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Bearing-Only Formation Control Using an SE(2) Rigidity Theory

Daniel Zelazo, Paolo Robuffo Giordano, Antonio Franchi

Abstract— This paper considers a formation control problem
for a team of agents that are only able to sense the relative
bearings from their local body frame to neighboring agents. It
is further assumed that the sensing graph is inherently directed
and a common reference frame is not known to all of the agents.
Each agent is tasked with maintaining predetermined bearings
with their neighbors. Using the recently developed rigidity
theory for SE(2) frameworks [1], we propose a gradient-type
controller to stabilize the formation. The central construct in
the SE(2) rigidity theory for this work is the directed bearing
rigidity matrix. We show that a necessary condition for the
local stabilization of desired formation is for the corresponding
SE(2) framework to be minimally infinitesimally rigid.

I. INTRODUCTION

Formation control is one of the canonical problems studied
in multi-agent coordination. At its most fundamental level,
formation control involves the coordination of a team of
agents to achieve some spatial formation shape. From a con-
trol systems perspective, the challenge in formation control
is to find distributed strategies for the control and estimation
of multi-agent systems that achieve a desired formation
with guarantees on certain properties such as stability and
performance.

Often the measurements available for each agent to
achieve the task of formation control are non-linear functions
of the state and inherently local in nature. Examples include
range sensors for measuring the distance between agents,
and bearing sensors for measuring the bearing angle from
the body frame of one agent to another agent. Recently,
there has been a growing interest in formation control
problems using relative bearing sensing. Similar to problems
in distance-constrained formation control [2]–[7], bearing-
constrained formations employ a bearing rigidity theory (also
referred to as parallel rigidity) for analysis. Whereas rigidity
theory is useful for maintaining formations specified by fixed
inter-agent distances, bearing rigidity attempts to keep the
bearing vector between neighboring agents constant (with no
constraints on the scale of the formation). Bearing rigidity
was used in [8]–[11] for deriving distributed control laws for
controlling formations with bearing measurements. Bearing
rigidity has also proven useful for stabilization of formations
using direction-only or line-of-sight only constraints [12]–
[15]. Extensions of the bearing rigidity theory to arbitrary
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dimensional ambient spaces for formation control was con-
sidered in [16], [17].

In this work, we explore an extension of rigidity theory
for frameworks that are embedded in the special Euclidean
group SE(2) = R2 × S1. This extension explicitly handles
frameworks where the underlying graph is directed and
bearings are expressed in the local frame of each SE(2)
point in the framework. The SE(2) rigidity theory was first
considered in our previous work [1], and we provide here
new results on the structure of the corresponding directed
bearing rigidity matrix. The main focus of this work is
to exploit the SE(2) rigidity theory to derive a distributed
formation control strategy that drives a team of agents to
a desired bearing-constrained formation. The formation is
specified in terms of desired bearing vectors expressed in
the local frame of each agent, and agents have access to
bearing measurements also expressed in their local frame.
Furthermore, the control requires no use of range measure-
ments, in contrast to the strategy proposed in [12]. An almost
global stability analysis of the proposed control is given and
we also provide numerous numerical simulations illustrating
the more subtle points of the result.

Preliminaries and Notations: The set of real numbers
will be denoted as R, the 1-dimensional manifold on the
unit circle as S1, and SE(2) = R2 × S1 is the Special
Euclidean Group 2. The standard Euclidean 2-norm for
vectors is denoted ‖ . ‖. The null-space of a matrix A is
denoted Null[A]. The block diagonal concatenation of a finite
set of matrices {A1, . . . , Ar} is denoted diag(Ai). Directed
graphs and the matrices associated with them will be widely
used in this work [18]. A directed graph G is specified by a
vertex set V , and an edge set E ⊆ V ×V . The neighborhood
of the vertex i is the set Ni = {j ∈ V | (i, j) ∈ E}, and
the out-degree of vertex i is dout(i) = |Ni|. The incidence
matrix E(G) ∈ R|V|×|E| is a {0,±1}-matrix with rows
and columns indexed by the vertices and edges of G [18].
Similarly, we define Eout(G) ∈ R|V|×|E| to be a {0,+1}
matrix such that [Eout(G)]ij = 1 if node i is the head of
edge j, and 0 otherwise. We also introduce the notation
E = E(G)⊗I2 and Eout⊗I2. The complete directed graph,
denoted K|V| is a graph with all possible directed edges (i.e.
|E| = |V| (|V| − 1)).

