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Control to Dynamically Partially

Reconfigurable Architectures
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∗∗Hefei University of Technology, Hefei, China

Abstract: We investigate the opportunities given by recent developments in the context of
Discrete Controller Synthesis algorithms for infinite, logico-numerical systems. To this end,
we focus on models employed in previous work for the management of dynamically partially
reconfigurable hardware architectures. We extend these models with logico-numerical features to
illustrate new modeling possibilities, and carry out some benchmarks to evaluate the feasibility
of the approach on such models.
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1. INTRODUCTION

Recent proposals by Berthier and Marchand (2014) in the
domain of symbolic Discrete Controller Synthesis (DCS)
techniques have led to the development of a tool capable
of handling logico-numerical systems and properties, i.e.,
involving state variables defined on infinite domains. The
handling of such infinite systems opens the way to new
opportunities for modeling and control, that still need to
be investigated.

We extend real-life models proposed by An et al. (2013a,b)
for the management of Dynamically Partially Reconfig-
urable (DPR) hardware architectures to: (i) assess the
feasibility of the proposal on bigger systems, (ii) perform
some performance evaluations of the new tool ReaX on
realistic models, including for control objectives newly im-
plemented in this tool; and (iii) introduce logico-numerical
features in the model to assess that the approach can still
be applied using models involving quantitative aspects.

DPR Hardware Architectures DPR hardware architec-
tures, typically Field Programmable Gate Arrays (FPGAs)
(Lysaght et al., 2006), have been identified as a promising
solution for the design of energy-efficient embedded systems
(Hinkelmann et al., 2009). However, such solutions have
not been extensively exploited in practice for two main
reasons: i) the design effort is extremely high and strongly
depends on the available chip and tool versions, and ii)
the simulation process, which is already complex for non-
reconfigurable systems, is prohibitively large for reconfig-
urable architectures. Therefore, new adequate methods
to deal with their correct dynamical reconfiguration are
required to fully exploit their potential.

Dynamical reconfiguration management requires choosing
new configurations depending on the history of events occur-
ring in the system and predictive knowledge about possible
outcomes of reconfigurations. Such decision-making compo-
nent is difficult to design because of the combinatorics of

possible choices, the transversal constraints between them,
and even more, the history aspects. The work we present
advocates the application of DCS techniques to fulfill this
control problem.

Related Works The reconfiguration management in DPR
technologies is usually addressed by using manual encoding
and analysis techniques that are tedious and error-prone
according to Göhringer et al. (2008). Other existing
approaches dedicated to self-management of adaptive
or reconfigurable systems use heuristics and machine
learning techniques (Sironi et al., 2010; Paulsson et al.,
2006; Jovanović et al., 2008) for instance. Maggio et al.
(2012) discuss some approaches applying standard control
techniques such as Proportional Integral and Derivative
(PID) controller or Petri nets-based control. The same
kind of control has also been used for processor and
bandwidth allocation in servers (Lu et al., 2002). Eustache
and Diguet (2008) applied close-loop control to select
hardware/software configurations on an FPGA with a
configuration control based on a data-flow model and
diffusion mechanisms. We note that such a solution relies
on heuristics and empirical laws that prevent instability
and select the suitable configurations.

Compared to the above reconfiguration control techniques,
major advantages of the discrete control approach consid-
ered by An et al. (2013a,b) are the enabled formal correct-
ness and guarantees on run-time performance, as well as
the possibility to synthesize the controller automatically.

Outline We first present in Section 2 the modeling for-
malism we use for expressing the reconfiguration problem,
as well as the tools involved in our work. Sections 3 detail
the problem of reconfiguration control for FPGA-based
DPR systems. We expose the modeling and formulation as
a DCS problem, as well as an illustrative logico-numerical
extension of the model in Section 4, and we report on our
performance evaluation experiments in Section 5.
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2. MODELING FORMALISM AND TOOLS

2.1 Arithmetic Symbolic Transition Systems

The model of Arithmetic Symbolic Transition Systems
(ASTSs) is a transition system with (internal or input)
variables whose domain can be infinite, and composed
of a finite set of symbolic transitions. Each transition
is guarded on the system variables, and has an update
function indicating the variable changes when a transition
is fired. This model allows the representation of infinite
systems whenever the variables take their values in an
infinite domain, while it has a finite structure and offers a
compact way to specify systems handling data.

