
HAL Id: hal-01187384
https://hal.archives-ouvertes.fr/hal-01187384

Submitted on 26 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamically Time-Capped Possibilistic Testing of
SubClassOf Axioms Against RDF Data to Enrich

Schemas
Andrea G. B. Tettamanzi, Catherine Faron Zucker, Fabien Gandon

To cite this version:
Andrea G. B. Tettamanzi, Catherine Faron Zucker, Fabien Gandon. Dynamically Time-Capped Pos-
sibilistic Testing of SubClassOf Axioms Against RDF Data to Enrich Schemas. The 8th Interna-
tional Conference on Knowledge Capture, K-CAP 2015, Oct 2015, Palisades, NY, United States.
�10.1145/2815833.2815835�. �hal-01187384�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49493964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01187384
https://hal.archives-ouvertes.fr

Dynamically Time-Capped Possibilistic Testing of
SubClassOf Axioms Against RDF Data to Enrich Schemas

Andrea G. B. Tettamanzi
Univ. Nice Sophia Antipolis,

I3S, UMR 7271
Sophia Antipolis, France

andrea.tettamanzi@unice.fr

Catherine Faron Zucker
Univ. Nice Sophia Antipolis,

I3S, UMR 7271
Sophia Antipolis, France

faron@unice.fr

Fabien Gandon
INRIA Sophia Antipolis –

Méditerranée
Sophia Antipolis, France

fabien.gandon@inria.fr

ABSTRACT
Axiom scoring is a critical task both for the automatic en-
richment/learning and for the automatic validation of knowl-
edge bases and ontologies. We designed and developed an
axiom scoring heuristic based on possibility theory, which
aims at overcoming some limitations of scoring heuristics
based on statistical inference and taking into account the
open-world assumption of the linked data on the Web. Since
computing the possibilistic score can be computationally
quite heavy for some candidate axioms, we propose a method
based on time capping to alleviate the computation of the
heuristic without giving up the precision of the scores. We
evaluate our proposal by applying it to the problem of test-
ing SubClassOf axioms against the DBpedia RDF dataset.

Keywords
ontology learning, open-world assumption, possibility theory

1. INTRODUCTION
It is common practice, in the semantic Web, to put a

strong emphasis on the construction or reuse of ontologies
based on a principled conceptual analysis of a domain of in-
terest, as a prerequisite for the organization of the Linked
Open Data (LOD), much like a database schema must be
designed before a database can be populated. While this ap-
proach is quite successful when applied to specific domains,
it does not scale well to more general settings; it is aprioristic
and dogmatic; it does not lend itself to a collaborative effort;
etc. That is why an alternative, bottom-up, approach to on-
tology and knowledge base creation better suits many sce-
narios: instead of postulating an a priori conceptualization
of reality (i.e., an ontology) and requiring that our knowl-
edge about facts complies with it, one can start from RDF
facts and learn OWL 2 axioms.

Recent contributions towards the automatic creation of
OWL 2 ontologies from large repositories of RDF facts in-
clude FOIL-like algorithms for learning concept definitions [4],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
K-CAP 2015 October 07–10, 2015, Palisades, NY, USA
Copyright 2015 ACM ISBN 978-1-4503-3849-3/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2815833.2815835

statistical schema induction via association rule mining [6],
and light-weight schema enrichment methods based on the
DL-Learner framework [9, 1]. All these methods apply and
extend techniques developed within inductive logic program-
ming (ILP) [12]. For a recent survey of the wider field of
ontology learning, see [11].

There exists also a need for evaluating and validating on-
tologies, be they the result of an analysis effort or of a semi-
automatic learning method. This need is witnessed by gen-
eral methodological investigations [7, 8] and surveys [16] and
tools like OOPS! [13] for detecting pitfalls in ontologies. On-
tology engineering methodologies, such as METHONTOL-
OGY [5], distinguish two validation activities, namely veri-
fication (through formal methods, syntax, logics, etc.) and
validation (through usage). Whilst this latter is usually
thought of as user studies, an automatic process of valida-
tion based on RDF data would provide a cheap alternative,
whereby the existing linked data may be regarded as usage
traces that can be used to test and improve the ontologies,
much like log mining can be used to provide test cases for
development in the replay approaches.

Alternatively, one may regard the ontology as a set of in-
tegrity constraints and check if the data satisfy them, using
a tool like Pellet integrity constraint validator (ICV), which
translates OWL ontologies into SPARQL queries to auto-
matically validate RDF data [15]. A similar approach also
underlies the idea of test-driven evaluation of linked data
quality [10]. To this end, OWL ontologies are interpreted un-
der the closed-world assumption and the weak unique name
assumption.

Yet this validation process may be seen from a reverse
point of view: instead of starting from the a priori assump-
tion that a given ontology is correct and verifying whether
the facts contained in an RDF base satisfy it, one may treat
ontologies like hypotheses and develop a methodology to ver-
ify whether the RDF facts corroborate or falsify them. On-
tology learning and validation are thus strictly related. They
could even be seen as an agile and test-driven approach to
ontology development, where the linked data is used as a
giant test case library not only to validate the schema but
even to suggest new developments.

