
Purdue University
Purdue e-Pubs

LARS Technical Reports Laboratory for Applications of Remote Sensing

1-1-1983

Iron Oxide Genesis and Its Influence on the
Spectral Reflectance Properties of Gossans
G. Accame

B. Robinson

L. Biehl

Follow this and additional works at: http://docs.lib.purdue.edu/larstech

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Accame, G.; Robinson, B.; and Biehl, L., "Iron Oxide Genesis and Its Influence on the Spectral Reflectance Properties of Gossans"
(1983). LARS Technical Reports. Paper 68.
http://docs.lib.purdue.edu/larstech/68

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4949431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Flarstech%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/larstech?utm_source=docs.lib.purdue.edu%2Flarstech%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/lars?utm_source=docs.lib.purdue.edu%2Flarstech%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/larstech?utm_source=docs.lib.purdue.edu%2Flarstech%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages


LARS Technical Report 062183 

IRON OXIDE GENESIS AND ITS INFLUENCE ON 
THE SPECTRAL REFLECTANCE PROPERTIES OF 
GOSSANS 

G, ACCAME 

Greenhorne & a'Mara, Inc. 
Riverdale, Maryland 

B, ROBINSON J L, BIEHL 

Purdue UniversitY/Laboratory for 
Applications of Remote Sensing 
West Lafayette, Indiana 

ABSTRACT 

Gossans in the Mt. Bross area of the Alma 
mining district, Colorado, were characterized by use 
of iron oxide mineralogy and spectral reflectance as a 
possible aid to mineral exploration using remotely 
sensed data. Mine site gossan samples produced by the 
weathering of lead-zinc replacement deposits were 
found to be composed jriTllarily of goethite, and 
nonrnine samples produce by the weathering of pyrite 
in the local country rock were found to be composed 
prirnaril y of jarosite. A three stage genetic model was 
proposed to explain the observed iron oxide 
asseTllblages, whereby goethite precipitated early and 
was followed by jarosite and hematite. 

Bidirectional reflectance factor was measured 
on undisturbed sample surf aces with an Exotech 20C 
spectroradiometer from 0.5 11m to 2.35 11m. A pressed 
bari um sulfate powder reference was used for 
calibration. The samples were organized into two 
groups. The first contained goethite as the major 
oxide. The spectra showed a 0.65 11m shoulder, broad 
0.91t 11m absorption, and low reflectance factor in the 
visible and near infrared (13 percent at 0.7511 m). The 
other group was mainly hematite; the spectra showed 
a weak 0.65 ~m shoulder, sharp 0.85 11 m absorption, 
and high reflectance factor (37 percent at 0.75 11 m.) It 
appeared that hematite, although a minor constituent 
in the nonmine gossans when compared to jarosite, was 
spectrally dominant. 

Exploration prograTlls, using spectral 
reflectance studies to characterize gossan types, 
should be undertaken with care because iron oxide 
genesis is influenced lJy a number of physio-chemical 
factors that can produce similar mineralogies and 
spectral characteristics from different parent sulfide 
assemblages. In the Alma district, the observed 
spectral differences between gossans appeared to be 
indirectly a function of wall rock chemistry and not 
parent sulfide assemblage. 

I. INTRODUCTION 

A gossan is an accumulation of iron-rich 
material derived from the weathering of iron-sulfide 
bearing rocks. Gossans are commonly found overlying 

ore deposits and can be used on
l 
t~e surface to explore 

for certain base metal sulfides. - The present study 
is a mineralogical and spectral comparison of gossans 
produced by the weathering of lead-zinc deposits and 
pyrite-rich country rocks in the vicinity of Mt. ~ross, 
Alma Mining district, Colorado, as a possible aid to 
exploration using remotely sensed data. 

In order to understand residual iron oxide 
mineralogy and spectral character as produced by the 
weathering of different parent sulfides, it is important 
to understand the chemical variables that influence 
weathering systems. Several factors effect iron oxide 
genesis: Eh, pH, IW-:r.per~ture, ionic speciation, and 
relative humidity, - -'whlCh are for the most part 
controlled by climate, parent sulfide asseTllblage, and 
host rock chemistry. Ultimately, the resultant 
spectral signatures observed in the field or laboratory 
will be greatly influenced by sample mineralogy. 

The spectral characteristics of iron oxides are 
particularly pronounced below 1.211 m with broad 
absorption features in the ultraviolet and 0.9 11 m 
regions. These minima as well as the much less 
intense 0.6511 m feature are due to an electronic 
transition of the iron atom. The location and intensity 
of these minima may vary with mineralogy and are 
detectable using reflectance spectroscopy. 