Let V = 〈v1, . . . , vn〉 be a tuple of variables and Dv the
(infinite) domain of v. We note DV =

∏
i∈[1,n]Dvi

the

(infinite) domain of V . vi(V ) gives the value of variable vi
in vector V .

Definition 1. (Arithmetic Symbolic Transition System).
An ASTS is a tuple S = 〈X, I, T,A,Θ0〉 where:

• X = 〈x1, . . . , xn〉 is a vector of state variables ranging
over DX =

∏
j∈[1,n]Dxj and encoding the memory

necessary for describing the system behavior;
• I = 〈i1, . . . , im〉 is a vector of variables that ranges

over DI =
∏

j∈[1,m]Dij , called input variables;

• T is of the form (x′i := T xi)xi∈X , such that, for each
xi ∈ X, the right-hand side T xi of the assignment
x′i := T xi is an expression on X ∪ I. T is called the
transition function of S, and encodes the evolution of
the state variable xi. It characterizes the dynamic of
the system between the current state and the next state
when receiving an input vector.
• A is a predicate with variables in X ∪ I encoding an

assertion on the possible values of the inputs depending
on the current state;
• Θ0 is a predicate with variables in X encoding the set

of initial states.

For technical reasons, we shall assume that A is expressed
in a theory that is closed under quantifier elimination as
for example the Presburger arithmetic.

ASTSs can conveniently be represented as parallel compo-
sitions of Mealy automata with numerical variables and
explicit locations or in its symbolic form.

Let us consider the following example ASTS where X =
〈ξ, x, o〉, I = 〈a, i〉 with DX = {F,G} ×Z×B, DI = B×Z

T =


ξ′ := G if (ξ = F ∧ a ∧ x ≥ 0),

F if (ξ = G ∧ i > 42), ξ otherwise
x′ := 2x+ 1 if (ξ = F ∧ a ∧ x ≥ 0),

i if (ξ = G ∧ i ≤ 42), x otherwise
o′ := (ξ = F ∧ a ∧ x ≥ 0) ∨ (ξ = G ∧ i > 42)

A(〈ξ, x, o, a, i〉) = (ξ = G ∧ 3x+ 2i ≤ 41 ∧ a)
Θ0(〈ξ, x, o〉) = (ξ = F ∧ x = 0)

The corresponding Mealy automaton with explicit locations
(leaving A aside) can be represented as in Figure 1.

Remark 1. Observe that the variable o is actually an
output of the system, although it belongs to the vector of
state variables. Indeed, we do not distinguish between those
two kinds of variables to keep the ASTS models simple. We

F G

a ∧ x > 0/o, x := 2x+ 1

¬a ∨ x < 0 i > 42/o

i 6 42/x := ix := 0

Fig. 1. Example ASTS as a Mealy automaton.

can characterize output variables as the ones that never
appear in the right hand side of the assignments in T .

Remark 2. We qualify as logico-numerical an ASTS whose
state (and non-output) and input variables are Boolean
variables (B) or numerical variables (typically, R or Z),

i.e., such that X = Bk ∪ Rk′ ∪ Zk′′
with k + k′ + k′′ = n

(and similarly for the input variables). ASTSs with only
Boolean non-output state variables are called finite.

To each ASTS, one can make correspond an Infinite
Transition System (ITS) defined as follows:

Given an ASTS S = 〈X, I, T,A,Θ0〉, we make correspond
an ITS [S] = 〈X , I, TS ,AS ,X0〉 where:

• X = DX is the state space of [S];
• I = DI is the input space of [S];
• TS ⊆ X × I → X is such that
TS(x, ν) = (x′j)j∈[1,n] ⇔ ∀j ∈ [1, n], x′j := T xj (x, ν);

• AS ⊆ X × I is such that
AS = {(x, ν) ∈ X × I|A(x, ν) = true};

• X0 ⊆ X is the set of initial states, and is such that
X0 = {x ∈ X |Θ0(x) = true}.

