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A BINARY TREE FEATURE SELECTION TECHNIQUE 
FOR LIMITED TRAINING SAMPLE SIZE 
M,J, MUASHER 
D,A, LANDGREBE 

Purdue University/Laboratory for 
Applications of Remote Sensing 

ABST"RACT 

An algorithm is presented that pre­
dicts the mean recognition accuracy as 
a function of dimensionality for two­
class problems, using a Bayes classifier 
in the presence of a limited number of 
training samples. Several experiments 
are presented to assess the algorithm's 
performance, and a binary tree classi­
fication procedure that utilizes the 
algorithm is shown to prove its useful­
ness. 

I. INTRODUCTION 

A number of different types of 
classifiers are now in use in remote 
sensing. Most of these classification 
techniques can be regarded as "single­
stage" classifiers, where an unknown 
pattern is tested against all classes 
using one feature subset, and then the 
pattern is assigned to one of the present 
classes in a single stage classification 
procedure. 

In recent years, the need has been 
felt for alternate, more powerful tech­
niques throuqh the use of which more 
information could be extracted from the 
scene. This is particularly important 
in the presence of a limited set of 
training samples because of the following 
reasons: 

1. " characteristic of remote sensing 
problems is that trainina sample 
numbers are limited since i~ the 
remote sensing situation pre­
labeled samples are usually 
difficult or expensive to obtain. 

2. Current sensors in remote sensing 
applications produce small 
feature sets (usually 4) and lim­
ited gray scales and thus do not 

require a large number of training 
samples to estimate class statis­
tics. The next generation of 
sensors, beginning with the 
anticipated launching of the 
Thematic Mapper sensor, will 
produce larger feature sets, and 
more detailed gray scales, and 
hence will require larger numbers 
of training samples to adequately 
estimate class statistics. 

3. Classification accuracy is known 
to be dependent upon feature set 
size, but current feature selec­
tion algorithms do not provide the 
ability to accurately determine 
at what subset dimensionality the 
best accuracy occurs. 

In cases where there are larger 
numbers of features available than what 
should be used, current practice is to 
arbitrarily pick the number of features 
to be used, then to use a feature selec­
tion algorithm to determine the specific 
subset. We propose an algorithm that 
determines the optimal dimensionality, 
and the specific subset of features to be 
used, especially in the presence of the 
"Hughes Phenomenon"l Briefly stated, 
this phenomenon shows that in the presence 
of a limited training sample size, 
contrary to intuition, the mean accuracy 
does not always increase with additional 
measurements. Rather, it exhibits a 
peakin9 effect. Further, as the number 
of training samples increases, the peak 
occurs at a larger dimensionality, 
disappearing only in the case of an 
infinite numbel- of tra ining samples 
(complete knowledge of the underlying 
distributions). Any effective feature 
selection technique should be able to 
predict when/if this phenomenon occurs. 
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This paper presents a feature selec­
tion algorithm that takes into account 
the number of training samples used in 
estimating class statistics, then illus­
trates its use in a binary tree clas­
sification procedure, predicting the best 
feature subset to be used at each node. 
The procedure is particularly useful in 
cases where the Hughes Phenomenon occurs, 
as it is able to predict when the peak 
occurs and what feature subset to use in 
such cases. But it may also be useful 
where the number of training samples is 
large, predicting beyond what dimensiona­
lity accuracy increases would be so 
slight as to no longer be worth the added 
cost. 

II. FEATURE SELECTION ALGORITHM 

As mentioned earlier, our goal is 
to develop a performance estimator (to 
be used as a feature selection technique) 
that can predict the optimal subset of 
features. Some of the most serious 
difficulties facing researchers in trying 
to devise algorithms to estimate the 
probability of error in multidimensional 
analysis are: 

1. Working with several features, 
the calculation of the probabi­
lity of error requires an 
integration of a multivariate 
probability density function. 
Most often, this integration is 
almost impossible to carry out 
analytically, and very costly 
multivariate numerical integra­
tion has to be performed. 
Indirect methods which do not 
have a one-to-one relationship 
with tiE probability of error have 
been commonly used (Divergence, 
Bhattacharyya distance, ... etc.) 

