma 7
and Corollary 5 and obtain ρ(u)◦ = σ(u) and ρ(v)◦ = σ′(v), where σ and
σ′ are substitutions such that σ(xi) and σ′(xi) are equal to ρ(xi)

◦ up to a
variable renaming ξi (by the definition of data abstractions), i = 1, . . . , n.
The conclusion follows by taking ξ = ξ1] . . .] ξn.

For the inductive setp: let t = t0[t1]p and t′ = t0[t2]p, t1 =A t2. If t1 and
t2 are of data sort then let p′ be the smallest nonstrict prefix of p such that
the subterm of t0 at the position p′ is a data term. If it exists, the position p′
occurs in both t◦ and t′◦ and t◦|p′ , t′◦|p′ are both fresh variables of data sort,
thus, the substitution ξ renaming t′◦|p′ into t◦|p′ ensures t◦ = ξ(t′◦), which
solves this case.

If p′ does non exist, then t1 and t2 are of non-data sort. Then, we have
t◦1 =A ξ(t

◦
2), for some variable renaming ξ, by the induction hypothesis. More-

over the position p occurs in both t◦ and t′◦ by Assumption 2.2.
So, we may assume w.l.o.g. that t = t0[t1]p and t′ = t0[t2]p, t1 =A t2,

t◦1 =A ξ(t◦2) for some variable renaming ξ, and that the position p occurs
in both t◦ and t′◦. In this case we have t◦ = t◦0[t◦1]p and t′◦ = t◦0[t◦2]p (this
can be checked by structural induction on t0). From t◦1 =A ξ(t◦2) we obtain
t◦0[t◦1]p =A t◦0[ξ(t◦2)]p by the definition of =A. The conclusion of the lemma
follows by extending ξ such that t◦0[ξ(t◦2)]p = ξ(t◦0[t◦2]p).

We now go back to the proof of Theorem 3. We may assume w.l.o.g. that
var(π1) ∩ var(π) = ∅ and that the data-abstractions of ρ(π) and ρ(π1) are
computed w.r.t. Y = var(π1) ∪ var(π), for any valuation ρ.

45

For the "if" implication: let σ ∈ matchA(π1, π), then, any valuation ρ sat-
isfying ρ(σ(x)) = ρ(x) for all x ∈ var(π1) is a concrete unifier (we implicitly
assume that all the carrier sets in T are non-empty, and use the fact that
var(σ(x)) ∩ var(π1) = ∅ for all x ∈ var(π1), since var(σ(x)) ⊆ Var d for all
x ∈ var(π1), and var(π1) ∩ Var d = ∅.

For the "only if" part: We show that for any concrete unifier ρ of π1 and
π there is σ ∈ matchA(π1, π) (hence this set is not empty) and a valuation
η such that ρ(x) = η(σ(x)) for all x ∈ var(π1) ∪ var(π). Recall that T s

Cfg =

TΣ(D),Cfg(Var d), T = D�(Σ,Π)/=A, and D�(Σ,Π) = T(Σ\Σd)(D). If π1 and π
are concretely unifiable there is a valuation ρ : Var → T(Σ\Σd)(D) such that
ρ(π1) =A ρ(π). We obtain ρ(π1)◦ =A ξ(ρ(π)◦) by Lemma 8, where ξ is a
variable renaming.

There are a substitution σ1 and a valuation η1 such that η1(σ1(y)) = ρ(y),
for all y ∈ Y , by Lemma 7. Moreover, σ1(π1) = ρ(π1)◦ by Corollary 5.

Since π includes only variables of data sort, it follows that any position
p in the data-abstraction ρ(π)◦ is a position in π as well and hence π is an
instance of ρ(π)◦. It follows that π is an instance of ξ(ρ(π)◦) as well, i.e. there
is a substitution σ2 such that σ2((ξ(ρ(π)◦)) = π. From ρ(π1)◦ =A ξ(ρ(π)◦)
and σ1(π1) = ρ(π1)◦ we obtain σ2(σ1(π1)) =A σ2(ξ(ρ(π)◦)) (=A is closed
under substitution), which implies σ2(σ1(π1)) =A π, i.e. σ = σ2 ◦ σ1 is in
matchA(π1, π).