The behavior of such a system is as follows. [S] starts
in a state x0 ∈ X0. Assuming that [S] is in a state
x ∈ X , then upon the reception of an input ν ∈ I such
that (x, ν) ∈ AS , [S] evolves in the state x′ = TS(x, ν).
We denote XTrace([S]) the set of states that can be
reached in [S]. Given an ASTS S and a predicate Φ over
X, we say that S satisfies Φ (noted S |= Φ) whenever
XTrace([S]) ⊆ {x ∈ X |Φ(x) = true}.

Control of an ASTS Assume given a system S and a
predicate Φ on S. Our aim is to restrict the behavior
of S by means of control in order to fulfill Φ. We
distinguish between the uncontrollable input variables U
which are defined by the environment, and the controllable
input variables C which are defined/restricted by the
controller of the system. For technical reason, we assume
that the controllable variables are Boolean. Note that
the partitioning of the input variables in S induces a
“partitioning” of the input space in [S], so we have I = DU×
DC . A controller is then given by a predicate AΦ over
X ∪ U ∪ C that constrains the set of admissible (Boolean)
controllable inputs so that the traces of the controlled
system always satisfy Φ.

Definition 2. (Discrete Controller Synthesis Problem).
Given an ASTS S = 〈X,U ∪C, T,A,Θ0〉 and a predicate Φ
over X, solving the discrete controller synthesis problem
is to compute a predicate AΦ such that

S′ = 〈X,U ∪ C, T,AΦ,Θ0〉 |= Φ

and ∀v ∈ X ∪ U ∪ C,AΦ(v)⇒ A(v).

The general control problem that we want to solve is
undecidable. In (Berthier and Marchand, 2014), we then
used abstract interpretation techniques to ensure, at the
price of some over-approximations, that the computation
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of the controller terminates (see e.g., (Cousot and Cousot,
1977)). This over-approximation ensures that the forbidden
states are not reachable in the controlled system. Thus,
the synthesized controller remains correct, yet may not be
maximally permissive w.r.t the invariant. For the details on
how the controller is computed, one can refer to (Berthier
and Marchand, 2014).

2.2 ReaX & BZR

ReaX Berthier and Marchand (2014) introduced the tool
ReaX implementing the above symbolic algorithms for the
synthesis of controllers ensuring safety properties of infinite
state systems modeled by ASTSs. Compared with what is
reported in this previous work, in addition to the invariance
of a predicate, one can also request the controlled system to
be deadlock-free. Adapting techniques from Marchand and
Samaan (2000), ReaX also implements classical algorithms
of invariance and reachability enforcement for finite sys-
tems, as well as one-step optimization of numerical variables
for general ASTSs.

BZR An et al. (2013a,b) used the reactive data-flow
language BZR (Delaval et al., 2010) to describe their
solution. BZR programs are built as parallel compositions
of data-flow nodes, each having input and output flows. The
body of the node describes how input flows are transformed
into output flows, in the form of a set of equations
and/or automata. They are evaluated, all together at
each step of a reactive system (hence the composition
is called synchronous), by taking all inputs, computing the
transitions and equations, and producing the outputs. An
invariant and controllable variables can be specified, and
the BZR compiler involves DCS to automatically produce a
controller guarantying that the resulting controlled system
satisfies the invariance property by constraining the values
of the controllable variables. To do so, BZR involves a
compilation phase using either Sigali (Marchand et al.,
2000) or ReaX (Berthier and Marchand, 2014) DCS tools.

Remark 3. As Sigali supports the handling of cost functions
for optimization purposes (functions from the finite state
space and input space of the systems to integers) (Marchand
et al., 2000), the Sigali BZR backend is able to make use
of this device to translate programs involving nodes with
Integer output flows (Delaval et al., 2013). It is however
unable to translate programs with Integer state variables,
like the one of Figure 1.

