
HAL Id: hal-01188204
https://hal.inria.fr/hal-01188204

Submitted on 28 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Error-Tolerant RDF Subgraph Matching for Adaptive
Presentation of Linked Data on Mobile

Luca Costabello

To cite this version:
Luca Costabello. Error-Tolerant RDF Subgraph Matching for Adaptive Presentation of Linked
Data on Mobile. European Semantic Web Conference, ESWC 2014, May 2014, Anissaras, Greece.
�10.1007/978-3-319-07443-6_4�. �hal-01188204�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49493303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01188204
https://hal.archives-ouvertes.fr

Error-Tolerant RDF Subgraph Matching for
Adaptive Presentation of Linked Data on Mobile

Luca Costabello

Inria, Sophia Antipolis, France
luca.costabello@inria.fr

Abstract. We present PRISSMA, a context-aware presentation layer for
Linked Data. PRISSMA extends the Fresnel vocabulary with the notion of
mobile context. Besides, it includes an algorithm that determines whether
the sensed context is compatible with some context declarations. The
algorithm finds optimal error-tolerant subgraph isomorphisms between
RDF graphs using the notion of graph edit distance and is sublinear in
the number of context declarations in the system.

Keywords: #eswc2014Costabello

1 Introduction

Semantic Web mobile applications might not have built-in assumptions about
the schemas of the data they consume, as data models could be unknown a-priori,
and provided by heterogeneous sources: users might consume any type of data,
as long as it is relevant to their context [17]. To improve the effectiveness of
Linked Data consumption, content adaptation must be adopted, i.e. the process
of selecting, generating, or modifying content units in response to a requested
URI1. Essential in the mobile Web, such process is driven by the multifaceted
notion of client context [9]. Content adaptation reduces the fan-out of RDF
entities, and provides coherent information by using context as a dynamic filter.
Furthermore, it orders, groups, and formats triples, thus creating “optimized”
content units ready for user consumption.
This paper addresses the question of how to enable context-aware adaptation
for Linked Data consumption. We split up the problem in two sub-questions:
i) how to model context for Linked Data presentation and ii) how to deal with
context imprecision to select proper presentation metadata at runtime. Modelling
context-aware presentation concepts for Linked Data needs a proper ontology
that fills the gap between traditional context ontologies and the Web of Data (e.g.
support for future extensions, adoption of a lightweight vocabulary instead of a
vast, monolithic context ontology, etc). The selection of presentation metadata is
complicated by a series of constraints: first, the intrinsic imprecision of context
data determines the need for an error-tolerant strategy that takes into account

1 See Adaptation definition: http://www.w3.org/TR/di-gloss/#sec-glossary

possible discrepancies between context descriptions and actual context. Second,
this error-tolerant mechanism must support heterogeneous context dimensions
(e.g. location, time, strings). Third, since the procedure must run on the client-
side - to avoid disclosing sensitive context data - we must design a mobile-friendly
algorithm, with acceptable time and space complexity. Finally, the adopted
strategy must support runtime updates of RDF graphs, as context descriptions
might be fetched from remote repositories and added to the selection process at
runtime, and the sensed context may change at any time.
Our contribution is PRISSMA, a context-aware presentation framework for Linked
Data. PRISSMA answers our two-fold research question with the following
contributions: i) a vocabulary for describing context conditions, compatible
with Fresnel [19], and ii) an error-tolerant subgraph matching algorithm that
determines whether the sensed context is compatible with context declarations.

In Section 2 we present the state-of-the-art presentation-level frameworks for
the Semantic Web, along with an overview of error-tolerant matching techniques.
Section 3 describes the PRISSMA vocabulary and explains the error-tolerant
presentation metadata selection algorithm. The algorithm experimental evaluation
results are described in Section 4.

2 Related Work

As shown in Table 1a, none of the existing presentation frameworks for Linked
Data [1, 4, 8, 11, 12, 15, 20] completely supports context awareness. One of these
works is Fresnel [19], a rendering engine for RDF. Fresnel is built on the assump-
tion that data and its related schema do not carry sufficient information for
representing triples, hence it provides additional presentation-level knowledge.
Developers create Fresnel declarations for RDF instances or classes that will be
displayed by their applications using the Fresnel vocabulary, an ontology built on
the separation between data selection and formatting. Data selection and filtering
is implemented by Fresnel Lenses, while Formats define how to present data.