Let η denote the valuation defined by η(y) = ρ(σ2(y)), for y ∈ var(ξ(ρ(π)◦)),
and η(x) = η1(x) in the rest.

We prove that η(σ(y)) = ρ(y) for all y ∈ Y = var(π1) ∪ var(π). We
distinguish the following two cases:

• y ∈ var(π1). From ρ(π1)◦ =A ξ(ρ(π)◦) and the linearity and regular-
ity properties of the axioms A we obtain var(ρ(π1)◦) = var(ξ(ρ(π)◦)).
Moreover, the abstraction mechanism ensures that var(ρ(π1)◦) ∩ Y (=
var(π1)∪var(π)) = ∅, thus, var(ρ(π1)◦)∩var(π1) = ∅. Then, var(π1)∩
var(ξ(ρ(π)◦)) = ∅, and we have η(σ(y)) = η1(σ1(y)). We obtain
η1(σ1(y)) = ρ(y) by Lemma 7, hence η(σ(y)) = ρ(y).

• y ∈ var(π). Then y ∈ Var d, which implies σ1(y) = y. Then η(σ(y)) =
η(σ2(y)) = ρ(y) by the definition of η.

We have proved σ ∈ matchA(π1, π) 6= ∅ the existence of a valuation η such
that ρ(x) = η(σ(x)) for all x ∈ var(π1)∪var(π). To complete the proof of the
theorem we extend η such that it coincides with ρ on Var \(var(π1)∪var(π)).

46

Proof of Theorem 4 (page 28). LetR(L) denote the rewrite theory (Σ,
E ∪A, 1R ∪ 2R,`). R(L) is built exactly as in Definition 17 by hypotheses.
We prove a lemma first.

Lemma 9. If γ →∗(E∪1R)/A γ
′ then γ →∗R(L) canE/A(γ′), for all γ, γ′ ∈ TCfg .

Proof. By induction on the length i of the derivation γ →∗(E∪1R)/A γ′ , γi.
When i = 0, then γ′ = γ. Since all data subterms of γ are constants, it
follows that γ is irreducible and we obviously have γ →∗R(L) canE/A(γ) =A γ.
We assume that γ →∗(E∪1R)/A γi implies γ →∗R(L) canE/A(γi) (♣), and we want
to prove that γ →∗(E∪1R)/A γi →(E∪1R)/A γi+1 implies γ →∗R(L) canE/A(γi+1),
i ≥ 0. There are two possibilities for γi+1 to be reached from γi:

• γi →E/A γi+1, i.e γi+1 is reached from γi applying an equation. We ob-
tain γi+1 →∗E/A canE/A(γi+1) =A canE/A(γi) by the confluence and ter-
mination of→E/A and γ →∗R(L) canE/A(γi+1) follows directly from (♣).

• γi →1R/A γi+1, i.e. γi+1 is reached from γi applying a rule in 1R.
Since 1R is ground coherent with respect to E modulo A, there exists
a ground term γ′i such that canE/A(γi) →1R/A γ

′
i and canE/A(γi+1) =A

canE/A(γ′i). So, canE/A(γi)→1R/A γ
′
i →!

E/A canE/A(γ′i) =A canE/A(γi+1),
which implies γi →R(L) canE/A(γi+1). We obtain γ →∗R(L) canE/A(γi+1)

applying (♣).

The proof by induction is finished and hence the conclusion of the lemma
holds.

We now prove Theorem 4. Assume that γ �R(L) γ′. We have that
ε(γ) →2R/A γ′′, canE/A(γ′′) =A γ′, and γ →!

(E∪1R)/A ε(γ) by Definition 19.
Since γ →!