3. FPGA CONTROL PROBLEM

We consider applications made of tasks executing according
to dependency constraints on an FPGA platform. The latter
may provide various computation resources having different
characteristics or specializations for the tasks to execute,
and each task may be implemented in several ways using
dissimilar sets of resources.

An et al. (2013a,b) provided a solution for the problem of
choosing a scheduling satisfying both the execution depen-
dencies between the tasks and the utilization constraints on
the resources of the FPGA platform. This proposal consists
in the model-based generation of a run-time manager
whose role is to start tasks and detect their termination,
and allocate appropriate computation resources for them

a)

A0

A1 A2

A3 A4
b)

B

A

C

D

Fig. 2. a) Architecture; b) Application DAG specification.

to execute. The run-time manager is designed by first
modeling the platform and the task dependency graph using
a synchronous language, and then solving a DCS problem
to enforce the correct behavior of the whole system.

We recall in this section the modeling principles employed
in the previous work (An et al., 2013a,b) for the design
of the run-time manager, and introduce the basis for the
extension of the model with logico-numerical features.

3.1 Describing the System

Hardware We consider a multiprocessor architecture
implemented on a reconfigurable device (e.g., Xilinx Zynq)
comprising a general purpose processor A0 (e.g., ARM
core) executing the run-time manager. The device also
includes a reconfigurable area (e.g., FPGA-like with power
management capabilities) divided into reconfigurable tiles.
Figure 2-a) shows an illustrative example comprising four
tiles A1–A4. The communications between architecture
components are achieved by means of a Network-on-Chip
(NoC). Each processor and tile implements a NoC Interface
(NI). Tiles can be combined and configured to implement
and execute tasks by loading predefined bitstreams.

The FPGA platform is equipped with a battery supplying it
with energy; this battery may be setup to enable harvesting.
We also assume that the hardware platform provides means
for the programs executing on the processor to measure its
remaining capacity, either directly in the case of a smart
battery (SBS Implementers Forum, 1998) if the platform is
equipped with the appropriate devices, or indirectly, e.g., by
interpretation of output voltage measurements. Regarding
power management of the FPGA, any unused tile Ai can
be put into sleep mode with a clock gating mechanism such
that it consumes a minimum static power.

Application Software We consider that the application
software is described as a directed acyclic graph (DAG),
where nodes represent individual tasks to be executed, and
directed edges depict dependency constraints between tasks:
e.g., an edge between nodes A and B indicates that the task
A must have terminated its execution before B can execute.
Figure 2-b) shows an illustrative example consisting of
four tasks A, B, C and D. Note that we do not restrict
the abstraction level of tasks: they can denote atomic
operations or coarse fragments of system functionality.

The run-time manager is in charge of scheduling the tasks
so that their execution dependencies are satisfied.

Given a hardware architecture, a task can be implemented
in various ways, each having specific characteristics in terms
of: (i) the set of tiles used for its execution; (ii) its wort
case execution time; and (iii) peak power consumption.

Before executing a task on a reconfigurable architecture,
the task implementation must be loaded to reconfigure
the corresponding tiles if required. This reconfiguration
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task A

or

task B

task C

task B

task C

1) 2) 3)

Fig. 3. Configurations and reconfigurations.

operation inevitably involves some overheads regarding,
e.g., time and energy. For simplicity, we assume that the
worst case execution time of each task implementation
encompasses the time required to reconfigure the tiles it
uses (as in the worst case, a task implementation must
always be loaded before being executed).

Reconfiguration Figure 3 exemplifies three system con-
figurations. In 1), task A is running on tiles A3 and A4
(see Figure 2-a)) while tiles A1 and A2 are in sleep mode.
Configurations 2) and 3) show two scenarios where tasks
B and C run in parallel. Assume tasks B and C have two
implementations so that the system can go to either 2)
or 3) once task A finishes its execution (according to the
graph of Figure 2-b)). If the current state of the battery
level is low, the system would choose 2) as 3) requires
the complete circuit surface and therefore consumes more
power. On the contrary, when the battery level is high, 3)
would be chosen if the user expects a better performance.