Ontology learning and validation rely critically on (can-
didate) axiom scoring. In this paper, we will tackle the
problem of testing a single, isolated axiom, which is the first
step to solve the problem of validating an entire ontology.
Furthermore, to focus our evaluation and examples, we will
restrict our attention to subsumption axioms of the form
SubClassOf(C D).

The most popular scoring heuristics proposed in the liter-
ature are based on statistical inference. We argue that such
a probability-based framework is not satisfactory. We pro-
pose an axiom scoring heuristic based on a formalization in
possibility theory of the notions of logical content of a theory
and of falsification, inspired by Karl Popper’s approach to
epistemology, and working with an open-world assumption.

The first results [17] indicated that applying a possibilistic
approach to the task of testing candidate axioms for ontol-
ogy learning yields very promising results and hints that the
same approach could be beneficial to ontology and knowl-
edge base validation as well. However, the proposed heuris-
tic is much heavier, from a computational point of view,
than the probabilistic scores it aims to complement. Fortu-
nately, there is evidence (see [17] and Section 5 below) that
the time it takes to test an axiom tends to be inversely pro-
portional to its score. This suggests that time-capping the
test might be an acceptable additional heuristic to decide
whether to accept or reject a candidate axiom, for an axiom
which takes too long to test will likely end up having a very
negative score. In this paper, we follow this suggestion and
investigate the effectiveness of time-capped possibilistic test-
ing of OWL axioms against the facts contained in an RDF
repository. Our research question is, therefore: “Can time
capping alleviate the computation of the proposed possibilis-
tic axiom scoring heuristic without giving up the precision
of the scores?” This paper is organized as follows: Section 2
presents the principles of axiom testing. Section 3 proposes
an axiom scoring heuristic based on possibility theory. A
framework for axiom scoring based on such heuristic is then
presented in Section 4 and evaluated on subsumption ax-
ioms in Section 5. Section 6 draws some conclusions and
directions for future work.

2. PRINCIPLES OF AXIOM TESTING
Testing an axiom against an RDF dataset can be done by

checking whether the formulas entailed by it are confirmed
by the facts contained in the RDF dataset.1

2.1 OWL 2 Semantics
We refer to the direct model-theoretic semantics of OWL 2

as defined in [2].2 An interpretation I for a datatype map D
and a vocabulary V over D is defined by an interpretation
domain ∆I = ∆I ∪ ∆D (∆I is the object domain and ∆D

the data domain), and a valuation function ·I with seven
restrictions: ·C mapping class expressions to subsets of ∆I ,
·OP mapping object properties to subsets of ∆I ×∆I , ·DP
mapping data properties to subsets of ∆I ×∆D, ·I mapping
individuals to elements of ∆I , ·DT mapping datatypes to
subsets of ∆D, ·LT mapping literals to elements of the set of
data values (DT)DT of D and ·FT mapping facets to subsets
of (DT)DT .

2.2 Content, Support, Confirmation, and Coun-
terexample of an Axiom

Let φ be a candidate axiom; we denote by uφ the support
of φ, i.e., the cardinality of the set of formulas entailed by φ

1Note that calling linked data search engines like Sindice
could virtually extend the dataset to the whole LOD cloud.
2http://www.w3.org/TR/2012/
REC-owl2-direct-semantics-20121211/, Section 2.2
Interpretations

which will be tested against the facts contained in the RDF
dataset. We shall define this notion of support with respect
to an RDF dataset more precisely.

We define the content of an axiom φ, content(φ), as the
finite set of formulas, which can be tested against an RDF
dataset K, constructed from the set-theoretic formulas ex-
pressing the semantics of φ by grounding them, i.e., by

• omitting all ∀ quantifiers,

• substituting all universally quantified variable symbols
x denoting an individual of ∆I by every resource r or
literal l occurring in K,3

• substituting all symbols CI denoting subsets of ∆I by
their corresponding class name or datatype name C,
and

• substituting all symbols RI denoting subsets of ∆I ×
∆I or ∆I ×∆D by their corresponding object or data
property name R.

For example, let us consider the test of candidate axiom

φ = SubClassOf(dbo:LaunchPad dbo:Infrastructure),

or dbo:LaunchPad v dbo:Infrastructure in Description
Logics (DL) syntax, against the DBpedia dataset. The se-
mantics of φ is

dbo:LaunchPad
I ⊆ dbo:Infrastructure

I ,

which can also be written as

∀x ∈ ∆I , x ∈ dbo:LaunchPad
I ⇒ x ∈ dbo:Infrastructure

I .

We may thus express content(φ) as

{ dbo:LaunchPad(r)⇒ dbo:Infrastructure(r) :
r is a resource occurring in DBPedia }.

By construction, for all ψ ∈ content(φ), φ |= ψ. Indeed, let
I be a model of φ; by definition, I is also a model of the for-
mula which expresses the semantics of φ and a fortiori, also
of all its groundings; since ψ is a grounding of the formula
which expresses the semantics of φ, I is a model of ψ.