II. RIGIDITY THEORY FOR SE(2) FRAMEWORKS

Rigidity is a combinatorial theory for characterizing the
stiffness or flexibility of structures formed by rigid bodies
connected by flexible linkages or hinges [19]. Recently, there
has been a growing interest in formation control strategies
using bearings leading to the development of the bearing



rigidity theory [8], [11], [15], [16]. In this work we employ
an extension of these works to frameworks embedded in
the Special Euclidean Group SE(2), originally considered
in our previous work [1]. To begin, we first formally define
frameworks for points in SE(2).

Definition II.1. An SE(2) framework is the triple (G, p, ψ),
where G = (V, E) is a directed graph, p : V → R2 and ψ :
V → S1 maps each vertex to a point in SE(2) = R2 × S1.

We denote by χv = (pv, ψv) ∈ SE(2) the position and
attitude vector of node v ∈ V . For notational convenience,
we will refer to the vectors χp = p(V) ∈ R2|V| and χψ =

ψ(V) ∈ S1|V| as the position and attitude components of
the complete framework configuration. The vector χ(V) ∈
SE(2)|V| is the stacked position and attitude vector for the
complete framework. We also denote by χxp ∈ R|V| (χyp)
as the x-coordinate (y-coordinate) vector for the framework
configuration.

In the literature on bearing rigidity, the bearings between
points in the framework are often expressed in a global
frame. For SE(2) rigidity, formations will be specified in
terms of relative bearing vectors between points in the
framework with respect to the local frame of each point.1

This is motivated by application scenarios where the sensing
is inherently expressed in the local frame of each agent
and also justifies the explicit use of directed graphs in the
definition.

In this venue, we assume that a point χv ∈ SE(2) has
a bearing measurement of the point χu if and only if the
directed edge (v, u) belongs to the graph G (i.e., (v, u) ∈
E); this measurement is denoted by rvu ∈ S2. The relative
bearing is measured from the body coordinate system of that
point.

We define the directed bearing rigidity function associated
with the SE(2) framework, bG : SE(2)|V| → S2|E|, as

bG(χ(V)) =
[
rTe1 · · · rTe|E|

]T
; (1)

we use the notation ei ∈ E to represent a directed edge in
the graph and assume a labeling of the edges in G.

Observe that the bearing measurement can be expressed
directly in terms of the relative positions and attitudes of the
points expressed in the world frame,

rvu =

[
cos(ψv) sin(ψv)
− sin(ψv) cos(ψv)

]
(pu − pv)
‖pv − pu‖

= T (ψv)
T (pu − pv)
‖pv − pu‖

= T (ψv)
T pvu,

where the matrix T (ψv) is a rotation matrix from the world
frame to the body frame of agent v, and pvu is a shorthand
notation for the unit-length relative position vector from v
to u. Furthermore, the directed bearing rigidity function can
also be expressed as

bG(χ(V)) = diag
(

T (ψv)
T

‖pv − pu‖

)
E
T
χp. (2)

1In our previous work [1], bearings were expressed as angles rather than
vectors.

We now review formal definitions for SE(2) rigidity [1].

Definition II.2 (Rigidity in SE(2)). The SE(2) framework
(G, p, ψ) is rigid in SE(2) if there exists a neighborhood S
of χ(V) ∈ SE(2)|V| such that

b−1K|V|(bK|V|(χ(V))) ∩ S = b−1G (bG(χ(V))) ∩ S,

where b−1K|V|(bK|V|(χ(V))) ⊂ SE(2) denotes the pre-image
of the point bK|V|(χ(V)) under the directed bearing rigidity
map.