3.2 System-level Objectives

The run-time manager can decide to delay the execution
of a task and determines which implementation of it
to trigger. These choices are made according to system
objectives that define the system functional and non-
functional requirements. The objectives considered in this
work, are either logical control or optimization objectives.
Generally speaking, logical objectives express properties
about discrete states of the system (e.g., mutual exclusions),
whereas optimal ones concern weights and costs.

The logical control objectives we consider are: (i) exclusive
uses of tiles A1–A4 by the executing tasks; (ii) switch
tiles into active or sleep mode depending on whether a
task executes on them or not to save energy; (iii) avoid
power consumption peaks of the hardware platform w.r.t
the electrical charge of the battery; and (iv) once started,
the application can always finish. Optimization objectives
notably encompass the minimization of the power peaks of
the platform to augment the lifespan of the battery.

4. MODELING RECONFIGURATION CONTROL AS A
DCS PROBLEM

We focus on the management of computations on the
tiles and dedicate the processor area A0 exclusively to
the execution of the resulting run-time manager. So, we
build a global system model as an ASTS representing the
behavior of the reconfigurable computing system; system
objectives are then specified using predicates expressed on
variables of the model.

We recall, and reformulate in terms of ASTSs, the models
proposed by An et al. (2013a,b). At the same time, we
introduce a new, logico-numerical model for the battery,
to demonstrate the added expressiveness allowed by the
ASTSs handled by ReaX.

a)

ActiSlei

acti = true

acti = false
c_ai

not c_ai

c_ai

acti

RMi

b)

H M L

down

upup

down
down

st=h st=m st=l

stup

BM

Fig. 4. Models RMi for a tile Ai, and BM for a battery.

4.1 System Model

Modeling the Tiles Figure 4-a) depicts the model describ-
ing the behavior of a tile Ai: it features two states (Sle and
Act) as a tile may or may not be active at a given instant.
The model switches from a state to another depending
on the value of its Boolean controllable variable c ai. The
output acti represents its current mode.

Discrete Battery Model Figure 4-b) represents a discrete
model for a battery proposed by An et al. (2013a,b).
It is characterized with three states/levels: H (high), M
(medium) and L (low). This model is assumed to take its
inputs from a dedicated software executing on processor A0,
that interprets capacity measurements and drives the state
of this model by emitting up and down events depending
on the current electrical charge of the battery. The output
st ∈ {H,M, L} reflects the internal state of the model.

Logico-numerical Battery Model We now present a new
model for a smooth representation of the state of the battery
in the system model. This model aims at illustrating the
expressiveness of logico-numerical ASTSs handled by ReaX.

This new model receives as input a rough measure cm of
the actual electrical charge (e.g., in Coulombs) provided
by a dedicated sensor, and an estimation ce of the capacity
spent since the last reaction of the model. The state of
the battery in this model consists in a numerical variable
c providing an estimation of the remaining capacity of
the battery. The domain of c can be the domain of reals
(arbitrary-precision rationals actually).

At each reaction of the model, the value of c is estimated by
using some sort of exponentially weighted moving average:
it is computed by using cm when the input measurement
from the sensor is determined as valid by bounding its
absolute difference with the estimated capacity c; the model
tries to estimate this value by other means otherwise. The
model is further parameterized with a constant smoothing
factor α ∈ [0, 1] that specifies the impact of the variations
of cm on the state variable c. The constant β serves as a
bound to determine the validity of the measured input.

Although the value of c could be used directly in the
definition of logical control predicates (and possibly op-
timization objectives), e.g., to decide whether a given
power consumption peak is admissible by the battery,
for illustrative purposes we use it directly to compute
a value for the finite output st based on additional constant
threshold electrical charges λ and µ. In this way, this new
battery model is interchangeable with the discrete one, and
system control and optimization objectives can be reused
whatever the chosen battery model.

The assignment of state variable c and output st ∈
{H,M, L} can be expressed as
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Fig. 5. Application DAG execution behaviors.