Now, given a formula ψ ∈ content(φ) and an RDF dataset
K, there are three cases:

1. K |= ψ: in this case, we will call ψ a confirmation of
φ;

2. K |= ¬ψ: in this case, we will call ψ a counterexample
of φ;

3. K 6|= ψ and K 6|= ¬ψ: in this case, ψ is neither a
confirmation nor a counterexample of φ.

The definition of content(φ) may be refined by adopt-
ing Scheffler and Goodman’s principle of selective confirma-
tion [14], which characterizes a confirmation as a fact not
simply confirming a candidate axiom, but, further, favor-
ing the axiom rather than its contrary. For instance, the
occurence of a black raven selectively confirms the axiom
Raven v Black because it both confirms it and fails to con-
firm its negation, namely that there exist ravens that are
not black. On the contrary, the observation of a green apple

3This may be construed as rI = x or lI = x

http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/

does not contradict Raven v Black, but it does not dis-
confirm Raven 6v Black either, i.e., it does not selectively
confirm Raven v Black.

The definition of content(φ) may be further refined, in
order to restrict it just to those ψ which can be counterex-
amples of φ, thus leaving out all those ψ which would be
trivial confirmations of φ. That is like saying that, to test a
hypothesis, we have to try, as hard as we can, to refute it.

For example, in the case of a SubClassOf(C D) axiom, all
ψ involving the existence of a resource r for which K 6|= C(r)
will either be confirmations (if K |= D(r)) or they will fall
into Case 3 otherwise. Therefore, such ψ will not be inter-
esting and should be left out of content(SubClassOf(C D)).

Applying this principle greatly reduces content(φ) and,
therefore, the number of ψ that will have to be checked.

We can now define the support of φ as the cardinality of
content(φ):

uφ = ‖content(φ)‖. (1)

Since an RDF dataset is finite, uφ is also finite.
We denote by u+

φ the number of formulas ψ ∈ content(φ)
which are entailed by the RDF dataset (confirmations); and
by u−φ the number of such formulas whose negation ¬ψ is
entailed by the RDF dataset (counterexamples). Notice that
it is possible that, for some ψ ∈ content(φ), the RDF dataset
entails neither ψ nor ¬ψ (Case 3 above). Therefore,

u+
φ + u−φ ≤ uφ. (2)

For example, when testing

φ = dbo:LaunchPad v dbo:Infrastructure

against the DBpedia dataset, we found that uφ = 85, u+
φ =

83, i.e., there are 83 confirmations of φ in the dataset; and
u−φ = 1, i.e., there is 1 couterexample in the dataset, namely

dbo:LaunchPad(:USA)⇒ dbo:Infrastructure(:USA),

since

DBpedia |= dbo:LaunchPad(:USA),

DBpedia |= ¬dbo:Infrastructure(:USA).

and one formula in content(φ) is neither a confirmation nor
a counterexample, namely

dbo:LaunchPad(:Cape_Canaveral)⇒
dbo:Infrastructure(:Cape_Canaveral),

because

DBpedia |= dbo:LaunchPad(:Cape_Canaveral),

DBpedia 6|= dbo:Infrastructure(:Cape_Canaveral),

DBpedia 6|= ¬dbo:Infrastructure(:Cape_Canaveral).

Further interesting properties of uφ, u+
φ , and u−φ are the

following:

1. u+
φ = u−¬φ (the confirmations of φ are counterexamples

of ¬φ);

2. u−φ = u+
¬φ (the counterexamples of φ are confirmations

of ¬φ);

3. uφ = u¬φ (φ and ¬φ have the same support).

3. A POSSIBILISTIC CANDIDATE AXIOM
SCORING

We present an axiom scoring heuristic which captures the
basic intuition behind the process of axiom discovery based
on possibility theory: assigning to a candidate axiom a de-
gree of possibility equal to 1 just means that this axiom
is possible, plausible, i.e. is not contradicted by facts in
the knowledge base. This is much weaker than assigning a
probability equal to 1, meaning that the candidate axiom
certainly is an axiom.

3.1 Possibility Theory
Possibility theory [18] is a mathematical theory of epis-

temic uncertainty. Given a finite universe of discourse Ω,
whose elements ω ∈ Ω may be regarded as events, values of
a variable, possible worlds, or states of affairs, a possibility
distribution is a mapping π : Ω → [0, 1], which assigns to
each ω a degree of possibility ranging from 0 (impossible,
excluded) to 1 (completely possible, normal). A possibility
distribution π for which there exists a completely possible
state of affairs (∃ω ∈ Ω : π(ω) = 1) is said to be normalized.

There is a similarity between possibility distribution and
probability density. However, it must be stressed that π(ω) =
1 just means that ω is a plausible (normal) situation and
therefore should not be excluded. A degree of possibility can
then be viewed as an upper bound of a degree of probabil-
ity. See [3] for a discussion about the relationships between
fuzzy sets, possibility, and probability degrees. Possibility
theory is suitable to represent incomplete knowledge while
probability is adapted to represent random and observed
phenomena.

A possibility distribution π induces a possibility measure
and its dual necessity measure, denoted by Π and N respec-
tively. Both measures apply to a set A ⊆ Ω (or to a formula
φ, by way of the set of its models, A = {ω : ω |= φ}), and
are defined as follows:

Π(A) = max
ω∈A

π(ω); (3)

N(A) = 1−Π(Ā) = min
ω∈Ā
{1− π(ω)}. (4)

Here are a few properties of possibility and necessity mea-
sures induced by a normalized possibility distribution on a
finite universe of discourse Ω:

1. Π(∅) = N(∅) = 0, Π(Ω) = N(Ω) = 1;

2. ∀A ⊆ Ω, Π(A) = 1−N(Ā) (duality);

3. ∀A ⊆ Ω, N(A) > 0 implies Π(A) = 1, and Π(A) < 1
implies N(A) = 0.