The SE(2) framework (G, p, ψ) is roto-flexible in SE(2)
if there exists an analytic path η : [0, 1] → SE(2)|V| such
that η(0) = χ(V) and

η(t) ∈ b−1G (bG(χ(V)))− b−1K|V|(bK|V|(χ(V))) ∀ t ∈ (0, 1].

This definition states that an SE(2) framework (G, p, ψ)
is rigid if and only if for any point q ∈ SE(2) sufficiently
close to χ(V) with bG(χ(V)) = bG(q), that there exists a
local bearing preserving map of SE(2) taking χ(V) to q.
The term roto-flexible is used to emphasize that an analytic
path in SE(2) can consist of motions in the plane in addition
to angular rotations about the body axis of each point.

Definition II.3 (Equivalent and Congruent SE(2) Frameworks).
Frameworks (G, p, ψ) and (G, q, φ) are bearing equivalent if

T (ψu)
T puv = T (φu)

T quv, (3)

for all (u, v) ∈ E and are bearing congruent if

T (ψu)
T puv = T (φu)

T quv and T (ψv)
T pvu = T (φv)

T qvu,

for all (u, v) ∈ V with u 6= v.

Definition II.4 (Global rigidity of SE(2) Frameworks). A
framework (G, p, ψ) is globally rigid in SE(2) if every
framework which is bearing equivalent to (G, p, ψ) is also
bearing congruent to (G, p, ψ).

The notion of infinitesimal rigidity is characterized by the
null-space of the Jacobian of the directed bearing rigidity
function, ∇χbG(χ(V)). In this direction, define the directed
bearing rigidity matrix, BG(χ(V)), as

BG(χ(V)) := ∇χbG(χ(V)) ∈ R2|E|×3|V|. (4)

It is worth examining the structure of this matrix in more
detail. In particular, we have that

∂ rvu
∂χv

=
[
− r
⊥
vu(r

⊥
vu)

T

‖pu−pv‖ T (ψv)
T −r⊥vu

]
∂ rvu
∂χu

=
[

r⊥vu(r
⊥
vu)

T

‖pu−pv‖ T (ψv)
T 0

]
Here, r⊥vu = T (π/2)rvu denotes a π/2 counterclockwise
rotation of the vector rvu. Furthermore, the matrix r⊥vu(r

⊥
vu)

T

is a projection matrix, and we introduce the notation Prvu =
I2 − rvurTvu = r⊥vu(r

⊥
vu)

T . For notational convenience, we
will also often work with a permutation of the directed
bearing rigidity matrix,

B̃G(χ(V)) =
[
∇χpbG(χ(V)) ∇χψbG(χ(V))

]
=
[
−diag

(
Prvu
‖pu−pv‖T (ψv)

T
)
E
T − diag

(
r⊥vu
)
ETout

]
. (5)



Definition II.5 (Infinitesimal Rigidity in SE(2)). An
SE(2) framework (G, p, ψ) is infinitesimally rigid if
Null [BG(χ(V))] = Null

[
BK|V|(χ(V))

]
. Otherwise, it is

infinitesimally roto-flexible in SE(2).

Definition II.5 leads to the following result which relates
the infinitesimal rigidity of an SE(2) framework to the rank
of the directed bearing rigidity matrix.

Theorem II.6 ( [1]). An SE(2) framework is infinitesimally
rigid if and only if rk[BG(χ(V))] = 3|V| − 4.

For an infinitesimally rigid SE(2) framework, the null
space of the directed bearing rigidity matrix is also well
understood. It corresponds to the rigid body translations
and dilations of the framework, in addition to coordinated
rotations. The translations and dilations correspond precisely
to the infinitesimal motions required in bearing rigidity for
frameworks embedded in R2 [13]. A coordinated rotation
consists of a rotation of each agent about its own body axis
at the same angular speed coupled with a rigid-body rotation
of the framework in R2 so as to leave unchanged all the
relative bearings. These coordinated rotations are the non-
trivial solutions to the equation

− diag
(

Prvu
‖pu − pv‖

T (ψv)
T

)
E
T
p = diag

(
r⊥vu
)
EToutψ. (6)

The solutions define the coordinated rotation subspace,

R� =

{[
p
ψ

]
|
[
p
ψ

]
is a solution of (6)

}
.