Castano et al. [3] provide an overview of matching techniques for RDF
instances; most of these works stem from ontology matching strategies [10]. Fig-
ure 1b compares error-tolerant works closer to our requirements: iSPARQL [16]
is designed for error-tolerant matching, but it neither supports heterogeneous
dimensions (such as location), nor is it designed for computationally-constrained
mobile platforms. The Silk framework [24] includes geographical and time dis-
tances but such metrics do not consider data imprecision. Furthermore, Silk is not
designed to run on mobile devices. RDF semantics states that two RDF graphs
are semantically equivalent if they entail one another2, and, as underlined by
Carrol [2], the important concept for entailment between RDF graphs is subgraph
isomorphism, known to be NP-complete. Subgraph isomorphism is at the heart of
a recent pattern matching engine for SPARQL by Zou et al. [25]. Unfortunately,
the authors do not provide an error-tolerant version of their algorithm. It has
been proved [6] that finding the optimal error-tolerant subgraph isomorphism

2 http://www.w3.org/TR/rdf-concepts/

H
a
y
st
a
ck

O
z
o
n
e
[1
5
]

N
o
a
d
st
e
r[
2
2
]

S
u
rr
o
g
a
te
s[
1
2
]

F
re
sn

e
l[
1
9
]

X
e
n
o
n
[2
0
]

T
a
l4
R
d
f[
4
]

L
E
S
S
[1
]

H
id
e
th

e
S
ta

ck
[8
]

L
D
V
M

[1
1
]

P
R

IS
S
M

A

Declarative
approach

• • • • • • • • •
Domain
Independence

• • • • • • • •
Standard
Languages

• • • • • • •
Context
Awareness

◦ •
Automatic
stylesheets

◦
Evaluation • •
Distribution • ◦
Multimodality • • ◦ ◦ •

(a)

iS
P
A
R
Q
L
[1
6
]

S
il
k
[2
4
]

Z
o
u

e
t
a
l.
[2
5
]

M
e
ss
m
e
r
a
n
d

B
u
n
k
e
[1
8
]

P
R

IS
S
M

A

RDF-specific • • • •
Data
Heterogeneity

◦ ◦ •
Client-side
Execution

◦ •
Incremental
index updates

• • •
Selective
matching cache

◦ ◦

(b)

Table 1: A comparison of presentation layers for the Semantic Web (a) and of
error-tolerant matching techniques for RDF (b). Full support is identified by •,
partial support by ◦, no support by the empty cell.

between two graphs can be reduced to the computation of graph edit distance: the
idea is that differences between graphs can be modelled in terms of operations
to apply to graphs, such as adding a node or modifying an arc. Graph edit
distance provides the required flexibility for building an error-tolerant subgraph
matching algorithm, and supports customized and heterogeneous cost functions
(comparing contexts means dealing with data such as location, time, string literals,
URIs). Nevertheless, computational complexity is exponential in the number of
graph nodes, since graph edit distance algorithms assume that every node can be
mapped on every node of another graph. Although context descriptions are rather
small graphs, computing graph edit distance remains a computationally expensive
task, in particular on mobile devices. Traditional approaches to compute graph
edit distance between an input graph and a set of reference graphs apply a
pairwise comparison, but such methods do not scale well and badly perform with
runtime updates [13]. Messmer and Bunke [18] adopt a different strategy: they
fragment directed, labelled graphs into smaller subgraphs, and store them into a
single data structure, to avoid duplicates. Given an input graph, an online search
algorithm searches for the error-tolerant subgraph isomorphisms with the lowest
edit costs.

3 Prism Selection Algorithm

We extend the Fresnel presentation-level ontology with context awareness. The
PRISSMA vocabulary3 (Figure 1) broadens the semantics of fresnel:Purpose
to delegate the selection of Lenses and Formats to a broader and more expressive

3 http://ns.inria.fr/prissma

UserDevice

Environment

Context

POI

Activity

foaf:Person

owl:equivalentClass

dcn:Device

owl:Thing

geo:Point

environment

device user

motion poiLabel
poiCategory

ao:activity

subClassOf

nearbyEntityradius

tl:start
tl:duration

poi

owl:equivalentClass

time:Interval ao:time

fresnel:Purpose
owl:equivalentClass

fresnel:Lens

fresnel:Format

Prismfresnel:Group
owl:equivalentClass

fresnel:purpose

geo:lat
geo:lon

fresnel:group

fresnel:group

Fig. 1: The PRISSMA vocabulary

definition of mobile context, modelled by the prissma:Context class. PRISSMA
is not meant to provide yet another mobile context model, as that is out of the
scope of our work. Instead, we reuse and combine well-known vocabularies: we
are based on the widely-accepted formalization of context proposed by Dey [9]
and we extend the W3C Model-Based User Interface Incubator Group4 proposal,
that models mobile context as the sum of the User model, the Device features,
and the Environment in which the action is performed (we have described the
PRISSMA vocabulary in further detail in [7]). To wrap up each context-aware
presentation-level unit of information, the concept of Prism is introduced (a
Prism is owl:equivalentClass to a fresnel:Group):

Definition 1 (Prism). A Prism P is an RDF graph that describes the context
conditions under which a given RDF presentation must be activated.