In case of complete ignorance on A, Π(A) = Π(Ā) = 1.

3.2 Possibility and Necessity of an Axiom
The basic principle for establishing the possibility of a

formula φ should be that the absence of counterexamples
to φ in the RDF repository means Π(φ) = 1, i.e., that φ is
completely possible.

A hypothesis should be regarded as all the more necessary
as it is explicitly supported by facts and not contradicted by
any fact; and all the more possible as it is not contradicted
by facts. In other words, given hypothesis φ, Π(φ) = 1 if no
counterexamples are found; as the number of counterexam-
ples increases, Π(φ) → 0 strictly monotonically; N(φ) = 0

if no confirmations are found; as the number of confirma-
tions increases and no counterexamples are found, N(φ)→ 1
strictly monotonically. Notice that a confirmation of φ is a
counterexample of ¬φ and that a counterexample of φ is a
confirmation of ¬φ.

A definition of Π and N which captures the above intu-
itions, but by no means the only possible one, is, for uφ > 0,

Π(φ) = 1−

√√√√1−

(
uφ − u−φ
uφ

)2

; (5)

N(φ) =

√

1−
(
uφ−u

+
φ

uφ

)2

, if u−φ = 0,

0, if u−φ > 0.

(6)

3.3 Axiom Scoring
We combine the possibility and necessity of an axiom to

define a single handy acceptance/rejection index (ARI) as
follows:

ARI(φ) = N(φ)−N(¬φ) = N(φ) + Π(φ)− 1 ∈ [−1, 1]. (7)

A negative ARI(φ) suggests rejection of φ (Π(φ) < 1), whilst
a positive ARI(φ) suggests its acceptance (N(φ) > 0), with
a strength proportional to its absolute value. A value close
to zero reflects ignorance about the status of φ.

Although this ARI is useful for the purpose of analyzing
the results of our experiments and to visualize the distribu-
tion of the tested axiom with respect to a single axis, one
should always bear in mind that an axiom is scored by the
proposed heuristic in terms of two bipolar figures of merit,
whose meanings, though related, are very different:

• Π(φ) expresses the degree to which φ may be consid-
ered “normal”, in the sense of “not exceptional, not
surprising”, or not contradicted by actual observations;

• N(φ), on the other hand, expresses the degree to which
φ is certain, granted by positive evidence and corrob-
orated by actual observations.

4. A FRAMEWORK FOR CANDIDATE AX-
IOM TESTING

A general algorithm for testing all the possible OWL 2 ax-
ioms in a given RDF store is beyond the scope of this paper.
Here, we will restrict our attention to Class and Object-

ComplementOf class expressions and to SubClassOf axioms.
Scoring these axioms with their ARI requires to compute
the interpretation of Class and ObjectComplementOf class
expressions.

4.1 Computational Definition of Class and Ob-

jectComplementOf Class Expressions
We define a mapping Q(E, ?x) from OWL 2 class expres-

sions to SPARQL graph patterns, where E is an OWL 2
class expression, and ?x is a variable, such that the query
SELECT DISTINCT ?x WHERE { Q(E, ?x) } returns all the in-
dividuals which are instances of E. We denote this set by
[Q(E, ?x)]:

[Q(E, ?x)] = {v : (?x, v) ∈ ResultSet(SELECT
DISTINCT ?x WHERE{Q(E, ?x)}}. (8)

For a Class class expression A (i.e., an atomic concept in
DL),

Q(A, ?x) = {?x a A}, (9)

where A is a valid IRI.
For an ObjectComplementOf class expression, things are

slightly more complicated, since RDF does not support nega-
tion. The model-theoretic semantics of OWL class expres-
sions of the form ObjectComplementOf(C) (¬C in DL syn-
tax), where C denotes a class, is ∆I \CI . However, to learn
axioms from an RDF dataset, the open-world hypothesis
must be made: the absence of supporting evidence does not
necessarily contradict an axiom, moreover an axiom might
hold even in the face of a few counterexamples. Therefore,
as proposed in [17], we define Q(¬C, ?x) as follows, to ap-
proximate an open-world semantics:

Q(¬C, ?x) = { ?x a ?dc .

FILTER NOT EXISTS { ?z a ?dc .

Q(C, ?z) } },

(10)

where ?z is a variable that does not occur anywhere else in
the query.

For an atomic class expression A, this becomes

Q(¬A, ?x) = { ?x a ?dc .

FILTER NOT EXISTS {
?z a ?dc . ?z a A } }.