2. The measurement features are 
often correlated, making it 
difficult to assess the impor­
tance of each feature separately 
on the probability of error. 
Thus, all possible sets of 
features have to be compared, 
forcing the use of either very 
expensive calculations or sub­
optimal techniques. 

3. In most of the cases, one has to 
deal with multi-class problems 
(greater than two) which further 
complicates the integration on 
multivariate probability density 
functions. Also, in general, 
in multiclass cases the relation­
ship between class pair error 

rates and the overall rate is not 
one to one. 

We seek a function that is one­
dimensional, regardless of the number of 
features used. This will allow us to deal 
with a one-dimensional iDtegration to 
calculate the probability of error, there­
by reducing the complexity of the probabi­
lity density functions. Such a function 
should retain all the information regar­
ding the probability of error, which is 
what we are trying to estimate. 

Fortunately, in the two class case, 
such a function does exist, and is called 
the likelihood function, defined as: 

where 
p(x/w.) is the probability density 

function lof X given class w .. 
1 

Assuming that p(X/w.) is multi­
variate normal, Fukunagaland Krile 2 
developed an algorithm which estimates 

( 1) 

the probability of error for multi­
dimensional, two-class problems. However, 
their algorithm assumes accurate knowledge 
of the underlying distributions, and hence 
the probability of error they predict is 
monotonically decreasing with increasing 
dimensionality. 

Muasher and Landgrebe 3 ,4 modified 
Fukunaga and Kriles' algorithm by taking 
into account the number of training 
samples used in estimating the statistics 
of the two classes at hand. The proba­
bility of error, PE , which is the area of 
overlap under the probability density 
functions of h/wl and h/w2 (multiplied by 
the prior probabilities) can change 
considerably if the estimated parameters 
of h/wi are poor as a result of an inade­
quate training sample size. The algorithm 
developed in (3,4)A~00ks 9t the variances 
of h/wl and h/w2, 01 and o~, and computes 
their variances. It shows that as the 
number of features ipcreases, the 
variances of o~ and 0 2 increase rapidly, 
offsetting the increa~e in separability 
between classes and thus leading to a 
peaking effect. 

A new, modified algorithm is then 
developed (See (3) for complete details) 
to take into account the number of 
training samples. The algorithm estimates 
the probability of error by approximating 
the area under the likelihood ratio 
function for two classes, taking into 
account the number of training samples 
used in estimating each of these two 
classes. In the next section, results are 
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presented that compare the performance 
of the algorithm against experimental 
observations. Also, a binary tree 
classification which uses the algorithm 
for feature selection is shown to 
illustrate the usefulness of the 
procedure. 

III. RESULTS 

Two data sets are used in our 
experiments: An aircraft data set, and 
a Landsat set. The aircraft data set was 
collected on August 13, 1971, over 
Tippecanoe County, Indiana, and has 12 
spectral bands. The Landsat set was 
collected over Henry County, Indiana. 
A multi temporal data set was constructed 
by registering four data sets flown over 
the site at different times. The dates 
the data were collected on are: June 9, 
July 16, August 20, arid September 26, all 
in 1978. It was established in (3,4) that 
the Karhunen-Loeve ordering method, in 
which the features are ordered according 
to descending eigenvalues after a K-L 
transformation is performed on the data 
set, is an effective feature selection 
technique in the presence of a limited 
number of training samples. This method 
will be used here, and consequently, a 
K-L transformation was performed on both 
data sets; the first 12 channels in 
each set were used for classification. 

Both real and simulated data are 
used. The simulated data is based on the 
statistics of real data, using a method 
described in (5). The purpose of 
simulating data is to satisfy several 
assumptions that are commonly made in 
remote sensing, but not always exactly 
satisfied with real data. These assump­
tions include class-conditional multi­
variate normal distributions, known 
number of classes in the scene, and 
"pure" pixel elements. The simulation 
technique used preserves the natural 
spatial information occuring in multi­
spectral data by spatially basing the 
simUlation on a classification map. 