II. GJ=:OLOGIC SETTING 

The Alma District is located in the northeastern 
portion of the Colorado Mineral Belt approximately 
100 km southwest of Denver (Figure I). Paleozoic 
sedimentary rocks overlying Precambrian schist and 
gneiss dip eastward 100 to 250 and are intruded by 
Tertiary sills and dikes. Talus and glaCial deposits are 
pronounced in the area and soil is weakly developed on 
dip slopes and valleys. The study area is located above 
the tree line between an elevation of 12,000 and 
IIt,OOO feet and is covered by snow fro'n October to 
April. 
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ITI. METHODOLOGY 

Hand samples were collected from mine tailings 
on t!1e east side and from outcrops (nonmine) on the 
west side of Mt. Bross. Preparation of the samples for 
mineral identification with X-ray diffraction was 
minimized to avoid structural damage to any clay and 
iron oxides present. Care was taken to prepare only 
the iron oxide surface coating or residue by hand 
grinding and ~ounting as a slurry on glass slides. The 
samples were analyzed with a Philips vertical 
goniometer equipped with a diffracted beam graphite 
monochrometer. Scans were obtained using eu 
Ka radiation from 50 to 500 20 at a scan rate of 
10 20/minute. 

Bidirectional reflectance factor lli was measured 
on nine samples at the Laboratory for Applications of 
Remote Sensing, Purdue University. An Exotech 20C 
spectroradiometer15, 16 was used to collect data from 
an undisturbed 3 cm diameter area of each sample 
from 0.5 to 2.35 )lm. An illumination zenith angle of 
lao and viewing zenith angle of 00 were used. A 
pressed bari um sulf ate powder surf ace was used for 
calibration. 

IV. RESULTS 

The gossans from the mine tailings were found to 
be composed primarily of goethite (FeOOH). 
Commonly, the samples were preserved as 
pseudomorphs or had a porous three-dimensional 
structure where in-situ replacement of sulfide by iron 
oxide had occurred. The host rock was predominantly 
dolomite, with quartz and barite gargue in the sulfide 
veins. 

The gossans from the nonmine sites were found 
to be composed of goethite, jarosite (KFe3 (504)2 
(OH)6) and hematite (Fe203) with jarosIte the 
dominant phase. It was impossible to determine the 
order of deposition since the oxides were in the form 
of a thin « I mm) surface coating although sample 
Nos. 19 and 26 contained coarse dark goethite as a 
uniform layer « I mm thick) and patches 0-10 cm in 
diameter} of yellow powdery jarosite « I mm thick), 
with a very thin coating of red-colored hematite on 
top. When viewed in thin sections the iron oxide 
occurred exclusively as a surface coating. The host 
rock, schist and gneiss, was found to be least altered 
where pyrite could be seen as small enhedral grains, 
and most altered where only holes and iron oxide 
pseudomorphs of the pyrite remained. 

The spectra for the mine samples and the X-ray 
data indicate that goethite is the major oxide present 
(Table I). In contrast, the nonmine spectra (with the 
exception of sample Nos. Ii and 26B) all show he~atite 
as the major oxide, not in agreement with the X-ray 
data that indicate jarosite is the main oxide present. 
The samples can be organized into two groups. The 
first contains goethite as the major oxide; the 0.65 jJ m 
shoulder and broad 0.91i jJ m absarption being 
characteristic,17 as well as a low, bidirectional 
reflectance factor in the visible and near infrared 
(Figure 2, variation in the spectra due to system noise 

is less than: 2 percent). The other group appears to 
be mainly hematite; the spectra show a weak 0.65 jJm 
shoulder but a sharp 0.85 jJm absorption feature. 
These samples have a high reflectance factor, around 
37 percent at 0.75 jJ m, more than twice that of the 
goethite samples (Figure 3). 

Because nonmine sample Nos. 19 and 26 both 
contain a layer of jarosite capped by a thin layer of 
hematite, they appear red on the surface, although 
when scratched, yellow colored jarosite can be seen. 
The hematite in these samples is apparently the major 
oxide detected by the spectroradiometer. 
Unfortunately, the diagnostic jarosite absorption at 
O.1i3 jJ m is below the range recorded. However, t'le 
0.85 jJm feature for hematite would be at O.93lJ m if 
jarosite was dominant, suggesting that only the 
hematite was detected. 