(11)

4.2 Computational Definitions of the Support
and the ARI of SubClassOf Axioms

The semantics of SubClassOf axioms of the form C v D
is CI ⊆ DI , which may also be written x ∈ CI ⇒ x ∈
DI . Therefore, according to Equation 1 and following the
principle of selective confirmation,

uCvD = ‖{D(a) : K |= C(a)}‖, (12)

because, if C(a) holds, then C(a)⇒ D(a) ≡ ¬C(a)∨D(a) ≡
⊥ ∨D(a) ≡ D(a).
As a result, a computational definition of uCvD is the fol-
lowing SPARQL query:

SELECT (count(DISTINCT ?x) AS ?u)

WHERE {Q(C, ?x)}. (13)

In order to compute the score of SubClassOf axioms,
ARI(C v D), we must provide a computational definition
of u+

CvD and u−CvD. We start with the following statements:

• confirmations are individuals i such that i ∈ [Q(C, ?x)]
and i ∈ [Q(D, ?x)];

• counterexamples are individuals i such that i ∈ [Q(C, ?x)]
and i ∈ [Q(¬D, ?x)].

This may be translated into the following two SPARQL
queries to compute u+

CvD and u−CvD respectively:

SELECT (count(DISTINCT ?x) AS ?nConfirm)

WHERE { Q(C, ?x) Q(D, ?x) } (14)

and

SELECT (count(DISTINCT ?x) AS ?nCounter)

WHERE { Q(C, ?x) Q(¬D, ?x) }. (15)

Notice that an i such that i ∈ [Q(C, ?x)] and i /∈ [Q(D, ?x)]
does not contradict C v D, because it might well be the

case that the assertion D(i) is just missing. Likewise, an
i ∈ [Q(¬D, ?x)] such that i ∈ [Q(¬C, ?x)] will not be treated
as a confirmation, based on our choice to regard as evidence
in favor of a hypothesis only selective confirmations.

Algorithm 1 is a plain implementation of the resulting
scoring scheme.

Algorithm 1 Test a SubClassOf axiom
(plain version, without time cap).

Input: φ, an axiom of the form SubClassOf(C D);
Output: Π(φ), N(φ), a list of confirmations, and a list of

counterexamples.
1: Compute uφ using the query in Equation 13;
2: compute u+

φ using the query in Equation 14;

3: if 0 < u+
φ ≤ 100 then

4: query a list of confirmations;
5: if u+

φ < uφ then

6: compute u−φ using the query in Equation 15;

7: if 0 < u−φ ≤ 100 then
8: query a list of counterexamples;
9: else

10: u−φ ← 0;

11: compute Π(φ) and N(φ) using Equations 5 and 6.

4.3 Scalable Axiom Scoring based on Time Pre-
diction

As already discussed in [17], the proposed acceptance-
rejection index is more accurate than the probabilistic score.
For example, Figure 1 shows a comparison of the ARI to
the probabilistic score proposed in [1] for 722 SubClassOf

axioms involving atomic classes when tested against DBpe-
dia, which are an extension of the results presented in [17].
The same work suggested to use an acceptance threshold
ARI(φ) > 1/3 to decide whether to accept an axiom based
on the possibilistic score, while [1] proposed accepting ax-
ioms whose probabilistic score is greater than 0.7. We may
notice that both criteria roughly partition the score range
into three and consider as valid axioms those whose score
lies in the upper third of the range.

The improvement in accuracy of the possibilistic score,
however, comes at a very high cost. Testing a single axiom
against an RDF dataset of the size of DBpedia can take as
little as a few milliseconds in some cases, but in many cases
it can even take days on a powerful workstation. The circles
representing the axioms in Figure 1 are colored using a “ter-
rain” palette based on the test time: green represents the
short times, rosish brown the longest times. The color scale
is logarithmic. A way to speed up testing is badly needed,
lest the method we propose be practically useless. Fortu-
nately, a closer analysis of the time taken to test different
axioms pinpoints some regularities. We will base this analy-
sis on the above-mentioned results. Altogether, a staggering
25,037,053,021 ms (a little less than 290 days) of CPU time
have had to be spent to gather them.

According to Algorithm 1, testing SubClassOf axioms re-
quires executing at least three SPARQL queries. Of these,
the query in Equation 15, to count the number of counterex-
amples, is where most CPU time is spent, order of magni-
tudes more than in the other queries taken as a whole. The
reason of this resides in the use of the FILTER NOT EXISTS

clause in the Q(¬D, ?x) graph pattern (see Equation 10).

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Acceptance/Rejection Index

B
ü
h
m

a
n
n
 a

n
d
 L

e
h
m

a
n
n
’s

 S
c
o
re

Figure 1: A comparison of the acceptance/rejection
index and the probability-based score used in [1] on
axioms tested without time capping. The vertical
red line shows the acceptance threshold ARI(φ) >
1/3; the horizontal blue line the acceptance thresh-
old of 0.7 for the probabilistic score.

This approximation of an open-world semantics is a critical
ingredient of our scoring heuristic and cannot be dispensed
with.

Now, if we denote T (φ) the time it takes to test an ax-
iom φ and we plot T (φ) as a function of its score, ARI(φ)
(see Figure 2), a rather striking pattern emerges: all axioms
φ having a positive ARI (thus Π(φ) = 1 and N(φ) > 0)
have a very small T (φ). N(φ) > 0 means no counterexam-
ple could be found (u−φ = 0) and some confirmations have

been found (u+
φ > 0). For axioms having an ARI around

zero or negative, T (φ) may vary widely: from Figure 2, it
appears that the range of this variation increases the more
ARI(φ) approaches −1. The relation between T (φ) and
ARI(φ) is probably more complex, but for our purposes we
may describe it by saying that T (φ) = O

(
(1 + ARI(φ))−1

)
or, perhaps, T (φ) = O (exp(−ARI(φ))).