It was shown in [1] that dim{R�} = 1 if and only if the
SE(2) framework is infinitesimally rigid.

Proposition II.7. For an infinitesimally rigid SE(2) frame-
work,

Null[B̃G(χ(V))] = span
{[

1V ⊗ I2
0

]
,

[
χp
0

]
,R�

}
.

We are also able to define the notion of minimally in-
finitesimal rigid SE(2) frameworks. In fact, this definition
follows from Theorem II.6 since an infinitesimally rigid
SE(2) framework will require at least |E| = 3|V|−4 edges.

Definition II.8 (Minimal Infinitesimal Rigidity in SE(2)). An
SE(2) framework (G, p, ψ) is minimally infinitesimally rigid
(MIR) if for any G′ obtained by removing any edge from
G, the resulting framework (G′, p, ψ) is infinitesimally roto-
flexible in SE(2).

Finally, observe that the directed bearing rigidity matrix
is defined in terms of the bearing vectors expressed in the
local frame of each agent (rvu), and the distance between
agents. We also define the scale-free directed bearing rigidity
matrix. This is motivated by the desire to implement control
strategies that do not depend on range, as we will see in the
sequel. The scale-free bearing rigidity matrix is defined as

B̂G(χ(V)) =
[
−diag

(
PrvuT (ψv)

T
)
E
T −diag

(
r⊥vu
)
ETout

]
.

(7)

Proposition II.9. For a SE(2) framework (G, p, ψ) with
pu 6= pv for all u, v ∈ V , one has

rk[BG(χ(V))] = rk[B̂G(χ(V))].

Proof. The result follows directly from the relationship

B̂G(χ(V)) =
[

diag(‖pu − pv‖) 0
0 I|V|

]
B̃G(χ(V)).

An Illustrative Example: The Triangle

To illustrate some of the above definitions, we consider an
SE(2) framework consisting of three nodes, i.e., a triangle.

Proposition II.10. An SE(2) framework (G, p, ψ) consisting
of three non-collinear points is infinitesimally rigid if and
only if |E| = 5.

Proof. Assume, without loss of generality, that E =
{(v1, v2), (v1, v3), (v2, v1), (v2, v3), (v3, v1)}, i.e., the edge
(v2, v3) is “missing” from E . We now show that the
bearing r(v2,v3) can be algebraically determined from the
other five bearing measurements. Define the angle βuv =
atan2(rxuv, r

y
uv), i.e., ruv = [cos(βuv) sin(βuv))]

T . It is easy
to check that the following holds:

βuv − βvu = ψv − ψu − π for any u, v. (8)

Exploiting (8) three times yields

βv2v3 = βv3v2 + ψv3 − ψu2
− π

= βv3v2 + (ψv3 − ψv1)− (ψu2
− ψv1)− π

= βv3v2 + βv1v3 − βv3v1 − βv1v2 + βv2v1 − π, (9)

which proves that βv2v3 , and therefore rv2v3 , can be com-
puted from the five available bearings. Therefore, measuring
five bearings is equivalent to measuring six bearings, i.e., to
having a complete measurement graph. To conclude the first
part of the proof we observe that if the agents are not aligned
then the complete graph guarantees the infinitesimal rigidity
of the framework.

In order to show minimality, we first observe that each
two rows of the bearing rigidity matrix corresponding to
each measured bearing ruv are linearly dependent. In fact,
this can be seen by noticing that (ruv)T is in the left null-
space of the 2 × 6 matrix composed by these two rows.
Furthermore, as stated by Theorem II.6, the rank of the
bearing rigidity matrix must be in this case 3 · 3− 4 = 5 in
order to have infinitesimal rigidity. Therefore, the presence
of at least five bearing measurements is necessary in order
to have infinitesimal rigidity. This proves the minimality of
the framework and concludes the proof.