Two classes are used in each data 
set: Corn and forest in the aircraft 
data set, and corn and soybeans in the 
Landsat set. In each case, a large 
number of samples per class is chosen for 
training, and a larger, mutually exclusive 
set is used for testing. Five training 
sets, each one having 20 samples per 
class, are randomly chosen from each of 
the l"arger training sets. Another 5 
training sets are also chosen, but with 
each set having 13 samples per class, 
the minimum number one can use without 

a singular covariance matrix resulting in 
12 dimensions. The K-L method is used for 
ordering the features, and the test fields 
are classified, using the statistics 
obtained from the 5 training sets. The 
average classification accuracy, Pcc , over 
the 5 sets, is calculated for the best 
2,3, ... ,12 feature subsets. Also, the 
results obtained by using the proposed 
algorithm are plotted versus experimental 
observations to compare the two. 

Results appear in Figure 1 for 
aircraft data, and Figure 2 for Landsat 
data. Also plotted are the standard 
deviations of errors for each feature sub­
set using the 5 different training sets. 

Results indicate that the algorithm 
predicts the best, or near best, subset 
of features to be used. The algorithm 
results have the same shape as the trends 
in the corresponding experimental curves. 

The algorithm also predicts the Pcc 
values within a few percent. Since the 
objective behind the algorithm is to 
predict the best feature dimensionality 
and specific feature subset to be used in 
classification rather than to predict the 
probability of error itself, the fact that 
the algorithm does not always predict this 
probability of error with an arbitrarily 
small prediction error is not of concern. 
It is worth noting here that the plotted 
experimental curves are averaged plots of 
random variables (i.e. the result of 
several trials of a random experiment) 
while the algorithm result is an average 
value (expected value) and therefore not 
a random variable. 

The standard deviations plotted tend 
to confirm the expected trend that in 
general, ~n increase in dimensionality 
results in an increase in the variance 
of error, that increase becoming highly 
noticeable at high dimensionality, when 
the randomness in the estimated statistics 
given a fixed, finite set of training 
~amples, is large. This is furthe~ 
confirmed in Huasher and Lancigrebe . 

The next step is to incorporate this 
algorithm in a binary tree classification 
procedure. The aircraft data set is used 
here. Nine spectral classes exist in the 
scene. 13 samples per class are used for 
training, with a larger, mutually exclus­
ive set for testing. The binary tree is 
constructed by using a bottom-up proce­
dure, combining the two most separable 
classes each time, and using a separa­
bility megsure developed by Whitsitt and 
Landgrebe, and defined as follows: 
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D = erf (/2B) erf 
(2) 

where B is the Bhattacharyya distance 
and erf(.) is the Gaussian error function. 

The proposed algorithm is used to 
predict the optimal features at each 
node, A single-stage, maximum likelihood 
classification is then performed on the 
two sets, using feature subsets of 2 to 
12. This is done to compare the perfor­
mance of the binary tree procedure to that 
of the feature subsets. 

Results are shown in Figure 3. The 
numbers below each node indicate the 
features used at these nodes, and the 
numbers inside the nodes indicate the 
number of training samples at each node. 
The figure below the tree shows the res­
ults of the single-stage and the binary 
tree classifiers. 

Results indicate that the algorithm 
is effective in predicting the feature 
subsets that lead to the maximum accuracy 
possible using the K-L transformation for 
ordering the features. In the example, 
the binary tree procedure results in the 
maximum (or even better) accuracy possible 
using a single-stage classifier, but with 
the added advantage that it provides a 
method for selecting those feature subsets 
which lead to the maximum accuracy. 

It is worthwhile to note that common 
belief has been that fewer features need 
be used at the top of the tree to 
separate classes, and more features need 
be used deeper in the tree to distinguish 
between somewhat inseparable classes. 
However, if there are inadequate training 
samples present, then the number of 
training samples towards the bottom of the 
tree is less than that towards the top. 
Hence, less features should be used at 
the bottom to avoid a peaking effect. 

IV. CONCLUSION 

The proposed algorithm for feature 
selection appears to be effective in 
predicting the best feature subsets to use 
in the presence of a limited number of 
training samples. The algorithm is 
especially useful in a binary tree 
classification procedure, where it is 
shown to predict the best accuracy 
possible in a fairly involved data set 
(9 classes, 12 features). 

The program provides the ability to 
use so small a number of training samples 
and still get the best classification 

accuracy possible out of the available 
statistics. Moreover, results seem to 
indicate that the rule of thumb often 
used in remote sensing applications, 
stating that the number of training 
samples should be 10 times larger than the 
number of features used, might be too high. 
Indeed, working with such small numbers of 
training samples in multispectral data 
is new. 
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