WA

IA

XA
1 XA

2

rA, c1
rA, c2

rA, not c

c2

eA
eA

c1

  ({A1},
200,180)

 ({A3,A4},
 100,250)

({},0,0)

({},0,0)

TMA

rA eA

c1,c2
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1 esA=W esA=XA

2

esA=I

rsA,wtA,ppA

Fig. 6. Model TMA of task A. c′ := (c− ce)(1− α) + cmα if |c− cm| < β
(c− ce) otherwise

st′ := L if c′ 6 λ,M if λ < c′ 6 µ,H otherwise

and c can be initialized using a predefined constant value
or with the first input measure cm, assuming it is valid
(in the latter case, the model would become slightly more
complex). c is indeed a state variable of the model, as it
appears in its own assignment expression.

Note that ce may be an input of the whole system model,
or even be computed by using another numerical variable
keeping track of estimated power consumption peaks, plus
a measure of the time elapsed since the last reaction.

Encoding the Task Graph The software application is de-
scribed by its task graph, i.e., as a DAG specifying the tasks
to be executed, as well as their execution dependencies.
This DAG is encoded as a scheduler automaton representing
all possible execution scenarios. It does so by keeping track
of application execution states and emitting appropriate
start requests in reaction to tasks’ finish notifications.

Figure 5 shows the scheduler automaton of the application
DAG in Figure 2-b). When in idle state I and upon receipt
of application request event req, it requests the start-up of
task A by emitting event rA. Upon receipt of eA notifying
the termination of A’s execution, events rB and rC are
emitted together to request start-up of tasks B and C (that
will then potentially execute in parallel). Task D is not
requested until the execution of both B and C is finished,
respectively denoted by events eB and eC. The scheduler
then reaches the final state T and emits event end, implying
the end of the application’s execution, upon receipt of eD.

Remark 4. Note that several scheduler automata like the
one of Figure 5 can be composed in a hierarchical way to
describe complex task graphs. Using a sub-scheduler X, this
composition operation only requires to bind a task start
request (say, rX) with X’s req input, and conversely its
termination notification (end) to the corresponding task
termination request (eX).

Task Model One can distinguish several stages during a
tasks’ lifetime (see Section 3.1): not scheduled for execution;
scheduled but not executing; and having the tiles configured
with one of its implementation and executing.

We consequently model tasks with automata, such as the
one of Figure 6 for A: it features idle and waiting states
IA and WA, plus as many execution states as available
implementations of A (X1

A and X2
A). Controllable variables

c1 and c2 are integrated in the model to encode the choices
given to the run-time manager; e.g., from the idle state,
it can then choose to delay the execution of a task, or to
select and start the execution of one of its implementation.
The output esA reflects the execution state of the task.

Three observations of interest are considered for each task.
For a task t, we capture them by associating a tuple
(rst,wtt, ppt) to the states of task models, where: rst ∈ 2RA

(RA being the set of architecture resources — i.e., the
tiles in our case), wtt ∈ N and ppt ∈ N are the WCET
and the peak power consumption for the task’s state. The
observations associated with executing states are the values
associated with their corresponding implementations. For
idle and wait states, rst = ∅,wtt = 0, ppt = 0.

Remark 5. Task observation variables defined in this sec-
tion are outputs of the model, and hence belong to the vector
of state variables X in the corresponding ASTS model (see
Remark 1): the fact that the domain of some of them is
infinite does not make the ASTS’s state space infinite.

Global System Model The whole system model represents
all the possible system execution behaviors in the absence of
control (i.e., if a run-time manager is not yet integrated). In
our example case of four tiles and set Tasks = {A,B,C,D}
of tasks, it comprises the parallel composition of the sub-
models for tiles RM1–RM4, battery BM and tasks TMA–
TMD, plus a scheduler Sdl encoding the task graph:

S = RM1|| . . . ||RM4||BM||TMA|| . . . ||TMD||Sdl.