III. FORMATION CONTROL IN SE(2)

We now study a formation control problem in SE(2).
Consider a team of n agents (n ≥ 2) in SE(2) where there is
no knowledge of a common reference frame. The dynamics
of each agent are expressed as[

T (ψi)
T ṗi

ψ̇i

]
=

[
ui
ωi

]
, i = 1, . . . , n. (10)



Here, the control input ui is applied in the body-frame of
agent i, and wi directly controls the angular velocity of agent
i. Agents are able to sense the bearing to neighboring agents
according to a fixed directed graph G = (V, E).

We would like to design a distributed control law that
utilizes only bearing information to drive the formation to a
configuration that is congruent to the desired configuration
(i.e., admits the same directed bearing rigidity function). We
denote the desired formation in terms of desired relative
bearings between each agent,

bdG =
[
(rde1)

T · · · (rde|E|)
T
]T
.

Assumption 1. There exists an SE(2) framework
(G, pd, ψd) with χd(V) = (pd, ψd) such that
bG(χ

d(V)) = bdG . Furthermore, the directed bearing
rigidity matrix B̃G(χd(V)) is MIR in SE(2).

In this direction, define the following potential function,

J(χ(V)) = 1

2
‖bG(χ(V))− bdG‖2.

We would like to examine the following gradient controller,

[
ṗ

ψ̇

]
= −k∇χJ(χ(V)) = −kB̃G(χ(V))T

(
bG(χ)− bdG

)
= −kB̃G(χ(V))T

(
bG(χ)− bdG

)
, (11)

Here, k > 0 is a scalar gain used to improve the rate of
convergence of the system. For analysis purposes, we take
k = 1. Observe that by construction B̃G(χ(V))T bG(χ) = 0,
leading to [

ṗ

ψ̇

]
= B̃G(χ(V))TbdG .

Note that this control is expressed in the global frame.
Expressed in the local body frame, the controller takes the
expression

ui = T (ψi)
T ṗi = −T (ψi)T

∑
(i,j)∈E

T (ψi)
Prij

‖pj − pi‖
rdij

+ T (ψi)
T
∑

(j,i)∈E

T (ψj)
Prji

‖pi − pj‖
rdji

= −
∑

(i,j)∈E

Prij
‖pj − pi‖

rdij +
∑

(j,i)∈E

T (ψj − ψi)
Prji

‖pi − pj‖
rdji

(12)

ψ̇i = −
∑

(i,j)∈E

(r⊥ij)
T rdij (13)

A few comments regarding the above control strategy are
in order. Indeed, the control in (12), (13) has a distributed
structure depending only on the sensing graph G. On the
other hand, this control requires communication between
agents. That is, if there is an edge (j, i) ∈ E , then agent
i requires the bearing measurement rji and the desired
bearing rdji from agent j. Furthermore, the agents also require
information on their relative orientation, T (ψi)TT (ψj) =

T (ψj−ψi), as well as the distance ‖pi−pj‖ between neigh-
boring agents. As well-known, this latter quantity cannot be
recovered from sole measured bearings and an independent
measurement (via, e.g., a distance sensor) would be required.
To cope with this issue, we will detail in the following a
scale-free version of controller (12) for which no distance
measurement is needed. On the other hand, the relative ori-
entation T (ψj−ψi) among neighboring pairs can be directly
obtained in terms of measured bearings thanks to the rigidity
of the framework (G, p, ψ). If (G, p, ψ) is rigid then one
could, for instance, exploit the distributed estimation strategy
illustrated in [1] for recovering the quantity T (ψj−ψi) from
the measured bearings. Alternatively, one could make use of
the geometric arguments of [20] for algebraically obtaining
T (ψj −ψi) from the available bearings. An example of this
algebraic procedure for the case of 3 agents is given in the
proof of Proposition II.10.

In this direction, we now propose the following scale-free
alternative control for avoiding measurement of the inter-
agent distances as in (12),

T (ψi)
T ṗi = −

∑
(i,j)∈E

Prijr
d
ij +

∑
(j,i)∈E

T (ψi − ψj)TPrjirdji (14)

ψ̇i = −
∑

(i,j)∈E

(r⊥ij)
T rdij , (15)

and we assume for the purpose of analysis that the agents are
able to acquire their relative orientation This control can be
expressed in a compact notation using the scale-free bearing
rigidity matrix as[

diag(T (ψi)T )ṗ
ψ̇

]
=

[
diag(T (ψi)T ) 0

0 I|V|

]
B̂G(χ)TbdG

(16)

It is worth noting that this control is in fact different than
the one proposed in [16]. In particular, in [16] a consensus-
type algorithm is used to align all agents to a common
orientation, thereby creating an effective common reference
frame, while the control action in (13) does not enforce any
agreement/alignment over a common orientation.