Although two of the nonmine spectra contain the 
2.2 jJm OH - alumina bending feature indicative of 
kaolinite or muscovite, onl y sam pIe No.5 shows it as a 
sharp absorption band (Figures Ii and 5). In agreement, 
the X-ray data for sample No.5 show muscovite to be 
a major constituent. 

V. mSCUSSION 

It appears that reflectance spectroscopy is very 
sensitive to mineralogy and can be used for mineral 
identification. However, because different geologic 
conditions can produce the same iron oxides, it is 
important to understand the processes that produce 
the various oxides before interpreting spectral curves. 

For the Alma district, a three-stage genetic 
model is proposed, which relates the physio-chemical 
conditions that influence iron oxide precipitation to a 
hypothetical weathering sequence for sulfides. In 
Stage 1, as sulfides are attacked by groundwater, iro" 
and sulfate are released and the pH begins to drop. 
During Stage 2, as more sulfide dissolves, iron and 
sulfate concentration increase and the pH drops even 
lower, promoting wall rock hydrolysis and the release 
of potassium and aluminum ions. As sulfide dissolution 
slows or ends, during Stage 3, pH begins to rise and 
sulfate activity drops below jarosite saturation. 

Geothite precipitation dominates during <;tage 1, 
jarosite in Stage 2, and hematite in Stage 3. If the 
wall rocks do not have a strong neutrali zation 
capacity, then Stages 1 through 3 can develop. If the 
wall rocks are reactive (such as carbonates), then the 
pH is kept high, there is little wall rock hydrol ysis, and 
goethite is the preferred oxide (Stage n. Jt should be 
noted that local variations in the chemistry of the 
system can produce different oxide assemblages from 
the same bulk starting material, and thus 
correspondingly different spectral signatures can 
result. These local variations are particularly 
important when generalizing the presence or absence 
of a key mineral to indicate an economic versus 
noneconomic parent sulfide. Because of t'lis, deposi ts 
should be evaluated individually so that geochemical 
criteria may be established to help characterize the 
observed spectral response curves for that area. 
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The analysis of spectral curves of Landsat data 
gives a general idea of what the response would be for 
an area rich in iron oxides. However, it is important 
to remember that the resolution of Landsat is 
approximately 80 m, whereas that of the laboratory 
data is about 3 em. The relatively poor resolution of 
Landsat combined with the fact that the first three 
bands are 0.1 ]Jm wide, makes it difficult to directly 
apply subtle variations in laboratory spectra to the 
analysis of satellite data. 

VI. CONCL USION 

Spectral reflectance studies can be used to 
evaluate local iron oxide mineralogy and thus help 
characterize gossans as a possible aid to exploration 
programs. However, care should be taken since many 
local variables influence iron oxide genesis and can 
produce similar mineralogies and spectral 
characteristics from different parent sulfide 
assemblages. In the future, high resolution sensors 
should be able to provide us with detailed spectral 
information that, when combined with sound 
geochemical reasoning, will be a powerful tool in the 
assessment of mineral resources. 
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12 mine 0.66 
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24 mine 0.66 
26B* nonmine 0.64 

5 nonmine 
16 non mine 
19 nonmine 
26R** nonmine 
29 nonmine 

Absorption 
Fe+3 Feature 

* Brown part of sample. 
* * Red part of sample. 

Table 1. Spectral Reflectrance Results. 

BRF (%) Major Oxide Absorption Wavelength ( l:!m) @0.75 (11 m) Spectral X-ray 

0.92 1.45 1. 96 12.7 G G 0.925 1.44 1. 98 12.8 G G 0.92 1.45 1.96 10.3 G G 0.92 1.425 1.94 16.2 G G 0.92 1.42 1. 95 16.1 G G 

0.88 1.42 1. 94 2.225 43.1 H, M/K M, J, G/H 0.88 1.42 1. 93 2.225 49.1 H, M/K J, M, G/H 0.88 1.46 1. 97 35.0 H M, J, G/H 0.89 1.42 1. 93 35.0 H J, G/H 0.88 1.42 1. 97 41.3 H M, J, G/H 

Fe+3 OH OH 
OH H2O AI-0-H 

J = Jarosite G/H = Goethite & Hematite 
G = Goethite M = Mica 

K = Kaolinite 
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Figure 1. Location of the Alma Mining District. 
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Figure 2. Representative Spectra of Goethite 
Rich Samples (No. ~). 
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Figure 3. Representative Spectra of 
Hematite Rich Samples (No. 26R). 
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Figure~. Spectra of Sample No.5 Showing 
the 2.2 m OH - Alumina Bending Feature. 
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A Weakly Developed 2.2 m 

OH - Alumina Bending Feature. 
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