(E∪1R)/A ε(γ), there exists n and γ1, γ2, . . . , γn such that γ =

γ1 →(E∪1R)/A γ2 →(E∪1R)/A · · · →(E∪1R)/A γn = ε(γ). We obtain γ →∗R(L)

canE/A(ε(γ)) (♦) by applying Lemma 9 for γ →∗(E∪1R)/A γn. Since ε(γ) is
(E ∪ 1R)-irreducible, we have canE/A(ε(γ)) =A ε(γ) and hence (♦) is equiv-
alent to γ →∗R(L) ε(γ). From ε(γ) →2R/A γ

′′ and canE/A(γ′′) =A γ
′ we have

that ε(γ) →R(L) γ
′. We obtain γ ⇒∗S ε(γ) ⇒S γ′ by applying Theorem 2

to γ →∗R(L) ε(γ) and ε(γ) →R(L) γ
′, respectively. Hence we conclude that

γ ⇒+
S γ

′.

47

Proof of Theorem 5 (page 29). Assume γ →R(L) γ
′. By the proof of

Theorem 4 and Theorem 2 we have γ = γ0
α1=⇒S γ1

α2=⇒S · · ·
αn=⇒S γn = γ′.

Moreover, γn−1 = ε(γ), α1, . . . , αn−1 ∈ 1R, and αn ∈ 2R. By Theorem 1

there is π∧sφ = π0∧sφ0

αs
1=⇒Ss π1∧sφ1

αs
2=⇒Ss · · ·

αs
n=⇒Ss πn∧sφn such that

γi |= πi∧sφi. We distinguish two cases:

• αs
1, . . . , α

s
n−1 ∈ 1Rs. We have φ = φ0 = · · · = φn−1 and hence

πn−1∧sφ is 1Rs-irreducible modulo A (otherwise γn−1 is not irreducible
by Theorem 2). Since α1, . . . , αn−1 have been chosen as being minimal
w.r.t. ≺ it follows that αs

1, . . . , α
s
n−1 are minimal w.r.t. ≺s. Therefore,

πn−1∧sφ = εs(π∧sφ) and hence π∧sφ→R(Ls) πn∧sφn.

• There exists i < n such that αi ∈ 2Rs. Let us consider the smallest
i with this property. Assume that πi−1∧sφi−1 is not 1Rs-irreducible.
Then there is πi−1∧sφi−1

αs

=⇒Ss πα∧sφα with αs ∈ 1Rs, i.e. αs is
unconditional. It follows that α ≺ αi that implies that αi has not been
chosen as minimal w.r.t. ≺. Therefore, πi−1∧sφi−1 is 1Rs-irreducible
and hence πi−1∧sφ = εs(π∧sφ) and π∧sφ →R(Ls) πi∧sφi, as in the
previous case. We proceed similarly for the next i < n with αi ∈ 2Rs,
and so on.

Proof of Theorem 6 (page 29). Assume π∧sφ →R(Ls) π
′∧sφ′. By the

proof of Theorem 4 and Theorem 2 we have π∧sφ = π0∧sφ0

αs
1=⇒Ss π1∧sφ1

αs
2=⇒Ss

· · · αs
n=⇒Ss πn∧sφn = π′∧sφ′, where αs

1, α
s
2, . . . , α

s
n−1 ∈ 1Rs and αs

n ∈ 2Rs.
By Theorem 2 there is γ0

α1=⇒S γ1
α2=⇒S · · ·

αn=⇒S γn = γ′, such that
γi |= πi∧sφi. So, based on the fact that 1R includes only unconditional rules
and αs

1, . . . , α
s
n−1 have been chosen (εs) as being minimal w.r.t. ≺s which

means that α1, . . . , αn−1 are minimal too w.r.t. ≺, we can choose γ = γ0,
where γ0 |= π∧sφ. Since the strategies εs and ε are isomorphic, it follows
that γn−1 = ε(γ) because πn−1∧sφn−1 = εs(π0∧sφ0).

48

	Introduction
	Running Example
	Background
	Rewrite Theories
	Logics
	First-Order Logic
	Matching Logic and Reachability Logic

	Language Definitions and their Symbolic Extensions
	Language Definitions
	Symbolic Extension of a Language Definition

	Symbolic Extensions of Rewrite Theories
	Faithful Encodings
	Approximate Encodings
	K definitions as Maude theories
	Representing the symbolic extensions

	Conclusion and Future Work