Before proceeding with a stability analysis of this control,
we first present a useful result relating to the centroid and
scale of the formation.

Proposition III.1. [16] The centroid of the formation p =
1
n (1

T ⊗ I2)p and its scale sp = 1
n

√∑n
i=1 ‖pi − p‖2 are

invariant under the dynamics (16).

Proof. In the global coordinate frame, the centroid dynamics
can be expressed as

ṗ =
(1T ⊗ I2)

n
ṗ = − (1T ⊗ I2)E diag(T (ψv)Prvu)

n
bdG = 0.

Similarly, the scale dynamics can be expressed as

ṡ =
1

n

(p− 1⊗ p)T

‖p− 1⊗ p‖
ṗ.

From Proposition II.7, it follows that pT ṗ = 0 and (1 ⊗
p)T ṗ = 0 concluding the proof.



We are now prepared to state the main result. We will
show that, for almost all initial conditions, the dynamics in
(16) asymptotically converges to the desired configuration.

Theorem III.2. Consider an MIR SE(2) framework
(G, p(0), ψ(0)) with directed bearing rigidity function
bG(χ(V)) and a formation in SE(2) specified by the vec-
tor of relative bearings bdG satisfying Assumption 1. Then
for almost all initial conditions (p(0), ψ(0)), the system
(16) asymptotically converges to a configuration χ∗ with
bG(χ

∗) = bdG .

Proof. Denote the bearing error vector as δ = bG(χ(V)) −
bdG . The error dynamics can be expressed as

δ̇ = −B̃G(χ(V))B̂G(χ(V))T δ. (17)

Consider the quadratic Lyapunov function V = 1
2δ
T δ and

note that the level sets {δ|V (δ) ≤ c <∞} are compact and
positively invariant. Furthermore, from Assumption 1, we
can assume there exists a point χd(V) = (pd, ψd) satisfying
bG((p

d, ψd)) = bdG that has the same scale and centroid as
the initial condition of the system. In particular, the point
χ(V) = χd(V) corresponds to the equilibrium point δ =
0 of (17). Evaluating the Lie derivative of V yields V̇ =
−δT (B̂G(χ(V))B̃G(χ(V))T + B̃G(χ(V))B̂G(χ(V))T )δ ≤ 0.
To show this inequality, let Q = −B̃G(χ(V))B̃G(χ(V))T and

R =

[
diag(‖pu − pv‖) 0

0 I|V|

]
,

and recall that B̂G(χ(V)) = RB̃G(χ(V)). Then Q is a D-
semistable matrix, and in particular, QR+RQ ≤ 0 since R
is a diagonal and non-negative matrix [21].

The set S = {δ | V̇ (δ) = 0} corresponds to points
satisfying bG(χ) = bdG or B̂G(χ(V))TbdG = 0.2 The latter
occurs only when each entry of bdG is in span{ruv}; that is,
a scaling of (pd, ψd). However, since the scale and centroid
are invariant, this set must correspond precisely to the point
satisfying bG(χ) = bdG . Therefore, by LaSalle’s Invariance
Principle, the error dynamics (17) asymptotically converge
to the set S. Furthermore, on the set S, the system (16)
satisfies χ̇(V) = 0.

Some remarks on Theorem III.2 are in order. While
Proposition III.1 leads to centroid and scale invariance of the
system, we are not able to comment on the final orientation
of the formation. Indeed, from Proposition II.7, there should
be another invariant of the dynamics that can shed light on
the final orientation; we will explore this in future works.
Another issue to be concerned with is the possibility of
collisions during the system evolution. In fact, it was shown
in [16] that for initial conditions sufficiently close to the
desired formation, there will be no collisions; we expect this
result to hold under the dynamics (16) as well.