Fig. 2 shows the sample Prism :museumPrism. The Prism styles dbpedia:Museum
instances when requested by art-loving users walking in Paris. Fresnel lenses and
formats (8-27) are coupled to the PRISSMA context description of lines 29-43.

Before rendering an RDF resource with Fresnel, PRISSMA-equipped applica-
tions search the available Prisms and select the better match for the context in
which the desired resource is accessed, thus our second research question: how to
select the proper context description at runtime? The most relevant challenge of
this task is the imprecise and incomplete nature of context data, that complicates
the matching procedure between declared and sensed contexts, and requires an
error-tolerant approach. Context data is riddled by the following issues:
Ambiguity. Some RDF Entities and literals used in PRISSMA declarations

might not match with the actual context entities. Nevertheless, in some cases
entities and literals might be similar.

Incompleteness. The authors of PRISSMA context declarations might omit or
forget certain properties, when describing a context. Nevertheless, in certain

4 http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui/

1 # Styles a Museum when walking in Paris
2 :museumPrism a prissma:Prism ;
3 a fresnel:Group ;
4 fresnel:purpose :walkingInParisArtLover ;
5 fresnel:stylesheetLink <style.css>.
6

7 # Fresnel presentation-level triples
8 :museumlens a fresnel:Lens;
9 fresnel:group :museumPrism;

10 fresnel:classLensDomain dbpedia:Museum;
11 fresnel:showProperties (
12 dbpprop:location
13 dbpprop:publictransit
14 ex:telephone
15 ex:openingHours
16 ex:ticketPrice) .
17

18 :addressFormat a fresnel:Format ;
19 fresnel:group :museumPrism ;
20 fresnel:propertyFormatDomain
21 dbpprop:location ;
22 fresnel:label "Address" ;
23 fresnel:labelStyle

24 "css-class1"^^fresnel:styleClass ;
25 fresnel:valueStyle
26 "css-class2"^^fresnel:styleClass .
27

28 # [...]
29

30 # PRISSMA context description
31 :walkingInParisArtLover a prissma:Context ;

32 prissma:user :artLover ;
33 prissma:environment :parisWalking .
34

35 :artLover a prissma:User ;
36 foaf:interest "art".
37

38 :parisWalking a prissma:Environment ;
39 prissma:poi :paris ;
40 prissma:motion "walking" .
41

42 :paris geo:lat "48.8567" ;
43 geo:long "2.3508" ;
44 prissma:radius "5000" .

Fig. 2: A sample Prism (prefixes are omitted)

cases the context graph, although topologically different, should still be
considered as a valid candidate by the selection algorithm.

Sensor noise. Onboard sensors might provide erroneous information that will
be part of the actual context graph [14]. This is a well-known problem when
determining geographic location (e.g. weak GPS signal, indoor location, etc).
To overcome such issues, we extended and adapted to RDF the Messmer and

Bunke error-tolerant algorithm for finding optimal subgraph isomorphisms for
labelled, directed graphs [18].

3.1 Definitions

Before describing the adapted algorithm, we remind some useful definitions
provided in Messmer [18], adjusting them to our scenario:

Definition 2 (RDF Graph). An RDF graph is a set of RDF triples G =
{(s1, p1, o1) . . . (sn, pn, on)} = (V,E) where st is the subject, pt the property and
ot the object of each triple t. V is the set of labelled vertices and contains the
elements st and ot, that are entities or literals. E is the set of directed edges and
contains all the triple properties pt.

Definition 3 (Graph Edit Operation). Given an RDF graph G = (V,E), a
graph edit operation δ(G) is one of the following:

- v → v′, v ∈ V, v′ ∈ V (substituting an RDF entity or literal)
- e→ e′, e ∈ E (substituting an RDF property)
- v → ε, v ∈ V (deleting an RDF instance or literal)
- e→ ε, e ∈ E (deleting an RDF property)
- ε→ e (adding an RDF property between existing nodes)

where ε is an empty RDF entity, literal, or property.

These five edit operations are sufficient to transform any graph G into a subgraph
of any graph G′. Note that the algorithm searches for subgraph isomorphisms
from a model graph to the input graph, hence there is no need to consider
exterior RDF instances or literals in the input graph, i.e. there is no need for a
ε→ v, v ∈ V operation.

Definition 4 (Edited Graph). Given an RDF graph G and a sequence ∆ =
(δ1, δ2, . . . , δn) of edit operations, the edited graph ∆(G) = (∆(V), ∆(E)) is the
graph ∆(G) = δn(. . . δ1(G)).

Definition 5 (Error-Tolerant RDF Subgraph Isomorphism). Given two
RDF graphs G = (V,E) and G′ = (V ′, E′), an error-tolerant RDF subgraph
isomorphism f from G to G′ is a two-tuple f = (∆, f∆) where:

- ∆ is a sequence of graph edit operations that transforms G in ∆(G).
- f∆ is an injective function f∆ : ∆(V)→ V ′ such that ∃ a graph isomorphism5

from ∆(G) to a subgraph S ⊆ G′.