In terms of ASTSs, and assuming variable names do
not clash between the various sub-models of the system,
this parallel composition essentially boils down to con-
catenate together, for each sub-model m: the vectors of
state variables Xm’s, controllable (resp. non-controllable)
inputs Cm’s and Um’s, and assignments Tm’s. The global
assumption A made about the environment is the con-
junction of all assumptions of the sub-models Am’s. As
for the initial state, the predicate Θ0 is defined so that
X0 = {〈Sle1, . . . ,Sle4,H, IA, . . . , ID, I〉}.

Global Observations The observations output locally by
each sub-model (e.g., task models) need to be combined into
a set of global values in order to account for the resource
consumption of the whole system. These values constitute
the global observations of the model based on which logical
control and optimization objectives can be expressed.

In our case, the global observations available for a particular
operating state of the system is the tuple of variables
(rs,wt, pp) whose values are computed based on the indi-
vidual tasks’ observations at the current reaction (denoted
rs′t, wt

′
t and pp′t). Global observation variables are added

to the vector of state variables as any other outputs, and
are computed by adding corresponding assignments in T
as follows:

rs′ :=
⋃

t∈Tasks
rs′t

wt′ := min
t∈Tasks

{wt′t | wt′t 6= 0} if defined, 0 otherwise

pp′ :=
∑

t∈Tasks
pp′t
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Note that in the assignments above, primed versions of
tasks’ observations are actually substituted in the ASTS
model by the expression they are respectively assigned to.

Remark 6. By construction, global observation values are
outputs of the system and can be computed as functions
defined on its state only.

4.2 System Objectives

Based on the model described above, we can formalize
the objectives of Section 3.2 in terms of the states and
observations defined on the states.

The logical control objectives to be enforced on the system
by the run-time manager can be expressed by using two
predicates Φ: DX → B and χ : DX → B, respectively
encoding invariance and reachability requirements, and
expressed on state variables. Φ can be expressed as a
conjunction, each of its conjuncts encoding one aspect
of the logical control needs:

• exclusive use of tiles: Φx(X) = ∀(s, t) ∈ Tasks2, s 6=
t, rss(X) ∩ rst(X) = ∅;
• shut-down and start-up of tiles depending on whether

they are used or not by an executing tasks’ imple-
mentation: Φa(X) = (∀a ∈ rs(X), acta = true) ∧
(∀a ∈ Drs \ rs(X), acta = false);
• given a mapping ppthr : {L,M,H} → N from discrete

battery levels to threshold peak power values, con-
straining the total power peak depending on the level
of the battery: Φp(X) = pp(X) 6 ppthr(st(X)).

In turn, the reachability predicate χ specifies that a state
must be reachable where the value of the output end of
Sdl is true (meaning that the application has finished its
execution): χ(X) = (end(X) = true).

One-step optimal objectives aim at minimizing or maximiz-
ing numerical state variables in a single step. Optimization
objective of Section 3.2 belongs to this type, by requesting
to select successor states minimizing power peaks pp.

4.3 Solving the DCS Problem and Using the Result

All the ASTS models above except the logico-numerical
battery model are finite ASTSs as their non-output state
space is finite (i.e., numerical state variables are outputs,
and can thus be represented a cost functions associating
numerical values to discrete states — see Remarks 1, 5
and 6). Thus, one can write these models in BZR, use
either the Sigali or the ReaX backend of the compiler, solve
the resulting DCS problem, and then automatically obtain
a controller satisfying the system objectives. Associated
with the model, this controller can be used by the run-time
manager to dynamically reconfigure the system.

5. EVALUATION & EXPERIMENTAL RESULTS

We report in this section our experiments to evaluate
the efficiency of ReaX to solve DCS problems on models
as described above. All executions were performed on a
3.2GHz Intel® Xeon® multi-core 1 processor with about
6GB of main memory. We first show comparisons of Sigali
w.r.t ReaX in the case of finite models, and then present
performance results of ReaX on logico-numerical ASTSs.
1 Note however that both Sigali and ReaX are single-threaded.
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Fig. 7. Synthesis times for generated benchmarks.