IV. SIMULATION RESULTS
We now report some representative case studies to illus-

trate the performance of the proposed controller. The first

2Note that the MIR condition precludes the possibility of any collinear
agents.
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Fig. 1: The sensing graph in (a) is MIR. (b) Behavior of e(t) =

1

|E|
‖bG(t) − bdG‖ (blue solid line) and of etotal(t) =

1

|V|
‖bK|V|

(t) −

bdK|V|
‖ (red solid line). (c) Agent trajectories while converging

to the final configuration.
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Fig. 2: The sensing graph in (a) not rigid. The total bearing
error etotal(t) does not converge because of the non-rigid
framework, and the agents do not reach a configuration
congruent with the desired one.

simulation involves |V| = 6 agents and the sensing graph
G with |E| = 14 shown in Fig. 1(a). This graph is MIR
for generic configurations of the agents (in particular, when
embedded at the initial condition (p(t0), ψ(t0)) and desired
configuration (pd, ψd)). Figure 1(b) reports the superimposed

behavior of e(t) =
1

|E|
‖bG(t) − bdG‖ (blue solid line) and

etotal(t) =
1

|V|
‖bK|V|(t) − bdK|V|‖ (red solid line), that is,



time [s]
0 10 20 30 40 50

e,
e t

ot
a
l

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

px
i (t)i2V

-2 -1.5 -1 -0.5 0 0.5 1

p
y i
(t

) i
2V

-1

-0.5

0

0.5

1

1.5

(b)

Fig. 3: A triangular formation with an MIR sensing graph
G with |E| = 5 edges. Using Proposition II.10, the relative
orientations can be algebraically determined for all agents
leading to a pure bearing-only implementation.

the cumulative bearing error over the edge set of graph
G and of the complete graph K|V|, respectively. It is then
possible to verify how the bearing controller (12–13) is able
to regulate both e(t) and etotal(t) to zero, thus indicating
that the 6 agents have successfully reached a configuration
congruent with bdG . Figure 1(c) shows the agent trajectories
from initial to final configurations. In the plot, dashed gray
arrows indicate the initial/final positions/orientations of the
agents, while solid black arrows depict a realization of the
desired bearing formation rototranslated and scaled so as to
match the final pose of agent 1 and the final distance between
agents 1 and 2. Again, one can note how all agents correctly
approach a final pose consistent with the desired bearing
vector bdG .

Results of the second case study are shown in Figs. 2(a–
c): here, the sensing graph has |E| = 13 edges (one less that
in the first case study) and is, thus, not rigid. Consequently,
the controller (12–13) is able to zero the bearing error e(t)
but not the total bearing error etotal(t) (Fig. 2(b) – note how
etotal(t) stabilizes to a constant but non-zero value). Indeed,
by looking at Fig. 2(c) one can note how the agents reach a
configuration not congruent with the desired one.

Finally, in Figs. 3(a–b), we report the results of a min-
imally rigid triangular formation with |V| = 3 agents and
|E| = 5 edges in the sensing graph from Proposition II.10. In
this case, the control can be implemented without an explicit
measurement of the relative orientation using the algebraic
characterization described in Proposition II.10.

V. CONCLUSIONS

This work examined an extension of the bearing rigidity
theory to handle frameworks embedded in SE(2). The struc-
ture of the corresponding directed bearing rigidity matrix
was examined and turned out to be a central construct in the
development of a distributed bearing-only formation control
strategy. In particular, we were able to show almost global
asymptotic stability of the control strategy when the SE(2)
framework is minimally infinitesimally rigid.

ACKNOWLEDGMENTS

This research was supported by the ANR, Project ANR-
14-CE27-0007 SenseFly.

REFERENCES

[1] D. Zelazo, A. Franchi, and P. Robuffo Giordano, “Rigidity Theory
in SE(2) for Unscaled Position Estimation using only Bearing
Measurements,” in European Control Conference, Strasbourg, France,
2014, pp. 2703–2708.

[2] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesi-
mally rigid formations of multi-robot networks,” International Journal
of Control, vol. 82, no. 3, p. 423439, 2009.