We now introduce the definition of cost of error-tolerant subgraph isomorphism,
preceded by the cost of an edit operation:

Definition 6 (Cost of Edit Operation). Given an edit operation δi, the cost
of δi is a value C(δi) ∈ [0, 1].

The cost C(δi) of an edit operation δi varies according to the type of edit operation
(e.g. instance substitution, property deletion, etc.) and the nature of the involved
RDF element. We cover in more details C(δi) in Section 3.4.

Definition 7 (Cost of Error-Tolerant RDF Subgraph Isomorphism).
Given an error-tolerant RDF subgraph isomorphism f = (∆, f∆), its cost C(f) is
defined as the normalized cost of the sequence of edit operations ∆ = (δ1, . . . δn),

C(f) = C(∆)
n =

∑n
i=1 C(δi)

n .

The cost of error-tolerant subgraph isomorphism described in Definition 7
adopts the arithmetic mean to normalize the cost of the sequence of edit operations.
Other strategies might be adopted, such as using a weighted mean or the maximum
cost in the sequence.

It is evident that there might exist multiple sequences ∆ of edit operations
from graph G to graph G′, each with a different cost: we are interested in finding
the optimal error-tolerant subgraph isomorphism, i.e. the error-tolerant subgraph
isomorphism with the least expensive sequence of edit operations. In other words,
we want to find the minimum amount of distortion needed to transform a Prism
into the actual mobile context, thus computing their graph edit distance [21]:

5 Definition of graph isomorphism provided in [18].

Definition 8 (Optimal Error-Tolerant RDF Subgraph Isomorphism).
Given the set of error-tolerant subgraph isomorphisms F = f1 . . . fn between two
graphs, the optimal error-tolerant subgraph isomorphism fopt is the element of F
with cost C(fopt) = minfi∈F C(fi).

3.2 Decomposition

The context-related triples included in each Prism are split in subgraphs and
saved in a structure called decomposition, a recursive partitioning of a set of
RDF models (Prisms). The decomposition algorithm works on the set of Prisms
pre-loaded by the PRISSMA-equipped mobile application. The idea is building
the decomposition by detecting and merging common subgraphs: in the decom-
position, subgraphs duplicated in different Prisms are collapsed and represented
only once, thus providing a compact representation of possible contexts. As
remarked by Messmer and Bunke, there exists more than one decomposition for
a set of graphs: the adopted strategy does not provide an optimal decomposition
(e.g. in the number of elements), but it is computationally inexpensive compared
to other strategies [18].
The elements of a decomposition are tuples that include graph patterns sharing
the same topology and whose RDF elements have the same classes. Among the
decomposition elements, some consist in groups of non-decomposable, atomic
graph patterns called context units:

Definition 9 (Context Unit). A context unit is an RDF graph U = (VU , EU)
representing atomic context information. A context unit U consists in either a
single class, or a single RDF entity, or a single literal, or in a graph that describes
an atomic context information.

In the original proposition, Messmer and Bunke deal with graphs with a
limited range of discrete values, thus they decompose graphs up to single nodes.
We compare more complex structures, hence the need to preserve context units
(e.g. we cannot split latitude, longitude, and radius when comparing locations).
Thus, different types of context units have been defined, according to the type of
context information: Class context units consist in core PRISSMA classes (e.g.
prissma:Context, prissma:User, prissma:Environment, and prissma:Device).
Class context units are created by a preliminary step, where instances of core
PRISSMA classes are substituted by their class. This operation decreases the
size of the decomposition without losing information, since the URIs of such core
instances are not important for matching purposes. Entity context units are RDF
entities, whose classes are not among PRISSMA core classes. Entity context units
may be blank nodes. Geo context units represent geographic locations, while
Time elements include temporal information. Both Geo and Time context units
may be blank nodes. String and Numeric context units are associated to string
and numeric literals. The decomposition is formally defined as follows:

Definition 10 (Decomposition). Given a set of Prisms P = {P1, . . . , Pn},
the decomposition D(P) is a set of 4-tuple (G,G′, G′′, E) where:

0

prissma:User

1
48.8567

2.3508
5000

geo:lat
geo:lon

prissma:radius

3

prissma:Environment

5

prissma:Context

8

:walkingInParisArtLover

"Art" "Walking"

4

{2,0,1,{foaf:interest}}
{6,4,5,{prissma:motion}}

{10,2,9,{prissma:user}}

{9,7,8,{prissma:environment}}

{7,3,6,{prissma:poi}}

Fig. 3: A decomposition of context data of :museumPrism showed in Figure 1.