Be that as it may, an axiom which takes too long to test
will likely end up being rejected. This naturally suggests
that a strategy to speed up the test might be to cap the
time allowed to execute the query on Line 6 of Algorithm 1
and to reject an axiom if the test runs out of time.

The question now is: how much time should we allow in
order to be reasonably sure we are not throwing the baby
out with the bathwater, while avoiding to waste time on
hopeless tests? Knowing the relation between the score of a
candidate axiom φ and T (φ) is of little help, since we do not
have ARI(φ) before testing φ. However, studying the elapsed
times for candidate axioms φ that ended up being accepted
(such that ARI(φ) > 1/3) we observed that the time it takes
to test a SubClassOf axiom of the form C v D tends to be
proportional to the product of its support uCvD and the
number of classes that have at least a known instance in

−1.0 −0.5 0.0 0.5 1.0

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

Acceptance/Rejection Index

E
la

p
s
e
d
 T

im
e
 (

m
in

)

Figure 2: Plot of the time taken for testing the
systematically generated SubClassOf axioms without
time capping as a function of ARI. The vertical red
line shows the acceptance threshold ARI(φ) > 1/3.

common with C. Since such product may be used to predict
the time testing a valid SubClassOf axiom will take, we will
call it its time predictor :

TP(C v D) = uCvD · nicC , (16)

where nicC denotes the number of intersecting classes of C.
A computational definition of nicC is the following SPARQL
query:

SELECT (count(DISTINCT ?A) AS ?nic)

WHERE { Q(C, ?x) ?x a ?A . } (17)

where A represents an atomic class expression.
Figure 3 is a plot of the ratio of the elapsed time for testing

axioms to their time predictor. This diagram clearly shows
that this ratio is very small for accepted axioms (on the right
of the acceptance threshold, shown as a red vertical line in
the figure), while it may soar to large values for ARIs around
0 and −1.

The time predictor only depends on the subclass (i.e., the
left-hand side) of a SubClassOf axiom. If we compute the
time predictor for all the classes of DBpedia and we sort
them by increasing value of their time predictor, we get
the diagram shown in Figure 4. The y-axis of the diagram
is in logarithmic scale and we can observe that the value
of the time predictor increases by more than seven orders
of magnitude as we go from the least to the most time-
consuming axioms. This suggests that, in order to maximize
the number of axioms tested, one might begin by the less
time-consuming axioms, whose number is large, and leave
the more time-consuming axioms, whose number is small,
to the end.

As a result, we define two heuristics to scale axiom scoring:

• We dynamically time-cap the SPARQL queries to com-
pute the ARI of a candidate axiom by a time out de-

−1.0 −0.5 0.0 0.5 1.01
e
−

0
9

1
e
−

0
7

1
e
−

0
5

1
e
−

0
3

Acceptance/Rejection Index

E
la

p
s
e
d
 T

im
e
 t
o
 T

im
e
 P

re
d
ic

to
r

R
a
ti
o

Figure 3: Ratio of the time taken to test the ax-
ioms to the time predictor as a function of their
acceptance-rejection index without time capping.
The vertical red line shows the acceptance threshold
ARI(φ) > 1/3; the horizontal dashed line corresponds
to the slope (b coefficient) of the linear regression of
the time predictor of accepted axioms on their test
time.

fined as

tmax(φ) = a+ b · TP(φ), (18)

where b is the slope of the regression line of the max-
imum times observed for each value of the time pre-
dictor and the intercept a is large enough to include,
below the time out, all the accepted axioms in the set
of the axioms tested without time cap; we then inter-
rupt the test of any φ that takes longer than tmax(φ)
and reject it, φ being highly likely to get a negative
ARI and be rejected anyway. This heuristic yields a
new version of the axiom testing procedure, which is
summarized by Algorithm 2.

• We construct candidate axioms of the form C v D, by
considering the subclasses C in increasing order of time
predictor. This enables us to maximize the number of
tested and accepted axioms in a given time period.

5. EVALUATION

5.1 Experimental Protocol
We evaluated the proposed dynamic time-capping heuris-

tics summarized in Algorithm 2 by performing tests of sub-
sumption axioms using DBpedia 3.9 in English as the refer-
ence RDF fact repository. In particular, to obtain compa-
rability with [17], we used a local dump of DBpedia English
version 3.9, along with the DBpedia ontology, version 3.9.
This local dump of DBpedia, consisting of 812,546,748 RDF
triples, has been bulk-loaded into Jena TDB and a proto-
type for performing axiom tests using the proposed method

0 100 200 300 400

1
e
+

0
1

1
e
+

0
3

1
e
+

0
5

1
e
+

0
7

Class Rank

T
im

e
 P

re
d
ic

to
r

Figure 4: Plot of the time predictor for all the classes
of DBpedia as a function of their rank when sorted
by increasing value of the time predictor.

has been coded in Java, using Jena ARQ and TDB to access
the RDF repository.