[3] M.-A. Belabbas, “On global stability of planar formations,” IEEE
Transactions on Automatic Control, vol. 58, no. 8, 2013.

[4] B. D. O. Anderson, B. Fidan, C. Yu, and D. van der Walle, “UAV
formation control: Theory and application,” in Recent Advances in
Learning and Control, ser. Lecture Notes in Control and Information
Sciences, V. D. Blondel, S. P. Boyd, and H. Kimura, Eds. Springer,
2008, vol. 371, pp. 15–34.

[5] K.-K. Oh and H.-S. Ahn, “Formation control of mobile agents based
on inter-agent distance dynamics,” Automatica, vol. 47, no. 10, pp.
2306 – 2312, 2011.

[6] S. Mou, A. Morse, and B. Anderson, “Toward robust control of min-
imally rigid undirected formations,” in 53rd Conference on Decision
and Control, Dec 2014, pp. 643–647.

[7] H. Garcia de Marina, M. Cao, and B. Jayawardhana, “Controlling rigid
formations of mobile agents under inconsistent measurements,” IEEE
Transactions on Robotics, vol. 31, no. 1, pp. 31–39, Feb 2015.

[8] A. N. Bishop, I. Shames, and B. D. Anderson, “Stabilization of rigid
formations with direction-only constraints,” in IEEE Conference on
Decision and Control and European Control Conference, vol. 746,
no. 1, Dec. 2011, pp. 746–752.

[9] E. Schoof, A. Chapman, and M. Mesbahi, “Bearing-compass forma-
tion control: A human-swarm interaction perspective,” in American
Control Conference, Portland, USA, June 2014, pp. 3881–3886.

[10] T. Eren, “Formation shape control based on bearing rigidity,” Interna-
tional Journal of Control, vol. 85, no. 9, pp. 1361–1379, Sept. 2012.

[11] A. Franchi and P. Robuffo Giordano, “Decentralized control of parallel
rigid formations with direction constraints and bearing measurements,”
in 51st IEEE Conference on Decision and Control, Dec. 2012, pp.
5310–5317.

[12] A. N. Bishop, I. Shames, and B. D. O. Anderson, “Stabilization of
rigid formations with direction-only constraints,” in 50th IEEE Conf.
on Decision and Control, Orlando, FL, Dec. 2011, pp. 746–752.

[13] T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. O.
Anderson, “Sensor and network topologies of formations with direc-
tion, bearing, and angle information between agents,” in 42th IEEE
Conf. on Decision and Control, Maui, HI, Dec. 2003, pp. 3064–3069.

[14] P. Gurfil and D. Mishne, “Cyclic spacecraft formations: Relative
motion control using line-of-sight measurements only,” Journal of
Guidance, Control, and Dynamics, vol. 30, no. 1, pp. 214–226,
January-February 2007.

[15] T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. Ander-
son, “Sensor and Network Topologies of Formations with Direction,
Bearing, and Angle Information between Angents,” in 42nd IEEE
Conference on Decision and Control, 2003, pp. 3064–3069.

[16] S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-
only formation stabilization,” IEEE Transactions on Automatic Con-
trol, vol. PP, no. 99, July 2015, (IEEE Early Access Article).

[17] ——, “Bearing-Based Distributed Control and Estimation of Multi-
Agent Systems,” in European Control Conference, Linz, Austria, 2015,
pp. 2207–2212.

[18] C. D. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001.
[19] L. Asimow and B. Roth, “The Rigidity of Graphs, II,” Journal of

Mathematical Analysis and Applications, vol. 68, pp. 171–190, 1979.
[20] A. Franchi, C. Masone, V. Grabe, M. Ryll, H. H. Bülthoff, and

P. Robuffo Giordano, “Modeling and control of UAV bearing-
formations with bilateral high-level steering,” The International Jour-
nal of Robotics Research, Special Issue on 3D Exploration, Mapping,
and Surveillance, vol. 31, no. 12, pp. 1504–1525, 2012.

[21] R. Horn and C. Johnson, Topics in Matrix Analysis. New York, NY:
Cambridge University Press, 1991.