1. G,G′, G′′ are RDF graphs, with G′, G′′ ⊂ G
2. E is a set of RDF properties such that G = G

′ ∪E G′′, where ∪E is the union
of G′ and G′′ properties.

3. for each Pi there exists a 4-tuple (Pi, G
′, G′′, E) ∈ D(P)

4. for each 4-tuple (G,G′, G′′, E) there exists no other 4-tuple (G1, G
′
1, G

′′
1 , E) ∈

D(P) with G = G1

5. for each 4-tuple (G,G′, G′′, E) ∈ D(P)

(a) if G′ is not a context unit, there exists a 4-tuple (G1, G
′

1, G
′′

1 , E) ∈ D(P)
such that G′ = G1

(b) if G′′ is not a context unit, there exists a 4-tuple (G2, G
′

2, G
′′

2 , E) ∈ D(P)
such that G′′ = G2

(c) if G′ is a context unit, there exists no 4-tuple (G3, G
′

3, G
′′

3 , E) ∈ D(P)
such that G′ = G3

(d) if G′′ is a context unit, there exists no 4-tuple (G4, G
′

4, G
′′

4 , E) ∈ D(P)
such that G′′ = G4

Figure 3 shows the decomposition of :walkingInParisArtLover, the Prism
in Figure 2. Uppermost elements are context units: 0 and 4 are “String” context
units, 1, 5, and 8 are “Class” context units, and 3 is a “Geo” context unit.
Each decomposition elements contains the IDs of the ancestors (G′, G′′) and
the set of connecting RDF properties E. Element 10 represents the complete
prissma:Context graph.

The recursive function decompose() (Algorithm 1) is executed on each Prism
G in the decomposition D. The function searches in the decomposition for Smax,
the biggest subgraph of G (lines 3-5): the goal is to determine if there exists a

Alg. 1: decompose(G,D)
Data: a Prism G, the decomposition D
Result: The updated decomposition D

1 Smax = ∅
2 if G not context unit then
3 foreach (Gi, G

′
i, G
′′
i , Ei) do

4 if Gi is a subgraph of G and Smax smaller than Gi then
5 Smax = Gi

6 if Smax is isomorphic to G then
7 exit

8 if (Smax = ∅) then
9 choose subgraph Smax, priority to PRISSMA properties

10 decompose(Smax)

11 decompose(G− Smax)
12 add (G,Smax, G− Smax, E) to D

graph pattern in common with the decomposition6. If Smax is isomorphic6 to
G, then G is already represented in D and the algorithm stops (lines 6-7). If no
subgraph is found, and G can be further decomposed (i.e. it is not a context
unit), the procedure chooses Smax (line 9) and recursively decomposes it (line
10). The choice of Smax is determined by a list of ordered RDF properties, with a
priority for PRISSMA background ontology core properties (e.g. prissma:user,
prissma:environment, prissma:device, etc). This enhances the chances of
merging decomposition elements, thus resulting in a more compact structure. The
procedure is invoked recursively on G− Smax, the part of G not yet decomposed
(line 11). Finally, (G,Smax, G− Smax, E) is added to D.

3.3 Search Algorithm

Every significant context change7 detected by the device triggers the search for
Prisms that fit the updated context requirements. PRISSMA carries out this
operation with an adapted version of Messmer and Bunke online search algo-
rithm [18]. The algorithm detects optimal error-tolerant subgraph isomorphisms
between the graph of the sensed context and the Prisms stored in the decom-
position. The algorithm first computes edit operations between context units in
the decomposition D and context units of the input graph. Second, it combines
such edit operations to obtain optimal error-tolerant subgraph isomorphisms for
larger patterns, up to complete Prisms (Algorithm 3). To avoid combinatorial
explosion, the concatenation of error-tolerant subgraph isomorphisms includes
only the cheapest error-tolerant graph isomorphisms: this guarantees to find
optimal error-tolerant subgraph isomorphisms.

6 The graph isomorphism and the exact subgraph isomorphism operations are delegated
to off-the-shelf algorithms, such as [23] whose description is out of the scope of this
work.

7 The notion of significant context change is scenario-dependent, and it is not investi-
gated in this paper.

Algorithm 2 presents the search procedure: first, it finds the error-tolerant
subgraph isomorphisms from each context unit S of the decomposition D to
the input context graph GI and stores them in the list candidates(S) (lines
1-2). This operation is performed by the context unit matching() function. From
line 3 to 12 such error-tolerant subgraph isomorphisms are concatenated to
find error-tolerant subgraph isomorphisms for larger graphs, up to Prisms:

Alg. 2: search(GI , D)
Data: a Decomposition D, a context graph GI
Result: the result set R containing selectable Prisms

1 foreach S context unit in D do
2 candidates(S) = context unit matching(S,GI)