We systematically generated and tested subsumption ax-
ioms involving atomic classes only, according the following
protocol: for each of the 442 classes C referred to in the RDF
repository, we constructed all axioms of the form C v D
such that C and D share at least one instance. and we
tested these axioms in increasing time-predictor order. To
determine the dynamic time cap according to Equation 18,
we used a = 2 and b = 5.63682 · 10−7, on the basis of the
results previously collected using the plain implementation
of the scoring scheme without time cap summarized in Al-
gorithm 1.

All experiments have been performed on a Fujitsu CEL-
SIUS workstation equipped with twelve six-core Intel Xeon
CPU E5-2630 v2 processors at 2.60GHz clock speed, with
15,360 KB cache each, 128 GB RAM, 4 TB of disk space
with a 128 GB SSD cache, under the Ubuntu 12.04.4 LTS
64-bit operating system. This is the same machine used
for [17]; in both cases the running times reported refer to
(user + system) CPU time given by the ru_utime.tv_sec

field of the structure returned by the Linux system call
getrusage(RUSAGE_SELF, ...); as a consequence, the times
are commensurable.

5.2 Results
Thanks to the greatly reduced overhead of the dynamic

time-capping heuristics, we managed to test 5050 axioms in
1,232,801,812 ms (a little less than 342 hours and a half,
244 s per axiom on average) at the time of writing (the
experiment is still running). To have an idea of the time
saved, let us consider that testing that many axioms would
have taken 175,120,661,712 ms (≈ 2, 027 days) without time
cap. We estimated this duration based on the experiment
described in [17] of scoring 722 axioms without time cap.
This gives a 142-fold reduction in computing time. Figure 5

Algorithm 2 Test a SubClassOf axiom
(time-capped version).

Input: φ, an axiom of the form SubClassOf(C D);
a, b, the coefficients of the linear time cap equation.

Output: Π(φ), N(φ), a list of confirmations, and a list of
counterexamples.

1: Compute uφ using the query in Equation 13;
2: Compute nic using the query in Equation 17;
3: TP(φ)← uφ · nic;
4: compute u+

φ using the query in Equation 14;

5: if 0 < u+
φ ≤ 100 then

6: query a list of confirmations;
7: if u+

φ < uφ then

8: tmax(φ)← a+ b · TP(φ)
9: waiting up to tmax(φ) min do

10: compute u−φ using the query in Equation 15;
11: if time-out then
12: u−φ ← uφ − u+

φ ;

13: else if 0 < u−φ ≤ 100 then
14: query a list of counterexamples;
15: else
16: u−φ ← 0;

17: compute Π(φ) and N(φ) using Equations 5 and 6.

shows a summary of the results with a comparison to the
probabilistic score.

There are 632 axioms that were tested both with and
without time capping; the outcome of the test is different
on just 25 of them. That represents an error rate of 3.96%.
If we take into account the dramatic improvement in terms
of speed, this looks like a very reasonable price to pay in
terms of accuracy degradation. In addition, it should be ob-
served that, by construction, the errors are all in the same
direction, i.e., some axioms which should be accepted are
in fact rejected: at least, this is a conservative heuristic,
since it does not generate false positives. Moreover, these
axioms supposedly rejected by error repeatedly involve a set
of classes whose semantics is not clear, e.g. gml:_Feature.
These are further discussed in Section 6.

To validate the results of our scoring in absolute term, we
took all SubClassOf axioms in the DBpedia ontology and
added to them all SubClassOf axioms that can be inferred
from them, thus obtaining a “gold standard” of axioms that
should be all considered as valid. Of the 5050 tested ax-
ioms, 1915 occur in the gold standard; of these, 327 get an
ARI below 1/3, which would yield an error rate of about
17%. In fact, in most cases, the ARI of these axioms is
around zero, which means that our heuristic gives a sus-
pended judgment. Only 34 axioms have an ARI below −1/3.
If we took these latter as the real errors, the error rate would
fall to just 1.78%. In most of these cases, the superclass is
dbo:PopulatedPlace or dbo:Settlement; however, it is not
obvious if one can draw any conclusion from these results.

6. CONCLUSION
We have presented a possibilistic axiom scoring heuristic

which is a viable alternative to statistics-based heuristics.
We have tested it by applying it to the problem of test-
ing SubClassOf axioms against the DBpedia database. We
have also proposed an additional heuristic to greatly reduce
its computational overhead, consisting of setting a dynamic

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Acceptance/Rejection Index

B
ü
h
m

a
n
n
 a

n
d
 L

e
h
m

a
n
n
’s

 S
c
o
re

Figure 5: A comparison of the acceptance/rejection
index and the probability-based score used in [1] on
axioms tested with time capping. The vertical red
line shows the acceptance threshold ARI(φ) > 1/3;
the horizontal blue line the acceptance threshold of
0.7 for the probabilistic score.

time-out on the test of each axiom.
Our results strongly support the validity of our hypothesis

that it is possible to alleviate the computation of the ARI
without loosing too much in terms of accuracy.