¼s

1s

5s

15s

60s

5m

¼h

1h

2 3 4 5 6 7 8 9 10 11

S
y
n
th

es
is

T
im

e

Number of Tasks

ReaX - reachability
ReaX - one-step optim.

Fig. 8. Synthesis times of ReaX for invariance and either
reachability enforcement or one-step optimization.

Logical Control: Efficiency of ReaX w.r.t Sigali A per-
formance evaluation of Sigali for solving reconfiguration
control problems similar to the ones considered in this paper
has already been presented by An et al. (2013a). In order
to compare the benefits of using ReaX w.r.t Sigali for the
same kind of problems, we conducted extensive experiments
based on multiple instances of the reconfiguration control
problem. Each one of these models is built based on a
randomly generated hierarchical task graph constructed
recursively by exploiting the idea mentioned in Remark 4.
Every system model comprises a discrete battery model,
plus four tile models. The task models involved represent
either one or two execution modes, each associated to one
or two tiles chosen randomly, as well as with random peak
power consumption and WCET.

In order to get an idea of the variability of the performance
results of each tool w.r.t the complexity of the models (the
number of Boolean state variables, increasing linearly w.r.t
the number of tasks in the model), we randomly generated
10 samples (from 2 to 11 tasks) of 5 task graphs each.

Figure 7 shows the measured synthesis times w.r.t the
number of tasks in the generated task graph: one generated
task graph results in two dots in the plot, representing
one execution time for each tool. Although Sigali performs
better for small problems (less than 5 tasks), ReaX scales
much better when this number grows, and still takes 30
seconds to up to 15 minutes for complex applications of 11
tasks for which Sigali would execute for days.

We executed ReaX on the same samples to evaluate its
performances for invariance and either reachability or one-
step optimization objectives; we plot resulting synthesis
times in Figure 8. Comparison with performance results
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Fig. 9. Synthesis times of ReaX for invariance on logico-
numerical programs with one real state variable.

reported by An et al. (2013a) for Sigali on similar models
shows that ReaX compares favorably for both objectives.

All these results show that recent developments in DCS
tools can make the modeling approach advocated by An
et al. (2013a,b) and used as models for benchmarking in
this paper, applicable in practice to medium-sized problems
for which a solution would be very difficult, if even possible,
to program by hand.

Towards Logico-numerical Control To evaluate the feasi-
bility of applying the same method on models involving nu-
merical aspects, hence comprising numerical state variables,
we took the same set of system models as for the previous
benchmarks, and replaced their model of discrete battery
with the logico-numerical one described in Section 4.1. We
chose the set of reals as domain of every numerical variable.

We report the times taken by ReaX to solve each one of
these synthesis problems in Figure 9 — using the power
abstract domain with convex polyhedra; see (Berthier and
Marchand, 2014). Comparing with the results of Figure 7,
we conclude that our addition of one numerical state
variable in the model still allows an efficient controller
synthesis for invariance enforcement by ReaX.

6. CONCLUSION

We have adapted and extended some previous work by An
et al. (2013a,b) tackling the run-time management of DPR
architectures. We exploited the models to carry out some
performance comparisons between Sigali and ReaX on finite
systems, and whoed that ReaX allows to handle systems
more efficiently than Sigali. Additionally, the introduction of
ASTS models allowed us to propose an illustrative example
of battery model to demonstrate the capability of ReaX to
effectively compute controllers for such systems.

The performance evaluation of ReaX on the “simple” logico-
numerical models showed promising results towards the
handling of more complex models and properties, expressed
using variables defined on infinite domains notably. We
plan to pursue our investigations to get a better assessment
about the potential of ReaX for models involving more of
such numerical state variables. Although one can compute
controllers ensuring one-step optimization of numerical
outputs, new algorithms are needed for infinite systems
to perform k-step or path optimization, i.e., to take into
account, not only costs of successor states, but on paths as
done by Dumitrescu et al. (2010) in the case of finite

systems. At last, our models would also constitute an
interesting basis to investigate modular control techniques.
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