3 while choose S1 | ∃ f1 ∈ candidates(S1) with C(f1) minimal in D and C(f1) ≤ T do
4 winners(S1) = winners(S1) ∪ {f1}
5 candidates(S1) = candidates(S1)− {f1}
6 if S1 is a Prism then
7 R = R ∪ {S1}
8 foreach (S, S1, S2, E) ∈ D || (S, S2, S1, E) ∈ D do
9 foreach f2 ∈ winners(S2) do

10 f = combine(S1, S2, E,GI , f1, f2)
11 if f 6= ∅ then
12 candidates(S) = candidates(S) ∪ {f}

13 return R

Alg. 3: combine()
Data: S1, S2, E,GI , f1 =

(∆1, f∆1
), f2 =

(∆2, f∆2
), ∆1 =

(∆V1 , ∆E1
), ∆2 = (∆V2 , ∆E2

)
Result: f

1 if f∆1
(∆V1) ∩ f∆2

(∆V2) 6= ∅ then
2 exit

3 foreach v ∈ (∆V1 ∪∆V2) do
4 if v ∈ V∆1

then
5 f∆(v) = f∆1

(v)

6 else if v ∈ V∆2
then

7 f∆(v) = f∆2
(v)

8 ∆ = ∆1 +∆2 +∆E
9 return f = (∆, f∆)

Alg. 4: context unit matching(U,GI)
Data: context unit U , input context graph

GI = (VI , EI)
Result: the list of error-tolerant subgraph

isomorphisms F
1 F = ∅
2 foreach context unit UI ∈ GI do
3 generate an error-tolerant subgraph

isomorphism f between U and UI
4 F = F ∪ {f}

5 f ′ = (∆′, f ′∆) with ∆′ = (v → ε) and

f ′∆ = ∅
6 F = F ∪ {f ′}
7 return F

in line 3 we select the subgraph S1 whose error-tolerant subgraph isomorphism
f1 has the minimum cost in D. Note that C(f1) must be lower than a thresh-
old T ∈ [0, 1]. The error-tolerant subgraph isomorphism f1 is removed from
candidates(S1) in line 5 and added to the list winners(S1), the container of
error-tolerant subgraph isomorphism chosen to be combined. If S1 is a Prism, the
algorithm has found a result (lines 6-7). Otherwise, we generate error-tolerant
subgraph isomorphisms for each subgraph S having S1 as ancestor (lines 8-12).
Such generation is done with the combine() function that concatenates f1 to each
f2 ∈ winners(S2), where S2 is the other ancestor of S. If a combination is feasi-
ble, the resulting error-tolerant subgraph isomorphism is added to candidates(S)
(line 12).
Algorithm 3 details the combine() procedure: first (line 1), the function tests if f1
and f2 do not contain mappings to the same node in GI (this is necessary because

subgraph isomorphisms are injective functions [18]). If this condition is satisfied,
an error-tolerant subgraph isomorphism is constructed as a concatenation of the
edit operations of f1 and f2 and of the edit operations on the edge between S1

and S2, ∆E (line 8). Mappings are chosen among the mappings of f1 and f2
(lines 3-7).
We now discuss in further detail context unit matching(), the function used by the
search algorithm to compute error-tolerant subgraph isomorphisms for context
units (Algorithm 4). Given a context unit U and an input context graph GI , the
procedure finds the edit operations from U to each context unit of GI (line 2-3)
and stores them as error-tolerant subgraph isomorphisms. Moreover, the deletion
of U is considered (line 5).
Worst case computational complexity analysis shows that the complexity of the
search procedure varies from O(Lmnn2) when Prisms in the decomposition are
completely different, to O(mnn2) when Prisms are highly similar (L is the number
of Prisms in the decompositions, m the number of vertices of the input context
graph and n the number of vertices of each Prism included in a decomposition
D made of Prisms with same number of nodes). Hence, the search algorithm is
sublinear in the number L of Prisms included in the decomposition (for a detailed
theoretical analysis of the computational complexity of the search algorithm,
see [18]). This is an important property of the algorithm, since the number of
Prisms in the system can be potentially high and unknown a priori.

3.4 Cost of Edit Operations

Each graph edit operation δ computed by the Prism selection algorithm is
associated to a cost C(δ) ∈ [0, 1]. Unlike Messmer and Bunke that only consider
topological differences and limit to graphs with discrete node values, in our
scenario cost functions are influenced by the presence of heterogeneous context
dimensions.
Topology. The algorithm assigns the highest cost C(δ) = 1 to the substitution

of “Class” context units, core PRISSMA vocabulary properties (such as
prissma:environment), and to the deletion of “Class”, “Geo” or “Time”
context units. Hence, whenever an input context graph needs such edit
operations, the cost of the resulting error-tolerant subgraph isomorphism
will be higher than the threshold T . The algorithm assigns lower costs for
edit operations on non-core properties, and on “Entity” context units (e.g. a
missing foaf:interest property in the user dimension may not prevent a
Prism match). Such cost is determined by the Ctopology ∈ [0, 1] parameter.
Note that the presence of additional properties between two context units is
not considered to affect global cost, and is therefore assigned cost 0.