In addition, a human evaluation of the axioms scored
by the system shows that most of the axioms accepted by
mistake are inverted subClassOf relations between concepts
(e.g. dbo:Case v dbo:LegalCase instead of dbo:LegalCase
v dbo:Case). This occurs when counterexamples are miss-
ing (all instances of a class are instances of the other class
too and the two axioms are positively scored). Other mis-
takes are on axioms involving vague concepts (e.g., it seems
that anything that can appear on a map could be typed
with gml:_Feature and therefore many classes should be
subclasses of it, but it is not clear wether this is correct or
not) or used in a more general sense thant it could be ex-
pected (e.g., dbo:PokerPlayer v dbo:Athlete; this is not
really a mistake in the sense that there are several other
such concepts involving dbo:Athlete). Another example
of mistakes is the use of a concept in at least two senses,
e.g. dbo:Library designating both a building and an insti-
tution. Other frequent mistakes are on axioms involving
a concept both used as a zoological class name, a taxon,
and therefore marked as subclass of dbp:Species, and as
a set of animals, and therefore subclass of dbo:Animal and
dbo:Eukaryote. The same confusion between the instance
level and the ontological level explains the results on axioms
involving skos:Concept.

These considerations confirm the interest of using axiom
scoring heuristics like ours not only to learn axioms from
the LOD, but also to drive the validation and debugging of
ontologies and RDF datasets.

7. REFERENCES
[1] L. Bühmann and J. Lehmann. Universal OWL axiom

enrichment for large knowledge bases. EKAW 2012,
pages 57–71. Springer, 2012.

[2] B. Cuenca Grau, B. Motik, and P. Patel-Schneider.
OWL 2 web ontology language direct semantics
(second edition). W3C recommendation, W3C,
December 2012.

[3] D. Dubois and H. Prade. Fuzzy sets and probability:
Misunderstandings, bridges and gaps. Fuzzy Sets and
Systems, 40(1):143–202, 1991.

[4] N. Fanizzi, C. d’Amato, and F. Esposito. DL-FOIL
concept learning in description logics. ILP 2008, pages
107–121. Springer, 2008.

[5] M. Fernández, A. Gómez-Pérez, and N. Juristo.
METHONTOLOGY: From ontological art towards
ontological engineering. Technical Report SS-97-06,
AAAI, 1997.

[6] D. Fleischhacker, J. Völker, and H. Stuckenschmidt.
Mining RDF data for property axioms. OTM 2012,
pages 718–735, Springer, 2012.

[7] A. Gangemi, C. Catenacci, M. Ciaramita, and
J. Lehmann. A theoretical framework for ontology
evaluation and validation. SWAP 2005.
CEUR-WS.org, 2005.

[8] A. Gangemi, C. Catenacci, M. Ciaramita, and
J. Lehmann. Modelling ontology evaluation and
validation. ESWC 2006, pages 140–154. Springer,
2006.

[9] S. Hellmann, J. Lehmann, and S. Auer. Learning of
OWL class descriptions on very large knowledge bases.
Int. J. Semantic Web Inf. Syst., 5(2):25–48, 2009.

[10] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann,
J. Lehmann, R. Cornelissen, and A. Zaveri.
Test-driven evaluation of linked data quality.
WWW 2014.

[11] J. Lehmann and J. Völker, editors. Perspectives on
Ontology Learning, volume 18 of Studies on the
Semantic Web. IOS Press, Amsterdam, 2014.

[12] S. Muggleton, L. De Raedt, D. Poole, I. Bratko,
P. Flach, K. Inoue, and A. Srinivasan. ILP turns 20:
Biography and future challenges. Machine Learning,
86:3–23, 2012.

[13] M. Poveda-Villalón, M. del Carmen Suárez-Figueroa,
and A. Gómez-Pérez. Validating ontologies with
OOPS! EKAW 2012, pages 267–281. Springer, 2012.

[14] I. Scheffler and N. Goodman. Selective confirmation
and the ravens: A reply to Foster. The Journal of
Philosophy, 69(3):78–83, Feb. 10 1972.

[15] E. Sirin and J. Tao. Towards integrity constraints in
OWL. OWLED 2009. CEUR-WS.org, 2009.

[16] S. Tartir, I. Budak Arpinar, and A. P. Sheth.
Ontological evaluation and validation. In R. Poli,
M. Healy, and A. Kameas, editors, Theory and
Applications of Ontologies: Computer Applications.
Springer, 2010.

[17] A. G. B. Tettamanzi, C. Faron-Zucker, and F. L.
Gandon. Testing OWL axioms against RDF facts: A
possibilistic approach. EKAW 2014, pages 519–530.
Springer, 2014.

[18] L. A. Zadeh. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems, 1:3–28, 1978.

	Introduction
	Principles of Axiom Testing
	 OWL 2 Semantics
	Content, Support, Confirmation, and Counterexample of an Axiom

	A Possibilistic Candidate Axiom Scoring
	Possibility Theory
	Possibility and Necessity of an Axiom
	Axiom Scoring

	A Framework for Candidate Axiom Testing
	Computational Definition of Class and ObjectComplementOf Class Expressions
	Computational Definitions of the Support and the ARI of SubClassOf Axioms
	Scalable Axiom Scoring based on Time Prediction

	Evaluation
	Experimental Protocol
	Results

	Conclusion
	References