Location. A “Geo” context unit is a subgraph composed by geo:lat, geo:long
and a prissma:radius (e.g. context unit 3 in Fig. 3). The cost of the
substitution of a location context unit depends on the geographic distance.
We first compute the distance d of the two points using the Haversine formula.
If d is within the declared radius, the edit operation has cost C(δ) = 0.

Otherwise, PRISSMA features an exponential decay function to smooth the
transition between a perfect match and a mismatch8:

Cgeo(d) =

{
0 if d < dradius

e
−d
λgeo if d > dradius

Time. Temporal context units include a start timestamp tstart and a duration
∆t (Figure 1). The cost of the substitution of a temporal pattern is computed
to an exponential decay function:

Ctime(t) =

e
t−tstart
λtime if t < tstart

0 if tstart < t < tstart +∆t

e
−t+tstart+∆t

λtime if t > tstart +∆t

Strings. The cost Cstring of substituting a string literal is computed with an
approximate string matching strategy, to overcome problems such as spelling
variants (to date, the Prism selection algorithm focus only on this string
similarity problem). The algorithm adopts the Monge-Elkan distance function
(according to Cohen et al. [5] such function outperforms other approaches
when dealing with spelling variants).
Precision-recall analysis9 has been carried out to assess the validity of the

Prism selection algorithm with different cost functions parameters, and with
different similarity thresholds T . Future work will include a thorough campaign
evaluation to assess the algorithm performance on a wider scale, and will involve
PRISSMA-enabled applications users in the loop.

4 Evaluation

The PRISSMA decomposition and selection algorithms have been implemented
as an Android library9. The library is showcased by the PRISSMA Browser9, a
mobile Linked Data browser enhanced with PRISSMA context-aware adaptation
(Figure 5).

The first test analyses the decomposition memory consumption (Figure 4a).
The test measured the decomposition size of groups of Prisms with a variable
number of identical context units. Groups included 20 Prisms, each containing 10
context units. Overall, test Prisms accounted for 340 triples. The percentage of
identical context units in each group of Prisms is progressively increased, ranging
from 10% to 100% (where the latter means that all Prisms in the group are
represented by the same decomposition item).

We assigned an arbitrary size of 30 Bytes to context units (we consider UTF-8
strings with an average length of 30 characters), and 42 Bytes to intermediate
decomposition elements (one integer ID, two integer ancestors IDs, and a list of

8 More refined geospatial matching techniques are out of the scope of this work, e.g.
http://linkedgeodata.org/.

9 Binaries, code, and evaluation results available at:
http://wimmics.inria.fr/projects/prissma

(a) (b)

(c) (d)

Fig. 4: Memory consumption (a) and Response time (b,c,d) of Prism selection
algorithm.

connecting edges. Each edge includes a triple of estimated size 90 characters). The
size of PRISSMA decompositions are compared with the retained size of a group
of Jena Model10, each containing a test Prism. As expected, with higher common
context units percentages, we have lower decomposition memory footprints.
Nevertheless, the memory size of PRISSMA decomposition is in the same order
of magnitude as the Jena models size.
A series of tests have been run to prove the computational complexity analysis of

the search algorithm. The algorithm response time has been tested with the proof-
of-concept PRISSMA Browser on a group of Android mobile devices (Google
Nexus 4, Google Nexus 10, Samsung Galaxy Mega, and Samsung Galaxy Note).
All phones were running Android 4.2.2. Figure 4b shows the relationship between
L, the number of Prisms in the decomposition, and response time. Prisms in each
group are all different (thus testing the worst case decomposition configuration).
Prisms contain n = 10 context units and the test context to be matched is made
of m = 10 context units. Five independent runs have been executed for each
group of Prisms, thus computing average response time measurements. Results
prove a linear dependency, thus confirming the worst case complexity analysis of
the search algorithm for what concerns the number of Prisms O(L). Figure 4c
shows how the size of the incoming context graph impacts on response time. In
this case, each run varied the size m of input context (ranging from 10 to 50
context units) using a fixed group of L = 5 Prisms each made of n = 2 context
units. Results match computational complexity analysis, thus giving a O(mn)
relationship (experimental setup shown in Figure 4c has n = 2, thus giving a
O(m2) relationship). Unlike the number of Prisms, the growth associated to
the size of the incoming context graph suggests that the size of the latter must
be kept as small as possible, to consistently reduce response time. Finally, in
Figure 4d the size n of each Prism has been tested. Five independent test runs

10 http://jena.apache.org/documentation/notes/model-factory.html

(a) (b)

Fig. 5: Two screenshots of the PRISSMA Browser Android application. Content
and layout in (a) are optimized for tablets, while (b) is optimized for users
walking in Paris (see the Prism in Figure 2).

assessed response time using an incoming context graph of m = 50 context units
and a decomposition made of L = 5 Prisms. Results confirm the complexity
analysis O(n2). As for the case of incoming context graph, the size of Prisms
impacts with a quadratic growth on response time, thus it is important to avoid
defining useless context conditions in Prisms to lower response time.

5 Conclusions

Extending Fresnel with context awareness favours the sharing and reuse of prisms
across applications, does not introduce new formalisms, and is extensible to
domain-specific context data. Operating on the client side guarantees privacy
preservation, because context data does not have to be disclosed to third-party
adaptation servers. Moreover, the decomposition structure supports incremental
updates. Memory consumption tests show that the decomposition structure
reduces memory usage when Prisms contain repeated subgraphs. Response time
test campaign shows the sublinear dependence on the number of Prisms in the
system. The main limitation of PRISSMA is the need for a proper parametrization
of the selection algorithm. This is a well-known issue of strategies based on graph
edit distance, that will be addressed in future work with machine learning

techniques. Additional cost functions will be added (e.g. semantic distance
between URIs). Response time comparison with cited state-of-the-art solutions is
envisaged, although experimental conditions vary, making the task tricky. Future
work will also include deal user acceptability evaluation campaigns. Prisms
distribution has not been examined yet: PRISSMA might support multiple
strategies for discovery, retrieve, and consume Prisms published as Linked Data.

References

1. S. Auer, R. Doehring, and S. Dietzold. LESS - Template-Based Syndication and
Presentation of Linked Data. In In Procs of ESWC, pages 211–224, 2010.

2. J. J. Carroll. Matching RDF Graphs. In Procs of ISWC, pages 5–15, 2002.
3. S. Castano, A. Ferrara, S. Montanelli, and G. Varese. Ontology and instance

matching. volume 6050 of LNCS, pages 167–195. Springer, 2011.
4. P.-A. Champin. T4R: Lightweight presentation for the Semantic Web. In Scripting

for the Semantic Web, workshop at ESWC, 2009.
5. W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of string

distance metrics for name-matching tasks. In IIWeb, pages 73–78, 2003.
6. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in

pattern recognition. IJPRAI, pages 265–298, 2004.
7. L. Costabello. DC proposal: PRISSMA, towards mobile adaptive presentation of

the web of data. In Procs of ISWC, pages 269–276, 2011.
8. A.-S. Dadzie, M. Rowe, and D. Petrelli. Hide the Stack: Toward Usable Linked

Data. In Procs of ESWC, volume 6643 of LNCS, pages 93–107. Springer, 2011.
9. A. K. Dey. Understanding and using context. Personal Ubiquitous Comput.,

5(1):4–7, 2001.
10. J. Euzenat and P. Shvaiko. Ontology matching. Springer, 2007.
11. J. M. B. Fernéandez, S. Auer, and R. Garcia. The linked data visualization model.

In ISWC (Posters & Demos), 2012.
12. F. L. Gandon. Generating surrogates to make the semantic web intelligible to

end-users. In Web Intelligence, pages 352–358, 2005.
13. X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern

Analysis & Applications, 13(1):113–129, 2010.
14. K. Henricksen and J. Indulska. Modelling and using imperfect context information.

In PerCom Workshops, pages 33–37, 2004.
15. D. Huynh, D. R. Karger, and D. Quan. Haystack: A platform for creating, organizing

and visualizing information using rdf. In Semantic Web Workshop, 2002.
16. C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of iSPARQL: A virtual

triple approach for similarity-based semantic web tasks. In ISWC. 2007.
17. m. c. schraefel and L. Rutledge. User interaction in semantic web research. J. Web

Sem., 8(4):375–376, 2010.
18. B. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomorphism

detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998.
19. E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel: A browser-independent

presentation vocabulary for RDF. In Procs of ISWC, pages 158–171. 2006.
20. D. Quan and D. R. Karger. Xenon: An RDF stylesheet ontology. In Procs of

WWW, 2005.
21. K. Riesen, X. Jiang, and H. Bunke. Exact and inexact graph matching: Methodology

and applications. In Managing and Mining Graph Data, pages 217–247. 2010.

22. L. Rutledge, J. van Ossenbruggen, and L. Hardman. Making RDF presentable:
integrated global and local semantic web browsing. In WWW, 2005.

23. J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1), 1976.
24. J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links

on the web of data. In Procs of ISWC, pages 650–665, 2009.
25. L. Zou, L. Chen, M. T. Özsu, and D. Zhao. Answering pattern match queries in

large graph databases via graph embedding. VLDB J., 21(1):97–120, 2012.

